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ABSTRACT

Due to the popularity of blockchain-based cryptocurrencies, the
increasing digitalization of payments, and the constantly reducing
role of cash in society, central banks have shown an increased inter-
est in deploying central bank digital currencies (CBDCs) that could
serve as a digital cash-equivalent. While most recent research on
CBDCs focuses on blockchain technology, it is not clear that this
choice of technology provides the optimal solution. In particular,
the centralized trust model of a CBDC offers opportunities for dif-
ferent designs. In this paper, we depart from blockchain designs
and instead build on ideas from traditional e-cash schemes. We
propose a new style of building digital currencies that combines
the transaction processing model of e-cash with an account-based
fund management model. We argue that such a style of building
digital currencies is especially well-suited to CBDCs. We also de-
sign the first such digital currency system, called Platypus, that
provides strong privacy, high scalability, and expressive but simple
regulation, which are all critical features for a CBDC. Platypus
achieves these properties by adapting techniques similar to those
used in anonymous blockchain cryptocurrencies like Zcash to fit
our account model and applying them to the e-cash context.

1 INTRODUCTION

Recent research on digital currencies has mostly focused on block-
chains such as Bitcoin [33] instead of traditional e-cash systems
such as [15]. This is mostly due to the popularity of blockchains
for permissionless digital currencies, i.e., digital currencies that do
not rely on a trusted central authority.

Inspired by the popularity of blockchains, several central banks,
such as Swedish central bank [39] and the Bank of England [10],
have expressed interest in creating a digital version of their currency.
The People’s Bank of China [44] has already deployed a digital yuan
into trial use. Recently, several central banks, together with the
Bank of International Settlements, have outlined the principles and
core features of such a central bank digital currency (CBDC) [9].

A CBDC has a different trust model and different requirements
from permissionless cryptocurrencies. Namely, the central bank is
generally a trusted authority and the consensus process should not
be open to everyone. Nevertheless, decentralized ledgers have often
been proposed for such central bank digital currencies [5, 18, 42],
since they offer benefits over traditional e-cash such as increased ro-
bustness due to the distributed consensus, as well as transferability
due to the ledger-based system. While traditional e-cash [15] pro-
vides privacy for the sender, it leaks the transaction amounts since
the coins need to be deposited immediately for double-spending
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protection. In ledger-based systems, coins are not deposited, but
instead value is transferred, which allows for private transactions
such as in Zerocash [38].

However, e-cash systems have several advantages compared to
ledger-based systems. Namely, e-cash systems are easier to scale,
mainly because they do not require byzantine agreement between
independent parties due to their centralized nature. This has par-
ticular implications on their sharding potential. For example, de-
positing coins can easily be sharded based on the serial number
of the deposited coin. Since the coins are signed by the central
authority, there is no need to check (potentially cross-shard) if the
coin was produced as an output of a previous transaction (such as
in ledger-based systems), and instead it suffices to check that the
coin is signed by the central authority and that the serial number
has not been seen before. Further, the requirements for clients can
potentially be reduced compared to ledger-based systems, since in
ledger-based systems, clients keep up to date with the whole ledger
or use a lightweight client, which reduces their privacy [25] with-
out the use of additional mechanisms that require additional trust
assumptions [31, 43] or expensive cryptographic protocols [30].

We want to leverage the different trust model of central bank
digital currencies and combine the benefits of ledger-based digital
currencies and traditional e-cash schemes. Namely, we assume
an authority that is trusted for the integrity of the currency (e.g.
double-spending protection) but is not trusted for privacy, a setting
that has been proposed by several central banks [9, 17]. We want
to make use of the performance benefits from traditional e-cash
schemes, but combine them with a transaction mechanism inspired
by anonymous ledger-based cryptocurrencies like Zerocash [38]
that provides anonymity for the sender and recipient as well as
secrecy of the transaction amounts. In addition, the mechanism
should be easy to extend with regulation mechanisms for e.g. money
laundering protection similar to [24, 42].

To achieve these goals, as the first main contribution of this
paper, we propose a new style of building digital currencies that
combines the transaction processing model of e-cash payments
with an account-based model for managing users’ funds (which is
also used in some ledger-based systems like Ethereum [41]). We
argue that this style of building digital currencies is particularly
well-suited to CBDCs and allows us to achieve strong privacy, high
scalability, and simple but expressive regulation, which are all de-
sirable features for a CBDC.

As the second main contribution of this paper, we design the
first digital currency system, called Platypus!, that follows this

!Similar to how its namesake combines features from different animals, Platypus
combines ideas from e-cash, blockchains, and bank accounts.



design pattern. Platypus is also inspired by previous anonymous
blockchain-based cryptocurrencies such as Zerocash [38]. In Platy-
pus, each participant owns an account that is represented by a
commitment, called account state commitment, to a serial number
and a balance and which is signed by the central bank. A transac-
tion then consists of updating the commitments of both, the sender
and recipient. The sender and recipient reveal the serial number
of their current account states, prove in zero-knowledge that they
are in possession a corresponding state commitment signed by the
central bank, and that the sum of their balances remains invariant.

Such a design provides advantages over anonymous ledger-based
designs as well as over UTXO-based designs (e.g. Zcash). The main
advantage over ledger-based designs lies in the scalability of such
an approach. Since transactions do not need to be ordered on a
ledger and the system is centralized, transaction validation can be
sharded almost arbitrarily using standard database techniques such
as two-phase commit [29] and thus there is no inherent limit on its
throughput. In addition, the requirements for clients are reduced
significantly. In systems like Zcash, clients need to download and
decrypt every transaction stored on the ledger if they want to
benefit from Zcash’s privacy guarantees. If a currency is to be widely
used, as expected from a CBDC, downloading and decrypting every
transaction quickly becomes infeasible for most users, who may
want to use this currency on a mobile device.

Another advantage of the account-based design is simplified
enforcement of regulatory rules. If enrollment in the system is
bound to real identities, this account-based design can simplify
regulatory rules similar to those proposed by Garman et al. [24] and
Waist et al. [42]. In particular, it enables enforcement of regulatory
rules that, e.g., limit the amount of funds that a particular user can
posses at a time (as mentioned e.g. by the Bank of England [10]),
or that require disclosure of the user’s identity if a certain limit
for receiving funds within a period of time is exceeded. However,
in contrast to [24], this enforcement is more flexible since it can
be applied on the sender or recipient side (instead of only the
sender) and it can be done more efficiently since it does not require
aggregation over multiple transaction outputs. In contrast to [42],
it preserves full transaction unlinkability.

This design also provides advantages over more traditional e-
cash schemes like the original proposal by Chaum [15] and opti-
mizations using similar principles [12, 13], in which a bank issues
blinded coins to a user, who then spends them at one or more mer-
chants, who deposit them back in the bank. Namely, one of the main
advantages is that our account-based approach does not require
spending of individual coins, which has two important effects.

First, this leads to a more compact scheme, since the transaction
size and the verification cost do not increase with the transaction
value. In traditional e-cash schemes, each coin is spent individually
which means that the transaction size depends on the transaction
value whereas the size can stay constant in an account-based design.
Even in divisible e-cash [14] — which shrinks the transaction size to
logarithmic in the value - each coin is still deposited individually,
i.e. the verification cost at the bank is linear in the transaction value.

Second, and more importantly, this improves privacy: In tradi-
tional e-cash systems, the amount that a merchant receives always
leaks, since they need to deposit the received coins at the bank.
In the case of an online e-cash system, this immediately leaks all

transaction values of the merchant, in an offline system, this leaks
the amount that is received between two deposits. Thus, traditional
e-cash systems only provide payer privacy, but not recipient privacy
or value privacy. With our account-based design, the size of a trans-
action is independent of its value and the funds are immediately
deposited in the blinded account of the recipient. This ensures the
anonymity of the sender and recipient, the confidentiality of the
transaction value, and the unlinkability of transactions.

Contributions. In this paper, we make the following contributions:

o A new pattern of building digital currencies that combines
the transaction processing model of e-cash with an account-
based fund management model.

e A new digital currency design called Platypus that pro-
vides unlinkable transactions, high scalability, and a privacy-
preserving regulation mechanism which are all critical fea-
tures for a CBDC.

o A security analysis that shows that Platypus provides in-
tegrity and strong privacy guarantees.

o An implementation and evaluation that show that transaction
creation is fast and Platypus can be easily scaled.

2 OVERVIEW

In this section we provide an overview of Platypus. We start by
explaining our motivation and goals, followed by the trust assump-
tions and our system model. After that, we explain the main ideas
of Platypus.

2.1 Motivation & Goals

Recently, multiple central banks together released a report detailing
the principles, motivations and risks of CBDCs [9]. This serves as a
good basis for technical decisions in the design of a CBDC since it
directly provides the view of the involved central banks.

One of the main motivations outlined in [9] is continued access
to central bank money, i.e. the function of a CBDC as a form of
a “digital banknote”. Currently, both, access and the use of cash
are declining in many jurisdictions, which creates the risk that
some businesses and households lose access to risk-free central
bank money. A CBDC could step in to fill this void to ensure the
confidence in a currency.

