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Abstract. Fast correlation attacks, pioneered by Meier and Staffelbach, is an important
cryptanalysis tool for LFSR-based stream cipher, which exploits the correlation
between the LFSR state and key stream and targets at recovering the initial state
of LFSR via a decoding algorithm. In this paper, we develop a vectorial decoding
algorithm for fast correlation attack, which is a natural generalization of original
binary approach. Our approach benefits from the contributions of all correlations
in a subspace. We propose two novel criterions to improve the iterative decoding
algorithm. We also give some cryptographic properties of the new FCA which allows
us to estimate the efficiency and complexity bounds. Furthermore, we apply this
technique to well-analyzed stream cipher Grain-128a. Based on a hypothesis, an
interesting result for its security bound is deduced from the perspective of iterative
decoding. Our analysis reveals the potential vulnerability for LFSRs over generic
linear group and also for nonlinear functions with biased multidimensional linear
approximations such as Grain-128a.
Keywords: Linear Approximation · Fast Correlation Attack · Iterative Decoding ·
Grain-128a.

1 Introduction
Stream ciphers are a widely used class of symmetric-key cryptosystem. A key stream
sequence is generated from the initial state derived from the key. The plaintext is encrypted
by XORing with the key stream in the same length.

Linear feedback shift register (LFSR) based stream ciphers form an important class of
stream cipher system, in which one or more LFSRs are often used. LFSRs could be defined
over different algebraic structures, such as finite fields and generic linear group. Besides for
LFSR, these ciphers usually adopt a nonlinear filter function or a finite state automata(FSM)
with nonlinear update function. The history of these ciphers can be traced back to decades
ago, e.g., LILI-128 [CDF+02], the SNOW family [EJ00, EJ03, UEA06, EJMY19] and the
Grain family etc.

The Grain family includes three well-known stream ciphers: Grain-128a [ÅHJM11],
Grain-128 [HJMM06] and Grain-v1 [HJM07]. Grain-v1 is in the eSTREAM portfolio and
Grain-128a is standardized by ISO/IEC [29115]. All the members of the Grain family
share a similar structure. Several lightweight ciphers proposed recently also adopt similar
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structures [AM15, AHMN13, MAM16]. An important attack for Grain-v1 is near collision
attack [ZLFL13], which is improved in [ZXF18]. Since Grain-128 adopts quadratic function,
the dynamic cube attack plays an important role in its cryptanalysis [DS11]. To avoid
the dynamic cube attack, Grain-128a adopts a nonlinear function with higher degree.
However, the Grain family is reported to be vulnerable for fast correlation attacks (FCA)
in CRYPTO 18 [TIM+18].

FCA is pioneered by Meier and Staffelbach in 1989 [MS89]. Generally speaking, FCA
exploits the correlation between the key stream and the state or the outputs of LFSR. The
problem of recovering initial state of LFSR is transformed into a decoding problem. The
linear part of the stream cipher is treated as a linear code, and the nonlinear part of the
stream cipher is treated as noise. According to the differences of decoding strategies, these
FCA approaches can be roughly divided into two classes.

The first class adopts one-pass decoding algorithm. For example, the FCA adopts
convolution codes and Viterbi decoding algorithm [JJ99b], which is improved it by turbo
codes [JJ99a]. Another FCA adopts maximum likelihood decoding on a reduced set of
information bits [CJS00]. The parity-checks are usually folded to eliminate partial bits.
List decoding and polynomial reconstruction can also be applied in FCA [MFI02, JJ00].
An important improvement is accelerating the parity-check evaluations by fast Walsh-
Hadamard transform (FWHT) [CJM02]. This technique is applied in cryptanalysis of the
stream cipher E0 [LV04]. It was later generalized to extension fields and applied to stream
cipher SNOW 2.0 [ZXM15]. A recent improvement of FCA is based on commutative
property and applied to Grain family [TIM+18].

The second class adopts several-pass decoding algorithm. After Meier and Staffelbach’s
original FCA, low-density parity-check code (LDPC) is introduced into FCA to improve
the iterative decoding algorithm [CT00]. There are many related works in this area, such
as [ÅLHJ12, CT00, Gol01, CGD96, GH05, MG91, MG93]. Intuitively, iterative decoding
algorithm seems to be more powerful, as their decoding abilities are closer to Shannon’s
bound. However, comparing with the FCA decoding by information set, it is usually very
hard to describe its cryptographic properties by mathematical language, and also lacks
of a convenient approach to work on extension fields. Thereby, its direct application to
modern stream ciphers is very limited.

Our Contributions.

In this paper, we propose a vectorial iterative decoding algorithm for fast correlation attack,
which generalizes Meier and Staffelbach’s original FCA very naturally. Our approach
benefits from the contributions of all correlations in a subspace and thereby more powerful
than the binary version. We propose two novel criterions to improve the iterative decoding
algorithm and perform a scaled experiments to verify its validity. We also give some
cryptographic properties for the first iteration, which allows us to estimate the efficiency
and complexity bound via probability distribution approximations.

Furthermore, we apply it to the well-analyzed stream cipher Grain-128a. Based on a
hypothesis that the initial probability distribution of noises is close to symmetric probability
distribution, and there exist parity-checks with two taps or with special form, we give a
data complexity bound estimation in the sense of being able to correct errors of the noisy
sequence. The result shows maybe its potential security bound is lower than we thought
from the perspective of vectorial iterative decoding. Our analysis reveals the potential
vulnerability for LFSRs over generic linear group and also for nonlinear functions with
biased multidimensional linear approximations such as Grain-128a.
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Outline.

The rest of the paper is organized as follows. Section 2 is preliminary. The details of
vectorial decoding algorithm are described in section 3. In section 4, we propose some
cryptographic properties and perform an scaled experiment. How to apply the new FCA to
Grain-128a is explained in section 5. Section 6 consists of some further problems. Finally,
we conclude the paper.

2 Preliminary
2.1 Notations and Definitions
Some notations are introduced for convenience.

• Given 2 binary row vectors x = (x1, · · · , xn−1) ∈ Fn2 and y = (y1, · · · , yn−1) ∈ Fn2 ,
their inner product is denoted by x · y = ⊕n−1

i=0 xiyi. The Hamming weight of x are
denoted by wt(x).

• Let F : Fm2 → Fn2 denote a vectorial Boolean function. A binary linear approximation
of F with m-bit input mask u = (u1, · · · , um) and n-bit output mask pair v =
(v1, · · · , vn) can be represented by u·x⊕v·F (x). When we have 1 < r ≤ m+n linearly
independent mask pair (u1,v1), · · · , (ur,vr), a vectorial (or multidimensional) linear
approximation is denoted by Ux⊕ V F (x), where the i-th row of (U, V ) is (ui,vi),
x are treated as a column vector unless otherwise stated.

• Linear correlation is used to measure the bias of a binary linear approximation.
Let e(x) = u · x ⊕ v · F (x), the correlation of the binary linear approximation is
defined by c(u,v) = c(e) = 2−m(#{x : e(x) = 0} −#{x : e(x) = 1}). Similarly, let
e(x) = Ux ⊕ V F (x), w is an r bits binary linear mask, the correlation of linear
approximation with mask pair (wU,wV ) is c(w) = 2−m(#{x : w ·e(x) = 0}−#{x :
w · e(x) = 1}).

• Let X ∼ P denote a discrete random variable follows distribution P and takes values
in Fm2 , Its probability density function p(x) is denoted by (p(0,··· ,0), · · · , p(1,··· ,1)) =
(Pr(X = (0, · · · , 0)), · · · ,Pr(X = (1, · · · , 1))).

• Let a ∈ Fm2 denote a binary vector. There is an integer a =
∑m−1
i=0 ai+12i corre-

sponding to a. For convenience, we alternatively use them if there is no ambiguity in
the context, especially as a subscript. For example, for a probability density function
(p(0,··· ,0), · · · , p(1,··· ,1)), we mean the same thing when denote it by (p0, · · · , p2m−1).

• LetMm(F2) denote them×m matrix ring over F2. Given a LFSR with rank d andm-
bit cell, its generator is denoted by L(x) = E+C1x+C2x

2 + · · ·+Cdxd ∈Mm(F2)[x],
where Cd is nonsingular and E is the identity matrix. The number of information
bits of L(x) are denoted by k = d×m. If L(x) ∈ F2m [x], it can also be mapped into
GLm(F2)[x].

