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Abstract—The infamous Enigma machine was believed to be
unbreakable before 1932 simply because of its variable settings
and incredible complexity. However, people realised that there is a
known pattern in the German messages, which then significantly
reduced the number of possible settings and made the code
breaker’s job easier. Modern cryptanalysis techniques provide
a lot more powerful way to break the Enigma cipher using letter
frequencies and a concept called index of coincidence. In turn,
this technique only works well for the English language(using the
characters of the English alphabet), but what if we encountered
an Enigma machine designed for the Hungarian language, where
the alphabet consists of more than 26 characters? Experiments
on the Enigma cipher with different languages have not been
done to date, hence in this article we show the language’s impact
on both the machine and the cipher. Not only the Hungarian,
but in fact, any language using more characters than the English
language could have a significant effect on the Enigma machine
and its complexity if there existed one. By a broad comparative
analysis, it is proven that the size of the alphabet has a significant
impact on the complexity and therefore the cryptanalysis.

Index Terms—Hungarian; Enigma; cryptanalysis; cipher;
complexity

I. INTRODUCTION

HIS investigation revolves around the famous Enigma

machine, which was used by the German military to
encrypt and protect commercial, diplomatic and military com-
munication during World War II. Especially during the war, the
need for secrecy was larger than ever, hence the Enigma was a
lifeline for the German army as it provided highly complicated
and secure encryption. This machine contained a series of
interchangeable rotors, which rotated every time a key was
pressed to keep the cipher changing continuously. This was
combined with a plugboard on the front of the machine, where
pairs of letters were transposed; these two systems combined
offered approximately 107,458,687,327,250,619,360,000 (107
sextillion) possible settings to choose from, which back then
seemed unbreakable. This “unbreakable” machine was broken
by the gigantic effort of the British in Bletchley Park with Alan
Turing’s involvement in January 1940. The Enigma Machine
relied on one default alphabet, which raises the question: What
if this machine existed for different alphabets of different
languages? The aim of this project is to experiment with
different languages and alphabets to observe the effect they
have on the machine and the cipher.
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A. General history of the Enigma

Fig. 1: The Enigma machine (Rijmenants 2004)

As Figure 1 shows, the Enigma machine which is looked
very much like an old typewriter with some extra elements.
This amazing piece of engineering was mainly used in World
War II by the German forces to securely transmit sensitive
information across the battlefield. The first cipher machine,
Enigma A appeared in 1923. Its successor, Enigma B was
introduced soon after Enigma A, however these machines
were extremely heavy (around 50kg) and quite big in size,
so they weren’t suitable for military usage where portability
was key. A few years later Enigma C was equipped with the
reflector and the lampboard replaced the “printer” part. This
solution was a lot more compact and hence more suitable for
military use. Enigma D was introduced in 1927 and appeared
in several different versions with different rotor configurations
across Europe. This machine had three rotors which could
be set in one of the 26 positions(one for each character of the
alphabet). In 1932, the Wehrmacht(aka. Enigma I) replaced the
commercial Enigma D and extended that with the plugboard,
which was attached to the front of the machine. The plugboard
created a huge number of extra setting possibilities, hence this
component became the target of cryptographic attacks. This
version was introduced on a larger scale in the Heer(Army)
and the Luftwaffe(Air Force). The German Navy also involved
this machine in their communication protocols, however they
extended the set of rotors to 8 and they named it “M3”.
Although they thought this machine was unbreakable, an



admiral called Karl Donitz insisted on adding an extra rotor
for greater security(Figure 2). This version was named M4.
(Rijmenants 2004)
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Fig. 2: The Enigma M4 with open cover (Rijmenants 2004)

II. RELATED WORKS

This section introduces some of the most important Enigma-
breaking approaches that have significantly evolved over the
years. We will go all the way back to the very first successful
attempt, which will be followed by the famous Bletchley Park
effort and finally wrapped up by the most recent and modern
technique.

