
An Addendum to the ZUC-256 Stream Cipher

ZUC Design Team
Chinese Academy of sciences

contact email: martin zhangbin@hotmail.com

Abstract. ZUC-256 is a stream cipher, together with AES-256 and
SNOW-V, proposed as the core primitive in future set of 3GPP con-
fidentiality and integrity algorithms for the upcoming 5G applications
which offer the 256-bit security.
While the original initialization scheme of ZUC-256 can work with a
256-bit key and an IV of length up to 184 bits, we describe a new ini-
tialization scheme of ZUC-256 that supports an IV of the exact 128 bits
in this paper. Compared to the original initialization scheme, this new
key/IV setup algorithm avoids the division of the whole key/IV byte and
provides a simple and natural-looking initialization scheme for ZUC-256.

Keywords: 5G, Stream ciphers, ZUC, 256-bit security.

1 Introduction

The core of the 3GPP confidentiality and integrity algorithms 128-EEA3 and
128-EIA3 is the ZUC-128 stream cipher [1]. ZUC-256 is a new member in the
ZUC family of stream ciphers, formally proposed in 2018 for the intended usage
in the upcoming 5G applications for 3GPP. ZUC-256 stream cipher is industrial-
friendly, differing from ZUC-128 only in the initialization phase and in the mes-
sage authentication codes (MAC) generation phase. It works with a 256-bit key
and a 184-bit initialization vector (IV) and generates a keystream frame of length
from 20000 to 232 bits after each mixture of the original data.

After the publication of ZUC-256, there is an increasing interest of eval-
uating its security against various cryptanalytic approaches. At the ZUC-256
international conference in 2018 [6], there are several talks that analyzed dif-
ferent aspects of its security, all of which imply that ZUC-256 is secure against
the corresponding cryptanalysis method. Then, a linear distinguishing attack is
presented in [5] at FSE 2020, requiring a exceptionally-long keystream frame,
which is out of the security claim in [7], as analyzed in [4]. For the initialization
phase, there is a differential analysis published in [3].

In this paper, we propose a new initialization scheme of ZUC-256 that works
with a 256-bit key and a 128-bit IV. This new key/IV setup scheme avoids
the division of the whole key/IV byte, is simple and natural-looking, and also
provides the 256-bit security in 5G applications. A brief cryptanalysis of the new
initialization scheme is also yielded.

2 ZUC Design Team Chinese Academy of sciences

This paper is structured as follows. In Section 2, we give the detailed descrip-
tion of ZUC-256 with the new initialization scheme, including the initialization
phase, the keystream generation phase and the MAC generation phase for com-
pleteness. The cryptanalysis related to the change of the IV size and the key/IV
loading scheme will be discussed in Section 3. Finally, some conclusions are
drawn in Section 4.

2 The Description

 31mod 2 1

0s 1s
2s

3s 4s
5s

6s
7s

8s 9s
10s

11s
12s 13s

14s
15s

152
172 212

202
81+2





 >> 1

15Hs

14Ls 11Ls
9Hs 7Ls

5Hs 2Ls 0Hs

Fig. 1. The initialization phase of the ZUC-256 stream cipher

In this section, we will present the detailed description of the new initial-
ization scheme of ZUC-256 stream cipher. The following notations will be used
hereafter.

- Denote the integer modular addition by �, i.e., for 0 ≤ x < 232 and 0 ≤ y <
232, x� y is the integer addition mod 232.

- Denote the integer addition modulo 231 − 1 by x + y mod (231 − 1) for
1 ≤ x ≤ 231 − 1 and 1 ≤ y ≤ 231 − 1.

- Denote the bitwise exclusive OR by ⊕.
- Denote the bit string concatenation by ‖.
- K = (K31,K30, ...,K2,K1,K0), the 256-bit secret key used in the ZUC-256

where Ki for 0 ≤ i ≤ 31 are 8-bit bytes.

An Addendum to the ZUC-256 Stream Cipher 3

- IV = (IV15, . . . , IV1, IV0), the 128-bit initialization vector used in the ZUC-
256 where IVi for 0 ≤ i ≤ 15 are 8-bit bytes.

- di for 0 ≤ i ≤ 15 are the 7-bit constants used in the ZUC-256 stream cipher.

- ≪, the left rotation of a 64-bit operand, x≪ n means ((x � n) | (x �
(64− n))).