Cash does not only provide risk-free central bank money, but it
also provides very strong privacy guarantees. In a cash payment,
third parties neither learn the identities of the parties nor the value.
This is a property that should also be mirrored by a CBDC [5, 9].
A working paper from the Swiss National Bank [17] explicitly
mentions “mass surveillance” as one of the potential threats of
a CBDC, which exemplifies the need for strong privacy guarantees
and a consultation from the European Central Bank [22] showed
that privacy is the most important feature of a CBDC for the survey
respondents.

A CBDC could also increase resilience and the diversity of pay-
ment systems, improve financial inclusion, and simplify cross-
border payments if the CBDCs of multiple countries are inter-
operable [9]. Lastly, even though this is not stated as one of the
main motivations of [9], a CBDC could be used for “programmable
monetary policy” to e.g. provide so-called “helicopter drops” that



distribute funds to the public combined with an expiration date for
spending these funds.

CBDCs also create some risks for financial stability [5, 9]. In
particular, it can lead to a form of bank runs, since it provides a
convenient way (in contrast to paper money) of storing their funds
as central bank money. One of the potential mitigations for this risk
is to explicitly design the currency as a cash-like system that, e.g.,
enforces limits on how much currency can be held by a single party
at a time. Because of this, allowing the enforcements of such limits
is one of the central regulatory goals for such a digital currency.

Another regulatory requirement for CBDCs is the enforcement
of anti-money-laundering (AML) legislation [5, 9]. However, this
partially conflicts with the goal of improved payment privacy. This
conflict can be solved by allowing anonymous payments up to
a given limit per unit of time above which the recipient needs
to disclose their identity to a regulator. This idea has also been
proposed by the European Central Bank in the form of “anonymity
vouchers” [21] as well as by previous work [24, 42].

Based on these motivations and ideas, we focus on a retail CBDC
that can be used as a digital equivalent of cash since this is the
main use case considered by central banks [9]. Given our focus,
our main goal is to provide a digital currency that is maintained
by a central bank and provides fully anonymous transactions, i.e.,
where the transaction values are secret, the sender and recipient
cannot be identified and transactions are unlinkable to previous or
future transactions. In addition, this solution should make use of
the benefits allowed by the trust model in which a central authority
is trusted for integrity (as proposed, e.g., in [17]) and should pro-
vide significant performance benefits over other anonymous digital
currencies such as Zerocash [38].

As a secondary goal, we want this digital currency to be easily
and efficiently extendable with regulation mechanisms similar to
those described by Garman et al. [24] and Wiist et al. [42] to make
it viable for the use as fiat currency.

2.2 System Model & Trust Assumptions

Motivated by the considerations in Section 2.1, we consider the
setting in which a central bank wants to issue and maintain a digital
currency, as shown in Figure 1. Such a centralized design is proposed
by a working paper of the Swiss National Bank [17] and suggested
as one possible option in a report from a group of central banks [9].

In addition to this central bank, we assume that there exists
a regulator (e.g., a government agency), which is responsible for
enforcing regulatory requirements, such as anti-money-laundering
(AML) legislation. While such a regulator is not necessary for the
functioning of the core protocol, it would likely be an integral part
in any deployment of a CBDC in practice (see Section 4).

Our system also contains clients that can act as payment senders
and payment recipients. We assume that these clients are considered
untrusted, i.e., they may behave arbitrarily.

Since central banks are responsible for monetary policy, we
assume that the central bank is trusted for the integrity of the
currency and the regulator trusts the central bank to comply with
regulatory requirements. The central bank is responsible for the
issuance of new money and preventing double-spending is in its

Central Bank

Regulator

Public Trans-
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Figure 1: Platypus System model. Platypus consists of a cen-
tral bank that is responsible for transaction validation, a
regulator that issues certificates to clients and receives trans-
action information relevant for compliance with regulatory
rules, as well as clients that participate in the system. The
central bank also publishes a log of all transactions.

own interest as double-spending would effectively increase the
currency in the system.

However, based on our considerations in Section 2.1 and the
potential threat of mass surveillance [17], we assume that the cen-
tral bank is not trusted for privacy, i.e., it might be interested in
deanonymizing the sender or recipient of a transaction or recover
transaction values.

We consider full protection against network-based deanonymiza-
tion attacks (e.g., linking an IP address to multiple transactions)
to be out of scope of this paper. To protect against such attacks,
clients can use protections such as anonymity networks like Tor [3]
if desired. However, to provide some resilience against such at-
tacks, we design the system such that the recipient and sender of a
transaction cannot be easily linked together by the central bank,
even without the use of anonymity networks and provide some
discussion about network-based transaction linking in Section 7.
In the normal case (cooperating recipient) this is achieved by only
having the recipient communicate with the central bank. For other
cases, and to simplify account recovery, the central bank publishes
transactions in a publicly accessible log, which clients can use to
look up their previous transactions. This log can be mirrored by
third parties, similar to block explorers in blockchain systems.

Finally, we assume that clients communicate with each other
through secure channels and that all cryptographic primitives
used are secure according to the standard definitions for their se-
curity: we assume that commitments are computationally bind-
ing and hiding, that signatures are unforgeable, that the zero-
knowledge proof systems are zero-knowledge and provide sound-
ness, and that encryption is CPA-secure. We also assume that the
zero-knowledge proofs provide statement non-malleability as pro-
vided by, e.g. Groth16 proofs [7].

2.3 Platypus Design

Platypus uses a hybrid between an account model and an e-cash
design, in which each participant is responsible for keeping track
of their own account state which is kept as objects similar to coins
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Figure 2: Platypus Base Transaction. (1) Transaction Initiation. The sender, Alice, creates the transaction commitment as well as
the proofs for the update of her account state commitment and sends all of this to the recipient Bob, together with the blinding
value of the transaction commitment. (2) Transaction Completion. Based on this, Bob creates the proofs for the update of his
account state commitment and sends the new account state commitments and both proofs to the central bank. (3) Transaction
Execution. The central bank verifies the proofs, checks that the revealed serial numbers have not been used before, and based
on this either accepts or rejects the transaction. If the bank accepts, it signs the new account states and sends the signatures
back to Bob. Simultaneously, the central bank also publishes the full transaction (i.e. everything received from Bob plus the

new signatures) on a public transaction log. (4) Payment Acceptance. If the signatures are valid, Bob accepts the payment and
forwards the signature on Alice’ state to her, which completes the payment (@ Payment Completion.).

in an e-cash system. However, in contrast to e-cash, where a client
usually has multiple coins that can be used in a transaction, a client
has a single account state which is consumed in every transaction
and a replaced with a new one. This account state is represented
by an account state commitment state; to the account balance bal;
and to a serial number serial;. The account state commitment is
produced by a previous transaction and is signed by the central
bank. To sign these state commitments, the central bank uses its
secret key skc (corresponding to public key pkc). For enforcement
of regulatory policies, the account state may contain additional
information as described in Section 4.

Figure 2 shows how a transaction is processed in the normal
case where both the sender and recipient have already participated
in the system. In step @ Alice initiates a transaction, in which
she sends a value of vty to the recipient, Bob, by creating a sender
account update. Alice creates a commitment, called transaction com-
mitment, to the value vty using a random blinding factor blindTy,
denoted by commTy, = comm(vTy, blindTy). She then creates a new
state commitment state‘i‘irl that commits to a fresh pseudorandomly
(based on her longterm key) chosen serial number serialﬁ1 and
a value balﬁLl = balf‘ — o1} Where bal‘;‘ is the balance committed
to in her current state commitment state?. Alice then creates a
non-interactive zero-knowledge proof zkpﬁr1 which proves that
she performed these steps correctly.

Note that, for this zero-knowledge proof, both the previous ac-
count state commitment state’;‘ and the central bank’s signature
are secret values, i.e. they are not revealed in this transaction. This
ensures that this transaction is not linkable to the previous transac-
tion in which state‘i4 was created and which contains state;.4 and

the bank’s signature. The zero-knowledge proof potentially also
needs to prove compliance with regulatory rules, if a regulation

mechanism as described in Section 4 is in place.
A

i+1°
commitment commry, the serial number of the old state serial’;‘,

This zero-knowledge proof zkp?: ., as well as the transaction

and the new account state commitment state‘i‘_‘Fl are then sent to
the recipient, Bob. Alice also provides the random value blindyy
required to open the commitment commry, such that Bob can use
it to create a zero-knowledge proof for his own account update.
To complete the transaction (step (2)), Bob then creates a creating
a receiver account update, for which he proceeds similarly to Alice,
with the difference that his zero-knowledge proof ka?+l reuses
the transaction commitment commry and proves that his account
balance in his new state state? .1 increases by exactly vty compared

to his previous state state? with serial number serial?.
Once Bob has created the proof zkpil, he sends the transac-

tion commitment commry, Alice’ and his serial numbers (seriallA,

A B )

. B . .
serlalj ), both of their new state commitments (stateH_l, statej_'_1

and both zero-knowledge proofs (zkp{_‘+1 , zkpﬁ.3 ’+1) to the central
bank.

The central bank then executes the transaction (step (3)) by veri-
fying both zero-knowledge proofs and checking that neither of the
serial numbers (serial?, serial? ) have been used in previous transac-
tions. If this is the case, the central bank adds both serial numbers to
the set of used serial numbers, signs the two new state commitments
(statelAﬂ, state?H) with their private key skc and sends the signa-
tures oﬁl = Sign(skc, stateﬁl) and aﬁrl = Sign(skc, state?+1



back to Bob, who checks if the signatures are valid and, if so, ac-
cepts the payment (step (4)). Bob then forwards olfil to Alice, who
verifies the signature and updates her stored state information,
which completes the payment (step (5)).

