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Abstract
On modern processors HCTR[WFW05] is one of the most efficient
constructions for building a tweakable super-pseudorandom
permutation. However, a bug in the specification and another in
Chakraborty and Nandi’s security proof[CN08] invalidate the
claimed security bound. We here present HCTR2, which fixes
these issues and improves the security bound, performance and
flexibility. GitHub: https://github.com/google/hctr2

1 Introduction
A tweakable super-pseudorandom permutation (tweakable SPRP) is a
family of permutations indexed by tweak and input length, which
appear to be random permutations to an adversary without the key
who can make encryption and decryption queries[HR03]. [CB18]
includes a detailed history of length-preserving encryption. A
tweakable SPRP is a highly general and flexible cryptographic
construction. One common use is in disk sector encryption: if the
ciphertext must be the same size as the plaintext, with no extra room
for nonce or MAC, a tweakable SPRP represents an upper bound on the
achievable security. If a variable-length tweak is accepted, it can also
serve as a nonce-misuse-resistant AEAD mode: concatenate the nonce
and the associated data to form the tweak, and authenticate the
message by appending zeroes to the plaintext which will be checked on
decryption[BR00a; HKR15].

In this paper, we present a specification (section 2) and security bound
(section 3) for HCTR2, a tweakable SPRP based on HCTR[WFW05]
and inheriting the following advantages:
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Figure 1: HCTR2

• simple

• efficient on modern processors, using a single block cipher
invocation and two GF(2128) multiplications per 16-byte block

• naturally handles ciphertext of any length of 16 bytes or greater

• tight quadratic security claim

HCTR2 addresses these issues in HCTR:

• [Kum18] observes that HCTR’s hash function is not
almost-XOR-universal[Sti95] as claimed (subsection 4.1).
HCTR2’s hash function fixes this property.

• Separately, an error in the proof presented in [CN08] invalidates
the quadratic security bound claimed in that paper
(subsection 4.2); with our revised mode we can claim a tighter
quadratic bound.

• HCTR2 supports using tweaks of any length with a single key.

• HCTR’s key is a block cipher key, plus an n-bit hash key. HCTR2’s
key is simply the block cipher key.

• We modify the hash function to allow more precomputation for
greater performance.
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1: procedure Encrypt(k, T, P )
2: h̄← Ek(bin(0))
3: L← Ek(bin(1))
4: M‖N ← P , |M | = n
5: MM ←M ⊕Hh̄(T,N)
6: UU ← Ek(MM )
7: S ← MM ⊕UU ⊕ L
8: V ← N ⊕XCTRk(S)[0; |N |]
9: U ← UU ⊕Hh̄(T, V )

10: C ← U‖V
11: return C
12: end procedure

Figure 2: HCTR2 encryption

1: procedure Decrypt(k, T, C)
2: h̄← Ek(bin(0))
3: L← Ek(bin(1))
4: U‖V ← C, |U | = n
5: UU ← U ⊕Hh̄(T, V )
6: MM ← E−1k (UU )
7: S ← MM ⊕UU ⊕ L
8: N ← V ⊕XCTRk(S)[0; |V |]
9: M ← MM ⊕Hh̄(T,N)

10: P ←M‖N
11: return P
12: end procedure

Figure 3: HCTR2 decryption

• We specify endianness and the like for interoperability.

• We provide a sample implementation and test vectors.

We discuss our design decisions (section 5) and report on its
implementation on x86-64 and ARM64 (section 6). We know of no
patents affecting HCTR2.

2 Specification
2.1 Notation

• {0, 1}∗: set of binary strings

• |X|: length of X ∈ {0, 1}∗ in bits

• λ: the empty string |λ| = 0

• X[a; l]: the substring of X of length l starting at the 0-based index
a

• ‖: bitstring concatenation

• ⊕: bitwise XOR

• n: block size in bits

• binl : {0 . . . 2l − 1} → {0, 1}l: little-endian conversion of integers to
binary; bin(x) means binn(x)
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• pad(X) = X‖0v where v is the least integer ≥ 0 such that n
divides |X|+ v

• x, x2, . . .: elements of the finite field GF(2n)

• E : K × {0, 1}n → {0, 1}n: n-bit block cipher with keyspace K; our
concrete proposal uses AES[Dwo+01], so n = 128 and K is
{0, 1}128, {0, 1}192, or {0, 1}256

• T : the set of permissible tweaks T =
⋃

i∈{0...2n−1−2}{0, 1}i

• M: the set of permissible messagesM =
⋃

i∈{n...n+2n−1−2}{0, 1}i

We map bytes to bitstrings with bin8. Subscripts may denote partial
application; if we define f : A×B → C and a ∈ A then fa : B → C, and
if f−1a exists then f−1a (fa(b)) = b.

2.2 Polynomial hash function
We interpret n-bit blocks as little-endian field elements of GF(2n), so
001‖0n−3 is interpreted as the element x2. Per [GLL17; GLL19] we
define

POLYVAL(h̄, λ) = 0n

POLYVAL(h̄, A‖B) = (POLYVAL(h̄, A)⊕B)⊗ h̄⊗ x−n

where
∣∣h̄∣∣ = |B| = n and ⊗ is multiplication in the finite field. In our

concrete proposal, n = 128, we reduce by x128 + x127 + x126 + x121 + 1,
and the value of the field element x−n is equal to
x127 + x124 + x121 + x114 + 1.