• Give 2 positive integers a and b with gcd(a, b) = 1. The b-cyclotomic coset modulo
a containing i is denoted by Ci = {i, ib, · · · , ibr−1} mod a, where r is the smallest
positive integer such that ibr ∼= i mod a. The minimal integer in Ci is called coset
header and denoted by ī. All coset headers form a set Rb,a.

• Given 2 vectors a = (a1, · · · , an) ∈ Rn and b = (b1, · · · , bn) ∈ Rn, The notation
a � b implies that there is at least one 1 ≤ j ≤ n satisfying aj > bj , while � has
reverse meaning.
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Walsh-Hadamard Transform

Walsh-Hadamard transform is a spectral tool widely used in cryptanalysis of linear type. Let
X ∼ P denote a discrete random variable which take values in Fm2 . The Walsh-Hadamard
transform of X is defined by

W(X)w = 2−m
∑
x∈Fm2

px(−1)w·x.

Since Walsh-Hadamard transform is a linear operator for XOR, let random variable
X = X1 ⊕X2 ⊕ · · · ⊕Xk, we can efficiently compute probability distribution of X with
the help of the convolution property

px =W−1(W(X1)× · · · ×W(Xk))x.

Square Euclid Imbalance

Relative entropy (or Kullback–Leibler divergence) is used to measure the difference between
two probability distributions P and Q, i.e.,

D(p(x) ‖ q(x)) =
∑
x

px log px
qx
.

If p(x) is close to q(x), i.e., px = qx + ε(x), the relative entropy could be approximated
by D(p(x) ‖ q(x)) ≈ 1

2
∑
x

(px−qx)2

qx
+ O(ε3(x)). The summation term is usually called

capacity, and denoted by C(p ‖ q). Square Euclid imbalance(SEI) is defined to be the
capacity between a probability distribution and uniform distribution, i.e.,

∆(p(x)) = 2m
∑
x

(px −
1

2m )2 (1)

The following theorem reveals the relationship between SEI and linear correlation.

Theorem 1 ([BJV04]). Let X ∈ Fm2 be a random variable with density function px, then
its SEI

∆(p(x)) =
∑
w

ε̂2(w) =
∑
w 6=0

c2(w),

where ε(x) = px − 2−m, ε̂(w) denotes the FWHT of ε(x). For convenience, we use
∆(p) if x is well known in the context, or ∆(X) if the random variable X with density
function p(x) is clear. Particularly, we have c2(e) = ∆(p) when m = 1.

Parity-Check and Characteristic Polynomial

A parity-check corresponds to an equation which fulfills the LFSR output sequence xt. For
example, it is well known that any multiples of L(x) ∈ F2m [x] is a parity-check. Usually,
only those very sparse parity-checks with low degree are exploited in FCA.

Let set H(τ + 1, d) denote all parity-checks with τ + 1 taps and degree d, abbreviated
by H without ambiguity. The available parity-checks at position n denoted by H(n) ⊆ H.
Suppose a parity-check for sequence xt is denoted by

Gnxt + · · ·+G1xt+n−1 + Ext+n = 0, (2)
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where Gn is nonsingular. Its characteristic polynomial is denoted by Fn(x) = det(Ex+A) =
det(

∑n
i=0Gn−ix

i), where A denotes the companion matrix

A =


0 E 0 0 · · · 0
0 0 E 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 E
Gn Gn−1 Gn−2 · · · G2 G1

 .

2.2 A Brief Description of Original FCA
Meier and Staffelbach’s original FCA includes a precomputation phase and a decoding
phase.

Precomputation Phase

Let LFSR’s generator polynomial L(x) ∈ F2[x]. The purpose of precomputation phase
is finding sufficient very sparse parity-checks with low degree, which is a hard open
problem. One way recommended by Zeng [ZYR91] is evaluating logarithms in finite fields
of characteristic 2. It is rather efficient to find low weight multiples, but the degree is
not promised to be low. Another way is by extended K-tree algorithm based on general
birthday collision [NS15]. The extended k-tree algorithm can be used to find low weight
multiples of polynomial with not so large degree with flexible parameters.

Decoding Phase

The decoding phase targets to recover the initial state of LFSR from key stream. Suppose
we have found sufficient suitable parity-checks xn⊕a(i)

n = 0, where a(i)
n is the sum of τ taps

a
(i)
n =

∑τ
k=1 xn−ik . The check value is zn ⊕ b(i)n , where b(i)n =

∑τ
k=1 zn−ik is the sum of τ

key stream bits corresponding to xn−ik . The nonlinear part of a stream cipher is modeled
as a binary symmetric channel (BSC), the crossover probability is p = Pr[xn ⊕ zn = 1].
The critical part of decoding phase is calculating a posteriori probability (APP) with
priori distribution symbol by symbol. Suppose that the check values are all 0 for a subset
H0 ⊆ H, then by Bayes’ formula,

p∗ =
p
∏
i∈H0

(1− si)
∏
i∈H\H0

si

p
∏
i∈H0

(1− si)
∏
i∈H\H0

si + (1− p)
∏
i∈H\H0

(1− si)
∏
i∈H0

si

where each si = s(pi1 , · · · , piτ ) = Pr[a(i)
n = b

(i)
n ] depends on the probability of τ symbols

involved in parity-check. Moreover, si can be calculated recursively in the BSC Model

s(pi1 , · · · , piτ ) = piτ s(pi1 , · · · , piτ−1) + (1− piτ )(1− s(pi1 , · · · , piτ−1))

The specific process is depicted in Algorithm 1. For more details we refer to the original
paper [MS89].

3 Fast Correlation Attack Based on Vectorial Iterative De-
coding Algorithm

3.1 Channel Model
Our channel model is symmetric channel (SC) instead of discrete memoryless channel
(DMC). The received word is the transmitted word XOR noise, i.e., z = x⊕e. A symmetric
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Algorithm 1 Meier and Staffelbach’s binary iterative decoding Algorithm B

Input: A key stream sequence z of length N and H.
1. Calculate the probability threshold pthr and quantity threshold Nthr.
2. For round r ∈ {1, 2, · · · }
3. For iteration i from 1 to a small integer
4. Calculate APP p∗ from priori probability p, assign p∗n = pn for all position n.
5. If Nw ≥ Nthr where Nw = |{n|pn > pthr}|, break;
6. Complement the bits of z with pn > pthr.
7. Reset all positions to initial probability p.
8. If z satisfies all parity-checks, break.
9. Terminate with x = z.

LFSR

SC

e

( )
, ( )
Å

i j i
i j i
V z

( )
, ( )
Å

i j i
i j i
U x

Figure 1: Channel Model for VFCA

channel model has a transition matrix

M =


Pr(z1|x1) Pr(z2|x1) · · · Pr(z2m |x1)
Pr(z1|x2) Pr(z2|x2) · · · Pr(z2m |x2)

...
...

...
...

Pr(z1|x2m) Pr(z2|x2m) · · · Pr(z2m |x2m)

 .

Each row is a permutation of another row, and so as to columns. Moreover, the sum of
each row equals 1 as the definition of SC. Symmetric channel can be treated as an extended
BSC. Its channel capacity is certainly C = m−H(r), where r denotes a row of M .

Suppose we have a linear approximation with dimension m, i.e.,⊕
i∈{1,··· ,#Tx}

j(i)∈Tx

Uixj(i) ⊕
⊕

i∈{1,··· ,#Tz}
j(i)∈Tz

Vizj(i) = e. (3)

Similarly as BSC, the channel noise vector e is XORed to
⊕

i∈{1,··· ,#Tx},j(i)∈Tx Uixj(i),
and the output is

⊕
i∈{1,··· ,#Tz},j(i)∈Tz Vizj(i), see Fig. 3.1.

Remark 1. When we are discussing a generic multidimensional linear approximation, we
can always obtain a linear approximation with form Ux′ ⊕ V z′, i.e., only including one
input vector x′ and one output vector z′, for example, by rewriting x′ to a larger input
vector of dimension m×#Tx. Thus the rank of U becomes larger than those Ui. However,
despite that we are interesting to those linear approximations with large dimension and
large SEI, the SEI is hard to always increase sufficiently as the the dimension increases.
Thus we pick multidimensional linear approximation with form (3) as an generic form.