A. Polish mathematicians

According to Gaj & Orlowski (2003) and Rijmenants
(2004), the very first successful effort was made by a group
of Polish mathematicians (Marian Rejewski, Jerzy Rdycki,
Henryk Zygalski), which focused on the beginnings of the
German messages, because back in 1932 they all started
with a 6-letter sequence, which essentially contained the key
to the system. This 6-letter sequence was constructed from
two successive encryption of three letters. These letters were
unique for each message, however they were all encrypted with
the actual daily settings of the Enigma machine. This led to
significant information leakage, as the letters in position 1 and
position 4, 2-5, 3-6 were the same before the encryption took
place. Using this information as a basis, they could recover
the missing permutations (Borowska & Rzeszutko (2014)).
This group also invented an electro-mechanical machine (the
Bomba), which sped up the breaking process. This method
only worked until 1939, when the cipher design changed and
the 6-letter sequence was eliminated.

B. Bletchley Park

Codebreakers : the inside story of Bletchley Park presents
the inside story of Bletchley Park and its importance in
winning World War II. Numerous different signals(German,
Japanese and Italian) were successfully intercepted and broken
here, which provided an enormous amount of help to the
Allied commanders on different fronts of the battlefield. Many
of these messages were encrypted with different “versions”

of the Enigma machine, which made the code-breakers’
job a lot harder. Bletchley Park was divided into smaller
teams(Huts), where each team focused on different areas of
the deciphering procedure. Hut 6 carried out the breaking
of the three-wheel Enigma, Hut 8 dealt with the naval four-
rotor Enigma, Hut 3 and Hut 4 respectively were in charge
of producing and transmitting valuable intelligence -sourced
from the deciphered messages produced by Hut 6 and 8-
to the competent authorities. Various great minds contributed
to Bletchley Park’s success: Alan Turing, Hugh Alexander,
Gordon Welchman, Dilly Knox and many others. Different
machines required different code-breaking techniques(Section
II-C): Bombe machines, and the use of cribs and menus.

C. The Bombe

Fig. 3: The Bombe machine (Gladwin 1997, p. 211)

The previously mentioned Polish Bomba machine lost its
usefulness due to German procedural changes (1939-1940),
which prompted Alan Turing to design his version of this
great code-breaking machine(Copeland 2020). Alan Turing
started working on his machine in 1939 with more or less
success -due to the complexity of the Enigma machine- and
finished it in 1940 with an important change -the diagonal
board- proposed by Gordon Welchman. The ground principle
of this electro-mechanical instrument is to discover the daily
Enigma key by testing all the possible settings, however the
time required to exhaust all possibilities at first exceeded the
24 hours at disposal. In order to break the code within the 24-
hour window, some changes had to be done. Cribs and menus
combined with the Bombe resulted in a short enough running
time of the searching method. Cribs are known pieces of a
message, which were repeatedly used by the Germans during
the war such as ”Wettervorhersage” meaning weather forecast
and "Keine besonderen Ereignisse” meaning nothing special to
report. We know that no letter can be encrypted to themselves,
so one could align the crib with the ciphertext the way it is
shown on Figure 4.

After a valid alignment, a menu could be created from the
letter connections (Figure 5), which then was plugged into the
back of the Bombe machine as an electric circuit.
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Fig. 5: A menu (Gladwin 1997, p. 211)

The Bombe can be thought of as 36 interconnected Enigma
machines, where one drum represented one rotor and every
drum rotated synchronously through all the 263 possibilities
(Figure 6). The front of the machine was responsible for
working through all the 17,576 different rotor positions and
stopping upon finding the correct settings (rotor order, rotor
positions and plugboard connections) (Carter 2010). This
“Stop” was the moment of relief, because the code-breakers
knew that at that moment they found the daily key for the
Enigma machine, so they could decipher all of that day’s
intercepted messages.

Fig. 6: The drums (CryptoMuseum 2009)

D. Modern approaches

The most recent effort(Ostwald & Weierud (2017)) makes
use of Friedman’s idea of index of coincidence, which in sim-
ple terms is a measure of letter distributions in the candidate
text Friedman (1922). Index of coincidence (also referred to as
IoC or IC) calculates the probability of selecting two matching
letters at random from a given text. This is useful, because
letter distributions in natural languages are not even, hence
the basic idea is to match the decryption attempt’s IC to the
language’s IC. The index of coincidence can be calculated by
using the following equation(Index of Coincidence (n.d.)):

1 n
N(N—1);F"<F

IC = (D

N is the length of the text

n is the length of the alphabet

F; is the occurrences of the ith letter of the alphabet
If N is large enough i.e. N approaches infinity, we can calculate
the expected IC for the language itself:
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where p; = % Using IC calculations as “validation” methods

with hill climbing(Hillclimbing the Enigma Machine from Sul-
livan & Weierud (2006)) simplifies the brute-force technique
significantly. Note that for a new wire, the IC is calculated
for every possible rotor setting! This method works fine for
the first few correct wires, but unfortunately, it fails to find
the rest as it is described in “Modern breaking of Enigma
ciphertexts”’(Ostwald & Weierud 2017, p. 403-409). Bigram
and trigram scores have been proven to be useful in finding
the remaining wires. As amazing as it sounds, this method is
not entirely robust either as its efficiency depends on the length
of the text(we use this number to calculate the IC score), the
shorter the text is, the more difficult/incorrect this approach
is.