For hash key h̄ ∈ {0, 1}n, tweak T and message M , we define:

Hh̄(T,M)

def
=

{
POLYVAL(h̄,bin(2|T |+ 2)‖pad(T )‖M) if n divides |M |
POLYVAL(h̄,bin(2|T |+ 3)‖pad(T )‖pad(M‖1)) otherwise

2.3 XCTR mode
HCTR and HCTR2 use an unusual mode of stream encryption, which
we name XCTR mode:

XCTRk(S) = Ek(S ⊕ bin(1))‖Ek(S ⊕ bin(2))‖Ek(S ⊕ bin(3))‖ · · ·
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Generating the first m bits XCTRk(S)[0;m] takes dm/ne block cipher
calls.

2.4 HCTR2
HCTR2 encryption, defined in Figure 2, takes a tweak and a plaintext,
and returns a ciphertext of the same length as the plaintext. HCTR2
decryption (Figure 3) recovers the plaintext given the same tweak and
the ciphertext, ie for k ∈ K, T ∈ T and P ∈M,
Decrypt(k, T,Encrypt(k, T, P )) = P .

3 Security of HCTR2
Following the approach described in [Bel+97], we prove that if the
underlying block cipher is secure, then HCTR2 has good security
properties. The security bound proven appears in subsection 3.5.

3.1 Definitions
We use x←$ S to mean “x is sampled from S uniformly at random”, and
we write AO,O

′ ⇒ 1 to refer to the event “adversary A, given access to
oracles O and O′, returns 1”.

Let Perm(n) denote the set of all permutations on {0, 1}n. Per [Bel+97],
for a block cipher E : K × {0, 1}n → {0, 1}n the distinguishing
advantage of an adversary A is:

Adv±prp
E (A)

def
=
∣∣∣Prk←$K

[
AEk,E

−1
k ⇒ 1

]
−Prπ←$Perm(n)

[
Aπ,π−1 ⇒ 1

]∣∣∣
Define

Adv±prp
E (q, t)

def
= max

A∈A(q,t)
Adv±prp

E (A)

where A(q, t) is the set of all adversaries that make at most q queries
and take at most t time.

Let PermT (M) denote the set of all tweakable length-preserving
permutations π : T ×M→M such that for all T,M ∈ T ×M,
|π(T,M)| = |M |, and for all T ∈ T , πT is a permutation onM. In an
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abuse of notation we use π−1 to refer to the function such that
π−1(T,π(T,M)) = M ie (π−1)T = (πT )

−1.

Per [HR03], for a tweakable super-pseudorandom permutation
E : K × T ×M→M the distinguishing advantage of an adversary A
is:

Adv±p̃rp
E (A)

def
=
∣∣∣Prk←$K

[
AEk,E

−1
k ⇒ 1

]
−Prπ←$PermT (M)

[
Aπ,π−1 ⇒ 1

]∣∣∣
Define

Adv±p̃rp
E (q, σ, t)

def
= max

A∈A(q,σ,t)
Adv±p̃rp

E (A)

where A(q, σ, t) is the set of all adversaries that make at most q queries
and take at most t time, such that the total number of blocks sent in all
queries is at most σ ie ∑

s

d|T s|/ne+ d|P s|/ne ≤ σ

where |T s|, |P s| are the length of the tweak and the message presented
in query s.

We use HCTR2[π] to refer to HCTR2 in which invocation of the block
cipher is replaced with invocation of the permutation π ∈ Perm(n).
XCTRπ refers to a similar substitution. HCTR2[E] refers to HCTR2
using the block cipher E, ie HCTR2[Ek] for k ←$ K, while
HCTR2[Perm(n)] refers to HCTR2[π] for π ←$ Perm(n).

3.2 Hash function
Define poly(M) to refer to the formal polynomial
poly(M0‖ · · · ‖Ml−1)

def
= M0h

l−1 ⊕ · · · ⊕Ml−1. While for example h+2 and
2h+ 1 can be equal in value if h = 1, they are not equal as formal
polynomials; two formal polynomials are only equal if every coefficient
is equal. Thus poly(M) = poly(M ′) only if M = 0ln‖M ′ for some l or vice
versa.

Define H(T,M) as the formal polynomial in h given by that tweak and
message. Hh̄(T,M) is then evaluation of this polynomial at h = x−nh̄;
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POLYVAL evaluates at this point for performance reasons.

H(T,M)

def
=

{
poly(bin(2|T |+ 2)‖pad(T )‖M‖0n) if n divides |M |
poly(bin(2|T |+ 3)‖pad(T )‖pad(M‖1)‖0n) otherwise

We depend on the following properties of this map onto formal
polynomials:

• The map is injective

• The polynomial is never 0 or xnh

• The constant term is always zero

• The polynomial is of degree at most

d(T,M)
def
= 1 + d|T |/ne+ d|M |/ne

For the first property, see Appendix A. For the second, observe that
H(T,M) can be of degree 1 only if |T | = |M | = 0, in which case the
polynomial is xh. Since xn−1 6= 1 we have that xn 6= x.

For any nonzero polynomial p(h) in GF(2n), there are at most deg(p)
values h such that p(h) = 0, and therefore
Prh←${0,1}n [p(h) = 0] ≤ deg(p)/2n. Since multiplication by a nonzero
field element is a bijection of the field onto itself, it follows that
Prh̄←${0,1}n

[
p(x−nh̄) = 0

]
≤ deg(p)/2n. From this we infer three

properties of Hh̄(T,M):

Property 1 For any T,M and any g ∈ {0, 1}n,

Prh̄←${0,1}n [Hh̄(T,M) = g] ≤ d(T,M)/2n

Proof: since H(T,M) is nonzero and has a zero constant term, the
polynomial H(T,M)⊕ g is nonzero and has the same degree, at
most d(T,M).

