Improved Circuit-based PSI via
Equality Preserving Compression

Kyoohyung Han, Dukjae Moon, and Yongha Son

Samsung SDS, Korea
{kh89.han, dukjae.moon, yongha.son}@samsung.com

Abstract. Circuit-based private set intersection (circuit-PSI) enables
two parties with input set X and Y to compute a function f over the
intersection set X N'Y, without revealing any other information. State-
of-the-art protocols for circuit-PSI commonly involves a procedure that
securely checks whether two input strings are equal and outputs an addi-
tive share of the equality result. This procedure is typically performed by
generic two party computation protocols, and its cost occupies quite large
portion of the total cost of circuit-PSI. In this work, we propose equal-
ity preserving compression (EPC) protocol that compresses the length
of equality check targets while preserving equality using homomorphic
encryption (HE) scheme, which is secure against the semi-honest ad-
versary. This can be seamlessly applied to state-of-the-art circuit-PSI
protocol frameworks. We demonstrate by implementation that our EPC
provides 10 — 40% speed-up for circuit-PSI with set size from 26 to 220,
on LAN network. We believe that EPC protocol itself can be independent
interest, which can be applied to other application than PSI.

Keywords: Private Set Intersection, Circuit-based Private Set Intersec-
tion, Homomorphic Encryption

1 Introduction

A two-party functionality of private set intersection (PSI) enables two parties P
and P, having respective input set X and Y to compute the intersection X NY,
without revealing any other information beyond the original set cardinality |X|
and |Y| to each other.

There are many real-world applications related to PSI, and some of them only
requiring the intersection set may find an efficient solution from PSI alone. How-
ever, there is another variant of PSI that outputs only f(X NY’) for some target
function f rather than the intersection set X NY, and this would be more desir-
able for other applications. One typical but a popular example is PSI-Cardinality
that computes cardinality of the intersection, where f(X NY) = | X NY|. In-
deed these kinds of PSI are receiving growing attention from industry, for ex-
ample, Google [21,20] and Facebook [0] explored some variants PSI including
PSI-Cardinality-with-Sum that computes the cardinality and the sum of associ-
ated values over the intersection set.



This PSI-with-computation notion is generalized to the circuit-PSI function-
ality, which outputs the intersection information in secret-shared form, instead
of the intersection set itself. More precisely, for each element x € X, circuit-PSI
outputs each party random bits sy and s; respectively, such that sqg & s; =1 if
and only if z € X NY (of course 0 otherwise). This is used as a general-purpose
preprocessing, in the sense that two parties use the shares to perform target
computation on the intersection. Notable example would be PSI-Threshold that
only reveals whether the cardinality of X NY is larger than some threshold.

The work of Pinkas et al. [31] proposed a novel construction of circuit-PSI
protocol which has linear communication complexity in the input set size. After
that, several following works [7,34] have proposed improved instantiation of the

framework and those works indeed shows the state-of-the-art performance for
circuit-PSI.

To generate final bits sg and s; in circuit-PSI, the framework involves O(N)
times of private equality share generation (ESG) that takes an input string from
each party and outputs Boolean shares of the equality result between two strings
for N = |X| = |Y|. This is one of the main differences of circuit-PSI from plain
PSI, where the latter one typically uses private equality test that simply outputs
the equality result itself. For private equality test, there are many efficient meth-
ods such as oblivious pseudo-random functions (OPRFs) [16,23,34]. However it
is not directly applicable for ESG, and the most of circuit-PSI protocols perform
ESG by other costly methods such as generic two party computations (2PC).

Not too long ago, ESG occupied the largest part of circuit-PSI cost; about
96% and 91% of the total communication in circuit-PSI protocols of [31] and [7]
respectively. Although such burden of ESG procedure is greatly reduced thanks
to remarkable speed-up of OT extensions [12,37], it still takes quite large portion
of circuit-PSI protocol, which is the main reason of performance gap of plain PSI
and circuit-PSI.

1.1 Owur Contribution

Our work starts with an observation that all known methods for equality share
generation (ESG) have complexity linear in the input bit-length. Some works [31,
] simply exploited two party GMW protocol [19] by evaluating equality check
circuit composed of /—1 AND gates, and it naturally results in complexity linear
in £. After then [7, 15] proposed more efficient protocols that have improved
communication burden, but it still suffered from linear complexity in £.

e With a purpose of reducing workload of ESG, we propose a functionality
what we call equality preserving compression (EPC) that converts two large
integers into smaller integers, while preserving the equality condition. Then
we construct a homomorphic encryption (HE) based efficient protocol re-
alizing the EPC functionality with semi-honest security. Asymptotically it
compresses (-bit input integers into O(log ¢)-bits, with O(¢) computational
and communication complexity.



e We then combine our EPC into the circuit-PSI framework of [31]. Our EPC
protocol perfectly preserve equality, in other words with zero failure proba-
bility, and hence the correctness analysis for previous circuit-PSI protocols
remains exactly same. Moreover, it provides concrete improvement since it
decreases the heavy ESG part input in the logarithmic scale. We check the
concrete effect of EPC by implementation, and observe 10 — 40% speed-up
over LAN network environment. See Table 2 for details.

1.2 Related Works

Plain PSI. The early proposal of PSI is based on Diffie-Hellman (DH) [25], and
this still serve as a basis of modern PSIs with considerably low communication
cost but high computational cost. Recently many OPRF-based (plain) PSI pro-
tocols [8,23, 28,29, 34] have been reported with rather low computational cost,
at the cost of communication burden.

PSI-with-functionality. Toward PSI with additional functionality, Google [21,

] provides PSI-with-computation protocol stem from DH-based PSI, which is
tailored for specific target functionality that reveals computing cardinality of the
intersection and summing all associated values of the intersection sets. After then
Facebook [6] further developed this to a protocol that letting two parties have
additive shares of intersected elements, with the purpose of supporting general
computation over the intersection set.

Circuit-PSI. As a more generalized concept, circuit-PST is firstly proposed by [20]
and then continuous improvements have been reported [11,30,32]. In particular
[30] has a similarity with our paper, as their main idea called permutation-
based hashing is to cut-off the length of item while preserving equality, with a
purpose of reducing the cost for equality check. However, the technique is only
applicable to the initial hashing routine (will be explained by cuckoo/simple
hashing later), and not compatible with the currently best framework of circuit-
PSI due to Pinkas et al. [31] based on oblivious programmable PRF (OPPRF). As
OPPRF-based circuit-PSI framework shows the best performance, whose details
are presented later in Section 3. We note that, despite the similarity of their
names, construction of OPPRF is quite different from OPRF, and hence OPRF-
based PSI protocol does not implies OPPRF-based circuit-PSI protocol. Indeed,
we are aware of only one work [34] that constructs plain PSI and circuit-PSI from
the same underlying idea. There is another concept of PSI-with-computation [15]
different to circuit-PSI, which improves the efficiency of PSI-with-computation
while additionally reveals the cardinality of intersection set as well as the desired
function evaluation f(X NY).