III. MOTIVATION

As discussed in the Section II-D, for breaking messages
of the 26-letter general English alphabet there exist some
very efficient modern code-breaking techniques, but how these
techniques are affected if an Enigma machine is suited for
another language -using a larger letter set- existed? Such
experiments haven’t been done to date, therefore it is the
perfect opportunity to investigate the impact of a different
alphabet on the complexity and the structure of the Enigma.
The authors have a strong Hungarian background, hence it is
worth starting the analysis with the Hungarian language, which
could give a strong starting point for further -more general-
analysis. The main objective is to observe the alphabet’s
influence on the Enigma cipher. All the techniques that have
been used previously in the breaking process heavily rely
on the complexity of this brilliant machine, hence observing
the patterns in the increasing complexity would prove the
cipher’s greater security. In order to start this process, we
have to go back to the fundamental complexity calculations
to convert them into a parametric format, which will apply to
any language and its alphabet.

IV. EVALUATION PROCESS

The above-mentioned variants of the Enigma machine have
been broken by either mathematicians or cryptanalysts thanks
to their great efforts. However, all of their solutions are built
upon the ground complexity of the original machine. Nowa-
days people use numerous languages all over the world, which
fuelled the idea of tailoring the Enigma machine to different
languages. The base case of this experiment is the Wehrmacht
machine, which will be used as the basis of comparisons.
It is suspected that the size of the letter set(alphabet) is
directly proportional to the complexity, therefore this is the
main hypothesis that requires further evidence. The Hungarian
language will be tested first, which will be followed by a
general solution that can be applied to any languages that use
a different alphabet.

V. ANALYSIS AND RESULT
A. The Hungarian language

B|C|CS|DZ|DZS|E| E |[F| G |GY|H|I|i|J|K|L|M|NINY
O|0|6|6| P Q| R |S[SZ|T|TY| U |U|U|UV|W|X|Y|Z|ZS

Fig. 7: The Hungarian 44-letter alphabet

The Hungarian language uses a very unique alphabet con-
sisting of 44 letters (Figure 7), furthermore -as any other
language- it also has its unique characteristics(special letter
connections, words). Using this information it is possible to
construct an Enigma machine using 44-letter rotors, an ex-
tended plugboard and a fixed 22-pair reflector. The complexity
of this machine(assuming it uses 3 out of 5 rotors) can now
be calculated the following way:

o Rotors: (5 x 4 x 3) x 443 x 442 = 9,894,973, 440

o Plugboard using 18 wires:
39,282,388,067,747,317,859,706,965,625 (Figure 8)

« Total: 388,698,186,590,132,630,853,038,071,042,368,000,000

1 946

2 407,253

3 105,885,780

4 18,609,425,835

5 2,344,787,655,210

6 219,237,645,762,135

7 15,534,553,185,431,280

8 844,691,329,457,825,850

9 35,477,035,837,228,685,700

10 1,153,003,664,709,932,285,250

1" 28,929,910,132,721,937,339,000

12 556,900,770,054,897,293,775,750

13 8,139,318,946,956,191,216,722,500
14 88,951,128,491,735,518,297,038,750
15 711,609,027,933,884,146,376,310,000
16 4,047,276,346,373,966,082,515,263,125
17 15,712,955,227,098,927,143,882,786,250
18 39,282,388,067,747,317,859,706,965,625
19 57,889,835,047,206,573,687,989,212,500
20 43,417,376,285,404,930,265,991,909,375
21 12,404,964,652,972,837,218,854,831,250
22 563,862,029,680,583,509,947,946,875

Fig. 8: Possible plugboard setting combinations for the 44-
letter alphabet

The calculations suggest that this machine is approximately
3,617,187,183,818,893(3.6 quadrillion)-times more complex
than the Wehrmacht. The difference is colossal! There is
however a major issue with using this alphabet the same way
we would use the 26-letter English alphabet: This letter set
contains double as well as triple-character letters (CS, DZ,
DZS, GY, LY, NY, SZ, TY, ZS). This is a huge problem when
it comes to the decryption process.