As depicted in Fig.1, there are 3 parts involved in ZUC-256: a 496-bit linear
feedback shift register (LFSR) defined over the field GF(231 − 1), consisting of
16 31-bit cells (s15, s14, · · · , s2, s1, s0) defined over the set {1, 2, · · · , 231 − 1}; a
bit reorganization layer (BR), which extracts the content of the LFSR to form 4
32-bit words, (X0, X1, X2, X3), used in the following finite state machine (FSM);
there are 2 32-bit words R1 and R2 used as the memory in the FSM.

The Key/IV loading scheme is as follows.

s0 = K0 ‖ d0 ‖ K16 ‖ K24

s1 = K1 ‖ d1 ‖ K17 ‖ K25

s2 = K2 ‖ d2 ‖ K18 ‖ K26

s3 = K3 ‖ d3 ‖ K19 ‖ K27

s4 = K4 ‖ d4 ‖ K20 ‖ K28

s5 = K5 ‖ d5 ‖ K21 ‖ K29

s6 = K6 ‖ d6 ‖ K22 ‖ K30

s7 = K7 ‖ d7 ‖ IV0 ‖ IV8
s8 = K8 ‖ d8 ‖ IV1 ‖ IV9
s9 = K9 ‖ d9 ‖ IV2 ‖ IV10
s10 = K10 ‖ d10 ‖ IV3 ‖ IV11
s11 = K11 ‖ d11 ‖ IV4 ‖ IV12
s12 = K12 ‖ d12 ‖ IV5 ‖ IV13
s13 = K13 ‖ d13 ‖ IV6 ‖ IV14
s14 = K14 ‖ d14 ‖ IV7 ‖ IV15
s15 = K15 ‖ d15 ‖ K23 ‖ K31,

where the constants di for 0 ≤ i ≤ 15 are defined as follows, which is based on
the binary expansion of π including the integer part.

d0 = 1100100

d1 = 1000011

d2 = 1111011

4 ZUC Design Team Chinese Academy of sciences

d3 = 0101010

d4 = 0010001

d5 = 0000101

d6 = 1010001

d7 = 1000010

d8 = 0011010

d9 = 0110001

d10 = 0011000

d11 = 1100110

d12 = 0010100

d13 = 0101110

d14 = 0000001

d15 = 1011100.

Note that there is no hidden weakness introduced in the above constants. There
are 32 + 1 = 33 rounds of initialization in the ZUC-256, which is depicted as
follows.

1. Load the key, IV and constants into the LFSR as specified above.
2. Let R1 = R2 = 0.
3. for i = 0 to 31 do

– Bitreorganization()
– Z = F (X0, X1, X2)
– LFSRWithInitializationMode(Z � 1)

4. – Bitreorganization()
– Z = F (X0, X1, X2) and discard Z
– LFSRWithworkMode().

Now we specify the relevant subroutines one-by-one.

LFSRWithInitializationMode(u)

1. v = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod(231 − 1)
2. if v = 0 then set v = 231 − 1
3. s16 = v + u mod(231 − 1)
4. if s16 = 0 then set s16 = 231 − 1
5. (s16, s15, · · · , s2, s1) → (s15, s14, · · · , s1, s0).

LFSRWithworkMode()

1. s16 = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod(231 − 1)
2. if s16 = 0 then set s16 = 231 − 1
3. (s16, s15, · · · , s2, s1) → (s15, s14, · · · , s1, s0).

Bitreorganization()

An Addendum to the ZUC-256 Stream Cipher 5

1. X0 = s15H ‖ s14L
2. X1 = s11L ‖ s9H
3. X2 = s7L ‖ s5H
4. X3 = s2L ‖ s0H ,

where siH is the high 16 bits of the cell si and sjL is the low 16 bits of the cell
sj .

F (X0, X1, X2)

1. W = (X0 ⊕R1)�R2

2. W1 = R1 �X1

3. W2 = R2 ⊕X2

4. R1 = S(L1(W1L ‖W2H))
5. R2 = S(L2(W2L ‖W1H)),

where S = (S0, S1, S0, S1) is the 4 parallel S-boxes which are the same as those
used in the previous ZUC-128 and L1 and L2 are the two MDS matrices used in
the ZUC-128. The ZUC-256 stream cipher generates a 32-bit keystream word at
each time instant.

KeystreamGeneration()

1. Bitreorganization()
2. Z = F (X0, X1, X2)⊕X3

3. LFSRWithworkMode().

ZUC-256 generates from 20000-bit up to 232-bit keystream for each frame;
after that a key/IV re-synchronization is performed with the key/constants fixed
and the IV changing into a new value.