HE in PSI field. There are also HE-based PSI approaches [9, 10], which mainly
focused on extremely unbalance-sized set cases. The first work [10] considered
plain PSI, and the main usage of HE is to solve the private set membership
(PSM) problem by evaluating inclusion polynomial; z € Y is equivalent to



F(z) =[] ey(x—y) = 0, which is quite different to our use of HE. The following
work [9] extended this protocol to PSI having associated value and strengthened
the security to malicious setting, but HE is applied in the similar sense to the
previous work. The authors of [9] leaved a short mention on circuit-PSI as a
combination of their HE-based PSM protocol with the final equality share gen-
eration. As the circuit-PSI protocol was not the main interest of the paper, the
authors merely mentioned that the final task can be done by a 2PC without
detailed analysis.

1.3 Roadmap

In Section 2, we recall the preliminaries including oblivious transfer and homo-
morphic encryption, and in Section 3, we present the state-of-the-art circuit-PSI
framework due to [31]. In Section 4, we propose an equality preserving com-
pression functionality concept and efficient protocol for that. Then in Section
5, we combine our proposed EPC protocol with the OPPRF-based circuit-PSI
protocol to improve efficiency, and provide experimental results in Section 6.

2 Preliminary

2.1 Notations

We write vectors as bold lowercase letters, and matrices as bold uppercase letters.
For any real number z, we denote |x] by the round-off to integer. The i-th
component of a vector v is denoted by v;, and ¢,j-th entry of a matrix M
is denoted by m; ;. For an integer k, a set {1,---,k} is denoted by [k]. The
logarithm function log is assumed to have base 2 unless specially denoted by
log,, with base w. For any statement 7' that can be determined by true or false
(Boolean), we denote 1(T") be the truth value for the equality, i.e., it is 1 if T is
true and 0 else.

2.2 Oblivious Transfers

A 1-out-of-n oblivious transfer (OT) of ¢-bit input messages (n,1)-OT, takes
as input n messages my,--- ,m, € {0,1}* from the sender and a choice index
¢ € [n] from the receiver, and outputs m. to the receiver and nothing to the
sender. We also use a notion of 1-out-of-2 correlated-OT (COT) of ¢-bit input
messages (2,1)-COT,, where the sender inputs a correlation d € {0,1}* and the
receiver inputs a choice bit b € {0,1}. Then the functionality outputs to the
sender 7 and d +r for a randomly chosen r € {0, 1}, and to the receiver b-d+ 7.
We write m times of (n,1)-(C)OT, calls by (n,1)-(C)OT,".

There are protocols called OT-extension (OTe) that efficiently extend small
numbers of base OTs to large numbers of OTs. Assuming that such small num-
bers of base OTs are done, the most typical IKNP OTe protocols execute (2, 1)-
OT, and (2,1)-COT,; with communication A 4+ 2¢ [22] and X + ¢ [3] bits per



one call. Recently another breakthrough line of OT extensions [5, 12, 37] are
proposed, which greatly reduces communication overhead of IKNP-style OT-
extension, while preserving similar computational cost to IKNP. For sufficiently
many OT and COT calls, for example more than 220 calls, Silent OTe allows
one to execute (2,1)-OT, and (2,1)-COT, with nearly 2/+ 1 and ¢+ 1 bit com-
munication per one call, respectively.

GMW protocol or Gate evaluation. For a bit z € {0,1}, we say zo € {0,1}
and x; € {0,1} satisfying ¢ = x¢ @ x; be 2-party additive Boolean shares, or
simply Boolean shares of z. Consider two bits x and y are shared as x; and
y; by two party Py and P;. Then two parties can privately compute Boolean
shares of gate evaluations on input z and y using OT. Note that Boolean shares
for XOR z @& y can be easily computed by x; & y; by each party’s own. Boolean
shares for AND gate can be evaluated by (2,1)-COT? [13,19]. For the underlying
idea, observe that (2,1)-COT; with the sender’s input correlation bit d and the
receiver’s input choice bit b essentially computes Boolean shares of b A d. To
evaluate an AND gate, two parties execute a correlated-OT with input z; and
y1—; to have Boolean shares of a = x; Ay1_;, and then with input y; and z;_; to
have Boolean shares of b = x1_; Ay;_;. Then the party P; outputs x; Ay; Da; Db;
and the other party P;_; outputs z1_; A y1—; ® a1—; B by_;, which are Boolean
shares of x Ay = (2o @ x1) A (Yo B y1).

2.3 RLWE-based Homomorphic Encryption

A homomorphic encryption (HE) scheme is an encryption scheme that supports a
ring-structured plaintext M, and homomorphic arithmetic operations between
ciphertexts that acts on inner plaintext. We especially exploit a ring learning
with errors (RLWE) based HE scheme, BFV scheme [14].

For simplicity, we restrict our description for RLWE-based HE using power-
of-2 cyclotomic rings of integers, which is widely used in several HE libraries.
Let R :=Z[X]/(X™ + 1) be a polynomial quotient ring where n is a power-of-2
integer. This scheme supports a plaintext space R, := R/pR = Z,[X]/ (X" + 1)
for some plaintext modulus prime integer p, and the corresponding ciphertext
space is RZ for some g >> p.

BFV Scheme. We will briefly review the BFV homomorphic encryption scheme.
The IND-CPA security of BFV is based on the hardness assumption of the RLWE
problem. For more details, we refer to [4, 14].

Key Generation. Given a security parameter A\ > 0, fix integers n, P (P be a
positive integer that will be used in the evaluation key generation), and distri-
butions Diey, Derr and Dey,e over R in a way that the resulting scheme is secure
against any adversary with computational resource of O(2*). Typically Diey is
chosen by ternary coefficient polynomials in R, and De,, and De,. are chosen
by a discrete Gaussian distribution of appropriate standard deviation o.



1. Sample a < Ry, 5 = Diey, and e < Dc,,. Then the secret key is defined
as sk = (1,s) € R?, and the corresponding public key is defined as pk =
(b,a) € RZ, where b = [—a -5+ €],.

2. Sample a’ < R4 and € < Dg,,. Then the evaluation key is defined as
evk = (V/,a’) € RZ, where b/ = [—d’ - s + ¢’ + Ps'], for s’ = [s%].

Encryption. Given a public key pk and a plaintext m € R, Sample r < Dg,. and
€0, €1 < Deyp. Then compute Enc(pk,0) = [r-pk+ (eq, e1)], and Enc®™ (pk, m) =
[Enc(pk,0) + (Agrv - [m]p, 0)]q, where Agpy = |g/p]-

Decryption. Given a secret key sk € R? and a ciphertext ct € Ri, DeCBFV(Sk, ct) =
| 2l(sk,ct)l, |

The ciphertext of BFV scheme is (b(x), a(z)) satisfying b(z) = —a(x) - s(z) +
e(z). The e(z) part is called as noise term of ciphertext. We note that infinite
norm of noise term of ct in decryption function should be bounded by 2% for
correctness of decryption.

Addition. Given ciphertexts ct; and cts in 7'\’,3, their sum is defined as ctagq =
[Ct1 + Ctg]q.