B. The problem

During the encryption/decryption process the input text is
read character by character, so it is a possibility that a single
letter encrypts to a triple letter ( e.g. A — DZS), which not
only causes a difference in the output length, but also affects
at the decryption process (e.g. DZS — ?): There is no way we
can tell whether these letters follow each other by coincidence,
or they are meant to form this triple-character letter in this
specific order. In the conventional process “D” will be pressed
first on the machine, followed by “Z” and finally “S”, which
in the simplest case will produce an output of length 3 instead
of the expected “A”. This issue is demonstrated on Figure 9.

Encryption

] —— [= ]

Decryption

———  [omomon ]
*

Minimum length: 3

D(x) = Decryption of letter x

Fig. 9: The double and triple-character problem

C. The solution

e s ’

A|AB|C|D|EIE|F|G|H|I|i|J|K|LM
O0|0|6|P|Q|R[S|T|UU|U|OIVIW|X|Y

Fig. 10: The Hungarian 35-letter alphabet
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The Hungarian alphabet contains 9 letters built up from
either two or three characters. All of these characters can be
constructed from the single characters of the alphabet, hence
we are allowed use the alphabet without the non-singular
letters, which will result in an alphabet of size 35(Figure
10). This change also has a great effect on the complexity
of the machine and consequently on the cryptanalysis as well.
Redoing the calculations with the adoption of the new table of
possible plugboard combinations and the change of the rotors
will result in a machine that is 42,094,345.5(42 million)-times
more complex than the original version. This number is still
insanely huge, however it is nowhere near 3.6 quadrillion.
Judging from these calculations a pattern seems to emerge:
The larger the alphabet is, the more complex the Enigma
machine gets, thus the longer it takes to break the code with
either old or modern techniques. This matter is the subject
of further investigation, which is conducted in the following
section.

1 595

2 157,080

3 24,347,400

4 2,471,261,100

5 173,482,529,220

6 8,674,126,461,000

7 313,507,713,519,000

8 8,229,577,479,873,750

9 156,361,972,117,601,250

10 2,126,522,820,799,377,000
1 20,298,626,925,812,235,000
12 131,941,075,017,779,527,500
13 558,212,240,459,836,462,500
14 1,435,402,904,039,579,475,000
15 2,009,564,065,655,411,265,000
16 1,255,977,541,034,632,040,625
17 221,643,095,476,699,771,875

Fig. 11: Possible plugboard setting combinations for the 35-
letter alphabet

The following table summarises the key differences between
the English and Hungarian languages:

D. Deriving a general formula

There are two main factors in the matter of the Enigma
machine’s complexity calculation: The number of possible
rotor settings and the full range of combinations that the
plugboard yields. The aim is to derive a parametric formula,
which can show the effect of the parameter(number of extra
letters in the alphabet) on the newly “constructed” Enigma
machine’s complexity. Before we dig into the calculations, it is
important to lay down two ground rules to ensure the cipher’s
and the machine’s correct mechanisms:

o The alphabet can only contain single characters
e The number of wires used for the plugboard is at most
half of the alphabet’s size

1) The Rotors: For the purpose of this experiment a 3-rotor
Enigma is considered, where 3 rotors are chosen from a total
set of 5 rotors. The selection process yields 5 x 4 x 3 = 60
combinations, which will remain constant in our formula. The
variable part includes the rotor positions and the notch(ring)
settings; Both of these depend on the size of the alphabet.
In the original machine’s case these equal to 263 and 262
respectively, so merging these two terms will result in 26°. As
these depend on the alphabet, we will add the parameter into
the equation: (26 + x)3 x (26 + x)?, where “x” is the number
of extra letters compared to the English alphabet. Following
mathematical transformations the final result is:

26° 4 [2° + 1302 + 676023 + (10 x 26%)2” 4 (5 x 26)z]

The expression in square brackets calculates the number of
added possibilities. For example, 1 extra letter will add 1 +
130+6760+ (10 x 26%) + (5 x 26*) = 2,467,531 rotor settings.