3.2 Checking Parity with Vectorial Noise
Let l ∈ H(n) denote a specific check equation:

l : Exn ⊕G1xn−1 ⊕ · · · ⊕Gnxn−d = 0.
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In order to parity-check over matrix ring, these G1, · · · , Gn are restricted by those matrices
Ui in (3). More specifically, we require that all Ui are nonsingular. For each Gk, all Ui
satisfy that UiGkU−1

i = G′k, which implies that if Ui, Uj satisfies UiGkU−1
i = G′k and

UjGkU
−1
j = G′k, then (U−1

j Ui)Gk(U−1
j Ui)−1 = Gk, i.e., U−1

j Ui ∈ C(Gk), where C(Gk)
denotes the centralizer of Gk in GLm(F2).

For a parity-check l we could multiply it with U1, U2, · · · , U#Tx respectively,

Ui(Exn+j(i) ⊕G1xn−1+j(i) ⊕ · · · ⊕Gdxn−d+j(i)) = 0.

Thus we have

E(Uixn+j(i))⊕G′1(Uixn−1+j(i))⊕ · · · ⊕G′d(Uixn−d+j(i)) = 0.

Summing them up, and we have
d⊕
i=0

G′i(
#Tx⊕
j=1

Ujxn−i+k(j)) =
d⊕
i=0

G′i(
#Tz⊕
j=1

Vjzn−i+k′(j))⊕
d⊕
i=0

G′ien−i, (4)

where k(j) ∈ Tx, k′(l) ∈ Tz and G′0 = E. This process can be done for all parity-
checks in H(n). The purpose is to determine en−i of each position, when observing⊕#Tz

j=1 Vjzn−i+k′(j). Notice that the approach here is generic. When the parity-checks and
linear approximations have special form, more efficient checking approach is feasible, see
section 5.2.

There is no need that all Gi = E, 1 ≤ i ≤ n as in linear distinguishing attack in large
alphabets [YJM20], which is expected to have very high degree. For example, the degree
of these special parity-checks with weight 4 of SNOW 3G is expected to be O(2172).

To describe the effect of these parity-checks, we divide them into two sets. Let HI

include those parity-checks whose coefficients are all E, while HII includes the rest. They
are called type I and type II parities respectively, which play different roles in the iterative
decoding phase.

3.3 Vectorial Iterative Decoding Algorithm
In this subsection, we consider how to extract information from a noisy sequence by
vectorial iterative decoding algorithm. Firstly, we try to generalize original Algorithm B,
then improve the iterative criterions.

Let #H(n) = h denote the number of parity-checks with τ + 1 taps at position (or
clock) n. Let e1 · · · eN denote the sequence of noises, and z′1 · · · z′N denote the derived
sequence from key stream z1 · · · zN by

⊕
i∈{1,··· ,#Tz},j(i)∈Tz Vizj(i). The initial priori

distribution P is the same for each en, which is derived by linear approximation. Let
p

(n)
ζ = Pr[en = ζ, ζ ∈ Fm2 ] denote its density function, then the APP p

∗(n)
ζ could be

computed by Bayes’s formula.

p
∗(n)
ζ = Pr [en = ζ|when observed check values (c1, c2, · · · , ch)]

=
p

(n)
ζ

∏
l∈H(n) Pr[

⊕τ
i=1G

′
li
en−li = cl ⊕ Eζ]⊕

η p
(n)
η
∏
l∈H(n) Pr[

⊕τ
i=1G

′
li
en−li = cl ⊕ Eη]

.
(5)

We always assume en−li are independent and all parity-checks are orthogonal. As
ζ ∈ Fm2 run over the alphabet, Pr[

∑τ
i=1G

′
li
· en−li = cl + E · ζ] can be calculate by

convolution property and FWHT. Thus the nominator and denominator can be computed
by Algorithm 2.

The vectorial iterative decoding algorithm is listed in Algorithm 3. The criterions
which are used to break up the iterative loop and trigger the reset process are main factors
affecting the convergence speed [CGD96, MG91].
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Algorithm 2 Calculate the nominator

Input: priori p.d p(n)
ζ

1. Let priori probability distribution p(n) = (p0, p1, · · · , p2m−1).
2. For each parity-check l ∈ H(n)

3. Calculate probability distribution p(l) of
∑τ
i=1G

′
li
en−li by FWHT and convolution

property.
4. Permute p(l)x ← p(l)x⊕ζ , x ∈ Fm2 .
5. Multiply corresponding coordinate together of all these p(l).

Algorithm 3 Vectorial iterative decoding

Input: The sequence z′ of length N derived from key stream,
The sequence of noises e with initial p.d. p,
The parity-checks set H with τ + 1 taps.

parameters: Maximal rounds R, maximal iterations T and minimal gap G to infuse new noises.
1. Initialize the priori probability distribution sequence pri of length N all with the

same initial probability distribution p.
2. Initialize the global empirical vector Eglb = (Eglb1 , · · · , Eglb2m−1)← 0.
3. For round r = 1, 2, · · · , R do
4. Initialize the round empirical vector Ernd = (Ernd1 , · · · , Ernd2m−1)← 0.
5. Initialize the complement coin ζ ← 0.
6. For iteration i = 1, 2, · · · , T do
7. Initialize a iteration empirical vector Eitr = (Eiter1 , · · · , Eiter2m−1)← 0.
8. For position n = 1, 2, · · · , N do
9. Compute app from pri by equation (5).

10. If p(n)
j > p

(n)
0 , then Eitrj ← Eitrj + 1/N, j ∈ {1, 2, · · · , 2m − 1}.

11. If Eitr � Ernd, then Ernd ← Eitr, pri← app.
12. If Eitr � Ernd or i = T , then
13. If Eitr = 0, then return failed.
14. Else if ||Ernd −Eglb|| < G, then choose an very biased noise sequence n of

length N , reset z′ ← z′ ⊕ n, break up current loop.
15. Else then Eglb ← Ernd, select ζ such that Erndint(ζ) +Eitrint(ζ) is maximal, break

up current loop.
16. If ζ 6= 0, then complement all positions of z′ such that pζ > p0 with ζ.
17. If z′ satisfies all parity-checks, then return success.
18. Reset a priori probability sequence pri initial probability distribution p.
19. Terminate.
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We try to optimize the criterions by experiments. Some phenomena are observed in
scaled experiments when parity-checks are not so many. Firstly, if a threshold is raised to
break up loop and reset as Algorithm B, it is easier to be triggered in the earlier rounds
than the later rounds. Secondly, if a complement is performed very early without passing
through enough iterations, it will pull the algorithm into a self-combination state very early
and weaken the decoding efficiency. To improve this, two main criterions are proposed to
break the loop and trigger the reset process.

Criterion 1. Passing through sufficient iterations before breaking up and resetting,
which corresponding to line 7-11 and 14. More specifically, if new app strengthen the
empirical complement effect and iterations is less than maximal, then continue iteration by
Bayes’s rule. Otherwise, select the complement coin which has potential largest empirical
complement effect.

Criterion 2. When the empirical complement effect is weak from the previous round to
current round, a sequence of very biased noises is infused in order to break the tie caused by
self-combination property of LFSR. The noises’ SEI is required to be appropriate, neither
very large to counteract the previous decoding work, nor very small to break the tie.

Criterion 1 is easy to understand. In order to avoid converging to self-combination
state too early, we hope to correct errors as many as possible in each of the early rounds.
Thus sufficiently iterations are needed before complementing. The idea behind criterion 2
is simple but novel. After many rounds, the complement would correct very few positions
because of the self-composition property of LFSR. Therefore, a new sequence of biased
noises are XORed to the indeterminate middle sequence z′ to get out of the trap.

The complement in Algorithm 3 operates on derived sequence z′. The n-th position
z′n is changed to z′n ⊕ ζ when the noise en is determined to be ζ and the complement is
performed. If z′ satisfies all parity-checks at the end, we just deduce that all ei = 0. Then
with the help of LFSR’s feedback polynomial, the initial state of LFSR can be recovered.

4 Cryptographic Properties and Experimental Results
4.1 Statistical Model
Convergence Property

It is necessary to figure out the convergence property when iteratively computing APP.
Intuitively, we hope that APP p

∗(n)
ζ increases when noise variable en = ζ and decreases

when en 6= ζ. Its expected value is computed as follows.

