
Higher-Order Masked Ciphertext Comparison for
Lattice-Based Cryptography

Jan-Pieter D’Anvers1, Daniel Heinz2,3, Peter Pessl3, Michiel Van
Beirendonck1 and Ingrid Verbauwhede1

1 imec-COSIC KU Leuven, Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium
{firstname}.{lastname}@esat.kuleuven.be

2 Research Institute CODE, Universität der Bundeswehr München, 85577 Neubiberg, Germany
daniel.heinz@unibw.de

3 Infineon Technologies, Am Campeon 1-15, 85579 Neubiberg, Germany
peter.pessl@infineon.com

Abstract.
Checking the equality of two arrays is a crucial building block of the Fujisaki-Okamoto
transformation, and as such it is used in several post-quantum key encapsulation
mechanisms including Kyber and Saber. While this comparison operation is easy to
perform in a black box setting, it is hard to efficiently protect against side-channel
attacks. For instance, the hash-based method by Oder et al. is limited to first-order
masking, a higher-order method by Bache et al. was shown to be flawed, and a very
recent higher-order technique by Bos et al. suffers in runtime. In this paper, we
first demonstrate that the hash-based approach, and likely many similar first-order
techniques, succumb to a relatively simple side-channel collision attack. We can
successfully recover a Kyber512 key using just 6000 traces. While this does not break
the security claims, it does show the need for efficient higher-order methods. We then
present a new higher-order masked comparison algorithm based on the (insecure)
higher-order method of Bache et al. Our new method is 4.2x, resp. 7.5x, faster than
the method of Bos et al. for a 2nd, resp. 3rd, -order masking on the ARM Cortex-M4,
and unlike the method of Bache et al., the new technique takes ciphertext compression
into account. We prove correctness, security, and masking security in detail and
provide performance numbers for 2nd and 3rd-order implementations. Finally, we
verify the side-channel security of our implementation using the test vector leakage
assessment (TVLA) methodology. We make our implementations and TVLA scripts
available online.
Keywords: Lattice-Based Cryptography · Side-Channel Attack · Higher-Order
Masking · Fujisaki-Okamoto Transform

1 Introduction
The implementation-security aspect of candidates in the NIST Post-Quantum Standardiza-
tion Process [NIS16] is becoming a focal point to enable widespread adoption of standardized
algorithms. This is especially the case for the three finalist lattice-based Key Encapsulation
Mechanisms (KEMs) Kyber [SAB+20], NTRU [CDH+20], and Saber [DKR+20], which,
due to their good performance and acceptable memory footprint, are a fitting choice for
use in embedded systems possibly exposed to side-channel attacks.

An interesting property of the aforementioned schemes is that they use a chosen-
plaintext (CPA) secure public-key encryption scheme as a building block and then apply a
CCA conversion to construct a chosen-ciphertext secure KEM. In particular, Kyber and

mailto:{firstname}.{lastname}@esat.kuleuven.be
mailto:daniel.heinz@unibw.de
mailto:peter.pessl@infineon.com

2 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

Saber make use of variants of the Fujisaki-Okamoto (FO) transform [FO99]. In simplified
terms, the FO involves re-encrypting a decrypted message and then testing if the obtained
ciphertext c′ is equal to the input ciphertext c. Only in case of a match, the correct shared
secret is released. If there is no match, the input ciphertext was malformed and a fixed
non-sensitive value is returned.

The security of the FO transformation relies on the fact that no sensitive value
is available to an adversary when a malformed ciphertext is inputted. While the FO
protects against black-box attacks with this strategy, it does not protect against ad-
versaries that use side-channels to learn sensitive intermediate values as shown in, e.g.,
[DTVV19, RRCB20, XPRO20, NDGJ21, UXT+21]. These works demonstrate that with-
out appropriate protection there exist relatively simple (in terms of measurement re-
quirements) yet still powerful attacks, and that virtually all operations in the ciphertext
decapsulation need to be protected against such adversaries.

A particularly hard-to-protect operation in this regard is the test to verify if the
recomputed ciphertext c′ matches the input ciphertext c. While the final outcome of
this comparison is not sensitive, a (side-channel) attacker must not learn where c and c′
differ [BDH+21] in case the comparison fails. The first approach to mask the comparison
of a CCA-secure scheme was presented in [OSPG18]. However, the idea is restricted to
first-order masking. Subsequently, [BPO+20] presented a possibility to compare masked
polynomials to public polynomials at arbitrary orders using a method we will refer to
as the ‘random sum’ method. Lately, both techniques were broken as they make use of
partial comparisons of the ciphertext [BDH+21]. These partial comparisons leak where c
and c′ differ, and this leakage can be used to mount key-recovery attacks on the schemes.