The central bank keeps a record of all recent (i.e., for some spec-
ified time interval chosen by the central bank) transactions, which
they publish in a publicly accessible way. In particular, for each
transaction, the bank publishes all values received from Bob, as well
as the bank’s signatures on the new account state commitments.
This allows Alice to check the set of recently published transactions
for the serial number of her old account state to find and receive
the transaction containing the signed new state commitments, even
if Bob does not forward this information to her. Note that the pub-
lished set of transactions does not need to be ordered (in contrast to
a ledger or blockchain) and can be mirrored by arbitrary parties. To
enable efficient account backups and recovery, additional encrypted
(with a key of the owner) information about the contents of the
transaction can be included in the transaction. Backups and account
recovery are described in Section 7.

The centralized design of Platypus also simplifies sharding, since
standard database sharding techniques can be used for checking
and updating the serial numbers of the used account states.

3 PLATYPUS BASE TRANSACTION DETAILS

In this section, we describe the details of the base transactions
in Platypus, i.e., the creation of transactions without regulation
mechanisms. We defer the explanation of regulation mechanisms
to Section 4 to improve readability and to make the system design
easier to understand.

Platypus makes use of zero-knowledge proofs in its transactions.
These zero-knowledge proofs can be instantiated with different
proof techniques, but the statements that are proven are indepen-
dent of these techniques. In Section 6, we implement and evaluate
Platypus using zk-SNARKs.

Some of these proof-techniques (including that by Groth [27]
used in our implementation) require a trusted setup to generate a
common reference string, which has been criticized in the context
of decentralized cryptocurrencies like Zcash, and extraordinary
efforts were made to keep it secure when Zcash was originally
launched [34]. It is important to note here that, at least in most
constructions including [27], a compromise of this trusted setup
does not affect the zero-knowledge property of the proofs. Instead it
“only” affects soundness, which in the context of digital currencies
allows the creation of money, but does not affect privacy. In our
context, i.e., a CBDC, the central bank is the entity that creates
money and is trusted for the integrity of the currency, which means
that it can therefore be trusted to perform the setup without any
additional assumptions. Of course, in practice, it could be preferable
to distribute the setup between multiple parties or to use a proof
system that does not require a trusted setup.

3.1 System Setup

To set up the system, the central bank creates a private/public key
pair (skc, pkc) that is used for signing account state commitments
and publishes its public key pkc. In addition, if a proof system
is used that requires the setup of a common reference string (see

above), the central bank runs the trusted setup procedure (possibly
in conjunction with other parties). In addition, the central bank
sets a parameter balmax which is a maximum limit on account
balances to prevent value overflows (i.e. since all values are finite
field elements, it ensures that balances cannot be negative) and
can be set to a value larger than all realistic values for account
balances. Similarly, the entity responsible for regulation generates
the parameters required by the regulation, which we describe in
Section 4.

User Enrollment. When a user U enrolls in the system, they create
a secret key sk = (sky, skyz), consisting of two randomly chosen
keys sky1, skyz. These keys can later be used to pseudorandomly
derive serial numbers and blinding values for their account states
using pseudorandom functions fg,,, and g, - Pseudorandom se-
rial numbers prevent possible attacks that could destroy funds [37].
Blinding values could instead also be chosen randomly. However,
using pseudorandom values for both simplifies the creation of back-
ups for an account (see Section 7 for more detail). If regulation is
in place, users may also need to register their identity with the
regulator (see Section 4).

To create an enrollment transaction, U derives pseudorandom
values serial?, blind? from their secret key as serialy = fsky, (0)
and blindy = sky, (0) and uses them to create a new state commit-
ment state? = comm(serialY, bal?, blindgj) for an account with
no balance, i.e., bal? = 0. U then creates a non-interactive zero-
knowledge proof zkp? which proves that the account state com-
mitment corresponds to an account with balance zero, i.e., zkpllj
proves the following statement:

Given public value

stategj

I know secret values
sky, serialgj, blind?
such that
statell‘l = comm(serialllj, 0, innd?)

U
serial] = fg,,, (0)

U then sends stategj and zkp? to the central bank. The bank
checks if the proof is correct and then signs the account state
commitment stateg and sends the signature back to U.

3.2 Transaction Creation

Here, we describe how a transaction between a sender (Alice) and
a recipient (Bob) is created. We assume that clients keep all values
secret unless mentioned otherwise and that they communicate
through a secure channel. The transaction sender does not need to
be authenticated and the channel can be established ad-hoc similar
to one-way TLS. In practice, the sender needs to receive a public key
from the recipient through an authenticated channel (analogous
to receiving, e.g., a Bitcoin address) which can then be used to
establish the channel. This public key could, e.g., be displayed as a
QR code on a payment terminal, e-commerce website, or mobile
phone.



Alice’ current account state is represented by a commitment
state;1 = comm(serial?, bal?, blind’i“), and similarly Bob’s current
account state is represented by stateﬁ.3 = comm(serialf, bal?, blind?)
if he already has an account. In addition, both are in possession of a
signature from the central bank on their account state commitment,
denoted by a;A = Sign(skc, state‘?‘) and Uf = Sign(skc, state?),
respectively. The commitment can be created using any hiding and
binding commitment scheme. The steps correspond to the steps
shown in Figure 2.

@ Transaction Initiation:

(i) To create a transaction to Bob with value o7y, Alice chooses
a fresh random value blindy and creates a commitment
commry, = comm (oTy, blindTy).

(if) Alice also derives pseudorandom values serial

1> blind4

+1
from her secret key as serialf_‘H A
gskAz(blindA) and creates a new account state statefH =
comm(serlalﬁl, balA - UTys bllndl+1)

(iii) Alice then creates a non-interactive zero-knowledge proof
kaﬁrl that proves the following statement:

Given public values
serial , COmmTy, statelﬂ, balmax, pkc

I know secret values

skay, bal, bald |, blind®, o2}, oty blindry, serials}

i+1’

A
blind4,,

i+1°

such that

True = Vrfy(pkc, comm(serlalA balA innd?),o{\)

commrTy, = comm (vTy, blindTy)

A A A
statej,; = comm(senallﬂ, bali, ;, blindi
balmax > bal-
A
bal,, = bal

seriali+l = fskm(seriali )
iv) Alice then sends vty, blindTX,commTX,seriaI stated  zkp4
i+1 Piv1
to Bob.
(2) Transaction Completion:
(i) After receiving the partial transaction from Alice, Bob de-
rives pseudorandom values serial? [T blind?+1 from his secret
= fikg, (serial?) andblind®, | = ggr,, (blind?)
and uses them to create a new account state statef'.;“ =
1 ba If; + 0Ty, blmd]+1)
(ii) If Bob already has an account, Bob creates a non-interactive
zero-knowledge proof ka?ﬂ that, similar to Alice’ proof

key as serlanJrl

comm(serial®

(with the difference of proving that his balance increased by
the transaction value), proves the following statement:
Given public values

serial , COMMTy, state]H, balmax, pkc

I know secret values

bImdB Z)TX, blindTy, serial? bllnd

skp1, bal ,balB 1

Jj+1

= fskas (seriallA) and blmdi+1 =

such that

True = Vrfy(pkc, comm(serial?, baI?, blind?), Uf)

commry, = comm(vTy, blindty)

B
state}, —comm(serlalﬁ_l,b I]+1’b]md]+1)

balmax > balj+1
bal?,, = bal? +op,
seriaI?Jrl = fskg, (serial?)
(iii) Finally, Bob sends the values commry, serial?, state‘i‘il, zkpﬁl,

serial stateB

1 zkp?ﬂ to the central Bank.

(3) Transaction Execution:

(i) The central Bank atomically checks that none of the serial
numbers seriallA, serial? appear in its stored set of previously
used serial numbers and that both zero-knowledge proofs
zkplf._‘H, ka?ﬂ verify. If this is not the case, then the central
bank rejects the transaction and informs Bob.

(if) Otherwise, the central bank accepts the transaction and
adds both serial numbers to the set of previously used se-
rial numbers, signs the new state commitments as oﬁl =
Sign(skc, stateﬁ_l) and Gﬁ_l = Sign(skc, stateﬁ_l) and sends
them to Bob. In addition, the central bank publishes the trans-
action (i.e., all values received from Bob plus o4 | and o8, )

i+1 Jj+1
on a publicly available log.

@ Payment Acceptance: Bob checks that the signatures received
from the central bank are valid, accepts the payment and stores
a; +1 to update his account if this is the case, and forwards an to
Alice. Otherwise, he rejects the payment and informs Alice.
(5) Payment Completion: Alice checks that the signature received
from Bob is valid. Otherwise, or if she has not received a signature
from Bob after a timeout, she inspects the central bank’s public
transaction log to retrieve the transaction and the signature on her
new account state commitment. She then stores G‘ﬁ_l to update her
account and the payment is completed.