E0[p∗(n)
ζ ] =E[p∗(n)

ζ |en = ζ]

=
∑

(c1,··· ,ch)

p
(n)
ζ

(∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ]

)2∑
ζ p

(n)
ζ

∏
l∈H(n) Pr[

∑t
i=1G

′
li
eli = cl + Eζ]

,

E1[p∗(n)
ζ ] =E[p∗(n)

ζ |en 6= ζ]

=
∑
ζ′ 6=ζ

∑
(c1,··· ,ch)

p
(n)
ζ

∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ]∑

ζ p
(n)
ζ

∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ]

p
(n)
ζ′
∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ ′]

1− p(r)
ζ

.

And we conclude that E[p∗(n)] = pζE0[p∗(n)] + (1− pζ)E1[p∗(n)] = pζ .
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Table 1: An example of increasing and decreasing ratio

x 0 1 2 3
px 0.4500 0.2500 0.2000 0.1000

E′0/p
∗ 1.02618712 1.00117564 1.02744428 1.10462318

E′1/p
∗ 0.97857418 0.99960812 0.99313893 0.98837520

E0/p
∗ 1.03907892 1.06836181 1.16004050 1.19334394

E1/p
∗ 0.96802634 0.97721273 0.95998988 0.97851734

Example 1. Let the generator polynomial of LFSR L(x) ∈ F22 [x] with degree 16. We get
the increasing and decreasing ratios in Table 1, when exploits 3 type I parity-checks with
3 taps. The second row is priori probability distribution P . E0[p∗]/[p∗] and E1[p∗]/[p∗]
denote the increasing and decreasing ratio. Particularly, E′0/p∗ and E′1/p∗ denote the case
only considering the number of holding parity-checks. Both cases meet our expectation.

Decoding Efficiency

In algorithm B, a threshold Nthr is computed to promote the efficiency of the complements.
It is determined by the intersection point of two shrunk normal distributions, In the
multidimensional case, the intersection point becomes a intersection curve (surface). The
threshold reflects the correcting ability of the first iteration in the binary case. Despite that
we do not need such a threshold to promote efficiency in vectorial case, it still reflects the
decoding efficiency from the first iteration. Thus we discuss how to estimate the correcting
ability by measuring the volume of the intersection area in this subsection.

Let N thr
ζ denote this threshold corresponding to ζ. Without loss of generality, we

assume that the priori probability distribution P of noise sequence e1 · · · eN s.t. p0 ≥ p1 ≥
· · · ≥ p2m−1 > 0. Suppose that a random variable X ∼ P , we require that the distribution
of new random variable G′liX still has 0 as the maximal value point 1. Obviously, it surely
holds when G′li is nonsingular. This requirement maybe reduce the number of available
parity-checks, but it simplify the analysis for the effect of parity-checks.

Let X1, · · · , Xτ denote τ independent random variables all follows P . Let Q denote
the distribution of their linear combination

∑τ
i=1G

′
li
Xi. Thus Q still has 0 as its maximal

value point, which could be deduced from the convolution property and Walsh-Hadamard
transform. Particularly, if all G′li = E, Q preserves the order of P , i.e., q0 ≥ q1 ≥ · · · ≥
q2m−1 > 0.

The approach to calculate N thr
ζ is inspired by the fact p∗ζ is large when more check

values appear to be ζ. Let qc = Pr[
∑τ
i=1G

′
li
en−li = c] denote the probability that the τ

taps sum to be c for parity-check l. Obviously, qc depends on the individual parity-check.
This phenomenon makes it very complicated to calculate the threshold N thr

ζ . To simplify
the calculation, we divide all parity-checks into two sets HI and HII according to its
coefficients, then deal with them separately.

The set HI includes all parity-checks whose coefficients are all identity. For this class,
qc is obviously independent of parity-checks. Let #HI = hI , the probability the current
noise e = ζ and xi check values equal i, i ∈ {0, · · · , 2m − 1} is as follows 2

pζq(x0, · · · , x2m−1, ζ) = pζ
hI !

x0! · · ·x2m−1!

2m−1∏
i=0

qxii⊕ζ , (6)

1Minimal value point is similar. We assume that p0 is minimal instead.
2Actually, check values are vectors in Fm

2 , here we use integers i to denote the same thing.
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Figure 2: Example for the difference distribution

where x2m−1 = hI −
∑2m−2
i=0 xi.

Obviously, x = (x0, · · · , x2m−1) follows multinomial distribution Multi(hI , qζ) with
parameter qζ = (qζ , · · · , q2m−1⊕ζ). Its density function are denoted by q(x, ζ). For
convenience, we introduce notations

qxζ =
2m−1∏
i=0

qxii⊕ζ ,

(
hI
x

)
= hI !
x0! · · ·x2m−1! .

Let A(ζ) be a subset of all possible x. Once we complement those noises with ζ 6= 0
when the vectors in A(ζ) are observed, the expected number of correctly complemented
noises and erroneously complemented noises are respectively

N ×W (P,A(ζ), ζ) = N
∑

x∈A(ζ)

pζq(x, ζ), N ×W (P,A(ζ), 0) = N
∑

x∈A(ζ)

p0q(x, 0), (7)

where N denote the length of data. All the other cases of complements are neutral.
Thereby, the number of actual corrected positions is the difference

N × I(P,A(ζ), ζ, 0) = N ×W (P,A(ζ), ζ)−N ×W (P,A(ζ), 0). (8)

Given P andHI , if we can find a set A(ζ) maximizing I(P,A(ζ), ζ, 0), then the expected
number of actual corrected positions of each complement should be maximized. Firstly, we
observe that the means of the two multinomial distributions are hIqζ and hIq0 respectively.
Therefore, similar as the binomial case, there is a set A(ζ) of x in which I(P,A(ζ), ζ, 0)
takes non-negative value.

Since given x, I(P,A(ζ), ζ, 0) and p∗ζ − p∗0 have the same sign, it is equivalent to find
A(ζ) such that p∗ζ − p∗0 > 0 for each x ∈ A(ζ) , that is to determine the region A(ζ) such
that

δ(ζ, 0) = pζq(x, ζ)− p0q(x, 0) > 0,x ∈ A(ζ). (9)

Example 2. Let initial distribution P and LFSR be the same as in Example 1, and
hI = 15. The difference δ(ζ, 0) is illustrated in Fig. 2. The non-negative and the negative
area are separated. The size of circle represents the relative absolute value of the difference
δ(ζ, 0).
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Table 2: Direct computation and normal approximation for I(p,A(1), 1, 0)

number of equations hI 40 80 200 400
direct computation 0.0686 0.1138 0.1835 0.2266

normal approximation 0.0707 0.1148 0.1841 0.2267

When h is small, it is feasible to evaluate N thr
ζ by exhaustively searching. The threshold

N thr
ζ can be determined by

N thr
ζ = N(

∑
x∈A(ζ)

∑
η∈Fm2

pηq(x, η)). (10)

The time complexity is about O(2m
(
hI+2m

2m
)
).

When hI is large and q is not near the boundary of the parameter space, multivariate
normal distribution approximation is suitable. Multi(hI , q) could be approximated by
N (µ,Σ) with density function

1√
(2π)2m−1|Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
,

where supercript T denotes transposition, mean vector µ and covariance matrix Σ are
determined by Multi(hI , q). Therefore, the area A(ζ) maximizing the multiple integral

I(P,A(ζ), ζ, 0) ≈
∫
A(ζ)

(pζN (µζ ,Σζ)− p0N (µ0,Σ0))dx (11)

should be part of a hypercube with dimension 2m − 2 that restricted by the 2m − 1
coordinate plane and two surfaces

Ω1 :
2m−2∑
i

xi = hI ,

Ω2 : 12((x− µ0)TΣ−1
0 (x− µ0))− 1

2((x− µζ)TΣ−1
ζ (x− µζ))− ln p0

pζ
= 0.

(12)

Notice that Ω2 is a quadratic form in the real field, the multiple integral (11) can be
computed by repeated integral. Once A(ζ) is determined, the threshold can be calculated
by volume integral

N
∑
η∈Fm2

∫
A(η)
N (µη,Ση)dx. (13)

Example 3. Let the probability distribution P and LFSR be the same as in Example 1.
To illustrate this multivariate normal approximation, I(P,A(1), 1, 0) is computed by two
methods and depicted in Table 2. In order to simplify the integral, we could even slightly
adequate the boundary of A without fluctuating the result much.