A straightforward fix to the first-order hash-based approach has already been intro-
duced in a side-channel resistant implementation of Saber [VBDK+21] and has addition-
ally been applied in a recent first-order masked Kyber implementation by Fritzmann et
al. [FVBR+21]. The higher-order random sum method proves more difficult to fix. In
[BDH+21], the authors analyze how the concepts of [BPO+20] can be salvaged to reduce
the complexity of the comparison. However, this technique must still be integrated into a
masked comparison method, and, importantly, it does not apply to schemes that compress
the ciphertext, like Saber and Kyber.

At the moment, the only proper higher-order option (without any known security
flaws) to perform a masked comparison of polynomials is the uncompressed range check
by Bos et al. [BGR+21]. On the Cortex-M4, the method takes around 22 million cycles
for second-order side-channel security (72 million for third-order), which is around 50%
(63%) of the total execution time of the masked CCA-secure decapsulation. Therefore,
the masked comparison can be considered a major bottleneck for higher-order secure
implementations.

Contribution. In this work, we first show a higher-order side-channel attack that can easily
break the first-order hash-based approach of [OSPG18] and its fixed variants [VBDK+21,
BDH+21]. We recover the key using only 6000 measurements, which further emphasizes the
need for new higher-order techniques for masked comparisons of (compressed) polynomials.

Subsequently, we present a novel technique to compare ciphertexts in higher-order
masked schemes based on the (insecure) random sum method of [BPO+20]. In contrast
to previous techniques we introduce a modulus switch to obtain a higher modulus and
thus a lower collision probability, which results in only one equality check that needs to be
performed. Furthermore, we show that it is possible to switch to a power-of-two modulus
(in contrast with previous methods which only work for prime moduli). This power-of-two
modulus integrates better with existing masked techniques such as B2A conversion.

Contrary to previous random sum methods, our method works for both schemes that
have prime and power-of-two moduli coefficients and takes ciphertext compression into

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 3

account. We show that it significantly outperforms the method of [BGR+21] for higher
orders and provide a security proof, correctness proof, as well as a masking security
proof. Finally, we practically verify our results by providing the TVLA results of our
implementation of the first- and second-order comparison using the state-of-the-art ‘Fixed
+ Noise’ versus Random (FNvR) framework from [BDH+21]. Our implementation and
TVLA scripts are publicly available at:

https://github.com/KULeuven-COSIC/Masked-Comparison.

Outline. In Section 2, we recall Kyber and Saber, the Fujisaki-Okamoto transform, and
previous proposals for masking the comparison operation. Then, in Section 3, we describe
our attack on the first-order hash-based comparison method. We introduce our new
masking approach and prove its security in Section 4. We then analyze its performance
and verify the absence of leakage in Section 5. Finally, we conclude in Section 6.

2 Preliminaries
We now introduce some background on our target schemes Kyber and Saber, on the
Fujisaki-Okamoto transform, which is the cause of requiring a comparison, and previous
proposals aiming at securing said comparison.

2.1 Notation
We denote with bxc flooring a number x ∈ R to the closest lower integer and with bxe
rounding x to the nearest integer with ties rounded upwards. Furthermore, we write
y = bxeq→p to denote y = b(p/q) · xe for an input x ∈ Zq and y ∈ Zp. These operations
are extended coefficient-wise for vectors and polynomials. For x, q ∈ Z we write x mod q
to denote the integer x̂ ∈ (−q/2, q/2] so that x̂ ≡ x mod q. For a vector or polynomial x
we denote with xi taking the ith coefficient of x, which is sometimes made more explicit as
x[i]. We denote with x $←− χ sampling x randomly according to the distribution χ, and
with x r←− χ sampling pseudorandomly based on the seed r. Let U(I) denote the uniform
distribution over a set I. A variable A that is masked into S shares is denoted in bold
A. When needed for clarity we distinguish between a Boolean masked variable AB and
arithmetic masked variable AA. We denote the jth share with A(j).

2.2 Saber and Kyber
The comparison technique presented in this paper is broadly applicable for masking
implementations where two vectors need to be checked for equality. This can for example
be necessary within the equality check of the FO transformation (see Section 2.3) of
lattice-based Key Encapsulation Mechanisms (KEMs). In this paper, we will specifically
target the use-case of masking implementations of IND-CCA secure KEMs Saber and
Kyber.

Algorithms 1 to 3 give a generalized and simplified overview of the working of the
IND-CPA secure encryption schemes Kyber and Saber. These can then be compiled to an
IND-CCA secure KEM using the FO transformation as explained in Section 2.3. Both
Kyber and Saber work with vectors of ring elements in Rk

q , where Rq = Zq[X]/(Xn + 1),
with n = 256, and with k an integer between 2 and 4 depending on the security. The
distributions χ(Rk×1

q) generate vectors of polynomials with coefficients following a small
binomial distribution. The modulus q = q2 for Kyber is chosen as a prime, and the
compression moduli p and T are powers of two. In Saber, all moduli q, q2, p, T are powers
of two, with q > q2 = p > T . For a more in-depth discussion of Saber and Kyber, we refer
to [DKRV18] and [BDK+18].

https://github.com/KULeuven-COSIC/Masked-Comparison

4 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

Algorithm 1: CPA.KeyGen.