The MAC generation algorithm of ZUC-256 is as follows. Let M = (m0,m1,
· · · ,ml−1) be the l-bit length plaintext message and the size t of the tag is
selectively to be of 32, 64 and 128 bits.

MAC Generation(M)

1. Let ZUC-256 produce a keystream of L = d l
32e + 2 · t

32 words. Denote the
keystream bit string by z0, z1, · · · , z32·L−1, where z0 is the most significant
bit of the first output keystream word and z31 is the least significant bit of
the first keystream word.

2. Initialize Tag = (z0, z1, · · · , zt−1)
3. for i = 0 to l − 1 do

– let Wi = (zt+i, · · · , zi+2t−1)
– if mi = 1 then Tag = Tag ⊕Wi

4. Wl = (zl+t, · · · , zl+2t−1)
5. Tag = Tag ⊕Wl

6. return Tag

6 ZUC Design Team Chinese Academy of sciences

For the different sizes of the MAC tag, to prevent the forgery attack, the
constants are specified as follows.

1. for the tag size of 32 bits, the constants are

d0 = 1100100

d1 = 1000011

d2 = 1111010

d3 = 0101010

d4 = 0010001

d5 = 0000101

d6 = 1010001

d7 = 1000010

d8 = 0011010

d9 = 0110001

d10 = 0011000

d11 = 1100110

d12 = 0010100

d13 = 0101110

d14 = 0000001

d15 = 1011100.

2. for the tag size of 64 bits, the constants are

d0 = 1100101

d1 = 1000011

d2 = 1111011

d3 = 0101010

d4 = 0010001

d5 = 0000101

d6 = 1010001

d7 = 1000010

d8 = 0011010

d9 = 0110001

d10 = 0011000

d11 = 1100110

d12 = 0010100

d13 = 0101110

d14 = 0000001

d15 = 1011100.

An Addendum to the ZUC-256 Stream Cipher 7

3. for the tag size of 128 bits, the constants are

d0 = 1100101

d1 = 1000011

d2 = 1111010

d3 = 0101010

d4 = 0010001

d5 = 0000101

d6 = 1010001

d7 = 1000010

d8 = 0011010

d9 = 0110001

d10 = 0011000

d11 = 1100110

d12 = 0010100

d13 = 0101110

d14 = 0000001

d15 = 1011100.

The test vectors of the ZUC-256 stream cipher for the keystream generation
phase are as follows.

1. let Ki = 0x00 for 0 ≤ i ≤ 31 and IVi = 0x00 for 0 ≤ i ≤ 15, then the first
20 keystream words are
– e457e206,cee79e16,7da20fd0,3bbb22cc,a2ec34f0,

– e4e12c0b,0ad0fb23,6051348a,f9779552,454c3dbb,

– 397d19b3,28390332,11b9ae54,6094770b,5016e134,

– 620ebf4a,302c9be3,b65db142,2b564caa,9caeca83

2. let Ki = 0xff for 0 ≤ i ≤ 31 and IVi = 0xff for 0 ≤ i ≤ 15, then the first
20 keystream words are
– 7f860542,9c82e263,4ad9a83a,e7d711f6,4eba1791,

– dfa21089,78d9af94,124a3eee,31feb686,be91bfd5,

– 148b5e71,9ce309ec,21238b2d,ec2acee4,df347052,

– 2c5ac5c3,3dc68a27,05c09c6f,2396a67b,091ca2e0

The test vectors of the ZUC-256 stream cipher for the tag authentication
phase are as follows.

1. let Ki = 0x00 for 0 ≤ i ≤ 31 and IVi = 0x00 for 0 ≤ i ≤ 15, M =
0x 00, · · · , 00︸ ︷︷ ︸

100

with the length l = 400-bit, then the 32-bit tag, 64-bit tag and

128-bit tag are
– The 32-bit tag is eb44844f

8 ZUC Design Team Chinese Academy of sciences

– The 64-bit tag is 1018c7fa 1699c153

– The 128-bit tag is 522464ef 930b1b06 a9c6f6bb f22f8cb2

2. let Ki = 0x00 for 0 ≤ i ≤ 31 and IVi = 0x00 for 0 ≤ i ≤ 15, M =
0x 11, · · · , 11︸ ︷︷ ︸

1000

with the length l = 4000-bit, then the 32-bit tag, 64-bit tag

and 128-bit tag are
– The 32-bit tag is ce1cfddb

– The 64-bit tag is 1007d183 d7780626

– The 128-bit tag is 28991852 93e57bfd f8826b3d 4818749f

3. let Ki = 0xff for 0 ≤ i ≤ 31 and IVi = 0xff for 0 ≤ i ≤ 15, M =
0x 00, · · · , 00︸ ︷︷ ︸