Property 2 For any (T1,M1) 6= (T2,M2) and any g ∈ {0, 1}n

Prh̄←${0,1}n [Hh̄(T1,M1)⊕Hh̄(T2,M2) = g]

≤max(d(T1,M1), d(T2,M2))/2
n
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Proof: H is injective onto polynomials and the constant term is
zero, therefore H(T1,M1)⊕H(T2,M2)⊕ g is not the zero
polynomial and has degree at most max(d(T1,M1), d(T2,M2)).
This is the almost-XOR-universal property.

Property 3 For any T,M and any g ∈ {0, 1}n

Prh̄←${0,1}n
[
Hh̄(T,M)⊕ h̄ = g

]
≤ d(T,M)/2n

Proof: H(T,M) has a zero constant term and cannot be equal to
the polynomial xnh. H(T,M)⊕ g ⊕ h̄ = H(T,M)⊕ g ⊕ xnh thus
cannot be the zero polynomial and has degree at most d(T,M).

3.3 H-coefficient technique
The H-coefficient technique was introduced by Patarin in 1991 [Pat91;
Pat09]. We highly recommend the exposition of [CS14] Section 3, “The
H-coefficient Technique in a Nutshell”; we here present a simpler
exposition that does not cover the technique in its full generality but
only our use of it. Our use of the symbol T and the term “compatible”
differ from [CS14].

We wish to bound the adversary’s ability to distinguish between two
“worlds”, world X (the “real world”) and world Y (the “ideal world”).
Each world is a probability distribution over deterministic oracles the
adversary interacts with.

We consider only deterministic adversaries. A randomized adversary
can be considered as a random draw from a population of deterministic
adversaries, so a bound on the advantage achievable by a deterministic
adversary bounds the whole population and therefore the advantage of
the randomized adversary. In what follows we consider the adversary
A fixed; only the world, and the particular oracles drawn from that
world, vary.

When the adversary interacts with the oracle, a transcript τ of queries
and responses is created. Tc is the set of “compatible transcripts”: if
τ ∈ Tc then for the fixed adversary, there is some oracle that results in
its creation. For example, since the adversary is deterministic, the first
query will always be the same; a transcript that does not start with
this query is not a compatible transcript. For a given τ ∈ Tc, a
deterministic adversary must always return the same answer; call this
answer A(τ).
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Let random variables X and Y represent the distribution of transcripts
in world X and world Y respectively, so that each transcript τ has a
probability Pr[X = τ ] of arising in world X, and similarly Pr[Y = τ ] in
world Y. The adversary’s distinguishing advantage is then
|Pr[A(Y ) = 1]− Pr[A(X) = 1]|. Without loss of generality, we assume
that Pr[A(Y ) = 1] ≥ Pr[A(X) = 1]. We further assume that A(τ) is
optimal: A(τ) = 1 when Pr[Y = τ ] > Pr[X = τ ] and 0 otherwise.

In subsection 3.4, we partition Tc into Tgood and Tbad, and prove
that:

• Pr[Y = τ ] ≤ Pr[X = τ ] for all τ ∈ Tgood

• Pr[Y ∈ Tbad] ≤ ε

It follows that A(τ) = 0 for all τ ∈ Tgood, and therefore that
Pr[A(Y ) = 1] ≤ ε, from which we bound the distinguishing advantage:
Pr[A(Y ) = 1]− Pr[A(X) = 1] ≤ ε.

With this technique, only the first proof need consider the probability
distribution of world X at all, and this proof need only consider good
transcripts. The bulk of the work, proving Pr[Y ∈ Tbad] ≤ ε, involves
only world Y, which is far simpler to reason about.

3.4 Main lemma
In what follows, we take world X (the “real world”) to be
HCTR2[Perm(n)], ie HCTR with all calls to the block cipher replaced
with calls to a random permutation, and world Y (the “ideal world”) to
be ±r̃nd, which maps every query to a random response such that all
responses of the appropriate length are equally likely; we then use the
H-coefficient technique to bound the distinguishing advantage between
them for a fixed adversary A ∈ A(q, σ, t) as defined in
subsection 3.1.

We use superscripts to distinguish between queries; where we refer to
r, s, we assume that r < s. An encryption query (T s, P s) yields
ciphertext Cs while a decryption query (T s, Cs) yields plaintext P s. We
forbid “pointless queries”: encryption queries (T s, P s) such that
(T r, P r) = (T s, P s) for some r < s, or decryption queries (T s, Cs) such
that (T r, Cr) = (T s, Cs) for some r < s, whether query r was an
encryption or decryption query.
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For each query s, let ms def
= d|P s|/ne = d|Cs|/ne be the number of blocks

in the response, and let ds def
= ms + d|T s|/ne be the number of blocks in

the query. Note that ds is the degree of the hash function polynomial
used in query s (since all but one block of the message is hashed), and
that

∑
s d

s ≤ σ. We give the adversary some extra information which is
included in the transcript. In world X, this information is:

• the “leftover block” for each query: where a query has
plaintext/ciphertext that is not a multiple of the block size, this is
the extra output from the last block cipher call that is not used.
For query s, this is

Ds = XCTRπ(S
s)[|P s| − n;nms − |P s|]

• the hash key h̄, given after all queries are complete

• the mask L, given after all queries are complete

In world Y, random output of the expected length is substituted. Since
the adversary can always ignore this information, giving it to them
cannot make their performance worse.