4 REGULATION IN PLATYPUS

As described in Section 2.1, a CBDC requires the possibility to
enforce regulatory policies. In particular, a CBDC should enable
rules that ensure the financial stability of a system, e.g., to prevent
bank runs, as well as rules that allow enforcement of anti-money-
laundering legislation or allow the detection of tax evasion [5, 9].
The design of Platypus explicitly simplifies the implementation
of such compliance policies through its account-based design. This
account-based design allows storing additional information within
an account state, which enables efficient zero-knowledge proofs
through which the account holder can prove compliance with a
given rule. In particular, it improves efficiency over previous designs
such as that of Garman et al. [24] that require proofs over the
state of the whole system (inclusion of several UTXO in a Merkle
tree) instead of a proof of a signature. In contrast to the design by
Garman et al., which only allows proofs on the state of the sender,
it also allows proofs about the state of the recipient. In addition, it



improves privacy compared to designs like PRCash [42] that require
linking several transactions together for efficiency.

In this section, we describe a generic framework for enabling
such regulatory policies and describe an example that is in line
with the goals of a CBDC as stated by several central banks [9].

4.1 Regulation Framework

Meaningful compliance rules need to be bound to a recognized iden-
tity. Otherwise, a user could establish a large number of pseudony-
mous identities to circumvent these rules. This requires an entity
responsible for establishing these identities.

In addition, many practical rules do not simply prevent someone
from taking an action but instead require them to disclose informa-
tion under certain conditions. We therefore also assume the exis-
tence of a government agency that is responsible for receiving such
information and operating on it, e.g., within the legal system. For
simplicity, we assume that these roles are taken on by a single entity
that we call the regulator. However, in practice, the responsibilities
could be split, e.g., one entity could be responsible for establishing
identities and a separate agency could hold the responsibility for
each compliance rule. As part of the system setup, the regulator
creates one key pair for issuing certificates (skgrc, pkrc), another
key pair that is used for encryption (skgrg, pkrg), and publishes
both public keys.

Enrollment. To enable regulation, users need to explicitly enroll
in the system and establish identities. To do this, and to later be
able to prove their identity, each user U generates a random secret
value, called secret identity siyy from which their public identity
piy = PublD(siy) is derived, i.e., essentially a private/public key
pair with the sole purpose of identifying the user. The user then
needs to receive a certificate O'g = Sign(skgc, (piy, params)), i.e.,
a signature from the regulator on the user’s public identity, as well
as potentially some other individual parameters (params) that can
be used for different rules on an individual basis. For example, the
certificate could contain a holding limit that is individual to each
user. This can be useful to, e.g., allow retail businesses to hold a
larger amount of currency than users can hold in private accounts.

To issue this certificate, the user proves knowledge of the secret
identity corresponding to their public identity piy;, which is then,
together with the individual regulation parameters params, signed
by the regulator after confirming the real identity of the user (e.g., by
the user physically going to an office of the responsible government
agency). The user’s certificate and secret identity can then later be
used in zero-knowledge proofs for anonymous identification. To
ensure that this identity cannot be used for multiple accounts, the
public identity is always included in the account state commitment
and the user proves equality of the public identities committed to
in the old and new state commitments.

Structure of regulated transactions. For the enforcement of
some regulatory rules, it can be useful to keep track of informa-
tion involving the user’s transaction history, which then allows
the user to create proofs involving this information when creating
a transaction. To enable this, such auxiliary information can be
committed to in the account state commitment of the user. The
account state of a user U is thus represented by a commitment

statel. = comm(serlaIU baIU piu,aux; ,bllndU) where auxU de-
notes the required auxlhary 1nformat10n

The zero-knowledge proof of the base protocol (see Section 3), is
then extended such that the user also proves in zero-knowledge that
they comply with the regulation rules. This includes proving that
they know a private identity for which they have a certificate from
the regulator. The regulator can require the user to disclose some
information (e.g., the user’s identity, balance, transaction value etc.)
under certain specified conditions. We denote the computation of
this information with a function Reglnfo which takes the user’s
state information as input and either outputs either a fixed dummy
value (if the condition is not triggered) or the information that
is required to be disclosed (if the condition is triggered), e.g., the
user’s identity piy; and account balance balV Py

The user encrypts the output of this function with the regula-
tor’s public encryption key pkgg, resulting in a ciphertext Eg_l and
proves that the computation of Reglnfo and the encryption was
correctly performed. Encrypting a dummy value if the transaction
is fully compliant ensures that all transactions are indistinguish-
able to parties other than the regulator independent of triggering
the condition. The ciphertext Egl is sent to the bank as part of
the transaction, which forwards it to the regulator, who can then
decrypt it (and discard it, if it is the dummy value).

Below, we show the general structure of the updated proof state-
ment for regulated transactions. The function updateAux is used to
update the auxiliary information aux and the function checkOther
is a predicate that can contain additional checks that would cause
the generation of the proof to fail. E.g., this could be used to impose
hard limits on the amount that a user can hold in their account.
These functions, as well as RegInfo are dependent on the policies
that are enforced. All of these functions can also depend on ad-
ditional public information aux,,; such as the current date. To
improve readability, the differences to the proof of the base trans-
action (see Section 3.2) are shown in purple.

Given public values

serialgj, commry, statelqu, Eilil, balmax, pkc, pkre, pkRE: auxpyp
I know secret values

siy, piv, U}[{, params, auxlu, auxgrl

blind¥

skUl,bal bal¥ bllnd ,0; ,uTX,bllndTX,serlallH, it

i+1° i
such that
True = Vrfy(pkc, comm(serial ball ,plU,auxl , bllndU) o; )
commry, = comm(oTy, blindTy)
state = comm(serlall“, 1+1 plU,aulerl,blmdlLfrl
balmax > bal.
bal¥;, = bal? + o,
seriali+1 = fskon (seriallU)
piy = PubID(siy)
True = Vrfy(pkre, (pivu, params), o )
auxu1 = updateAux(auxi s AUXpyp, PIU, params, vty balﬁl)

EY

iv1 = Enc(pkrE, Reglnfo(auxlU, auXpyp, iy, params, vty balgl))



True = checkOther(auxlU, aUXpyyps PiU, PATams, vy, balg_l)

Depending on the type of compliance rule in place, not all parts
are necessary. For example, a limit on holding currency does not
require committing to any auxiliary data auxlU. We show the proof
statement for a recipient here, but this can be equally applied to
the sender (with the only difference being an increase vs. decrease
of the balance). Two example policies that illustrate how regulation
proofs work are presented below.

4.2 Holding Limits

One compliance rule that is of particular interest for financial sta-
bility in an economic system, specifically to prevent bank runs,
consists of limiting the amount of money that can be held in a
CBDC [9, 10]. In addition, such a holding limit can be useful to
authorities to prevent evasion of wealth tax.

A holding limit can be designed in different ways. The simplest
way is to enforce a hard global limit on the amount that can be held
by a single account. The only regulation mechanism required to
enforce this is the establishment of real identities and proving the
possession of a certificate. In addition to this, the value balmay that
is used in the base transaction (see Section 3) and used to prevent
overflows is set to the holding limit required by the regulatory rule
which will prevent any balance from exceeding this limit.

A more flexible option could allow different holding limits for
different users, for example to allow business accounts to hold more
digital currency than private accounts. To do this, this individual
holding limit limy,,;4 is included as part of the parameters params
in the user’s certificate (see Section 4.1). In each transaction, the
user then proves in zero-knowledge (i.e. without revealing the limit)
that their new balance does not exceed this limit, i.e. the predicate
checkOther checks that the user’s new balance balgrl is less than
the holding limit limp,;4. With such hard limits, there is no need
to provide a ciphertext Eg_l with encrypted information for the
regulator and the corresponding.

Lastly, it is possible to have soft limits instead of hard limits that
allow holding a larger amount of currency with the requirement of
revealing this information to the regulator. To enable this, the user’s
certificate again includes an individual holding limit as before, but
the proof in the transaction changes. Instead of proving that they
have not exceeded the limit in the transaction, the user encrypts
their public identity and their account balance with the regulator’s
public key if they have exceeded the limit, or fixed dummy values
otherwise. That is, the function Reglnfo (see Section 4.1) returns
the public identity of the user and their balance if the balance
is above the limit limy,,;; and the dummy value otherwise. This
ciphertext Egl is added to the transaction and the user proves in
zero-knowledge that they have either not exceeded the holding
limit and encrypted the dummy value or that they have exceeded
the limit and encrypted their public identity and their account
balance.

Creating the proof in this way leaks no information to third par-
ties, only to the regulator. The regulator can decrypt the encrypted
information and disregard it if it contains the dummy values or keep
it otherwise. However, to third parties all transactions are indis-
tinguishable and they do not learn whether a transaction contains
real information or dummy values.

4.3 Receiving Limits

Another example for a compliance rule that is commonly suggested
for CBDC:s is a limit on how much money can be received or spent
by a party within a given amount of time [5, 9, 21, 24, 42]. Such
a limit serves to emulate reporting requirements for cash transac-
tions that are required for compliance with anti-money-laundering
legislation or to prevent tax evasion. Since it is easy to quickly
create a large number of digital transactions, these limits should
cover a certain amount of time instead of only applying to a single
transaction to ensure that they cannot be circumvented by simply
splitting a large transaction into multiple smaller transactions.

In the following, we describe how such limits can be added for
receiving currency, but the same techniques can also be directly
applied for sending currency. Similar to the “anonymity vouchers”
proposed by the european central bank [21] and proposed limits
in previous work on blockchain-based digital currencies [24, 42],
we focus on soft limits that allow for fully anonymous transactions
if the total received value for each user is below a given threshold
within a fixed time interval, but require reporting if the threshold
is exceeded.