100

with the length l = 400-bit, then the 32-bit tag, 64-bit tag and

128-bit tag are
– The 32-bit tag is 459d34b6

– The 64-bit tag is 89269bdd 82f4c54a

– The 128-bit tag is fc686d96 081fd6fd dd1c3794 1f9602b0

4. let Ki = 0xff for 0 ≤ i ≤ 31 and IVi = 0xff for 0 ≤ i ≤ 15, M =
0x 11, · · · , 11︸ ︷︷ ︸

1000

with the length l = 4000-bit, then the 32-bit tag, 64-bit tag

and 128-bit tag are
– The 32-bit tag is 5519a0b9

– The 64-bit tag is 3c47d5e3 18508f9d

– The 128-bit tag is 2de05cf5 ad74f35d d114616a 67683bca

The security claim of the ZUC-256 stream cipher with the new initialization
scheme is the 256-bit security in the 5G application setting. For the forgery
attacks on the authentication part, the security level is the same as the tag size
and the IV is not allowed to be re-used. If the tag verification failed, no output
should be generated.

3 The Analysis

In this section, we will present the cryptanalysis of the new initialization scheme
of ZUC-256 stream cipher, other aspects of the security analysis that is not
effected by the change of the IV size and the loading scheme will remain the
same as before, and will not cover here.

3.1 Slide Attack

The sliding properties of stream ciphers are used to find sets of related keys
where it was shown that a stream cipher may be slidable, in the sense that
there exist key-IV values such that the inner state of the cipher at some time
t > 0 corresponds to another key-IV loading value. Such key-IV pairs produce
the identical keystreams up to a shift by some number of positions and represent
related keys [2].

An Addendum to the ZUC-256 Stream Cipher 9

For the loading scheme shown above, it is impossible to find key-IV pairs
such that after iterating the cipher for less than 16 initialization steps, the inner
state represents a starting inner state for some other key-IV loading value. The
fact is due to the choice of the constants in the key/IV loading procedure. In
fact, if the values of Si and Sj (j > i) are different in some positions, it will imply
that the inner state after iterating the cipher for j − i steps is not a reasonable
starting state. The number of iterating steps, the number of different word states
and the detailed indexes are shown in Table 1. Therefore, it is difficult to find
related keys to generate the sliding keystreams for ZUC-256 with the new key/IV
loading scheme, and even to distinguish the produced keystream of ZUC-256
from random based on the sliding property.

Table 1. Sliding property of ZUC-256 with the new loading scheme

Iterating steps Number of different states Indexes of states

1 15 0-14

2 14 0-13

3 13 0-12

4 12 0-11

5 11 0-10

6 10 0-9

7 9 0-8

8 8 0-7

9 7 0-6

10 6 0-5

11 5 0-4

12 4 0-3

13 3 0-2

14 2 0-1

15 1 0

3.2 Differential Attacks

Chosen IV/Key attacks aim at the initialization stage of a stream cipher. For
a good stream cipher, after the initialization, each bit of the IV/Key should
contribute to each bit of the internal states, and any difference in the IV/Key will
result in an almost-uniform and unpredictable difference in the internal states.
In stream cipher domain, it is more frequent to change the IV than to change
the key. And since the IV is known to the public, so the chosen-IV attack is more
feasible. The main idea of chosen-IV attack is to choose some differences in some
IV bits and study the propagation of the differences during the initialization of
the cipher.

To evaluate the diffusion of the input difference in IV effectively, we make
the following two assumptions:

10 ZUC Design Team Chinese Academy of sciences

1. If the input difference to the FSM is not zero, then the output difference of
FSM is all 1. As L is an MDS matrix and S is non-linear permutation, the
difference is diffused sufficiently and faster than the LFSR.

2. The modular addition operation is reduced to be the traditional xor. The
diffusion of difference in modular addition is related to the values of states.
Meanwhile, the modular addition can be seen as the xor with carry. Thus,
it is reasonable to follow this assumption to a certain extent.

In order to evaluate the property of initialization stage comprehensively, we
give three kinds of analysis.

Firstly, we want to know the minimum number of iteration steps to guarantee
that each bit of feedback is influenced by each bit in the initialization state. We
divide the initialization state into 16× 31 = 496 bits and test the least number
of rounds that each bit is inserted into FSM. The obtained results are shown in
Table 2, where ’Location’ denotes the index i of si and the leftmost location is
denoted by 15. Combining with the key/IV loading procedure, we can conclude
that the difference of IV is diffused to FSM after at most four rounds and the
memory cells are influenced after at most five rounds.