Multiplication. Given ciphertexts ct; = (b1, a1) and cta = (bg, ag) in Rg and an
evaluation key evk, their product is defined as ctmue = [(do, d1) + | P! - da - evk] ]

where (do,d1,ds) is defined by qul(blbg,albg + a9y, alag)H .
q

Batching. BFV scheme basically supports encryptions of plaintext ring R, ele-
ment, and homomorphic addition and multiplication over R,. As a useful notion
for batching multiple data in one ciphertext, one can use a ring isomorphism
Ry = IFZ{{ ¢ where d is the smallest integer such that p® = 1 mod 2n and Fpa

is a finite field of order p?. Using this isomorphism, one can perform slot-wise
encryption and operation of n/d elements in F,a by single instruction on the
ciphertext. It is worth to note when the plaintext modulus p and the polynomial
quotient n satisfies

p=1 mod 2n, (1)

which provides n slots of Z,, element. This can be achieved only with somewhat
restrictive parameters, but the underlying plaintext slot Z, is much simpler than
extension fields F,« so that one can fully enjoy the power of batching. In this
regard, we refer this case by full batch and indeed our paper mainly focus on full
batch HE parameters.

Security Notions. For security, we consider the standard IND-CPA security that
requires two ciphertexts of different messages are (computationally) indistin-
guishable given an encryption oracle. The IND-CPA security of RLWE-based

q

)



HE literally comes from the hardness of ring learning with errors (RLWE) prob-
lem. For concrete parameter setting of IND-CPA security, the bit-size of cipher-
text modulus log ¢ and polynomial ring dimension n, and error distribution D,
should be selected to secure against various lattice reduction attacks.

3 Circuit-based PSI

The definition circuit-based PSI (circuit-PSI) functionality to generate Boolean
additive shares is given as Figure 1. After circuit-PSI, the results can be used
for one’s desired function evaluation. In the rest of this section, we describe the
abstract framework of [31] which continues to the following improvements [7,34].
Then we especially review the equality share generation method of each work
which occupies the largest part of the total cost, from which we can observe
the input bit-length ¢ equality share generation plays the most crucial role for
complexity.

Parameters: A receiver with an input set X of size N and a sender with an input
set Y of size .

Functionality: The functionality sends to the receiver an injective indexing function
t: X — [M] for some M > N and a vector so € {0,1}, and to the sender a vector
s1 € {0,1}™ such that so; @ s1,, = 1(t7(i) € X NY) for i € «(X), and s0,; © 51,; =0
for i ¢ o(X).

Fig.1: Fcpsi. (Ideal) Functionality of circuit-PSI

3.1 OPPRF-based Circuit-PSI Framework

Let the receiver R holds a set X and the sender S holds a set Y of the same size
N. The framework consists of the following three main stages.

Step 1. Hashing. For € > 0, each party creates a hash table with M = (14+¢)-N
bins, but with different hashing method. The receiver applies cuckoo hashing
with d hash functions hy, -+ ,hg : {0,1}* — [M] on input X. More precisely,
for a suitable choice of ¢, there is a cuckoo hashing algorithm that stores every
element € X in h;(x)-th bin for some j € [d] with overwhelming probability,
while ensuring that at most one element is stored in each bin. This yields a
simple representation of the cuckoo hash table: T'x [h;(z)] = z. Note that the
mapping from z € X to h;(z) determines the indexing function ¢ in the circuit-
PSI definition of Figure 1.

On the other hand, the sender creates a simple hash table with the same
hash functions on input Y, which stores each y € Y in every bin h;(z) for every



J € [d]. Naturally each bin can hold more than one element, and hence the i-
th bin of the simple hash table Ty [i] is indeed a set. It is known that that for
M = O(N) hash table size, the number of elements in each bin is O(log(N)).

Since hj(x) # hj(y) for some j implies  # y, two parties only need to
compare each elements of the same bin of each hash tables. Since the cuckoo hash
table Tx ensures at most one element of x € X per each bin, circuit-PSI reduces
to the problem that securely outputs an additive share of 1(Tx[i] € Ty [i]) for
each bin ¢, which is essentially a private set membership (PSM) problem. Here the
receiver has to fill the empty bin in Tx with dummy value to prevent additional
information leakage.

Step 2. Bin Tagging. This step further reduces the aforementioned PSM
problem into an equality share generation (ESG) problem between two parties,
where each party inputs a vector v and v* of length M respectively, and is given
as output a Boolean vector of additive share of 1(v; = v}).

This is realized by a functionality called oblivious programmable pseudo-
random function (OPPRF) [24] where the sender obliviously computes a PRF
F on receiver’s input while the sender can program F with values (y;, z;) so
that F(y;) = z;. The formal definition of OPPRF is given as Figure 2. [31] is
the first work that applies OPPRF functionality for this purpose, and then [7]
and [34] developed more efficient OPPRF protocols to improve the performance
of circuit-PSI.

Parameters: A sender with input L = {(y;, z;)} where y; € {0,1}* and 2 € {0,1}%,
and a receiver with input X = {z;} with z; € {0,1}".

Functionality: The functionality samples a random function F : {0,1}* — {0,1}*
such that F(y) = z for each (y,2z) € L, and sends F(X) := {F(z) : © € X} to the
receiver.

After then, upon an input y of the sender, the functionality outputs F'(y) to the sender.

Fig. 2: Foppre. (Ideal) Functionality of oblivious programmable PRF

To convert PSM problem to ESG problem, two parties execute a protocol
for OPPRF functionality with the following input. The sender who has a simple
table samples a random tag value v; € {0,1}* for each i-th bin, and generate
the input set L obtained by concatenating each y € Y with the tag of the bins
where y is stored, namely

L= {(thj(y)’Uhj(y))}er,je[d] = {(y/”ivUi)}ie[]V[],y’ETy[i] .

The receiver feeds its input set by Tx = {Tx [i][|7};e(ar - After the execution of
OPPREF protocol, the receiver assigns

vi = F (Ixli]|li) € {0,1}*



in each hash address 7 to construct a vector v* of length M. From the definition
of OPPRF functionality, it holds that v; = v} if the element Tx[i] is in the
set Ty [i], otherwise v} is a random element. Therefore the original PSM-related
problem is translated into equality share generation problem between v from the
sender and v* from the receiver.

Remark 1 (Failure Probability). Note that there is a failure probability of 27
where the random element v} is same to v; despite Tx[é] is not in Ty [é]. The
length of tag ¢ should be chosen so that the overall failure probability is smaller
than 277 where o is statistical security parameter. Since there are M bins, it
should hold that 277 > 1 — (1 — 2=%)M  which is sufficient with

> o+ [log M]. (2)

One exception is OPPRF of [7] that requires £ > o + [log4M], and this comes
from different structure of their OPPRF. For the detailed explanation, see Ap-
pendix A.

Step 3. Equality Share Generation. In this step two parties finally generate
Boolean shares of 1(v; = v}), whose definition is formally given as Figure 3.