The user first enrolls in the system where they receive a certifi-
cate that includes a receiving limit lim;.. as part of the parameters
params. The system additionally defines epochs, the time intervals
for which the limits are defined. The length of these epochs is a
parameter of the deployed system and can be arbitrary, e.g. a day,
a week, or even a year, without affecting the linkability of trans-
actions (in contrast to PRCash [42]). The current epoch number is
part of the auxiliary public information aux,.

For each user, the account state includes two additional pieces
of information in its auxiliary information auxgj, namely, the last
epoch in which the user’s account was updated and the cumulative
sum of all funds that the user received within that epoch. With
each transaction, the function updateAux updates this information
accordingly.

Similar to the holding limits above, each transaction includes an
encryption Egrl (with the regulator’s public key) of either the total
received value in the current epoch and the recipient’s identity —
i.e,, the function Reglnfo (see Section 4.1) returns the public identity
of the user and the cumulative epoch total - if the balance is above
the limit lim,¢. or dummy values otherwise. The user then proves
(in zero-knowledge) that they performed this correctly, i.e. that
the total value that they’ve received in the current epoch is below
the limit or that their correct identity and the correct value were
encrypted. With respect to third parties (including the central bank),
all transactions remain indistinguishable.

5 SECURITY ANALYSIS

In this section, we analyze the security of Platypus, in particular
its integrity and privacy guarantees.

5.1 Transaction Integrity

We first discuss the integrity of our system. Since Platypus is a
digital currency system, this entails that only authorized parties
should be able to spend funds or create funds and funds should
not be spendable more than once. In particular, the system should



provide transaction unforgeability and balance invariance. We define
these two properties below and show that our system provides
them.

Transaction unforgeability essentially ensures that only autho-
rized parties can create transactions that spend their respective
funds and that the transaction values and intended recipients can-
not be changed by an adversary. Balance invariance ensures that an
adversary cannot spend funds multiple times or increase the supply
of the currency. We capture the first of these properties with the
following transaction forgery game:

Definition 5.1 (Transaction Forgery Game). Given our system,
the game consists of an interaction between an adversary A and
a challenger C with access to an oracle O that simulates honest
parties in the system. The game proceeds as follows:

(1) C initializes the system with a security parameter A, which
is used by the system to in turn initialize all used primitives,
such as the signature scheme or the zero-knowledge proof
system. C also initializes the oracle O.
(2) A can then generate arbitrary private keys and associated
accounts with a balance chosen by A, which O enrolls in the
system by signing the associated account state commitments.
(3) A can also ask O to initialize additional clients with bal-
ances chosen by A. O initializes them with the specified
balance by signing an according account state commitment
and then sends the signed account state commitment and
serial number for each of them to the adversary.
(4) A can use his accounts to create arbitrary transactions, in-
teract arbitrarily (i.e. send or receive transactions) with any
account managed by the oracle, or can ask the oracle to cre-
ate transactions between accounts managed by the oracle
which are created and forwarded to the adversary. All trans-
actions created in interaction with O are added to a query
set Q.
(5) For each of these transactions, the adversary can then decide
to submit them to O for execution, where O acts as central
bank, performs the same checks as the central bank and
either accepts or rejects the transaction.
(6) The adversary wins the game if they can create a transaction
that is accepted by the oracle (simulating the central bank)
in the transaction execution step that does not appear in the
query set Q and is either
e atransaction in which A controls neither the sender nor
the recipient account

e atransaction in which A controls the recipient account,
but not the sender account and no transaction with the
same sender serial number and the same transaction value,
and for which the adversary controls the recipient account,
exists in Q

Claim 5.1 (Transaction Unforgeability). No computationally bounded
adversary A without access to the simulation trapdoor of the zero-
knowledge proof system can win the transaction forgery game with
non-negligible probability.

Proof Sketch. Assume such an adversary A exists. Then there are
two possible cases to distinguish: Either 1) the adversary forges a

valid account update for the sender that is not part of any trans-
action in Q, or 2) he reuses a valid sender account update from a
transaction Txgp € Q.

In Case 1, A either a) creates a valid account update for an
account not controlled by A without knowing the respective secret
values, b) gains knowledge of the secret values, or c) creates a valid
account update for a non-existing account.

In case 1a), A must be able to create a zero-knowledge proof that
is accepted by the central bank without knowing the secrets, thus
violating our assumption that the zero-knowledge proof system
is sound. In 1b) A must be able to compute the sender’s secret
values based on previously seen transactions, in particular also
the blinding value used to create the previous account state. Since
this blinding value is only used for the account state commitment,
which is never opened, such an adversary could be used to distin-
guish commitments to two different pairs of serial numbers and
account balances, which violates our assumption that the commit-
ment scheme is hiding.

In case 1c), A either needs to produce a signature from the central
bank on a forged account state commitment or they need to produce
a proof of knowledge of such a signature without having knowledge
of it. If A can produce either of them, then this adversary A can
also be used to either break soundness of the zero-knowledge proof
system or to win the signature forgery game, which violates our
assumptions.

Now consider case 2. Then A either a) does not control the
recipient account for the transaction Txp from Q, or b) controls the
recipient account for Txg. In case 2a) A does not know the blinding
value used to create the transaction commitment and needs to either
find a transaction TX’Q € Q for which the transaction commitment
is the same as in Txg (to reuse its recipient state update) which
is negligible, or A needs to create a recipient account update that
uses the transaction commitment from Txp which is analogous to
case 1.

In case 2b) A controls the recipient account of Txg and there-
fore needs to create a transaction Tx” with a different recipient
account update that changes the transaction value. In this case, the
adversary knows the blinding value used to create the transaction
commitment since he controls the recipient account used in Txgp.
However, since the commitment scheme is binding, A cannot open
the commitment to any value other than the originally committed
value, and since we assume the proof system to be sound, A can
therefore not create any recipient account update that changes the
recipient’s balance by any other value. Thus, A cannot create any
such transaction Tx” without violating either the binding property
of the commitment scheme or soundness of the proof system.

Since all possible cases violate at least one assumption, Platypus
provides transaction unforgeability. O

Claim 5.2 (Balance Invariance). No computationally bounded adver-
sary without access to the simulation trapdoor of the zero-knowledge
proof system can create a transaction that increases the available
funds in the system or spends funds more than once.

Proof Sketch. There are multiple cases to distinguish. An adversary
can either 1) attempt to use the same sender account state in mul-
tiple transactions, 2) attempt to use a sender account state that
never resulted from a transaction accepted by the central bank, or



3) attempt to create a transaction that increases the balance of the
recipient by more than it decreases the balance of the sender.

First, let us consider the case where an adversary attempts to
use the same account state multiple times as sender in a trans-
action. Similar to traditional e-cash schemes like [15] as well as
Zerocash [38], double spending is prevented using serial numbers
that uniquely define an account state and can only be used once.
Once the serial number serial? has been revealed for one account
state commitment state?, the same account state can no longer
be used for future updates, since reusing the account state would
require proving that the same account state commitment opens to a
different serial number serial’f‘. If the adversary can create such a
proof, then either the proof system is not sound or the commitment
scheme used to create the state commitment is not binding, both of
which contradict our assumptions. No client can therefore use the
same account state for more than one transaction.

Now consider the case where an adversary creates a transaction
that uses a sender account state that has never been the result of a
transaction accepted by the central bank. This would immediately
allow the adversary to win the transaction forgeability game and
thus violates at least one of our assumptions.

Lastly, consider the case where an adversary attempts to create
a transaction that increases the account balance of the receiver
by more than the value subtracted from the account balance of
the sender. Since the value of each transaction is committed to
using the transaction commitment commrTy, which is created using
a hiding and binding commitment scheme, no computationally
bounded party can open the commitment to a transaction value
other than what was committed to originally. Since the proof of the
transaction sender proves that their account balance was decreased
by exactly the committed value and the proof of the transaction
recipient proves that their balance was increased by exactly this
value, any adversary that could increase the recipients balance by
a different value could be used to either break soundness of the
zero-knowledge proof system or to break the binding property of
the commitment scheme. Thus, the account balance of the recipient
is increased by exactly the amount that the balance of the sender is
decreased and the transaction does not increase the total amount
of funds available in the system. O

5.2 Transaction Privacy

Here, we consider the privacy guarantees provided by Platypus.
In particular, we consider privacy towards parties other than the
regulator and show that accepted transactions in our system are
indistinguishable. We do not consider network-level attacks on
anonymity here, as they are out of scope of this paper.

We capture the privacy guarantees with the following transaction
indistinguishability game:
Definition 5.2 (Transaction Indistinguishability Game). Given our
system, the game consists of an interaction between an adversary
A and a challenger C with access to an oracle O that simulates
honest parties in the system. The game proceeds as follows:

(1) C initializes the system with a security parameter A, which
is used by the system to in turn initialize all used primitives,
such as the signature scheme or the zero-knowledge proof
system. C also initializes the oracle O.

(2) A can then generate arbitrary private keys and associated
accounts with a balance chosen by A, which O enrolls in the
system by signing the associated account state commitments.

(3) A can also ask O to initialize additional clients with balances
chosen by A. O initializes them with the specified balance
by signing an according account state commitment and then
sends the state commitment and serial number for each of
them to the adversary.