3.4.1 Good and bad transcripts

For j ∈ {1 . . .ms − 1} we define Ss
j = Ss ⊕ bin(j), the block cipher inputs

used in XCTR, and Y s
j the corresponding outputs, so that in world X

Y s
j = π(Ss

j ) and Y s
1 ‖ · · · ‖Y s

ms−1 = XCTRπ(S
s)[0;n(ms − 1)].

Given the full transcript, including h̄ and L, we can infer all block
cipher plaintexts and ciphertexts. For each query (omitting the query
superscript s for readability) we know T , P , C and D and so can
infer:

M‖N = P

U‖V = C

MM = M ⊕Hh̄(T,N)

UU = U ⊕Hh̄(T, V )

S = MM ⊕UU ⊕ L

Sj = S ⊕ bin(j)
Y1‖ · · · ‖Ym−1 = (N ⊕ V )‖D
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This gives us multisets D and R of inferred block cipher plaintexts and
ciphertexts:

D def
= [bin(0),bin(1)]]

⊎
s

[MM s, Ss
1, . . . , S

s
ms−1]

R def
= [h̄, L]]

⊎
s

[UU s, Y s
1 , . . . , Y

s
ms−1]

We therefore infer |D| = |R| = σm
def
= 2 +

∑
sm

s block cipher
plaintexts/ciphertexts from σmn bits of response (including the extra
information Ds, h̄, L). A transcript is “bad” (τ ∈ Tbad) iff any entry in D
or R has multiplicity greater than one, ie if any pair of inferred
plaintexts are the same, or if any pair of inferred ciphertexts are the
same.

Since responses in world Y are coin flips, the probability of a particular
τ ∈ Tc, good or bad, in world Y is always simply 2−σmn. For a transcript
τ ∈ Tgood, the probability in world X is the probability of all of those
plaintext/ciphertext pairs being part of a given random permutation.
This is

∏σm−1
i=0 1/(2n − i). Thus Pr[Y = τ ] ≤ Pr[X = τ ] for all τ ∈ Tgood as

required (subsection 3.3).

3.4.2 Case analysis of collisions

Next we bound Pr[Y ∈ Tbad]. We consider a case by case analysis of
possible collisions, in either inferred plaintexts (D) or inferred
ciphertexts (R), and bound the probability in world Y each case.

Responses are random in world Y, but some caution is required. If we
know the adversary’s query s, then conditioning on that, we cannot
treat the response to query r < s as uniformly random; if the choice of
later query depends on the earlier response, knowing the later query is
information about the earlier response. However, conditioning on a
query and all prior queries and responses, we still have that h̄, L, and
the query response are uniformly random and independent, and so we
can consider them in any order.

Consider for example the case Sr
i

?
= MM s: for a given r, s, i, we want to

evaluate Pr[Sr
i = MM s]. From subsubsection 3.4.1, Sr

i = MM s iff
L = M r ⊕Hh̄(T

r, N r)⊕ U r ⊕Hh̄(T
r, V r)⊕ bin(i)⊕M s ⊕Hh̄(T

s, N s). h̄
and L are given at the end of the transcript and so are independent of
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all other queries and responses. If we knew the entire transcript except
L, we would know the entire right hand side of this equation. In world
X, we would also know for example that L 6= h̄, but in world Y,
conditioning on the rest of the transcript, all values of L are equally
likely; therefore this equation holds with probability exactly 1/2n.

There are twenty-two cases to consider, ten of which arise because we
use the block cipher to generate h̄ and L. In fourteen cases, the
probability of a collision between two specific blocks is 1/2n:

• h̄
?
= L, L ?

= UU s, L ?
= Y s

j , bin(0) ?
= Ss

j , bin(1) ?
= Ss

j , Sr
i

?
= MM s,

MM r ?
= Ss

j , MM s ?
= Ss

j : Given h̄ and all queries and responses,
there is exactly one value of L which causes the equation to hold.

• h̄
?
= Y s

j , UU r ?
= Y s

j , Y r
i

?
= Y s

j , Y s
i

?
= Y s

j where i < j: If query s is an
encryption query, then given h̄, query s, all prior queries and
responses, and Cs[0; jn], there is exactly one value of Cs[jn;n]
that results in the equation holding. If s is a decryption query, the
same reasoning holds with P s, Cs swapped.

• UU s ?
= Y s

j : If query s is a decryption query, the exact argument
above applies. If it is an encryption query, then given h̄, T s, P s,
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and V s, there is exactly one value of U s that results in the
equation holding.

• Sr
i

?
= Ss

j : If query s is an encryption query, then given h̄, L, T s, P s,
V s and all prior queries and responses, there is exactly one
response value U s that results in the equation holding. For a
decryption query, given h̄, L, T s, Cs, N s and all prior queries and
responses, there is exactly one response value M s that results in
the equation holding.

In two cases, a collision is impossible:

• bin(0) ?
= bin(1): Trivially impossible.

• Ss
i

?
= Ss

j : This is impossible; Ss
i ⊕ Ss

j = bin(i)⊕ bin(j).

There are six cases where the probability may be greater than 1/2n.
Considering first collisions with MM s where query s is an encryption
query:

• MM r ?
= MM s: This holds iff M r ⊕Hh̄(T

r, N r) = M s ⊕Hh̄(T
s, N s).