Parameters: A sender with an input string a and a receiver with an input string b.

Functionality: The functionality outputs bits so and s1 such that so @ s1 = 1(a = b)
to each party respectively.

Fig.3: Fesg. (Ideal) Functionality of equality share generation

There are several known methods [7,15] to perform this step in semi-honest
model. Most of methods take an approach that evaluates the equality check cir-
cuit on /(-bit string, composed of £ — 1 AND gate evaluations. One may exploit
Yao’s garbled circuit protocol [38] for evaluation, and it requires 2\ = 256 bits
communication per one AND gate evaluation, with only a single round of in-
teractions. Meanwhile, GMW protocol requires only 2 bits communication per
one AND gate!, at the cost of log(£) rounds of interactions. We consider the low
communication benefit of GMW protocol is larger than the smaller round com-
plexity of Yao’s protocol. In the remaining of the paper, we implicitly assume
that ESG is executed by GMW protocol.

3.2 Applications of Circuit-PSI

Below we present some typical but popular applications of circuit-PSI. We would
like to remark that the overheads for these applications are significantly small
compared to circuit-PSI cost, as also remarked in [31].

! Thanks to recent improvements on OT extension [12,37].



Private Intersection Cardinality and Threshold. These applications would
be most direct consequences of circuit-PSI. The cardinality of intersection set
(PSI-Ca) can be obtained by evaluating a Hamming distance circuit that re-
quires less than M AND gates on circuit-PSI outputs. Moreover, by augmenting
one comparison circuit to the Hamming distance circuit (less than M + log M
AND gates), we can let the parties know whether the cardinality is larger than
some threshold ¢ (PSI-Th).

Private Sum over Intersection. Assume the sender having set X additionally
holds an associated values {v, € G : x € X} for some additive group G, and
we want to let the receiver having set Y knows the sum of associated values
over the intersection set, namely V' = » ¢, v;. This is sometimes called
PSI-Sum?. For that we adapt a method of [15]: The sender samples r € GM
that sums to Y r; = 0. Then two parties execute OT upon the choice bit s1;
from the receiver, and two messages r; for s ; choice and r; +wv,-1(;) for 1 —sg;
choice from the sender, where v,-1(;y = 0 for i ¢ +(X). The receiver adds all
received value to have > r; + V = V, without knowing any other information
since each summand is masked by random value r;. This can be easily tweaked
to let the sender know V' = ) _yy ve, by letting the sender samples r such
that Y~ r; = R for a sender-side chosen R € G. Then from the same protocol the
receiver ends with R+ V, and finally sends back the value to the sender so that
the sender recover V.= (R+V) — R.

Remark 2. Circuit-PSI can handle the case where both parties hold associated
value sets so that parties perform further computations over those sets. How-
ever it is somewhat complicated as it requires some modification of OPPRF
application (of Step 2. Bin Tagging). Thus we simply refer Section 6 of [31] for
details.

4 Equality Preserving Compression

The final equality share generation procedure occupies the largest part of the
total cost in circuit-PSI protocol, and the input bit-length ¢ of equality share
generation plays an important role. In this section, we present a procedure that
converts the equality share generation target inputs into another values whose
size is asymptotically logarithm to the original input bit-length, while the equal-
ity results remain unchanged. More formally, we define the 2-party functionality
equality preserving compression (EPC) Fgpc that takes an integer v € Z; from
the sender and another integer v* € Z; from the receiver. The functionality out-
puts each party a random integer r and r* in another modulus ring Z,, where
it holds that v = v* in Z; if and only if r = r* in Z, for p < t.

2 Some protocols [15,21] outputs both cardinality and summation. It should be re-

marked that circuit-PSI based protocol can selectively exposes cardinality or sum-
mation, or even both.
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Parameters: A sender with an input v € Z; and a receiver with an input v* € Z;,
and the target size p.

Functionality: The functionality sends a random r € Z, and r* € Z, to the sender
and receiver respectively, such that v = v* in Z; if and only if r = r* in Z,.

Fig. 4: Fepc. (Ideal) Functionality of equality preserving compression

4.1 A Basic Protocol

Our protocol starts from the following simple observation on word decomposi-
tion. For any base w, the w-base decomposition of v and v* by v = 23;01 v; - w"

and v* = Zf;ol v} - w' where u := [log,, t] and v;, v} € [0,w) satisfies
u—1
v=0" (z)D:zZ(Ui—U;‘V:OinZ. (3)
=0

Note that D < u-(w —1)? ~log,, t - (w— 1)?, which has much smaller size than
the original size t.
Based on this idea, we consider a simple protocol that privately computes
D and output a random element r € Z, and r* := r + D € Z, by Figure 5.
However, the correctness may fail without any condition on the word base w
and p, since it may happen that r» = 7* € Z, despite of v # v* if D is divisible
by p. To avoid this, the word base w has to be chosen so that D is always less
than p, namely
p>u-(w—1)>2 (4)

We note that u - (w — 1)? = O(log t), this protocol asymptotically realizes Fepc
for p = O(logt).

4.2 Optimizations and Full Protocol

Upon the basic protocol above, we specially focus on BFV scheme to utilize
batching property. Furthermore, we achieve huge speed-up from a simple de-
composition of D = Y (v; — v})? by totally removing homomorphic ciphertext
multiplication. On security aspect, we use noise flooding to ensure function pri-
vacy of homomorphic encryption. A full protocol description that puts everything
together is presented by Figure 6, and below we provide some details for each
technique.

Batching with RLWE-based HE. As reivewed in Section 3, two parties
have to perform O(N)-many times of equality checks in circuit-PSI. In this
regard, we can exploit batch property of BFV scheme to perform multiple calls
of Fepc, on some conditions on target size p and HE parameters. To recall, for
the given RLWE dimension n, we can encrypt n/d number of F,« elements in

11



Parameters: A sender with input v € Z; and a receiver with input v* € Z: and
the target size p.

Protocol:

1. Sender generates a homomorphic encryption secret key sk, and decomposes in
w-base v € Z; to {vi}o<i<u for u = [log,, t]. After that sender encrypts each
v; using sk, and sends them to receiver.

2. Receiver picks a random integer r € Z,, and decomposes v* € Z; to {v;] }o<i<u-
Then receiver homomorphically compute r + 3% '(v; — v;)?, and sends the
resulting ciphertext back to sender.

3. Sender decrypts the received ciphertext using sk, to obtain r* = T+Zf;01 (vi —
v})? € Zy.

Fig.5: A basic protocol for Fgpc functionalities

one ciphertext for the smallest integer d such that p? = 1 mod 2n. This means
that using smaller p gives better compression ratio, but makes the number of
slots in a single ciphertext smaller. For example, p > 2n is necessary to use full
batch (i.e n slots).

Removing Ciphertext Multiplications. In most of HE schemes, homomor-
phic multiplication takes much larger time than scalar multiplication. To remove
homomorphic multiplications, we let the sender additionally sends one more ci-
phertext which is an encryption of 2?2—01 vZ. In this case, the receiver can com-

pute D by

u—1 u—1

u—1
2 * *2
D:E vi—2-§ Ui'Ui—FE v;”.
i=0 i=0 i=0

As the receiver knows v} values, it can compute Z;:Ol v}2 part and then the
receiver only needs to perform scalar multiplications and additions to obtain an
encryption of D.