When the parity-checks stem from HII = H\HI , qc depends on individual parity-
check. Thus when the probability value peak is q0, we introduce a symmetric multinomial
distribution Q′ to simulate the influences of type II parity-checks, which parameter is

q′0 = q0, q
′
1 = · · · = q′2m−1 = 1− q′0

2m − 1 . (14)

Then the calculation is similar as for HI . According to the size of HI and HII , we could
estimate N thr

ζ by combine HI and HII together. The multinomial distribution is replaced
by Multi(hI , qζ)Multi(hII , q′ζ) in this case.
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Table 3: Theoretical and empirical value of N thr
ζ /N

No. of parities
ζ theoretical

empirical
(hI , hII) N = 219 N = 220 N = 221

(36,0)
1 0.277133 0.227242 0.250517 0.264012
2 0.253926 0.242359 0.246835 0.249339
3 0.200412 0.164480 0.181245 0.190250

(18,18)
1 0.297959 0.251286 0.270056 0.279394
2 0.260769 0.220915 0.238914 0.248543
3 0.167968 0.125576 0.144096 0.154273

(0,138)
1 0.376058 0.360392 0.364783 0.368026
2 0.325561 0.321800 0.332389 0.338674
3 0.221771 0.198662 0.213513 0.221388

Example 4. To verify the validity of these approximations, with the same P and LFSR
as in Example 1, we compute the theoretical ratio of N thr

ζ /N and the empirical ratio by
the ratio where p∗ζ > p∗0. Table 3 depicts that our estimations are very precise.

4.2 Information Theory Properties

In this subsection, we discuss some properties from the point view of information theory.
Suppose the noises are independent and the parity-checks are linear independent, the rela-
tive entropy between Multi(h, q0) with density function q(x) and Multi(h, (2−m, · · · , 2−m))
with density function u(x) is

D(q ‖ u) = H(q, u)−H(q) = h

2m−1∑
i=0

qi log qi
2−m = h(m−H(q0)). (15)

That is the relative entropy is the number of parity-checks times the SEI of probability
distribution Q.

Secondly, we hope that the right corrected positions are as many as possible in the
complement process. Now we think about the sum of relative entropy between Multi(h, qc)
and Multi(h, q0) for all c 6= 0, and we have

Proposition 1. Let qc(x) and q0(x) be density functions of Multi(h, qc) and Multi(h, qc)
respectively, then

∑
c 6=0

D(qc(x) ‖ q0(x)) = −h log
2m−1∏
i=0

qi − h2mH(q0).
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Proof.

∑
c6=0

D(qc(x) ‖ q0(x)) =
∑
c 6=0

h(
2m−1∑
i=0

qi⊕c log qi⊕c −
2m−1∑
i=0

qi⊕c log qi)

=− h(2m − 1)H(q0)− h
2m−1∑
i=0

∑
c6=0

qi⊕c log qi

=− h(2m − 1)H(q0)− h
2m−1∑
i=0

(1− qi) log qi

=− h log
2m−1∏
i=0

qi − h2mH(q0).

This tells us when the probability distribution of noises approaches uniform distribution,
the total relative entropy converges to 0.

4.3 Complexity Analysis
On one hand, given the SEI ∆(p), the code rate k/N < ∆(p)/(2 ln(2)) to transmit k bits
information through a SC channel by Shannon’s Theorem. On the other hand, the number
of parity-checks h influences the decoding complexity. We focus on the property of the
first iteration in the first round, which seems to be the critical part by previous section,
and discuss how to deduce some theoretical bounds for h as well as key stream length N .

A Bound Derived from Decoding Codes

Similarly as Proposition 1 in [CS91], In order to perform an error corrected iterative
decoding, the lower bounds of h should satisfy that there exists at least a ζ such that
p∗ζ > p∗0. It is summarized as follows.

Proposition 2. If iterative decoding is feasible, then there is at least one ζ ∈ {1, 2, · · · , 2m−
1} such that pζq(x, ζ)/(p0q(x, 0)) > 1. Particularly, when P , Q and Q′ are multinomial
probability distributions as before, then ζ = 2m − 1 and

pζ
p0

>

(
qζ
q0

)hI (q′ζ
q′0

)hII
. (16)

Proof. Since if pζq(x, ζ)/(p0q(x, 0)) ≤ 1 holds for all ζ, then p∗i converges to 0 or becomes
ambiguous during the iterations, i.e., p∗0 = p∗i is one of the largest. The decoding algorithm
won’t work.

Particularly, when the probability values of P and Q(or Q′) are in order as stated
before, and all values of parity-checks are ζ, obviously we have

pζq
x
ζ

p0qx0
≤
pζq

hI
ζ qhIIζ

p0q
hI
0 qhII0

.

Remark 2. Though the ratio η(ζ, 0) has large value when all check values are ζ, The lower
bound for h given in Proposition 2 may be loose, as the probability that all check values
are ζ is small.
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Table 4: Two probability distributions P and P ′

x 0 1 · · · i− 1 i i+ 1 · · · 2m − 1
px − 2−m 2−

m+γ+1
2 0 · · · 0 −2−

m+γ+1
2 0 · · · 0

p′x − 2−m 2−
m+γ

2 ε · · · ε ε ε · · · ε

A lower bound for N could be derived through Proposition 2. For example, when
generator polynomial L(x) ∈ F2m [x], the number of parity-checks h and the key stream
length N shall satisfy that

(
N
τ

)
(2m − 1)τ ≈ h2k.

As an application of Proposition 2, we give two formulas of h for two important
probability distributions. Since when ∆(e) = 2−γ , it is expected that there is a probability
value around 2−m ± 2−

m+γ
2 in practice [YJM20], the distributions P and P ′ in Table 4 is

very likely to appear, where ε denotes (1− 2−m − 2−
m+γ

2 )/(2m − 1)− 2−m.
By Taylor’s formula, we have

pi
p0

=≈ 1− 2
m−γ+1

2 ,
p′i
p′0

=≈ 1− 2m

2m − 12
m−γ

2 .

Furthermore, by the convolution property, when each parity-check has τ + 1, τ ≥ 2 taps,
we have

qi
q0

= 1− 2−
(τ−2)m+τ(γ−1)+2

2

1 + 2−
(τ−2)m+τ(γ−1)+2

2

≈ 1− 2−
(τ−2)m+τ(γ−1)

2 .

Hence, by Proposition 2, the number of type I and II parity-checks for P are

1− 2
m−γ+1

2 ≥ (1− 2−
(τ−2)m+τ(γ−1)

2 )hI ⇒ hI ≥ 2
(τ−1)(m+γ−1)

2

1− 2
m−γ+1

2 ≥ (1− ( 2m

2m − 1)2−
(τ−2)m+τ(γ−1)+2

2 )hII ⇒ hII ≥ 2
(τ−1)(m+γ−1)+2

2 ,
(17)

where 2m
2m−1 ≈ 1.

For the case of P ′, the general term formula of distributions convolution could be
deduced by its recursion formula, i.e.,

q′0 = 2−m + 2m(τ−1)

(2m − 1)τ−1 2−
m+γ

2 τ , q′i = 2−m − 2m(τ−1)

(2m − 1)τ 2−
m+γ

2 τ .

Thus we have
q′i
q′0
≈ 1− 2m(τ+1)

(2m − 1)τ 2−
m+γ

2 τ ,

which means

1− 2m

2m − 12
m−γ

2 ≥
(

1− 2m(τ+1)

(2m − 1)τ 2−
m+γ

2 τ

)h
⇒ h ≥

(
2m − 1

2m

)τ−1
2
m+γ

2 (τ−1). (18)

Notice that type I and II parities are not distinguished in the case of P ′.
We expected that the practical bound is between those deduced by P and P ′. The FCA

mainly benefits from the increased SEI. More specifically, according to Theorem 1, there
are 2m − 1 binary linear approximations contributing to the SEI of linear approximation
with dimension m.

Notice that there are another distributions, e.g., P ′′ with p′′0 = 2−m − 2−
m+γ

2 , while
the other value point are all the same. This case is similar with P ′ except that 0 is the
minimal value point.
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A Bound Derived from the Practical Corrected Errors

In this part, we discuss how to deduce a bound from the number of expected positions
with p∗ζ > p∗0, ζ 6= 0.