Since pointless queries are forbidden, we have that
(T r,M r, N r) 6= (T s,M s, N s). If (T r, N r) = (T s, N s) then M r 6= M s,
and the equation does not hold. Otherwise, by hash function
property 2, the equation holds with probability at most
max(dr, ds)/2n.

• bin(0) ?
= MM s: This holds iff bin(0) = M s ⊕Hh̄(T

s, N s); by hash
function property 1, this holds with probability at most ds/2n.

• bin(1) ?
= MM s: As above.

In each case, if query s is a decryption query, then given h̄, T s, Cs, N s,
and all prior queries and responses, all values of M s are equally likely
and a single value causes the equation to hold, for a probability of
1/2n.

Similarly, considering collisions with UU s where query s is a
decryption query:

• UU r ?
= UU s: This holds iff U r ⊕Hh̄(T

r, V r) = U s ⊕Hh̄(T
s, V s); as

with the case of MM r ?
= MM s, this holds with probability at most

max(dr, ds)/2n.
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• Y r
i

?
= UU s: This holds iff Y r

i = U s ⊕Hh̄(T
s, V s); by hash function

property 1, this holds with probability at most ds/2n.

• h̄
?
= UU s: This holds iff h̄ = U s ⊕Hh̄(T

s, V s); by hash function
property 3, this holds with probability at most ds/2n.

As above, if query s is an encryption query, then given h̄, T s, P s, V s, and
all prior queries and responses, all values of U s are equally likely and a
single value causes the equation to hold, for a probability of 1/2n.

Figure 4 illustrates the various cases we consider for inferred block
cipher plaintext collisions. Rows represent the terms on the left hand
side of the collision, while columns represent the terms on the right; for
example, the top left box represents bin(0) ?

= bin(1). Where a square is
left blank it is either because it represents comparing a term to itself
(eg MM s ?

= MM s) or because it represents something that is already
handled elsewhere (eg considering bin(1) ?

= MM s handles the
MM r ?

= bin(1) case). A square is colored red and marked 0 if the
probability of a particular collision of that kind is zero, grey and
marked 1 if the probability is always 1/2n, and green if the probability
may be greater than 1/2n and depends on the number of solutions to a
particular polynomial; ds when there are at most ds solutions, max
where there are at most max(dr, ds) solutions. Even where a square is
green, if query s is a decryption query, the probability of a particular
collision of that kind is 1/2n. Figure 5 covers block cipher ciphertext
collisions; in this case, it is only decryption queries where probabilities
may be above 1/2n.

3.4.3 Summing collision bounds

To establish an upper bound on the probability that any pair will
collide, we sum collision probabilities for all pairs in the multiset D and
all pairs in the multiset R. To make summing easier, we define a
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“correction” c:

Pr[Y ∈ Tbad]

=Pr[∃[a, b] ⊆ D : a = b ∨ ∃[a, b] ⊆ R : a = b]

≤

( ∑
[a,b]⊆D

Pr[a = b]

)
+

( ∑
[a,b]⊆R

Pr[a = b]

)

=

(
2

(
σm
2

)
+ c

)/
2n

where

c
def
=

( ∑
[a,b]⊆D

2n Pr[a = b]− 1

)
+

( ∑
[a,b]⊆R

2n Pr[a = b]− 1

)

This rearrangement is so that the fourteen cases above which have a
probability of colliding of 1/2n make zero contribution to c and so need
not be considered further; only the remaining eight need to be
considered. Define c = cb + cf + cw + ca where

• cb covers collisions within {bin(0),bin(1)} and within {h̄, L}

• cf covers collisions for all s between {bin(0),bin(1)} and
{MM s, Ss

1, . . . , S
s
ms−1} and between {h̄, L} and

{UU s, Y s
1 , . . . , Y

s
ms−1}

• cw covers collisions for all s within {MM s, Ss
1, . . . , S

s
ms−1} and

within {UU s, Y s
1 , . . . , Y

s
ms−1}

• ca covers collisions for all r < s between {MM r, Sr
1 , . . . , S

r
mr−1} and

{MM s, Ss
1, . . . , S

s
ms−1} and between {UU r, Y r

1 , . . . , Y
r
mr−1} and

{UU s, Y s
1 , . . . , Y

s
ms−1}

cb = −1, since bin(0) ?
= bin(1) is impossible.

For cf : if query s is an encryption query, the only nonzero contributions
come from the pairs bin(0) ?

= MM s and bin(1) ?
= MM s. In each of these

cases the probability bound is not 1/2n but ds/2n, implying a correction
of at most 2(ds − 1) for each encryption query. If query s is a decryption
query, we need only consider the pair h̄

?
= UU s for a correction of at
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most ds − 1. Summing across all queries, we conclude that

cf ≤
∑
s

max(2(ds − 1), ds − 1)

=
∑
s

2(ds − 1)

≤2σ

For cw: we need only consider Ss
i

?
= Ss

j , which is impossible:

cw =
∑
s

−
(
ms − 1

2

)
≤0

For ca: if query s is an encryption query, MM r ?
= MM s gives a correction

of at most max(dr, ds)− 1; if it is a decryption query, UU r ?
= UU s and

Y r
i

?
= UU s give a correction of at most max(dr, ds)− 1 + (mr − 1)(ds − 1).