Remark 3 (Additive HE). This optimization opens possibility to apply additive
homomorphic encryption (AHE) schemes such as Paillier scheme [27], but the
performance of RLWE-based AHE is still better when we use small plaintext
space and batching technique. See Appendix B for more detailed argument.

Realizing Function Privacy. For the security proof, we need to ensure the
function privacy from the return ciphertext from receiver to sender. For that we
apply randomization and noise flooding method, whose detail will be presented in
the next subsection. Concretely this can be realized by letting receiver randomize
the resulting ciphertext by homomorphically adding a fresh encryption of zero,
and add large enough error to apply noise flooding method before send the
computation result back to sender.
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(In-)efficiency of Binary Case: w = 2. The extreme case w = 2 deserves
to be considered independently, as it obviously results in the smallest output
(exactly logt), although requires the largest number of ciphertexts communica-
tion. In fact, we found in literature [18] a similar idea using (3) especially for
bit decomposition, which further exploits a computational convenience of bit
decomposition: Note that (z —y)? = z @ y for binary x and y, and x & y can be
computed by outputting z if y = 0 and 1 — x otherwise, which does not require
even scalar multiplications.

Therefore, one may think w = 2 as an appealing choice due to these advan-
tages, while sacrificing some communications. However, we would like to remark
that the batching efficiency has to be importantly considered also, and this ex-
treme case indeed has quite poor batching efficiency. It is because the desired
plaintext modulus p =~ logt becomes smaller than a typical choice of the ring
dimension n > 4096 of RLWE-based HE. For example, our interest ¢ is less than
64 bits, and it can be easily checked that small primes of size ~ 64 have order
at least 32 in Zs, for n = 4096. This means that we are only able to batch
128 = 4096/32 elements in one ciphertexts. On the contrary, we can take full
4096 slots by taking larger word size w that provides p > 2n, which are indeed
used for our experiments in Section 6.

4.3 Security and Cost Analysis

In this section, we will discuss about security of our protocol with correctness
proof. We also analyze the computational and communication costs. Before that,
we need to recall some details of RLWE-based HE scheme. We will focus on BFV
scheme [14], but it does not mean that our method is restricted to this scheme.

Randomizing BFV Ciphertexts. Recall that a BFV encryption of a message
m(x) is of the form

<a(x) Cs(x) +

hSAES

-m(x) + e(x), a(x)) € RZ.

As secret key owner can recover not only m(x) but also e(z). For this reason, we
need to add additional noise e*(z) such that |ef| > 27 - B for the function privacy
of homomorphic encryption scheme. Here B is upper bound of e(x)’s coefficients
and o is the statistical security parameter. This method is called noise flooding
and this idea is firstly proposed by [17].

Noise Analysis. For the concrete choice of homomorphic encryption parame-
ter, we need to analyze the noise term in our HE-based EPC protocol. Here we
will consider the infinity norm || f(z)|| which is defined as max; |f;| and the ex-
pansion factor of ring R is defined as dg = max{||f(x)-g(@)||/(|f(@)]|-|lg(@)]]) :
f(z),g(z) € R}. In addition, we assume that the noise term of ctxty, ; in Figure 6
is bounded by Biresh-
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Parameters: A sender with input v € ZM and a receiver with input v* € ZM
and the target size p.

Protocol:

1.

[Setup] Two parties agree on a proper HE parameter (n,q) that supports
plaintext space Zj, and satisfies IND-CPA security. Then the sender samples
a key pair (sk, pk), and sends the public key pk to the receiver. The sender pads
v by 0 and the receiver pads v* by 1, until they have length divisible by n, say
v -n. Two parties also agree on word base w satisfying p > [log,, t] - (w — 1),
and define u = [log, t] .

[Encryption] Sender performs the following for 0 < k < ~:
L u—1_ ot .
n j— 3 = = .
(a) Decompose each vnpyj into > 0" v -w' for 1 < j<n
(b) Batch them into my,; = (vj,s)1<j<n € Zp for 0 < i < u.
(c) Define my,, = (312 v7i)1<j<n € Zy
(d) Encrypt {mg} into {ctxty;} using sk and send those ciphertexts to the
receiver.
[Compute D and Masking] Receiver performs the following for 0 < k& <
) Decompose each vy, ; into S v cwt for 1< j <.
) Batch them into mj ; = (v} ;)1<j<n € Zy for 0 <i < u.
(c) Define my.,, = (3275 vj)i<j<n € Zj
(d) Compute a ciphertext ctxty,q = Ctxti,u & oy (ctxty,; © 2myj ;) & mj ,
) Sample a random vector ry € Zj.
enerate an encryption ctxtys, r (using pk) of zero of error size whic.
G b ti fp, i k) of f ize By, which
is large enough for function privacy.
g en ack ctxtg := ctxty q D ctxtyp x D rp to the sender.
Send back 4D tp,k Dy to th d

[Decryption] Sender decrypts ctxty to have ry € Zy for 0 < k < .

[Finalize| Sender outputs r € Zf,w by concatenating every r; and cutting the
last v -n — M dummy elements. Receiver outputs r* € Zi‘,/f by performing the
same with ry.

Fig.6: A full protocol Ilggpc for M batch calls of Fgpc functionalities

Lemma 1 (Noise growth during homomorphic scalar multiplication).
For the given BFV ciphertext (b(z), a(x)) with noise term e(x) such that ||e(x)|| <

B, the result ciphertext of homomorphic scalar multiplication has noise term

e*(x) such that ||e*(z)|| < 6 -p- B+ 6r - p*.

Proof. In case of homomorphic scalar multiplication, it can be done by multiply-

ing a polynomial ¢(x) to each a(x) and b(x). Each coefficient of ¢(x) is bounded
by the plaintext modulus p. For the a*(z) = ¢(z) - a(x) and b*(z) = ¢(z) - b(x),
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b*(x) + a*(x) - s(x) =

—

RVRIQRBIQRBIQ IR

_

“(m(z) - c(x)) + e(x) - c(x)

([m(z) - c(@)lp +p- 1(x) + e(x) - ()

Do) el + (L) -p 1)+ elo) )

“[m(z) - c(@)]p +e-p-I(x) +e(x) - c(x) mod g

Therefore, ||e*(z)|| = |le-p- I(z) + e(z) - c(x)|| < 6 - p* + dr - p - B. O

Furthermore, homomorphic addition between two ciphertext with noise bound
B and Bs returns ciphertext with noise bound By + By + 2p. Finally, homo-
morphic addition between ciphertext with noise bound B and plaintext returns
ciphertext with noise bound B + 2p.