Let us consider the sets A(i), i ∈ {1, 2, · · · , 2m−1} for multinomial distributions. Since
A(i) may intersect with each other, the way of computing threshold in section 4.1 can’t be
directly applied. Thereby, we introduce some new sets: A′(i) = A(i)−A(i) ∩ (

⋃i−1
j=1A(i)),

That is A(i) excluding all elements that are included in previous sets A(i), i ∈ {1, 2, · · · , i}.
Let M ′i denote the summation of probability values over set A′(i), more specifically,

2m−1∑
ζ=1

M ′ζ =
2m−1∑
ζ=1

pζ
∑

x∈A′(ζ)

q(x, ζ). (19)

It is reasonable to require that
∑2m−1
ζ=1 M ′ζ > 1 after the first iteration. Then the succeeding

iterations may trigger more positions with p∗ζ > p∗0. This phenomenon may be the main
advantage that soft decision decoding algorithms have.

Summing up the probability values in multinomial distributions is inconvenient. Though
multivariate normal distribution approximation could also be used as before when h is
large, the integral may not be easy to evaluate in practice, as the integral area A′(ζ) is
very complicated. Since symmetric distribution Q′ simulates the iterative process very
well, we could deduce boundaries for A′(ζ) using Multi(h, q′). The following results shows
how to estimate M ′ζ in this case.

Proposition 3. For multinomial probability distribution Multi(h, q′), we have

M ′ζ =
h∑

l=hb

(
h

l

)
(1−

ζ∑
i=0

q′i⊕ζ)h−l
∑

(x0,··· ,xζ)∈B(ζ)

(
l

x0, · · · , xζ

) ζ∏
i=0

q′xii⊕ζ , 1 ≤ ζ < 2m,

where B(ζ) is constrained by
∑ζ
i=1 xi = l, xζ − x0 ≥ hb and xi − x0 ≤ hb, 1 ≤ i < ζ.

Particularly, when
∑ζ
i=0 q

′
i⊕ζ is small and hq′i ≤ hb, the expected number of positions

with p∗ζ > p∗0 in the first iteration are dominated by those small l.

Proof. Since q′1 = · · · = q′2m−1, we have

M ′ζ =
∑

x∈A′(ζ)

(
h

x

)
q′xζ

=
h∑

l=hb

(
h

l

)
(1−

ζ∑
i=0

q′i⊕ζ)h−l
∑

(x0,··· ,xζ)∈B(ζ)

(
l

x0, · · · , xζ

) ζ∏
i=1

q′xii⊕ζ .

By Proposition 2, we deduce that there is a minimal positive integer hb such that δ(ζ, 0) > 0
when xζ − x0 ≤ hb. Furthermore, xi − x0 < hb should holds for all 0 < i < ζ to exclude
the points in A′(i). Therefore, when p∗ζ > p∗0, (x0, · · · , xζ) ∈ A′(ζ) must satisfy that

xi ≥ 0, 0 ≤ i ≤ ζ,
xi − x0 < hb, 0 < i < ζ,
xζ − x0 ≥ hb,
x0 + · · ·+ xζ < h .

When h is not small and
∑ζ
i=0 q

′
i⊕ζ is not high, multidimensional distribution Multi(h, q′ζ)

could be approximated by ζ+1 independent Poisson distributions with means λi⊕ζ = hq′i⊕ζ ,
i.e.,

Pr(X = x) ≈
∑
A′(ζ)

ζ∏
i=0

λxii⊕ζ
xi!

e−λi⊕ζ = λ
xζ
0
xζ !

e−λ0
λ
x0+···+xζ−1
ζ

x0! · · ·xζ−1!e
−ζλζ . (20)
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As λi ≤ hb, the maximal value of Pr(X = x) is when
∑ζ
i=0 xi is small, i.e., when l is

small.

Proposition 3 gives us a hint that the value corresponding small l dominate M ′i . When
ζ is not very large, M ′ζ could be approximated by partial summation for small l close to
the boundary. Obviously, M ′i 6=0 are monotone non-increasing sequence.

When ζ = 1, there is another elegant way to estimate M ′1 by Skellam distribution.
Let Y0 ∼ Pois(λ1) and Y1 ∼ Pois(λ0), we know that their difference K = Y1 − Y0 follows
Skellam distribution with following probability density function.

p(k, λζ , λ0) = e−λζ−λ0

(
λζ
λ0

)k/2
I|k|(2

√
λ1λ0),

where I|k| is the modified Bessel function of the first kind. Obviously,M ′1 = Npζ Pr(K > hb)
since a boundary line is x1 ≥ x0 + hb by Proposition 3.

On Sparse Check Equations

Since sparse parity-checks have large advantages while checking parity, we are interested in
these parity-checks with τ = 1 or 2. In this section, we give some miscellaneous observations
about them.

Let xt = (xt+c1 , xt+c2 , · · · , xt+cm), c1 < · · · < cm denotes the output at time t of LFSR
with generator polynomial L(x) ∈Mm(F2)[x]. Each coordinate sequence is a m-sequence
x1x2 · · · left shifting ci times, and its minimal polynomial f(x) ∈ F2[x] has degree k.
Particularly, when shift vector (c1, c2, · · · , cm) satisfies special condition, it becomes an
LFSR over extension field F2m [GX94].

Though parity-checks with τ + 1 = 2 taps have very large advantages, unfortunately,
the existence of them is a problem by the following direct observations.

Proposition 4. Let xt = (xt+c1 , xt+c2 , · · · , xt+cm) be as stated above, we have

• If cm − c1 +m− 1 < k, then there is no parity-check with τ = 1.

• Given two parity-checks with τ = 1, Gxt + Ext+d1 = 0, G′xt + Ext+d2 = 0, if
d1 = d2 and xt run over all values in Fm2 \{0}, then G = G′. If d1 6= d2, then
gcd(d1, d2) > k −m.

Proof. 1. Let Gxt + Ext+d = 0 be a parity-check. Since i-th row of A and E forms a
check polynomial fi with nonzero constant for xt, then f |fi. As G is nonsingular, there
must be two different check polynomials fi(x) and fj(x). That means fi + fj also forms a
check polynomial, but cm − c1 +m− 1 < k means a polynomial with degree less than k
could be deduced, which is impossible.

2. When d1 = d2, it is deduced that (G+G′)xt = 0 for all xt, When xt run over all
values in Fm2 \{0}, then we have G = G′.

When d1 < d2, we could deduce another linearly dependent parity-check

G′(G−1xt + Ext+d2−d1) = 0.

Therefore, according to Euclid long division algorithm, there is a G∗ which satisfies

G∗xt + Ext+gcd(d1,d2) = 0.

Since there are k information bit of LFSR, then gcd(d1, d2) ≥ k −m.
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These observations imply that parity-checks with τ = 1 may be rare, but it doesn’t
mean none, even though the key stream length needed may be large. For example, when
all (xt+c1 , xt+c2 , · · · , xt+cm) are only in a subspace of Fm2 , and cm − c1 +m− 1 is large.
Once a parity-check is found, more could be constructed by sliding and adding together.

Moreover, if a parity-check satisfies sequence xt, then its characteristic polynomial
Fn(x) ∈ F2[x] has f(x) as a factor. Since Gn = G,G1 = · · · = Gn−1 = 0, then Fn(x) =
det(Exn + G), the mumber of choices for matrix G and n is (N/m − 1)|GLm(F2)|. Let
S = {Fn(x) : 1 ≤ nm ≤ N} denote all possible characteristic polynomials. For convenience,
we introduce a map sending Fn(x) ∈ SG to F2[x].

φ : SG → F2[x]
Fn(x) = det(Exn +G)→ F (x) = det(Ex+G).

Since F (x) is the characteristic polynomial of invertible matrix G, the number of different
F (x) is 2m−1. Suppose that F (x) = fn1

1 · · · fnvv , where all fi are distinct irreducible
polynomials of degree di, it has been proved that the number of G with given F (x) is
θ(F (x)) [Ger61], i.e.,

θ(F (x)) =
2m2−m∏m

i=1(1− 2−i)∏v
i=1
∏ni
j=1(1− 2−jdi)

.