Table 2. Least number of rounds that every bit is inserted into FSM

Location Diffusion rounds

0 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

2 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

3 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8

6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9

7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

13 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

14 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

The conclusion mentioned above is tested under two assumptions and may
be different to the real results. We randomly choose 211 (K, IV) pairs to test the
diffusion property in practice. In details, just exhaustively test all the possible
differences for i-th (0 ≤ i ≤ 15) word of IV to get the maximum iteration steps
for causing difference in memory cells R1 and R2. The results of experiments are
summarized as Table 3.

An Addendum to the ZUC-256 Stream Cipher 11

Table 3. Maximum steps to lead difference in R1 and R2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 1 2 3 4 2 3 4 5 1 2 3 4 2 3 4 5

R2 2 3 4 5 1 2 3 4 2 3 4 5 1 2 3 4

We can see that the memory cells are influenced after at most five rounds
from Table 3 and the result matches the above conclusion from Table 2.

Secondly, the minimum number of iterations to guarantee that each bit of
the register state is influenced by each bit of initialization state will be focused.
In a word, if the input to FSM is different, then the state of the feedback word
s15 will have some difference in the next round. The differential state will be
shifted to the rightmost location in the next 15 rounds and all the states will be
affected.

We have also made some experiments to evaluate this diffusion property in
practice. For the injected difference position on each bit of IV, we have chosen
222 (K, IV) pairs to get the least number of steps that all the register states
are influenced. The experimental results show that each bit of register state is
affected by each bit of IV after at most 19 rounds.

Thirdly, we will investigate the differential characteristic aspect of the ini-
tialization scheme when the injected difference positions covering all the possible
key and IV loading positions.

We have searched the minimum number of active s-box of the initialization
scheme under the simplification that the 231−1 addition operation of the LFSR
be replaced by the traditional exclusive or. The searching result shows that there
are some input key differences such that the minimum number of active s-box
is zero after 11 rounds of initialization, when the hamming weight of the input
difference is restricted to be less than 11. The following are the only 43 input
difference patterns, shown in Table 4. Given that s2 and s6 are chosen to have
the non-zero input difference B and A, where A is located in the least significant
16 bit of s6, we list the difference propagation process in the Table 5. We have
experimentally checked all the 43 input difference patterns to see the precise
differential propagation process and tried to detect if there is some bias existing
in each of the 31 bits of s0 for 33 initialization rounds. In all the cases, there is no
bias detected in our search. We have also found that the difference will propagate
slowly if the difference is cancelled to be zero in s15 after 3 rounds. Table 5 gives
the difference propagation of the 16 cells of the LFSR after i rounds of iteration
(i = 1, 2, · · · , 27) in a step-by-step manner. It is easy to see that the memory
cells R1 and R2 have no difference even after 11 rounds, thus the differences C-H
are generated only from the 231−1 addition operation. We expect that the state
cells s15 and s14 will have good differential randomness after 32 rounds. Hence,
we believe that, after 33 rounds of iteration, the difference in the first 32-bit
keystream word will be fairly random and unpredictable. Note that the above
analysis will naturally be converted into a related key attack scenario, which is