Summing across queries, we find

ca ≤
∑
r<s

max(max(dr, ds)− 1,max(dr, ds)− 1 + (mr − 1)(ds − 1))

=
∑
r<s

max(dr, ds)− 1 + (mr − 1)(ds − 1)

≤
∑
r<s

dr + ds − 1 + (mr − 1)(ds − 1)

≤(q − 1)σ +
∑
r<s

(mr − 1)(ds − 1)

≤(q − 1)σ +
∑
r<s

(dr − 1)(ds − 1)

≤(q − 1)σ +

(
σ

2

)
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Applying the H-coefficient technique, we conclude that

Adv±r̃nd
HCTR2[Perm(n)](q, σ, t)

≤Pr[Y ∈ Tbad]

≤
(
2

(
σm
2

)
+ cb + cf + cw + ca

)/
2n

≤
(
2

(
σm
2

)
− 1 + 2σ + (q − 1)σ +

(
σ

2

))/
2n

≤
(
2

(
σ + 2

2

)
− 1 + 2σ + (q − 1)σ +

(
σ

2

))/
2n

=

(
2

((
σ

2

)
+ 2σ + 1

)
− 1 + 2σ + (q − 1)σ +

(
σ

2

))/
2n

= (3σ(σ − 1)/2 + qσ + 5σ + 1)/2n

=
(
3σ2 + 2qσ + 7σ + 2

)/
2n+1

3.5 Security bound
By a standard substitution argument [BKR94; Bel+97] we have
that

AdvHCTR2[Perm(n)]
HCTR2[E] (q, σ, t) ≤ Adv±prp

E (σ + 2, t+ σt′)

where t′ is a small constant representing the per-block cost of
simulating HCTR2, and σ + 2 bounds the number of block cipher calls
made by the simulator.

Halevi and Rogaway’s PRP-RND lemma [HR03, Appendix C, Lemma 6]
tells us that

Adv±p̃rp
±r̃nd

(q, σ, t) ≤
(
q

2

)/
2n ≤ q2/2n+1

Putting these together with our main lemma, we conclude

Adv±p̃rp
HCTR2[E](q, σ, t)

≤ Adv±p̃rp
±r̃nd

(q, σ, t)

+ Adv±r̃nd
HCTR2[Perm(n)](q, σ, t)

+ AdvHCTR2[Perm(n)]
HCTR2[E] (q, σ, t)

≤ Adv±prp
E (σ + 2, t+ σt′)

+
(
3σ2 + 2qσ + q2 + 7σ + 2

)/
2n+1
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4 HCTR issues
Our presentation of HCTR2 uses names that differ from those used to
present HCTR.

• HCTR and HCTR2 use an unusual mode of stream encryption.
[WFW05; CN08] refer to this mode as “CTR mode”, but note the
differences between this mode and standard CTR mode[LRW00].
For the avoidance of ambiguity we name this mode XCTR mode as
per [Nan08].

• What [WFW05; CN08] refer to as C,CC , D we refer to as U,UU , V
so that we can use P,C to refer to plaintext and ciphertext. We
will use our names in what follows.

• Because of our use of POLYVAL, HCTR2 draws a distinction
between the raw hash key h̄ and the value at which the
polynomial is evaluated h. HCTR has no such distinction and we
use h in our discussion of HCTR.

Two errors in previous work on HCTR are addressed in HCTR2.

4.1 Hash function
HCTR uses a hash function based on the polynomial

H(X) = poly(pad(X)‖bin(|X|)‖0n)

Because it assumes a fixed-length tweak it simply sets X = M‖T .
However, HCTR requires that the resulting polynomial be nonzero even
when X = λ, so as a special case H(λ) = h.

Unfortunately, as [Kum18] observes this is no longer an injective map
from X—we also have H(0) = h. This breaks the almost-XOR-universal
property relied on in the security bound and straightforwardly leads to
an attack in which two encryption queries are presented, one of a block
width, and the second extending the first with a single zero (and
assuming a zero length tweak).

4.2 Security bound
HCTR was initially presented in [WFW05] with a security bound cubic
in the total size of all queries combined. This is a little low for comfort;
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if a 128-bit block cipher is used, it suggests a distinguisher can be
effective given tens of terabytes of queries, which can quickly be
reached over a fast link. [CN08] presents a much more satisfactory
quadratic bound, but the proof has an error that invalidates the
claimed bound.

While presented in a different way, the proof of [CN08] is very similar
to that of this paper: in the game RAND2, all queries get random
responses, the block cipher inputs are inferred, and a collision in either
the inferred plaintext or inferred ciphertext of the block cipher sets the
“bad” flag. Where HCTR2 has S = MM ⊕UU ⊕ L, HCTR simply has
S = MM ⊕UU . HCTR uses a fixed-length tweak; for simplicity we
assume a zero-length tweak in what follows.

For equation 17, the paper observes that the collision Y r
i

?
= UU s occurs

iff h is one of the zeroes of the polynomial Y r
i ⊕ U s ⊕H(T s, V s). This

polynomial has degree at most ms, and so can have at most that many
solutions. From this the paper infers a quadratic bound on the
probability of any such collision given σ input blocks.

In equation 21, the paper considers collisions of the form Sr
i

?
= MM s

and asserts that they are quadratically bounded for the same reason.
However this equation is crucially different: unlike with Y r

i , the value
we infer for Sr

i depends on h. The values of h for which this collision
occurs are the zeroes of the polynomial

M r ⊕H(T r, N r)⊕ U r ⊕H(T r, V r)⊕ bin(i)⊕M s ⊕H(T s, N s)

This polynomial can have degree up to max(mr,ms), and so the bound
of equation 17 does not apply. If queries are permitted to be of any
length, this leads to a cubic security bound. Consider an adversary who
sends a single query with x+ 1 blocks, followed by x queries of one
block. For each i ∈ {1 . . . x} and for each s ∈ {2 . . . x+ 1}, we have at
best Pr[Sr

i = MM s] ≤ (x+ 1)/2n. Summing all these bounds for each
such pair, we find that for queries with σ = 2x+ 1 this technique yields
an upper bound on the total probability of such a collision of
(x3 + x2)/2n.