From now on, we can analyze the noise term in our HE-based EPC protocol.
This analysis gives us concrete HE parameter choices. If we see Figure 6, the
receiver have to compute following (at 3-(d)):

u—1
Ctxty g = Ctxtg, & Z (ctxty,; © 2my ;) & my .
=0

By Lemma 1, the noise term of output ciphertext ctxty g will be bounded by
B* = 2u - (6g - p - Bfresh + 0r * D?) + Brresh + 4p. After that we need to add
encryption of zero of error size By, = 27B* for statistic security parameter
o for the function privacy. At last, receiver needs to add random vector rj to
the ciphertext. So, for the correct BFV decryption at the decryption phase, the
ciphertext modulus ¢ should satisfies the following inequality:

% > (27 4+ 1)+ (2u- (0r - P+ Bresh + 0r - 1°) + Beresh + 4p) + 2p.

Recall that we have u = O(log t) for the target size p = O(logt), and therefore
we asymptotically have ¢ = O(log* t) where t is input size.

Theorem 1. The protocol Ilgepc of Figure 6 realizes M times of Fepc func-
tionality calls in a semi-honest model if

q>p'(pr+B*+2p)

where B* = 2u - (6p + p - Bfresh + 0r - p?) + Bfresh + 4p and By, = 2°B* for a
statistical security parameter o.

Proof. Tt is already explained that the condition for ¢ provides the correctness
and the function privacy required for our protocol.
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For the sake of simplicity, we forget batching for a while and assume each
parties has integer v and v* in Z;. During the protocol execution, the receiver
has input v* and a random output r*, and its view consists of the public key pk
and the ciphertexts of v; (decomposed value) and 3 v?. This can be simulated
by replacing all ciphertexts to encryptions of zero, which is indistinguishable
from the real execution thanks to the IND-CPA security of HE.

The sender has input v and its view is a ciphertext of D + r and it outputs
the plaintext D + r € Z, by decrypting the ciphertext. This can be simulated
by encrypting the output r’ € Z, of ideal functionality, since from the function
privacy the sender cannot know any other information than the decryption result,
and the distribution of D + r is identical to the distribution of ' (uniform over
Zp). O

Asymptotic Cost Analysis. As the ciphertext modulus ¢ is determined as
above, we can estimate the total costs. Let v = [M/n] and v = log, t by
following notations of IIggpc. For computational cost, our protocol requires v(u+
2) encryptions, yu homomorphic scalar multiplications, 2 (u + 3) homomorphic
additions, and y decryptions for M numbers of EPC calls. Such HE operations
including homomorphic scalar multiplication can be done by O(1) numbers of
R4 operations that is roughly translates into O(nlognlogq) bit operations [4].
By approximating yn =~ M, we conclude that amortized computational cost per
EPC call is O(logt -log n - log q) bit operations as u = O(logt). In case of secure
RLWE parameters, n  log g roughly holds for the fixed computational security
parameter A. Since ¢ = O(log*t), we conclude that the computational cost per
one EPC is O(logt). Toward communication cost, the sender sends y(u + 1)
fresh ciphertexts to the receiver and the receiver returns «y ciphertexts after HE
oepration to the sender. The size of fresh ciphertexts is y(u 4+ 1)(nlogq + A)
and the size of returned ciphertexts is 2ynlogq. Then the total communication
cost is yn(u + 3)logq + v(u + 1)\ bits. We again approximate yn ~ M and
divide the total cost by M to see amortized cost for one EPC call. Then it
results in approximately (u+ 3)log ¢ ~ (log,, t+ 3) log g bits communication and
asymptotically O(logt) for one EPC call.

5 Application to Circuit-PSI Framework

Our equality preserving compression (EPC) of the previous section can be seam-
lessly augmented to the OPPRF-based circuit-PSI framework described in Sec-
tion 3 as Figure 7.

Since EPC perfectly preserve equality (without failure probability), all pre-
vious works’ analysis for correctness (or failure probability) are still valid. More-
over, as Theorem 1 shows that EPC is secure against semi-honest adversary, the
semi-honest security Ilcps) is also guaranteed.

Theorem 2. The protocol Ilcps) of Figure 7 realizes the Fcpsy functionality in
a semi-honest model in the hybrid model of Fopprr, Fepc and Fesg.
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Parameters: A receiver with an input set X of size N and a sender with an input
set Y of size N, and compression target bit-length /..

Protocol:

1. [Hashing] Both parties agree on hash functions h1, - , ha, and table size param-
eter €. The receiver construct a cuckoo hash table Tx from X, and the sender
constructs a simple hash table Ty from Y using hash functions hi,--- , hq into
M = (1+¢) - N bins. The receiver define the address mapping X to Tx by ¢.

2. [Bin Tagging] The sender samples uniformly random tags v € ZJ{ and sends
L= {(y/Hi,Uz‘)}z‘e[M],y'eTy[i] to Fopprr. The receiver sends Tx = {Tx[i]||i}iea
to Fopprr, and receives v* € Zgg from FoppRrr.

3. [Equality Preserving Compression] The sender sends v and the receiver sends
v* to Fepc, and receives r € Zé\/{c and r* € Zgﬁc from Fepc respectively.

4. [Equality Share Generation] For 1 < ¢ < M, the sender sends r; and the
receiver sends r; to Fesg, and receives so; € {0,1} and s1; € {0,1} from Fescg
respectively.

Fig. 7: IIcps). Protocol of our circuit-PSI: OPPRF-based framework + EPC

Effect of EPC. In asymptotic complexity view, the overall cost remains same
since EPC itself takes O(f) complexities. Thus, we have to figure out concrete
costs to see the effect of EPC. We already observe that known methods for ESG
has linear cost in £, and in particular GMW protocol requires about 2M ¢, (cor-

related) OTs. For EPC from ¢-bit to £c.-bit, the word-size w should be maximally

taken so that 2% = (11”0;71132
u = £/logw. Then EPC takes u times homomorphic operations including en-
cryption, scalar multiplication, decryption, and addition with communication of
u number of ciphertext. We point that n times of EPC calls can be done at once,
thanks to batching property. Thus, as ESG input bit-length reduces from ¢ to
£ thanks to EPC, we can save 2n(¢ — ;) the number of OTs from ~ u times of

HE operations. More precisely, we have the trade-off below:

- £, and it determines the corresponding chunk size

2n(f — L) x correlated-OTs

!

u X HE encryptions, scalar-mults, additions, and Ciphertext Comm.

One may think that HE operations are incomparably slow than OT, and
hence this trade-off provides no benefit. However, we would like emphasize that
our HE operations only consist of scalar multiplication and additions: HE scalar
multiplication is just two polynomial multiplication with degree n which is quite
fast compare to multiplication between encrypted data. For a concrete exam-
ple, we may take n = 4096, { = 61, {. = 19, and v = 8, which is one of
exploited parameters in later experiment section. This reduces 344, 064 number
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of chosen-message OTs at the cost of 8 homomorphic scalar multiplication, 10
homomorphic additions, and 8 HE ciphertext communications.

Round Complexity. On round complexity view, one may think EPC requires
additional one communication round than vanilla OPPRF-based framework.
However, we remark that ESG stage takes O(log¢) rounds for input length ¢
when performed by GMW protocol. Since EPC reduces ESG input length into
L. = O(log¥), EPC indeed brings asymptotic improvement on the round com-
plexity when GMW protocol is used.