12 ZUC Design Team Chinese Academy of sciences

Table 4. The differences of the LFSR in each round of iteration

Index K2 K18 K26 K22 K30 Index K2 K18 K26 K22 K30

0 0x81 0x80 0x80 0x0c 0x00 22 0x88 0x80 0x80 0x44 0x48

1 0x02 0x00 0x00 0x10 0x10 23 0x30 0x30 0x30 0x01 0x83

2 0x01 0x00 0x00 0x08 0x08 24 0x11 0x10 0x10 0x08 0x89

3 0x04 0x00 0x00 0x20 0x20 25 0x06 0x00 0x00 0x30 0x30

4 0x42 0x40 0x40 0x12 0x14 26 0x07 0x00 0x00 0x38 0x38

5 0x08 0x00 0x00 0x40 0x40 27 0xc0 0xc0 0xc0 0x06 0x0c

6 0x21 0x20 0x20 0x09 0x0a 28 0x0b 0x00 0x00 0x58 0x58

7 0x41 0x40 0x40 0x0a 0x0c 29 0xa0 0xa0 0xa0 0x05 0x0a

8 0x83 0x80 0x80 0x1c 0x10 30 0x28 0x20 0x20 0x41 0x42

9 0x85 0x80 0x80 0x2c 0x20 31 0x0a 0x00 0x00 0x50 0x50

10 0x14 0x10 0x10 0x20 0xa1 32 0x82 0x80 0x80 0x14 0x18

11 0x09 0x00 0x00 0x48 0x48 33 0x24 0x20 0x20 0x21 0x22

12 0x10 0x10 0x10 0x00 0x81 34 0x0d 0x00 0x00 0x68 0x68

13 0x20 0x20 0x20 0x01 0x02 35 0x84 0x80 0x80 0x24 0x28

14 0x18 0x10 0x10 0x40 0xc1 36 0x48 0x40 0x40 0x42 0x44

15 0x89 0x80 0x80 0x4c 0x40 37 0x0c 0x00 0x00 0x60 0x60

16 0x03 0x00 0x00 0x18 0x18 38 0x12 0x10 0x10 0x10 0x91

17 0x22 0x20 0x20 0x11 0x12 39 0x0e 0x00 0x00 0x70 0x70

18 0x05 0x00 0x00 0x28 0x28 40 0x90 0x90 0x90 0x04 0x89

19 0x80 0x80 0x80 0x04 0x08 41 0x60 0x60 0x60 0x03 0x06

20 0x40 0x40 0x40 0x02 0x04 42 0x50 0x50 0x50 0x02 0x85

21 0x44 0x40 0x40 0x22 0x24

An Addendum to the ZUC-256 Stream Cipher 13

Table 5. The differences of the LFSR in each round of iteration

Round S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 R1 R2

0 0 0 0 0 0 0 0 0 0 A 0 0 0 B 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 A 0 0 0 B 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 B 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0

7 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 D C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 E D C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 F E D C 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 G F E D C 0 0 0 0 0 0 0 0 0 0 0 0 0

12 H G F E D C 0 0 0 0 0 0 0 0 0 0 0 *

13 * H G F E D C 0 0 0 0 0 0 0 0 0 * *

14 * * H G F E D C 0 0 0 0 0 0 0 0 * *

15 * * * H G F E D C 0 0 0 0 0 0 0 * *

16 * * * * H G F E D C 0 0 0 0 0 0 * *

17 * * * * * H G F E D C 0 0 0 0 0 * *

18 * * * * * * H G F E D C 0 0 0 0 * *

19 * * * * * * * H G F E D C 0 0 0 * *

20 * * * * * * * * H G F E D C 0 0 * *

21 * * * * * * * * * H G F E D C 0 * *

22 * * * * * * * * * * H G F E D C * *

23 * * * * * * * * * * * H G F E D * *

24 * * * * * * * * * * * * H G F E * *

25 * * * * * * * * * * * * * H G F * *

26 * * * * * * * * * * * * * * H G * *

27 * * * * * * * * * * * * * * * H * *

14 ZUC Design Team Chinese Academy of sciences

difficult, in stream cipher domain, to detect the related key pairs given only the
corresponding keystream segments.

From the above analysis, we could conclude that the new initialization scheme
of ZUC-256 could provide the 256-bit security in 5G application settings.

4 Conclusions

In this paper, we have presented the details of a new initialization scheme for
the ZUC-256 stream cipher that works with the 128-bit initialization vector. Any
cryptanalysis of both the original and the new initialization scheme is welcome.

References

1. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-
EEA3 and 128-EIA3, Document 4: Design and Evaluation Reprot.
http://www.gsmworld.com/documents/EEA3_EIA3_Design_Evaluation_v1_1.pdf.

2. Kircanski A. and Youssef Amr M., On the sliding property of SNOW 3G and SNOW
2.0, IET Information Security, vol. 5 (4). pp 199-206, 2011.

3. Babbage S. and Maximov A., Differential analysis of the ZUC-256 initialisation,
https://eprint.iacr.org/2020/1215.pdf

4. The ZUC design team, On the linear distinguishing attack against ZUC-256 stream
cipher, https://eprint.iacr.org/2020/1046.pdf

5. Jing Y., Thomas J., and Alexander M., Spectral analysis of ZUC-256. IACR Trans.
Symmetric Cryptol., 2020(1), pp. 266–288, 2020.

6. https://eurocrypt.2018.rump.cr.yp.to/f2efa67f85b309013f8506364c002ce5.pdf

7. The ZUC design team. The ZUC-256 Stream Cipher. http://www.is.cas.

cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf, 2018.