(4) A can use his accounts to create arbitrary transactions, in-
teract arbitrarily (i.e. send or receive transactions) with any
account managed by the oracle, or can ask the oracle to cre-
ate transactions between accounts managed by the oracle
which are created and if they result in a valid transaction,
they are executed (i.e. the states of the involved parties are
updated) and forwarded to the adversary.

In the challenge phase, A chooses parameters (i.e. sender, re-

cipient, value) for two transactions Txg and Txy, such that the

adversary controls neither the sender nor the recipient ac-
count and the transaction value does not exceed the sender’s

balance and sends these parameters to C.

(6) C chooses abitb € {0,1} u.a.r., executes the transaction Tx,,
and sends the resulting transaction to A

(7) A then outputs a bit b’ and wins the game if b = b’

Claim 5.3 (Transaction Indistinguishability). No computationally
bounded adversary A can win the transaction indistinguishability
game with non-negligible advantage.

Proof Sketch. As stated in Section 2.2, we assume that all used
cryptographic primitives are secure according to their respective
notions. In particular this includes that the pseudorandom function
is indistinguishable from a truly random function, the commit-
ments to different values are indistinguishable, the zero-knowledge
proof system provides zero-knowledge (i.e. we have access to a
simulation oracle S that can simulate indistinguishable proofs for
any statement), and that the encryption scheme provides CPA-
indistinguishability.

We now show that no efficient adversary A can succeed in
winning the game with non-negligible advantage using a hybrid ar-

gument. To that end consider two set of distributions T(?, Tol, o T09
and Tlo, Tll, el T19 for the challenge transactions Tx¢ and Txy, re-

spectively in which we gradually replace fields in the transactions
through an idealized version. That is, TIS (for k € {0,1}) is the

distribution for the real transaction Txg, Tk1 replaces the sender
zero-knowledge proof zk|:)‘i‘}'_1 with a simulated proof (from S), Tk2
additionally replaces the sender serial number serial’;‘ with the
output of a truly random function, TIS also replaces the sender’s

state commitment state‘i‘_‘F with a commitment to randomly cho-

1
sen account parameters, and TI? replaces the encrypted regulation
information Eﬁl with the encryption of a random value. The same
is repeated for the recipient’s part of the transactions for the dis-
tributions Tl?’ e Tlf, and finally T]? also replaces the transaction
commitment ¢y, with a commitment to a random value.

TO9 and T19 are therefore distributions in which all fields in the
transaction have been replaced with random values (sampled ac-
cording to the distribution resulting from truly random inputs to



the respective functions) and the zero-knowledge proofs are sim-
ulated based on these random values. A special case is the serial
number, which is replaced by the output of a truly random function
with a previous serial number as input. However, since all previous
serial numbers are unique for transactions accepted by the central
bank, the output is also truly random. Therefore TO9 and Tf are the
same distributions and thus indistinguishable for any adversary.

Assume that we have an arbitrary adversary A that wins our
game with non-negligible advantage, i.e., that can successfully dis-
tinguish T(? and TIO . Thus, for some non-negligible function p, we
have |Pr [ﬂ(TOO) = 1] —Pr [ﬂ(TlO) = 1]| > p(A). Due to the trian-
gle inequality, we also have:

[Pr [A(T)) = 1] - Pr [A(T)) = 1]]

[Pr [AT) = 1] = Pr [AT) = 1]]

Pr[A(T{ ) = 1] - Pr [A(T]) = 1]

9
< > e[
i=1
9
Nl
i=1
+[Pr [A(TY) = 1] - Pr [AT?) = 1]|

Since the last term is zero (as T(;) and Tl9 are the same distri-
bution), at least one of the other terms must be non-negligible,
ie. )Pr [ﬂ(Tli’l) = 1] —Pr [ﬂ(TIé) = 1” > p’(4) for some i €
{1,...,9},k € {0,1} and some non-negligible function p’. Since
the only difference between these two distributions is that one of
them replaces one of the fields with a value that is indistinguish-
able (according to the respective notion of the used primitive), this
leads to a contradiction. Therefore, Platypus provides transaction
indistinguishability.

(]

5.3 Availability of Funds

While we do not consider network-level attacks on availability, our
system should ensure that a client cannot be prevented from using
their funds by a third party. For example, Ruffing et al. [37] described
an attack on Zerocoin [32], in which an attacker invalidates coins
from another user by creating and immediately spending coins with
the same serial number as that of an honest user, which prevents
the honest user from using their funds. Since Platypus also uses
serial numbers to prevent double-spending, we need to consider
similar attacks. In particular, we make the following claim:

Claim 5.4. No computationally bounded adversary can invalidate
the account state of another client.

Proof Sketch. First, note that in order to prevent a client from cre-
ating a transaction that updates their account state, either some
information necessary to create the account state update needs to
be withheld from the client, or the adversary needs to cause the
central bank to reject the transaction. We assume that the client
does not lose access to their long term keys and private information
and thus they can always retrieve all necessary information from
the central bank’s transaction log.

Since the central bank will always accept a valid transaction
unless it reuses a previously seen serial number, the adversary can

only make the central bank reject an account update from a client
by creating a transaction that uses the same serial number as used
by the honest client (as in [37]).

To invalidate a user’s account state with serial number seriaIlU,
the adversary needs to create an account update that reveals the
same serial number and they need to prove that this serial number
was committed to in a valid state commitment for which they know
the corresponding secret key. Thus, the adversary needs to create a
series of account states that at some point results in the same serial
number serialiU, ie. they need to find a secret key sk’ and an index
J, such that f;;cj, (0) = seriaIlU = S‘Zm (0) (where f,?k is the k-times
iterated composition of fy and k is bounded by an arbitrary but
fixed value n (polynomial in the security parameter)).

Since fi is a pseudorandom function, so is h(xx) = ﬁ?k for
a randomly chosen key (x,k) where k € Z} (by induction). A
successful adversary as described above would therefore need to
find a key for the pseudorandom function family h that produces
the given input/output pair which is infeasible. O

5.4 Regulation Integrity and Privacy

Since Platypus includes regulation mechanisms, we also need to
consider the integrity of this mechanism. In particular, we make
the following claim:

Claim 5.5. No client can create a transaction that is non-compliant
with a regulation mechanism.

This claim follows directly from the soundness of the zero-
knowledge proof system. A transaction will only be valid if the
transacting parties prove compliance with the regulatory rules that
are in place. Since the central bank will only sign updated account
state commitments if the corresponding transaction is valid, and
by our assumptions, the regulator trusts the central bank to verify
this, no client can create a transaction that is non-compliant with
the regulation mechanisms that are in place.

In addition, we need to consider the privacy guarantees towards
the regulator: For any transaction in which the client is not required
by the regulation mechanism to include additional encrypted infor-
mation, the regulator only receives dummy values from decrypting
the fields storing regulatory information. Since the dummy values
are fixed, the regulator does not gain any additional information
from them and thus, these transaction are indistinguishable for the
regulator (analogous to Section 5.2).

Of course, since this is the explicit goal of the regulation mecha-
nism, the regulator can decrypt encrypted regulatory information
included in a transaction and can thus distinguish them from other
transactions and learn additional information about the client, their
account and their account history, depending on what information
the regulation mechanism requires.

6 EVALUATION

6.1 Implementation

We implemented Platypus using the gnark [1] library for the zero-
knowledge proofs with the Groth16 proof system [27] in the groups
BN256 and BLS12-381. Our implementation covers benchmarks for
the creation and verification of the zero-knowledge proofs, as well
as a simple ‘end-to-end’ system to measure throughput.



Table 1: Performance of Platypus. This table shows proving and verification, as well as the time required for the trusted setup
and the number of R1CS constraints. All measurements are averaged over 100 runs and rounded to two significant figures.

Trusted Setup [s] Proving [s] Proving iPhone [s] Verification [s] # R1CS constraints Tx Size [B]
Base Tx 0.73 0.11 0.19 0.000 89 11728 418
BN256 Tx with holding limit 2.8 0.37 0.69 0.000 93 47356 674
Tx with receiving limit 2.9 0.37 0.69 0.000 94 48631 674
Tx with both limits 34 0.43 0.80 0.00092 61344 802
Base Tx 1.3 0.18 0.33 0.0015 11728 546
BLS12-381 Tx W?th hold.in'g lin'iit. 5.1 0.62 1.2 0.0015 47356 930
Tx with receiving limit 5.2 0.62 1.2 0.0016 48631 930
Tx with both limits 6.2 0.73 1.4 0.0016 61344 1122

For the signatures and commitments, we use the gadgets as pro-
vided by the library for EADSA [11] signatures and MiMC [4] hashes.
Our prototype also uses MiMC for the pseudorandom function to
generate serial numbers. Blinding values for commitments are ran-
domly chosen in our prototype. To provide public key encryption
for our regulation mechanism, our implementation uses Elgamal
encryption [19]. Our implementation covers the base transaction as
well as transactions with two regulation enforcement rules. These
rules can be toggled individually and put limits on the amount of
money that can be received within a given time interval or held in
the account before the user is required to report this information to
the regulator (see Section 4. The proof generation and verification
in the gnark library is parallelized.

Throughput Benchmark. Our throughput benchmark consists
of a simple (non-optimized) server and a client that generates the
full transaction, i.e., simulates both sender and recipient. The server
exposes the functionality of the central bank as a simple REST in-
terface with JSON payloads. Serial numbers submitted by clients in
valid transaction proofs are stored in a local SQLite [2] database.
The client library handles all client-side functionality, i.e., gener-
ation of keys and transaction proofs, account state management,
and communication with the server via HTTP.