Offline Tag Encryption. The tag vector v sampled by the sender in the bin
tagging step is independent to the input set of the protocol, so it can be sampled
before the input set is known, in other words in offline phase. This observation
brings negligible improvement in the original framework without equality pre-
serving compression, as it only shifts the random v sampling time to offline.
Meanwhile, it has a notable effect when combined with our equality preserving
compression, as the server can perform the encryption phase of Ilggpc in offline
phase. Then the online phase of the protocol performs only HE operations, which
leads to faster online execution. However, separating online/offline phase is not
our interest, and then this is not applied for our experiments in Section 6.

6 Performance Evaluation

In this section, we evaluate the performance of several instantiation of our circuit-
PSI protocol of Section 5. More precisely, we first discuss concrete parameter
selections of sub-protocols, especially with respect to the compression target £..
Then we evaluate the performances of several combinations of our EPC pro-
tocol and previous ESG protocols. Finally, we provide full circuit-PSI protocol
costs evaluation by attaching previous hashing and OPPRF steps, and some
consequences of our protocols.

Throughout this section, we assume computational security parameter A\ =
128 and statistical security parameter o = 40. For experiments, we use a single
machine equipped with 3.50GHz Intel Xeon processors with 128GBs of RAM.
The network environments are simulated by linux tc command. LAN repre-
sents 5Gbps bandwidth with 0.6ms RTT, and WAN denotes 100Mbps band-
width with 80ms RTT. All experiments are executed with a single thread on
each party in order to be consistent with previous works. For implementation,
we use SEAL [35] library for homomorphic encryption, libOTe library [33] for
IKNP and Silver OTe [12], and emp-ot library [36] for Ferret OTe [37].

6.1 Parameter Selections

OPPRF output length £. In our circuit-PSI framework, the output of OPPRF
is directly fed into EPC or ESG. The OPPRF output length is taken by ¢ =
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o + [log M to ensure failure probability less than 277 (See Equation 2) where
M = (1 +4¢)- N is cuckoo/simple hash table size with d hash functions. We
use ¢ = 0.27 and d = 3 by following previous works [31,34], and then OPPRF
output length is given by £ = o + 1+ [log N|.

HE parameters. First of all, we fix HE ring dimension n = 2'2 which is the mini-
mal one supporting depth-1 scalar multiplication. For the choice of HE plaintext
modulus p, it is quite obvious that the full batch case would be the most effi-
cient. Thus we take p to support full batch, whose concrete choice is a prime
integer satisfying p = 1 mod 2n. The minimal prime satisfying p = 1 mod 2n is
p = 40961, and hence the minimal possible ¢ is [log(40961)] = 16. For ¢, > 16,
there are several primes p such that p = 1 mod 2n, and we choose maximal p
among them for each /.. We then choose the word-base w by the maximal one
satisfying the correctness condition p > u - (w — 1)?, where u = [¢/logw] is
the number of chunks. Then we have several /., for the same chunk number u.
Since EPC costs are mainly determined by u rather than £., it is convenient to
arrange parameters with respect to the chunk size u. To minimize the total cost,
we choose the minimal £. for each wu.

It remains to determine HE ciphertext modulus ¢. We first take an initial
modulus ¢’ by the minimal one where our protocol is correct, and then the
final modulus ¢ is augmented by o-bit margin on ¢ for function privacy. It
empirically holds that log ¢ = o + 2log p+log n. To finalize parameter selection,
we have to consider concrete attack cost of resulting parameters. We found that
small chunk number u < 3 leads too large ciphertext modulus ¢ that makes
the parameters has far less than A = 128-level of security. Therefore, we only
conduct experiments with chunk number v > 4. More detailed HE and EPC
parameters are presented in Appendix C.

6.2 Choice of ¢, with ESG

First recall that state-of-the-art OTe like Silver [12] and Ferret [37] already have
extremely low communication cost. As a consequence, combining EPC with ESG
rather leads to larger communication cost than sole ESG. Thus, we have to weigh
the gain from EPC on computational cost and the loss from EPC on communica-
tion cost. It clearly depends on the network environment, and hence we conduct
several experiments for several /. over different network environments. Some re-
sults are visualized in Figure 8. Generally, smaller /. leads to heavier EPC and
lighter ESG, but the trade-off rate and the optimal point differ by network en-
vironment. We select the optimal /. giving minimal total running time, and the
results are summarized by Table 1.

As expected, EPC effect is positive on LAN network as it reduces the com-
putation burden, but negative in WAN network due to the communication cost
growth. One can see that Silver [12] is always better than Ferret [37], but the
both cases deserve to consider since the performance gain of Silver comes from
so far non-standard assumption.
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Fig. 8: Timing result of EPC and ESG on several network bandwidths and OTe
protocols.

Another ESG Considerations. We also consider IKNP-OTe [22] for GMW
protocol. It is obvious that IKNP is less competitive than Silver/Ferret for WAN;
since it requires much larger communication; it requires more than 2500MB
communication for N = 229 [31], while Silver/Ferret requires only 38MB. One
may at least expect that it could be the best for LAN setting, but our internal
experiments show that IKNP and Silver have similar performance even on LAN
environment. Thus we decide to omit IKNP results in tables.

We also found another ESG method from [7], which uses another novel idea
not based on GMW protocol. Our EPC can also be applied to this ESG method
to reduce communication, but we also have to consider timing costs for a rigorous
comparison. According to the original paper [7], the method takes (less than®)
9.27 seconds on 3Gbps network, 1107MB communication for N = 22°. For a
fair comparison, we need to run the proposed method in our machines, but we
found no publicized implementation. Furthermore, our own implementation of
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ESG , OT Ours (w/ EPC) | Prev. (No EPC)
N =216 ¢ ¢ Time { Comm. | Time { Comm.
LAN 20 Silver 0.657 12.09 0.973 2.35

26 | Ferret 1.515 10.82 1.702 2.22

22 Silver 2.712 11.15 2.151 2.35

WAN 22 | Ferret 4.218 11.03 3.751 2.22
ESG / OTe Ours (w/ EPC) | Prev. (No EPC)
N =218 ¢ Time { Comm. | Time { Comm.

LAN 23 Silver 2.288 44.38 3.673 9.34

23 | Ferret | 3.887 44.25 6.5 9.21

23 Silver 6.843 44.38 5.52 9.34

WAN 21 | Ferret 8.83 55.48 9.35 9.21
ESG ¢ OTe Ours (w/ EPC) Prev. (No EPC)
N =220 ¢ Time { Comm. | Time { Comm.
LAN 21 Silver 8.896 186.5 14.07 38.24
16 | Ferret | 12.42 236.8 25.33 38.10

WAN 21 Silver 22.56 186.5 18.50 38.24
21 | Ferret | 28.02 186.4 30.79 38.10

Table 1: Performances of ESG with/without EPC, provided with the best choice
of £.. Communications in MB, and timings in seconds.

their method results in quite larger numbers than originally reported number
in [7].