We also know that Fn1(x) = Fn2(x)2i for some i > 0 when n1 and n2 are in the same 2-
cyclotomic coset Cn̄ modulo ord(f) = 2k−1. And the size of set F = {Fn̄(x) : 1 < nm < N}
is bounded by N/(km) < #F ≤

∑
d|k µ(d)

∑k/d
i=1 2i, where µ(·) is Möbius function.

For the case τ ≥ 2, there are about (N/m− 1)|GLm(F2)|(2m2 − 1) choices for the two
coefficients and n. An upper bound of #S is the number of conjugacy classes of T in
GLnm(F2), which is roughly about 2nm −

∑b(nm−1)/2c
i=bnm/3c 2i. We believe it is much more

than (2m − 1)2 when L(x) ∈ F2m .

The Case for m = 1

Regardless of the differences in criterions, the original FCA proposed by Meier et. al. can
be treated as a special case of new FCA with dimension m = 1. The coefficient matrices
of LFSR degenerates to scalar elements in F2. Therefore, the commutative condition for
coefficient matrices of parity-checks is no need to be considered. The multidimensional
linear approximations degenerates to binary linear approximation. Since the multinomial
distribution degenerates to binomial distribution, ζ must be 1. The bound derived from
Proposition 2 is the same as in [CS91]. Estimating M ′1 also becomes simple.

Small Scale Experiments

We perform a scaled experiment to verify the vectorial iterative decoding algorithm in this
subsection. The experiment settings are as follows. The generator polynomial of LFSR is
g(x) = x16 + x15 + x+ α ∈ F22 [x], where α is the primitive element of F22 . The output
of LFSR at time t is xt. The noise stems from a SC channel instead of nonlinear part of
a stream cipher. The target is recovering LFSR output sequence x1x2 · · ·xN from noisy
sequence z1z2 · · · zN = (x1x2 · · ·xN )⊕ (e1e2 · · · eN ).

We tweak the parameters such as channel capacity, the number of parity-checks and
the infused noises to verify the word-error ratio(WER) after iterating a number of rounds.
Specifically, the density functions of 2 priori distributions P1 and P2 are (0.45, 0.25, 0.2, 0.1)
and (0.33, 0.25, 0.22, 0.20) respectively. The length of datat is N = 219 or 221 key stream
words. The number of parity-checks with τ = 2 are h = 9, hI = 36 or hII = 36. The
results of experiment are illustrated in 3. For example, the curve (1, 1, 2, 9, 19) denotes
the result derived by parameters P1, h = 9, N = 219 with Criterions 1 and 2. The curve
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Figure 3: Several vectorial iterative decoding curves of scaled experiments

(2, thr,−, 36II, 19) denotes the result derived by parameters P2, hII = 36, N = 219 with
threshold criterion like Algorithm B.

Some observations could be induced from Figure 3. Firstly, comparing the curve
(1, 1, 2, 9, 19) with (1, 1, 2, 36I, 19), we see that the convergence speed increases with the
number of parity-checks when channel capacity is fixed. Secondly, infusing new noise
indeed increases the convergence speed. Thirdly, Criterion 1 increases the convergence
speed. Notice that (2, 1, 2, 36I, 19) seems worse than (2, 1, 2, 36II, 19). The reason is that
the length of key stream N = 219 is not sufficiently large comparing with the degrees.
Therefore, the average feasible parity-checks for both the head and tail segments of the
key stream in (2, 1, 2, 36I, 19) are less than in (2, 1, 2, 36II, 19).

5 Application to Grain-128a
In this section, we apply our new techniques to stream cipher Grain-128a. We assume the
cryptanalysis is under the known-plaintext scenario. Since the output is directly used as
key stream and the plaintext never participates in updating internal states, this assumption
is reasonable for Grain-128a.

5.1 A Brief Description of Grain-128a
Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR. Let s(t) = (st, st+1,
· · · , st+127) and b(t) = (bt, bt+1, · · · , bt+127) denote their internal states at time t. The
output yt of the pre-output function at time t is represented by

yt = h(s(t), b(t))⊕ st+93 ⊕ bt+2 ⊕ bt+15 ⊕ bt+36 ⊕ bt+45 ⊕ bt+64 ⊕ bt+73 ⊕ bt+89,

where h(s(t), b(t)) is defined as

h(s(t), b(t)) =h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)
=bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+40st+79 ⊕ bt+12bt+95st+94.
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Figure 4: Overall schematic of Grain-128a

The feedback bits of LFSR and NFSR are computed by

st+128 =st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

bt+128 =st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96⊕
bt+3bt+67 ⊕ bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59⊕
bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84⊕
bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82 ⊕ bt+88bt+92bt+93bt+95.

Key stream bit zt = yt in the stream cipher mode, while zt = y2w+2t in the authenticated
mode, where w is the tag size. The overall structure of Grain-128a is depicted in Fig. 4.

5.2 Constructing Multidimensional Linear Approximations and Check-
ing Parity

In [TIM+18], the authors proposed a family of linear approximations of Grain-128a by
pilling up different clocks to eliminate the linear terms of the NFSR, which forms are

⊕i∈Tzyt+i ≈ ⊕i∈Tzst+i+93 ⊕⊕j∈Ast+j ⊕i∈Tz 〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉
⊕ 〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉,

(21)

where A = {2, 15, 36, 45, 64, 73, 89},Tz = {0, 26, 56, 91, 96, 128}, Λi is a 9-bit binary linear
mask, two bits Λi[0, 4] are fixed.

According to [TIM+18], an assignment of Λi[1 − 3] and Λi[5 − 8] will completely
determine the correlation of h function, when Λi[0, 4] is fixed. For a specific i ∈ Tz,
there are only 64 possible Λi[0, 4], i ∈ A such that the correlation of Eq. (21) is nonzero.
Hence, the linear correlation value of (21) can be deduced by summing up all these 64
Λi[0, 4], i ∈ Tz. Meanwhile, there are 26 values of Λi[1−3, 5−8] of a specific i ∈ Tz with the
correlation of h function is nonzero. For example, when Λi[1− 3, 5− 8] = 0000000,∀i ∈ Tz,
the correlation of (21) is about ±2−57.0454. For more details of these linear approximations,
we refer to [TIM+18].

In this paper, we reuse these linear approximations but in a new way by bundling them
up. Firstly, we choose 42 linear approximations which Λi[1− 3, 5− 8], i ∈ Tz has form

(Λ0[1− 3, 5− 8],Λ26[1− 3, 5− 8], · · · ,Λ128[1− 3, 5− 8]) = (0, · · · , 0, 1, 0, · · · , 0),

i.e., Λi[1− 3, 5− 8], i ∈ Tz as a group of standard basis. Then a linear approximation with
dimension 9 ≤ m ≤ 42 can be established as follows

E(xt + ut) + Eyt = et, (22)
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where E is an m×m identity matrix in F2. et is noise vector, and

xt = (· · · , st+i+8, st+i+13, st+i+20, st+i+42, st+i+60, st+i+79, st+i+94, · · · ) ,

ut =

 ∑
i∈A
⋃

Tz

st+i,
∑

i∈A
⋃

Tz

st+i, · · · ,
∑

i∈A
⋃

Tz

st+i

 ,

yt =
(∑
i∈Tz

yt+i,
∑
i∈Tz

yt+i, · · · ,
∑
i∈Tz

yt+i

)
,

et = (et, et+1, · · · , et+m−1) .

Any even Hamming weight linear combination of Eq. (22) will generate a linear
approximation without

∑
i∈A
⋃

Tz st+i and
∑
i∈Tz yt+i, which correlation would be treated

as 0. As for odd linear combinations, it is still required that any of Λi[1 − 3, 5 − 8], i ∈
Tz will not deduce a zero correlation for h function. Therefore, we can construct a
multidimensional linear approximation with dimension 9 ≤ m ≤ 42, which consisting of
2m−1−6 = 2m−7 linear approximations with correlation ±2−57.0454. By Theorem 1, its SEI
∆(et) = 2m−121.0908.

As st is a m-sequence, shifting and summation sequence s′t+c′
j

= st+cj +
∑
i∈A
⋃

Tz st+i

is also a a m-sequence with same generator polynomial as st. Let vectorial sequence
x′t = (s′t+c′1 , · · · , s

′
t+c′m), since shift offsets c′j , 1 ≤ j ≤ m have large difference, the parity-

checks with τ = 1 are not all ruled out.
Since x′t runs over Fm2 \{0}, there is at most one parity-check with τ = 1 for each

0 < n ≤ N/m. In order to increase the occurrence possibility for parity-check with t = 1,
several redundant binary linear approximations with nonzero correlation could be added
into the subspace. The dimension increases but SEI is almost unchanged. Therefore, the
maximal probability value should decrease.