To measure the transaction throughput that the server can han-
dle, we use our client library to first prepare a large number of
transactions (10k for our measurement). For each transaction, the
client generates and enrolls two accounts and then creates a trans-
action between these pairs of accounts. In the measurement phase,
the client library then submits these transactions to the server
and measures the time required for all submitted transactions to
complete.

6.2 Results

We measured the proving and verification time of our implemen-
tation for the base transaction and regulated transactions with
receiving and holding limits (see Section 4). We also measured the
time required for the trusted setup, which is a one-time operation
only run during system setup. As can be seen in Table 1, this setup
is quite fast, taking less than ten seconds for all configurations.
Table 1 shows the results of our measurements as well as the
number of R1CS constraints for our zero-knowledge proofs and the
transaction sizes. R1CS is an intermediate format, used in many

zero-knowledge proof systems, which represents the proof con-
straints and thus provides a system-independent measure of the
proof complexity. We performed these measurements on a machine
with an Intel® Core™ i7-7700 CPU (3.60GHz) with 4 cores and
16GB of RAM. We also measured proving time on an Apple iPhone
13 mini to benchmark performance on a mobile device. The re-
sults for proof generation and proof verification are provided per
proof, i.e., both the sender and the recipient have to perform a proof
generation and the central bank needs to perform two proof verifi-
cations per transaction. The client-side proof generation could be
done in parallel after first communicating the values used to create
the transaction commitment (blindty and ovty), i.e., the transaction
sender and recipient can compute their proofs simultaneously to
reduce the total transaction creation time. Our results show that
this can be done efficiently. Transaction sizes are based on 256-bit
serial numbers and commitments and show the size of the transac-
tion before execution, i.e., when they are submitted to the central
bank.

With both regulation mechanisms in place, the proof generation
takes 0.4 (0.73) seconds on our test machine and 0.8 (1.4) seconds on
the iPhone using the BN256 (BLS12-381) curve (see Table 1), which
is fast enough to be usable for retail payments. In addition, our
numbers show that the overhead of adding additional regulation
mechanisms is small. Concretely, while adding any regulation adds
a significant overhead in the proving time compared to the base
transaction, the additional impact of enforcing a second rule is
small and only increases the proving time slightly, which shows
that Platypus can easily support enforcement of multiple regulatory
rules.

The fast transaction verification is constant independent of the
size of the proof statement (i.e., regardless of the regulation mecha-
nisms in use) and allows a single machine to process a large num-
ber of transactions. In our throughput benchmark, our machine
achieves a throughput of 922 (BN256) or 606 (BLS12-381) transac-
tions per second.

Even though CBDCs are not intended to replace all other forms of
payments, only to complement them [9], it is interesting to consider
the feasibility of such a system for all payments in a large economic
area. Data from the European Union show that in 2016, the EU
population performed 163 billion payments [20] for a population of
just below 450 million people [23]. This corresponds to a volume of
slightly more than five thousand transactions per second on average,



or if we assume that all of these payments take place within only 8
hours of each day (to exclude times with a low transaction volume),
a volume of about 15.5 thousand transactions per second.

Thus, to handle all transactions in the EU, a deployment of Platy-
pus would require the equivalent of approximately 17 (25 with
BLS12-381) of our test machines, which is a modest requirement
for such a large economic area. Put differently, assuming the same
transaction volume per person and again assuming that all transac-
tions are concentrated on 8 hours per day, a single machine would
be able to easily handle the transactions of a small country like
Switzerland (= 300 transactions per second), Israel (= 320 transac-
tions per second), or Sweden (= 350 transactions per second).

7 DISCUSSION

Network level attacks on privacy. As mentioned in Section 2.2,
full protection against network level deanonymization attacks is out
of scope for this paper. Nevertheless, we designed Platypus to pro-
vide some resilience against such attacks. In particular, the sender
of the transaction communicates with the central bank through the
recipient in the standard case, such that the central bank cannot
link the sender and recipient based on the network connections. In
exceptional cases, in which the recipient stops cooperating with
the sender and does not return the signature on the sender’s new
account state, the sender can access the public transaction log, or a
mirror of this log, to retrieve recent transactions.

While these two mechanisms provide some protection against
simple deanonymization attempts, they do not fully protect against
all adversaries, in particular if the adversary can see other traffic in
the network. If a client is worried about such network level attacks,
they can mitigate the risk by using anonymous communication
networks such as Tor [3].

Backups and Account Recovery. The account state model that
Platypus uses, requires users to have knowledge of their current
account state. To enable efficient backups and account recovery,
values such as the blinding value of the account state commitment
or the serial number are pseudorandomly generated from the user’s
secret key. To create a backup, the user can simply store this secret
key as well as their key and certificate used for regulation.

To recover the account from a backed up secret key, the user
needs to retrieve their most recent account state. There are two
possibilities to do this. As first option, the user can estimate a time
interval in which their most recent transaction took place and
retrieve all transactions from that time from the public transaction
log. They can then use their secret key and generate serial numbers
from it using the pseudorandom generator until they find one that
matches a serial number from the log. The second option is that the
user generates a list of potential serial numbers (pseudorandomly
derived from their secret key), which they then use to query the
public transaction log in binary search until they find the latest
matching transaction.

The main drawback of the first option is that the user potentially
needs to download a large amount of data, if they are unsure in
which time interval their latest transaction took place. The draw-
back of the second option is that some of their transactions can
potentially be linked if the central bank is monitoring and correlat-
ing queries to the transaction log. Since the number of transactions

that could be linked with this approach is only logarithmic in the
number of total transactions from the user and no other informa-
tion about these transactions is revealed, it is unlikely that this
presents an issue for most users in practice.

Once the user has retrieved their account state, they need to find
their account balance and other values that their account state com-
mits to (i.e. the values used for the regulation mechanism). Without
these values they cannot create new transactions. The account bal-
ance is much smaller than the serial number and the blinding value
and could therefore in principle be brute forced. However, this is
inconvenient and can become infeasible if a significant amount of
additional information (for the regulation mechanism) is also part of
the account state. An easier solution is to add a memo field (similar
to Zcash) in addition to each account state commitment as part of
every transaction, which stores this information encrypted with a
long-term key known to the user. The user can then simply include
this key in their backup and use it to retrieve all relevant values
when performing account recovery after retrieving it together with
the account state commitment.

Sharding in Platypus. As mentioned in Section 2, the centralized
and account-based design of Platypus simplifies sharding, as it
enables the use of standard database sharding techniques.

Figure 3 shows an example of how transaction validation can
be sharded. The verification of the zero-knowledge proofs can be
performed in separate compute nodes independently from check-
ing and updating the serial numbers of the used account states.
While we show each shard here as one database node, each shard
can, of course, also be replicated individually. Each database shard
is assigned a specified subset of all serial numbers. For example,
when using 4 shards, each shard could be assigned a quarter of
all possible serial numbers based on the two most significant bits
of the serial number. The compute nodes are independent of the
transactions. When submitting a transaction, a client can connect to
any compute node of the central bank (e.g. through a load balancer),
which verifies the zero-knowledge proofs. If the proofs verify, the
compute node checks in the database shards if the account states
with the provided serial numbers have been invalidated already.
Since the serial numbers are pseudorandom, most transactions will
be cross-shard transactions if there are at least two database shards.
However, since Platypus uses an account-based design, each trans-
action will never require more than two shards, one for checking
the serial number of the sender and one for checking the serial
number of the recipient. This is in contrast to UTXO-based systems
in which an arbitrary number of shards could be involved in each
transaction.

To check the serial numbers in the database shards, the compute
node acts as a coordinator in a two-phase commit protocol [29]
between the database shards. Each database shard checks if the
serial number already exists in the database. If this is the case in
one of the shards, the coordinator sends an abort to both shards.
Otherwise, they both add the respective serial number to the set
of used serial numbers and return a success to the compute node.
Finally, the compute node signs the new account states, returns
the signatures to the client and publishes the transaction on the
public transaction log. Since the transaction log does not require



Figure 3: Sharding Potential in Platypus. The central bank can
shard both computation and the storage of serial numbers
internally. A client can connect to an arbitrary compute node
(e.g. through a load balancer) which validates transactions
independently from other compute nodes. The compute node
then uses a two-phase commit to check and update serial
numbers in the database shards corresponding to the serial
numbers of the sender and recipient.

ordering, this step can be done concurrently by separate compute
nodes without requiring any consensus protocol between them.

Offline Recipient. Most designs of blockchain-based cryptocur-
rencies allow a recipient to be offline when receiving funds. The
sender only needs the recipient’s public key to create a full trans-
action. One limitation of Platypus is that creating a transaction
requires interaction between both participants, i.e. the recipient
needs to be online to receive funds. This is similar to other e-cash
schemes [8, 12, 13, 15, 16], in which the sender and recipient always
need to interact. Involving the recipient in the transaction creation
is necessary for two main reasons. First, it enables an account-based
design with full anonymity. In an account-based system, without
involvement of the recipient, some other party would need to be
able to update the recipient’s account and thus the account would
be linkable to a public key of the recipient by that party.