For these reasons, we can only leave some comments. Most importantly, since
Silver /Ferret-based GMW has significantly lower communication, we presume
that their ESG method is not competitive for WAN. However, there is still a
possibility that this method is the most competitive one for LAN. Hence, we
leave as a future work to further examine the effect of EPC on this ESG method
and compare with Silver/Ferret-based GMW.

6.3 Impact on Circuit-PSI

Toward a complete circuit-PSI protocol, we only have to attach hash step and
OPPREF step before ESG. For that, we note that the choice of OPPRF has no
relation with the post ESG and EPC phase. It implies that, regardless of the
choice of OPPREF, the absolute amount of effect of EPC remains same. However,

3 We only find a timing report for a procedure that contains the ESG as a subroutine,
denoted by PSM; in the original paper [7]. The exact timing for ESG would be
smaller, but we have no further clue to guess it.
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Circuit-PSI OT Ours (w/ EPC) | Prev. (No EPC) OPPRF [7]
N = 216 © Time ‘ Comm. | Time ‘ Comm. Time ‘ Comm.
Silver 1.233 21.96 1.549 12.21
LAN Ferret 2.091 20.69 2.278 12.09 0-576 ‘ 987
Silver 5.264 21.01 4.703 12.21 ’
WAN Ferret 6.770 20.89 6.303 12.09 2.552 ‘
Circuit-PSI OTe Ours (w/ EPC) | Prev. (No EPC) OPPREF [7]
N =218 Time { Comm. | Time { Comm. Time { Comm.
Silver | 4.118 | 83.77 5.503 48.73
LAN Ferret | 5.717 | 83.64 8.33 48.6 1.83 ‘ 3939
WAN Silver 13.66 83.77 | 12.34 | 48.73 6.82 ’
Ferret | 15.65 | 94.87 16.17 48.6 ’
Circuit-PSI OTe Ours (w/ EPC) | Prev. (No EPC) OPPRF [7]
N =2% Time { Comm. | Time { Comm. Time { Comm.
Silver 16.65 344.0 21.82 195.7
LAN Ferret | 20.17 | 394.3 33.08 195.6 (B ‘ 1575
WAN Silver 45.39 327.0 40.96 195.7 29,46 ’
Ferret | 50.48 | 343.9 53.25 195.6 ’

Table 2: Resulting circuit-PSI performances obtained by attaching OPPRF pro-
tocol of [7] before ESG. Communications in MB, and timings in seconds.

it is still important to consider full circuit-PSI cost; if ESG part occupies only a
little portion of full circuit-PSI, our EPC leads to tiny improvement on circuit-
PSIL

To argue that our EPC has a meaningful effect on circuit-PSI protocols, we
implement one of state-of-the-art OPPRF protocols due to [7] as an example. The
details are presented in Table 2. Our experiments indicates that EPC brings 10—
40% speed-up over LAN environment, and small speed-up on WAN environment
when ESG is done with Ferret OTe.

We end with a final remark. According to our implementation, OPPRF step
occupies 20 — 60% of full circuit-PSI running time, as the rightmost column of
Table 2 shows. Regarding this, we found further advances on OPPRF has been
reported, and hence OPPRF has smaller portion in total circuit-PSI [16, 34].
Thus the relative benefit of EPC becomes larger, which makes our EPC technique
more valuable.
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A Relaxed OPPRF [7]

The OPPRF (Oblivious Programmable PRF) functionality picks a random func-
tion F where the sender can program the value F(z) by desired z. In [7], the
authors proposed an extended notion called relazed OPPRF functionality, which
considers several random functions Fy,--- , F; and the sender programs x € X
so that F;(r) = z with at least one ¢ € [d]. This converts a bin-wise PSM
(Private Set Membership) problem Tx[i] € Ty [i] to another PSM problem that
checking z € {Fy(x), -, Fy(z)}. After then, they apply the standard table OP-
PRF [24] to further converts this into ESG problem. Rigorously speaking, this
consecutive execution of relaxed OPPRF and table OPPRF does not exactly fit
to OPPRF functionality definition, since the sender cannot program it’s desired
values. However, in this work, it only matters that two parties can attach some
tags for each bin to convert PSM problem into ESG problem, and we simply say
the consecutive execution by OPPRF.

For the failure probability, we note that the authors uses d = 3 random
functions for relaxed OPPRF that succeeds with probability (1 —27¢)3M™  and
then post-OPPRF succeeds with probability (1 — 27%)™. This results in the
condition ¢ > o + [log 4M].

B Comparison with Paillier Additive HE

As our protocol only perform scalar multiplications, one may consider to use
another additive HE (AHE), for example Paillier [27] scheme. Paillier scheme
supports plaintext space Zp for some integer P, and the corresponding ciphertext
space is Zp2. Here P is typically taken quite large (> 219%4) to ensure certain
security level, and a naive application of Protocol IIgpc outputs huge random
numbers in Zp. This can be circumvented by applying well-known smudging
technique [2] where we take a sufficiently large random masking r so that r
statistically hides the information of d, and each party take the final modulus
reduction by p on each output d + r and r.

However, we argue that RLWE-based AHE is still better for circuit-PSI pur-
pose, where the encryption target message size is much less than 32-bit. RLWE-
based AHE can supports plaintext space ZIJ)V for rather small p, and the corre-
sponding ciphertext space is taken Rfl where log g = O(log p). Then the amor-
tized encryption cost per one message is 2logq. For our interest message size,
RLWE ciphertext modulus g ~ 2'99 suffices so that one message is encrypted
into less than 200 bits,. However, Paillier AHE encrypts a message into a quite
large ciphertext of 2log P > 2048 bits, and the amortized cost is less inefficient
than RLWE-base AHE.

C HE and EPC Parameters

Below shows detailed parameter information that is used in our experiment. For
all cases, ring dimension in HE scheme is fixed with 4096. And, this parameter
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satisfied 128 security based on homomorphic encryption standard document [1]
(except the last row, as maximal possible log ¢ for 4096 dimension is 109).

N‘ U ‘ P ‘ log q ‘ w ‘Ec
10 40961 84 65 |16
9 114689 86 113 |17
3 188417 38 154 |18
2167 1032193 02 385 |20
6 4169729 96 834 |22
5 | 67094289 104 | 3663 |26
4 | 2147377153 | 114 | 23170 | 31
10 40961 84 65 |16
9 114689 36 113 |17
8 417793 90 229 |19
287 1032193 92 385 |20
6 8380417 08 1182 |23
5 | 134176769 | 106 | 5181 |27
4 14294959105 | 116 | 32768 | 32
11 40961 84 62 |16
10 114689 86 108 |17
9 188417 38 145 |18
g20[ 8 417793 90 229 |19
7 2056193 94 542 |21
6 | 16760833 100 | 1672 |24
5 | 134176769 | 106 | 5181 |27
4 | 8589852673 | 118 | 46341 |33

Table 3: HE and EPC parameters in our evaluations.
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