English Hungarian
Total number of letters 26 35
Rotor settings 11,881,376 52,521,875
ggggr?jrlg%‘gggs 150,738,274,900,000 1,435 402,904,039 579 475,000
Expected IC 0.0686 0.0549
Total number of settings 107,458 687 300,695,744 000,000 | 4,523 403 114 036 227,294.310,937,500,000

Fig. 12: Summative comparison of the two languages

2) The Plugboard: The plugboard provides an incredible
amount of setting possibilities, therefore it is important to
examine the equation and derive a formula where the number
of wires and the number of the extra letters in the alphabet
are the parameters. As previously mentioned, it is essential
to keep the number of wires either at or below half of
the alphabet’s size, because the wires connect two letter-
slots on the plugboard, hence the maximum number of wires
the Enigma machine can handle is |alphabet size/2]|. The
Wehrmacht’s plugboard settings are calculated the following
way in relation to the number of wires(“n”):

26!
n! x (26 — 2n)! x 27

The next step is to introduce the second parameter: The
number of extra letters in the alphabet(*“x”):

(26 + x)!
n! x (26 + x — 2n)! x 27

This formula is lot more complicated than the one for calcu-
lating the added rotor complexity, therefore we will consider
the numerator and the denominator separately. The numerator
can be broken down into a multiplication:

(26 + x)!

26!
* 06!

and similarly the denominator:

(26 + z — 2n)!

2'(7.
26 —2n)

n! x (26 — 2n)! x

These two expressions are very similar to the original formula,
thereby with some rearrangements we get the following result:

(26+x)!
ST 26!
(26+z=2m)! = pl x (26 — 2n)! x 27
(26—2n)!
(26 + z)! x (26 — 2n)! 26!

= ] %

26! x (26 + x — 2n)! n! x (26 — 2n)! x 27

where the expression within square brackets is the plugboard’s
complexity multiplier for a given number of wires(“n”) and a
given number of extra letters(“x”).

E. The Final Formula

In order to calculate the total difference in terms of
complexity, the added rotor complexity and the plugboard
multiplier has to be plugged into the general formula (Rotor
combinations(60) x Rotor settings x Plugboard settings):

60x (26°+[2°+1302* +67602° 4 (10x 26%) 22 +(5x 26 ) 2] ) x
[(26+x)! X (26—2n)!] y 26!
26! x (26 + z — 2n)! n! x (26 — 2n)! x 27

Although this formula looks hectic and confusing, it is
possible to make it look more pleasant. The previously derived
formulas can be represented as symbols: the additional rotor
settings are denoted as “RA” and the plugboard multiplier is
indicated by “PM”:

26! o
n! x (26 — 2n)! x 27

60 x (26° + RA) x ( PM)

It can be rearranged further in such a way that the original
Enigma machine’s formula is multiplied by a number:

26! PM A
6 PM + xrR ]

60 x 26°
X 26 X 36— 2y < | 265

PM x RA
265 ]

Taking everything into account, the expression in square
brackets is what determines “how many times more settings
the new machine has”, or in other words, how many times
more complicated the second machine is in relation to the
number of wires used and the number of extra letters in the
alphabet. As an example, an Enigma machine designed for one
extra letter in the alphabet while using the default 10 wires
has ~4.66 times more setting possibilities than the Wehrmacht
Enigma. However, this formula only calculates this multiplier
accurately for “n” values between 0 and 13 as the original
formula would produce a negative result for any larger “n”
values. Although for larger “n”, we can use the following
formula to calculate the new number of possible settings,
though can’t compare it to the Wehrmacht Enigma for the
previously mentioned reason:

= Original formula x [PM +

(26 + x)!
n! x (26 + 2 — 2n)! x 27

60 x (26 + z)° x



VI. CONCLUSION

Based on the Wehrmacht Enigma machine’s complexity
calculations, a general formula had been derived for the
purpose of proving the alphabet’s influence on both the
machine and the cipher. Since both known-plaintext attacks
and ciphertext-only attacks depend on the entire key-space,
the alphabet affects the machine’s cryptanalysis likewise. It
has also been proven that only a single extra letter in-
creases the number of rotor combinations by 20 percent,
the plugboard combinations by around 3.85 times and the
total machine complexity by approximately 4.66 times. This
difference expressed in terms of numbers yields a new total
of 500,757,482,821,242,167,040,000 possible settings.
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