Anonymous UTXO-based systems with offline receiving are
possible, but require retrieving this information later, e.g. through
downloading all transactions. This puts a heavy load on clients, who
need to download and process all of this information. To reduce
this load, clients currently either need to rely on trusted execu-
tion environments [43], private information retrieval protocols that
are very expensive for the server [30], or accept reduced privacy
guarantees by trusting a server to filter transactions for them. By
directly communicating all necessary transaction information be-
tween the sender and recipient, this issue is side-stepped in the
e-cash style transaction processing used by Platypus. This guar-
antees that privacy can be provided efficiently even with a large
transaction volume.

Second, and most importantly, including the recipient in the
transaction creation is a requirement for enabling regulatory rules
affecting the recipient (similar to [42]) that allow full anonymity,
even with respect to the regulator, as long as the transaction con-
forms to some constraints.

As an example, consider a simple holding limit (as described in
Section 4) that puts a fixed limit balnax on the amount that each
party can hold. Let us now assume that there is some mechanism
that allows the central bank to check compliance with such a rule
without violating any of the privacy properties and without interac-
tion with the recipient. If a sender Alice now creates a transaction
of value vty with Bob as the recipient, there are two options, which

both leak information about Bob’s funds to Alice: Either the trans-
action is accepted, or it is rejected. In the first case, Alice knows
that previous to the transaction, Bob owned less than balmax — 07y,
in the second case, Alice now knows that Bob owned more than
balmax — v7x-

We argue that not enabling offline receiving is a small drawback
compared to the advantages of Platypus for our use cases. Recall
that Platypus is intended as a “cash-like” CBDC, which is the main
goal for many central banks [9, 17]. In such a setting, interaction
between the recipient and the sender is the standard case, e.g. for
credit card payments or for actual cash payments. Most payments
are for retail payments, in which the device of the user interacts with
a payment terminal or the user interacts with an online shop, or for
peer-to-peer payments between friends, in which their devices can
interact. Nevertheless, online receiving does not necessarily require
the user to be active, but only their device. For example, if Alice
wants to send some funds to Bob and Bob’s device is not online,
Alice can already initiate the transfer on her device. The device can
then, without initiating the actual transaction at that point, contact
Bob’s device in the background until it becomes available. At that
point, the device can initiate the actual transaction and then the
payment can complete since both are online.

Aborting Transactions. If the recipient is non-cooperative and
does not complete the transaction, the sender can invalidate the
previous account state by performing an “empty” account update.
This is a special kind of transaction with a single party, where
this party proves that their state was correctly updated with no
change in balance (and no change in the regulation state). This
allows updating the serial number without a “real” transaction and
prevents a recipient from later claiming the transaction value or
from tracking the sender by observing when the old serial number
is used in a transaction.

Issuance. To issue new currency, the central bank can simply sign a
new account commitment under their ownership which commits to
a new balance. From this account, the funds can then be distributed,
for example via commercial banks who, in exchange for other digital
money or cash, distribute them to their customers.

8 RELATED WORK

E-Cash Systems. With e-cash [15], Chaum introduced the first
design for an anonymous digital currency, in which a user can
withdraw a coin from a bank by generating a coin identified by a
serial number and receiving a blind signature on it, which ensures
that the bank does not see the serial number. The user later unblinds
this signature, which allows them to use the coin for payments.
A merchant receiving a payment deposits the coin at the bank, at
which point the bank checks if the serial number has already been
used. If that is the case, the bank rejects the payment, otherwise it
is accepted.

E-cash makes withdrawal and spending of a coin unlinkable, but
it reveals to the bank the total transaction volume of a client (based
on their withdrawals) and the value of each transaction for every
merchant (based on their deposits). It also requires users to store
information linear in the number of coins that they own. Later
designs [12, 14] reduce the overhead. Camenisch et al. later also
proposed an e-cash system that offers a form of regulation [13],



limiting the amount that can be spent anonymously by a user per
merchant. However, in all previous e-cash designs, the merchant
still reveals the value of their received coins to the bank when
depositing them.

Baldimtsi et al. [8] used techniques for double-spending detection
for a transferable e-cash design, in which a coin can be transferred to
different users without interaction with the bank. Once a coin gets
deposited, the bank then checks for double-spending and identifies
the offending party. This removes the issue that the merchant needs
to reveal the transaction value to the bank for all received funds.
Unfortunately, such a transferable e-cash scheme necessitates that
coins grow in size depending on how often they were used, which
makes spending less efficient than other e-cash schemes. This also
affects linkability, since coins of a different size (i.e. coins that have
been used a different number of times) are distinguishable.

Blockchain-based Systems. Several proposals for anonymous
cryptocurrencies exist in the blockchain space. Zerocash [38] and its
instantiation Zcash is currently considered to provide the strongest
privacy guarantees. All of the transaction information is completely
hidden and transactions are unlinkable, similar to the guarantees
provided by Platypus. Garman et al. later showed how Zerocash
can be extended with accountability mechanisms [24] that put re-
strictions on the transaction sender. One of the main drawbacks of
Zerocash and the proposal by Garman et al. are the heavy client
requirements which are difficult to remove or reduce in a decentral-
ized setting [43]. This is particular due to the transaction receiving
mechanism, which requires decrypting every transaction included
in the blockchain as well as the requirement to prove knowledge
of the path of a transaction output in a Merkle tree, which requires
clients to keep this tree up to date. The second also makes scaling
more difficult, since adding new transaction outputs to this tree
requires all transactions to be serialized. In contrast, Platypus can
take advantage of the changed trust assumptions to provide better
scalability and to reduce the requirements for clients.

Other recent research has proposed schemes to provide regula-
tion in a semi-centralized blockchain setting. PRCash [42] provides
a design that uses lightweight zero-knowledge proofs to efficiently
enable a receiving limit per time interval (epoch) for anonymous
transactions. However, PRCash is based on a transaction design
called mimblewimble [28] that does not provide full unlinkability
for transactions and the regulation mechanism requires linking
several transactions within an epoch. Platypus therefore provides
better privacy and at the same time improves scalability through
its centralized design. In addition, Platypus simplifies regulation
compared to the designs of [24] and [42] due to its account-based
design, since it does not require the inclusion of multiple UTXOs
in proofs.

Parallel work by Androulaki et al. [6] proposed an auditable
anonymous token management system for use in a permissioned
blockchain targeted towards enterprise networks. In contrast to
Platypus, which is account-based, their design uses a UTXO model,
in which the UTXOs are represented as Pedersen commitments [35].
They then use a combination of a permissioned blockchain and a
potentially distributed certifier to authorize payments. Transactions
are committed to the blockchain after proving that the spender has
a signature on each spent UTXO and later the newly created UTXOs

get signed by the certifier using randomizable signatures [36]. In
addition, the scheme allows for a set of auditors, each of which is
responsible for auditing a different set of participants and which
can access all information of their assigned participants. Platypus
instead allows for fully anonymous transactions as long as specified
conditions are not violated and is extendible with different regula-
tory rules. The regulation mechanisms enabled by Platypus make it
more suitable for the use as central bank digital currency in which
most transactions should be equivalent to cash with respect to their
privacy properties [9]. In contrast, the auditability provided by the
design from Androulaki et al. [6] is targeted at business-to-business
usecases in which each business has their own auditor who should
be able to access all of the transaction information of the business.

Another parallel design by Tomescu et al. [40] called UTT uses a
similar base design to that of Androulaki et al. [6]. Namely, UTXOs
(called coins) resulting from a transaction are represented as ho-
momorphic commitments and signed with randomizable signa-
tures [36] by a bank (that can be distributed using threshold cryp-
tography). To later use these commitments as inputs, they are
re-randomized, a nullifier (used to prevent double-spending) is
deterministically computed and revealed by the sender and then
the sender proves that the sum of the output coins is the same as
the sum of the inputs. UTT also provides a monthly anonymity
budget that limits how much money can be sent anonymously.
Platypus, in contrast, enables more expressive regulation policies
and can also enforce them on the side of the recipient. Similar to
Zerocash [38], to receive a UTT payment, the recipient also has
to scan all transactions on a ledger and perform a trial decryption
for each. In addition, UTT transactions are 16X larger than ours
and transaction verification time is significantly slower than in
Platypus.

Finally, parallel work by Gross et al. [26] proposes the use of a
modified Zerocash [38] for a “privacy pool” of a CBDC. Similar to
Platypus, it replaces UTXOs with accounts, but in contrast to the
e-cash style transaction execution of Platypus, it requires proofs of
inclusion in a Merkle tree (like Zcash). In addition, regulation in [26]
only allows hard limits (per transaction or for the account balance)
and is thus less expressive and versatile than in our system.

9 CONCLUSION

Despite the prominence of blockchain-based digital currencies, they
may not be the best technology choice for issuing a CBDC. Given
the trust model of CBDCs (central authority) and the desirable
features of a CBDC (privacy, performance, scalability, regulation),
we argue that a traditional e-cash scheme can be a more suitable
starting point for designing CBDCs. With our solution Platypus
we have shown that an e-cash like system can provide all these
features at the same time.

We have also proposed a new style of building digital currencies
that combines e-cash style transaction processing with the account-
model that is common in blockchain systems like Ethereum [41]
and with privacy techniques inspired by Zerocash [38]. We hope
that our work can inspire other researchers to design new e-cash
solutions that leverage the design pattern proposed in this paper,
extend our work, and ultimately provide better CBDC designs.
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