[Nan21] observes that a quadratic bound can be recovered if a bound
lmax is set on the maximum size of a single query; in this case we can
prove a bound which is some small multiple of lmaxqσ/2

n.
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5 Design of HCTR2
HCTR2 is intended as a successor to HCTR and retains several of the
features that make it an attractive design:

• An unbalanced Feistel-like network based on universal hashing,
with a single block encryption on the narrow side. This gives
excellent performance and parallelizability, as well as natural
handling of messages that are not a multiple of the block size. It
also efficiently handles messages as small as the block size; our
work on HCTR2 is motivated by filename encryption for Linux’s
fscrypt module[21], where short messages will be commonplace.

• Use of MM ⊕UU in generating S, which means that an
adversary’s control over S is very limited for both encryption and
decryption queries; this is used in the proof of security to bound
Sr
i

?
= Ss

j and avert a cubic term in the security bound.

• The CTR mode variant XCTR. Because of the extra constant L, it
would be straightforward to prove secure an HCTR2 variant that
used CTR mode. However, unlike CTR, XCTR never needs to
maintain a counter larger than needed for the message size; when
a 128-bit nonce is used, CTR must use a 128-bit counter, and is at
risk of implementations whose flaws only manifest on the rare
occasions that a counter overflows into the next word.
GCM[MV04] uses a variant of CTR in which only 32 bits are
incremented for the same reason; XCTR seems a more elegant
solution.

HCTR2 differs from HCTR in the following ways:

• We introduce the extra key-dependent constant L, so that where
HCTR has S = MM ⊕UU we have S = MM ⊕UU ⊕ L, fixing the
issue described in subsection 4.2 and restoring the quadratic
security bound.

• We redesign the polynomial hash input format, as described in
subsubsection 5.2.2, fixing the issue described in subsection 4.1.

• We accept a variable-length tweak. This increases flexibility, and
eliminates the risk of attacks where two users of the same key
have different ideas of what the tweak length is.
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• We derive h̄← Ek(bin(0)) and L← Ek(bin(1)) from the block
cipher key; this makes HCTR2 more convenient to use.

• We specify POLYVAL[GLL17; GLL19] as the polynomial
evaluation function, for reasons set out in subsubsection 5.2.1.

• We present a new proof, based on the H-coefficient technique,
with a tighter bound.

• We specify endianness and the like so that implementations can
be interoperable. We use little-endian representation everywhere,
since this is faster on nearly all modern platforms. This is
another difference between XCTR and CTR, since CTR is defined
to be big-endian.

• We rename some variables in our exposition and proof to allow
some more standard usage.

• We provide a sample implementation and test vectors.

5.1 Comparison of SPRP modes
We considered a number of modes aiming to provide tweakable
super-pseudorandom permutations as the basis for our design before
settling on HCTR. HCTR is simpler than all of these modes except
HHFHFH; each also has specific qualities that led us to choose an
HCTR variant in preference.

• CMC[HR03], EME[HR04], and EME*[Hal05] require two block
cipher calls per input block.

• PEP[CS06], TET[Hal07], and HEH[Sar07] are complex, and are
either unable to handle messages that are not multiples of the
block size, or require extra ciphertext-stealing like tricks to
handle such messages. In addition, they require five passes over
the data, or three if passes are combined. Thanks to the
simplicity of the unbalanced Feistel network, HCTR and HCTR2
require three passes, or two if combined.

• HCH[CS08] is similar to HCTR but uses S = Ek(MM ⊕UU ).
With this change the authors were able to prove a quadratic
security bound. Our modification, S = MM ⊕UU ⊕ Ek(bin(1)),
saves a block cipher call per invocation.
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• HSE[MM07] achieves similar performance to this mode, but is
significantly more complicated, and accepts only an n-bit tweak.

• HMC[Nan08] allows the encryption of the first block to run in
parallel with subsequent blocks, but at a cost of significant
complication of decryption, which does not gain this advantage; at
key setup time, the multiplicative inverse of the hash key must be
calculated. In addition, like HCTR (subsection 4.1) HMC’s hash
function is not correctly injective onto polynomials.

• FAST[Cha+20] uses only the encryption direction of the block
cipher. However it is fairly complex, and the minimum message
size is twice the width of the block cipher; for our application we
need efficient handling of small messages.

• HHFHFH[Ber16] is a particularly clean design based on a
four-round Feistel network, but requires a 24n-bit message size for
n-bit security; again this doesn’t meet our small-message needs.

5.2 Hash function design
5.2.1 POLYVAL

We aim to specify HCTR2 in sufficient detail for implementations to be
interoperable, so we must be precise about endianness and the like in
GF(2128) polynomial evaluation. The most widely used convention is
that of GCM’s GHASH[MV04]. However, GHASH is not consistent in
its endianness conventions, which increases implementation
complexity and reduces efficiency.