Another way is exploiting a kind of special parity-checks with τ > 1. In order to avoid
the great loss of SEI while implementing convolution, we play a trade-off trick when special
parity-checks are feasible. For example, suppose we have h special parity-checks as follows.

Gn,1x
′
t−dn,1 +

a∑
i=1

Gn−i,1x
′
t−di +Ex′t = 0, · · · , Gn,hx′t−dn,h +

a∑
i=1

Gn−i,hx
′
t−di +Ex′t = 0.

Notice that all of them involve vector variables x′t,x′t−d1
, · · · ,x′t−da except for the last

variable x′t−dn,j Let Dn−i,j = Gn−i,j +Gn−i,1, 1 ≤ i ≤ a, denote the coefficient difference
between the j-th and the 1-st equation. Let

∑a
i=1Dn−i,jx

′
t−di = δj denote the difference

value. Moreover, we require that δj satisfies some restrictions.
Since we have h− 1 groups of linear equations with coefficients (Dn−1,j , · · · , Dn−a,j),

we require that those linear equation groups have the same solution subspace S with large
dimension, for example, with dimension am− 1 or am− 2, which implies that the rank
of (Dn−1,j , · · · , Dn−a,j) may be 1 or 2. Thus when (x′t,x′t−d1

, · · · ,x′t−da) ∈ S, all δj = 0.
Otherwise, δj 6= 0 are likely different. Thus we have

Gn,1x
′
t−dn,1 + 0 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0,

Gn,2x
′
t−dn,2 + δ2 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0,

· · ·,

Gn,rx
′
t−dn,h + δh +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0.
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Then the APP for
∑a
i=1Gn−i,1et−di +Eet could be evaluated by total probability theorem

according to whether all of δj are 0. The initial state is recovered from observed values zt
of the error-corrected positions, i.e.,

a∑
i=1

Gn−i,1(x′t−di + et−di) + E(x′t + et) =
a∑
i=1

Gn−i,1x
′
t−di + Ex′t = zt.

The dimension of linear approximation is not changed but the APP converges slower. Thus
the decoding ability decreases when dimension of S decreasing. However, the constraints
for parity-checks is relaxed.

With these techniques, fast correlation attack could be performed with these special
parity-checks and multidimensional linear approximations in (22).

5.3 Complexity Estimation
In this section, we estimate some theoretical bounds for Grain-128a, which would bring us
a new perspective for its security margin.

Let the SEI ∆(et) = 2−γ , dimension m = 42, and p0 = 2−m + 2−
m+γ

2 be the maximal
probability value. To simplify the process of estimating the expected number of positions
with p∗ζ > p∗0 , we need the following hypothesis.
Hypothesis 1. • The probability distribution P stemming from SEI is close to sym-

metric distribution P , i.e., p0 is maximal and all other pi are nearly the same.

• There are at least 2 parity-checks with two taps, or there are more special parity-checks
as stated in previous section.

Suppose we have h special parity-checks corresponding to a solution subspace of dimen-
sion am− 1 as stated above. Let v1, · · · ,vh denote the check values, γ = (γ0, · · · , γ2m−1)
and γ′ = (γ′0, · · · , γ′2m−1) denote the frequency of values in v1, · · · ,vh and v1,v2 ⊕
δ2, · · · ,vh ⊕ δh respectively. There are two events that may deduce p∗ζ > p∗0: event A
denotes that γ ∈ A′(ζ), while event B denotes that γ′ ∈ A′(ζ). For simplicity, we only
consider that when A occurs, then we have

M ′ζ =1
2pζ

 ∑
γ∈A′(ζ)

(
h

γ

)∏
i

pγii⊕ζ +
∑

γ∈A′(ζ)

(
h

γ′

)∏
i

p
γ′i
i⊕ζ

 ,

M ′0 =1
2p0

 ∑
γ∈A′(ζ)

(
h

γ

)∏
i

pγii +
∑

γ∈A′(ζ)

(
h

γ′

)∏
i

p
γ′i
i

 .

The first term denotes the probability that current noise symbol is ζ or 0, when the
frequency vector γ ∈ A′(ζ) and all δj = 0. The second term corresponds to when the
frequency vector γ ∈ A′(ζ) but many δj 6= 0, 2 ≤ j ≤ h. Thus the observed vector is γ′.
Since γ′i are likely different, it is reasonable to assume that the second terms of M ′ζ and
M ′0 are close. To simplify the evaluation, we only consider the first term.

Table 5 in Appendix A depicts the approximation of M ′ζ( 1
2 is neglected). M ′1 is

estimated by two methods: Skellam distribution and summation for small l. The two
estimations are very close to each other. Let Di = M ′i −M ′0 denote the difference. We also
compute the summation

∑236

i=1M
′
i and the difference summation

∑236

i=1D
′
i. For example,

when h = hb = 2, the expected key stream length N > 248+42+1 = 291. As P is symmetric,
it seems no need to evaluate every probability value of APP distribution. Therefore, we
use the key stream length N multiplying with the number of parity-checks h as time
complexity.

For the other case when there are at least 2 parity-checks with two taps, there is no
probability loss caused by trade-off. The complexity estimation is similar.
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6 Further Problems
The analysis of vectorial iterative decoding algorithm is very complicated, there are several
problems needed further study.

Firstly, the time complexity is estimated by the key stream length multiplying with
the number of parity-checks. There are lots of redundant computations. However, we have
no idea whether FWHT acceleration technique could be applied in this case. Secondly, we
don’t know the number of suitable parity-checks. Thus the estimation for M ′i and D′i of
Grain-128a is based on a hypothesis. Thirdly, in this paper, we didn’t study whether there
is also K-tree like method to generate these parity-checks in matrix ring. Therefore, the
complexity of the precomputation phase is skipped over.

7 Conclusion
In this paper, a vectorial iterative decoding algorithm for FCA is proposed. Two novel
criterions are given to break tie and improve the decoding efficiency. The original binary
FCA proposed by Meier and Staffelbach is a special case of our FCA with dimension 1. We
describe some cryptographic properties about its statistical model, decoding efficiency etc.
Based on the statistical property of the first iteration, we estimate the bound of expected
key stream length from the perspective of iterative decoding. We also perform a scaled
experiment to verify the validity of the vectorial iterative decoding algorithm.

Moreover, we apply it to stream cipher Grain-128a. We construct a multidimensional
linear approximation with large SEI by bundling up those binary linear approximations
proposed in CRYPTO 18. We also give an trade-off approach to use special parity-checks
with more than 2 taps. Consequently, we give an estimation of data complexity for
Grain-128a from the point view of vectorial iterative decoding, which is a novel result to
evaluate the potential security margin of a real world cipher.
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Table 5: Estimation of some M ′i with m = 42

log2(h) log2(D1) log2(M ′1)
log2(

∑236

i=1M
′
i) log2(

∑236

i=1D
′
i)summation Skellam

1 -101.5454 -84.0004 -83.0000 -47.9999 -65.5417
2 -98.9604 -81.4150 -81.0000 -45.4151 -62.9717
3 -96.7380 -79.1926 -79.0000 -43.1943 -60.7722
4 -94.6385 -77.0931 -77.0000 -41.1209 -58.7914
5 -92.5912 -75.0458 -75.0000 -39.0876 -56.7683
6 -90.5681 -73.0227 -73.0000 -37.1719 -54.9443
7 -88.5567 -71.0113 -71.0000 -35.4574 -53.3305
8 -86.5510 -69.0056 -69.0000 -34.0809 -52.0229
9 -84.5482 -67.0028 -67.0000 -33.0023 -50.9621
10 -82.5468 -65.0014 -65.0000 -32.0000 -49.9604
11 -80.5461 -63.0007 -63.0000 -31.0000 -48.9604
12 -78.5458 -61.0003 -61.0000 -30.0000 -47.9604
13 -76.5456 -59.0002 -59.0000 -29.0000 -46.9604
14 -74.5455 -57.0001 -57.0000 -28.0000 -45.9604
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