Instead, we use the POLYVAL function defined in [GLL17; GLL19].
POLYVAL incurs a small cost in specification and proof complexity
because the polynomial is evaluated not at the parameter h̄ but at x−nh̄
so that Montgomery multiplication[Mon85] can be key-agile. However
it is carefully designed, efficient on processors with carryless multiply
instructions (1.2x faster than GHASH according to [GLL17]) and offers
an efficient conversion between POLYVAL and GHASH hashing which
allows code/hardware for one to be used for the other.
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5.2.2 Input formatting

The formatting of inputs to the polynomial hash in HCTR2 is
significantly different from that in HCTR. Our design goals are:

• fix the flaw described in [Kum18]

• allow a variable-length tweak

• guarantee H(T,M) 6= h̄, required because h̄← Ek(bin(0))

• allow implementations to precompute as much as possible, to
reduce GF(2n) multiplications

See subsection 3.2 for the properties we require of the hash
function.

To fix the flaw described in [Kum18], we eliminate the zero-length
special case by adding one to the length before encoding it.

We process the tweak before the message, so that implementations
need only process the tweak once for each encryption/decryption,
instead of twice.

With the introduction of the constant L our security proof no longer
relies on the hash function having property 2 of [WFW05, Section 3.3].
This allows us to move the length block first, so that implementations
need only process it once per encryption/decryption. It is never zero, so
its position in the polynomial can be inferred from the degree.

This change means that d|T |/ne+ d|M |/ne can be inferred from the
degree of the polynomial. If we append a 1 to the message before
padding with zeroes, we need only encode only the tweak length in the
length block, and the message length can then be inferred. For users
whose tweaks are always the same length this means the length block
is always the same, so the multiplication with h can be
precomputed.

However, in the very common case where the message length is a
multiple of the block size, we don’t want an extra multiplication for an
extra block containing only the appended 1 bit. Borrowing
from [BR00b], we don’t append a 1 bit to such messages. Instead, we
indicate whether the message length is a multiple of the block size in
the least significant bit of the length block. If all tweaks are of length t,
implementations can cache bin(2t+ 2)h and bin(2t+ 3)h and use one of
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these to start hashing as appropriate, XORing this value directly with
the first block of the tweak.

5.2.3 Alternatives considered

Like HCTR, HCTR2’s almost-XOR-universal hash function uses a
standard polynomial evaluation in GF(2n). This uses an n-bit key and
requires l field multiplications where l is the number of blocks. We
considered several alternatives:

BRW polynomials: BRW polynomials[Ber07][Sar09] are theoretically
attractive since they only need bl/2c multiplications to evaluate.
However, they pose a number of difficulties. [GS19] gives a
nonrecursive algorithm that handles variable-length messages, but it
is complex, uses temporary space that grows logarithmically with the
message length, and does not handle incremental computation well.
Standard polynomials avoid these issues; fast and correct
implementations are easier to write, and implementers have much
more control over code size, precomputation, instruction-level
parallelism, number of reductions, and so forth. Finally, preserving our
guarantees of injectivity on variable-length tweaks and messages, and
the other hash function properties we need to guarantee, proved
challenging.

Hash2L: Hash2L[CGS17] solves two issues with BRW polynomials.
First, it limits the depth of recursion, and thus the space needed, by
replacing the uppermost levels by a simpler Horner based evaluation.
This slightly increases the number of multiplications per block but
solves several implementation issues. Secondly, it adds an extra
multiplication at the end to include length information so that the
whole construction is injective on variable-length messages. Where
most messages are large, such as for disk encryption, a variant of
HCTR2 that uses Hash2L could be attractive; however since
performance on small messages is key to our application we prefer the
simplicity and optimization potential of Horner evaluation.

Polynomials over non-binary fields: When CPU instructions for
carryless multiplication are unavailable, hashes using non-binary
fields such as Poly1305[Ber05] tend to be faster than hashes using
binary fields. However, HCTR2 primarily targets processors that
support carryless multiplication, and on such processors hashes using
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binary fields tend to be faster and simpler.

Multivariate hashes: Adiantum[CB18] builds an almost-∆-universal
hash function using the multivariate hash NH[Bla+99] combined with
polynomial evaluation. Where NH is faster than polynomial
evaluation, this increases performance. However, this adds complexity,
and NH requires a long key which needs to be derived and cached.
HCTR2 primarily targets processors where polynomial evaluation is
fast, so we do not add an NH layer.

6 Implementation
At https://github.com/google/hctr2 we provide a (very slow)
reference implementation of HCTR2 in Python, a portable C
implementation, and assembly implementations for x86-64 and ARM64
making use of AES acceleration and carryless multiplication
instructions. We adapted our assembly implementation of XCTR mode
from the Linux kernel’s CTR mode implementation, retaining all
parallelism.
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A Injectivity of H onto polynomials
To demonstrate injectivity, the following algorithm recovers T and M
given a binary string X of length |X| = n(1 + deg(H(T,M)))
representing the coefficients of the polynomial H(T,M) in binary form,
starting with the greatest nonzero power; thus 13h3 would encode as
1011‖04n−4.

1: procedure GetTM(X)
2: assert |X| mod n = 0
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3: assert |X| ≥ 2n
4: assert X[|X| − n;n] = 0n

5: t← bin−1n−1(X[1;n− 1])
6: assert t > 0
7: t← t− 1
8: w ← n(1 + dt/ne)
9: if X[0; 1] = 0 then

10: assert w + n ≤ |X|
11: M ← X[w; |X| − w − n]
12: else
13: assert w + 2n ≤ |X|
14: assert X[|X| − 2n+ 1;n− 1] 6= 0n−1

15: i← |X| − n− 1
16: while X[i; 1] = 0 do
17: i← i− 1
18: end while
19: M ← X[w; i− w]
20: end if
21: T ← X[n; t]
22: return T,M
23: end procedure
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