1 sdA
$←− {0, 1}256 ;

2 A
sdA←−− U(Rk×k

q) ;
3 (s, e) $←− χ(Rk×1

q)× χ(Rk×1
q) ;

4 t← bA · s+ eeq→q2 ;
5 return pk := (sdA, t), sk := s ;

Algorithm 3: CPA.Dec.
Input: sk = s
Input: c = (c1, c2)

1 u← bc1ep→q ;
2 v ← bc2eT→q ;
3 m← bv − sT · ueq→2 ;
4 return m ;

Algorithm 2: CPA.Enc.
Input: pk = (sdA, t)
Input: m ∈M
Input: r $←− {0, 1}256

1 A
sdA←−− U(Rk×k

q) ;
2 (r, e1, e2) r←− χ(Rk×1

q)× χ(Rk×1
q)× χ(R1×1

q) ;
3 u← A · r + e1 ;
4 v ← (q

q2
· t) · r + e2 +

⌈
q
2

⌋
·m ;

5 c1 ← bueq→p ;
6 c2 ← bveq→T ;
7 return c := (c1, c2) ;

Algorithm 4: CCAKEM.KeyGen.

1 z
$←− {0, 1}256 ;

2 (pk, sk′) = CPA.KeyGen() ;
3 sk = (sk′||pk||H(pk)||z) ;
4 return pk, sk ;

Algorithm 5: CCAKEM.Encaps.
Input: Public key of CCAKEM pk

1 m
$←− {0, 1}256 ;

2 m← H(m) ;
3 (K̄, r) = G(m||H(pk)) ;
4 c = CPA.Enc(pk,m, r) ;
5 K = KDF(K̄||H(c)) ;
6 return c,K ;

Algorithm 6: CCAKEM.Decaps.
Input: Ciphertext of CCAKEM c
Input: Secret key of CCAKEM sk

1 Extract (sk′||pk||H(pk)||z) from sk ;
2 m′ = CPA.Dec(sk′, c) ;
3 (K̄′, r′) = G(m′||H(pk)) ;
4 c′ = CPA.Enc(pk,m′, r′) ;
5 if c = c′ then
6 K = KDF(K̄′||H(c)) ;
7 else
8 K = KDF(z||H(c)) ;
9 end

10 return K ;

2.3 FO-transformation

The FO transformation [FO99, HHK17] is a generic method to convert an IND-CPA
secure encryption scheme into an IND-CCA secure KEM. In the FO-transformation,
the encapsulation is a deterministic version of the encryption, where all randomness is
pseudorandomly based on the message (which is itself chosen at random). This means
that one can exactly recompute the ciphertext using the message. The high-level idea is
that during decapsulation, the message is decrypted and then used to check if the inputted
ciphertext is well-formed. This check is performed by re-encrypting the message and
checking if the input ciphertext is equal to the re-encrypted message. An overview of the
FO transformation is given in Algorithms 4 to 6, where G and H represent hash functions
and where KDF is a key derivation function.

When the input ciphertext is invalid, the decapsulation will return unusable randomness
so that an adversary does not gain information (except for the fact that the ciphertext
was rejected). The security of the FO transformation relies on the fact that in this case,
an attacker does not learn anything about the intermediate values of the computation.
Protection of these routines against side-channel attacks is, therefore, of utmost importance.

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 5

2.4 Masked Comparison Algorithms
2.4.1 Hash-Based Method [OSPG18]

In [OSPG18], an efficient method for constructing a first-order masked ciphertext com-
parison is presented. While the original method has a subtle flaw [BDH+21], there exists
an easy fix, and the general method was used in several secured implementations of e.g.,
Saber and Kyber [FVBR+21, VBDK+21].

Assume that the re-encryption outputs its result c′ in two Boolean shares (c′(0), c′(1)),
i.e., c′ = c′(0) ⊕ c′(1). To test if c is equal to c′, [OSPG18] propose to compute

H(c⊕ c′(0)) ?= H(c′(1)). (1)

Only if c = c′, the two hash function calls receive the same input and the hashes match.
Due to the random sharing of c′, the actual inputs are randomized for each decapsulation.
A drawback of this method is that it only works for first-order maskings.

2.4.2 Random Sum Method [BPO+20] [BDH+21]

Bache et al. [BPO+20] introduced a new method to allow higher-order masking of the
comparison operation. Bhasin at al. [BDH+21] later showed some vulnerabilities in this
method and provided a rough idea of how to solve these vulnerabilities. Both only describe
the case where the modulus is prime and where there is no ciphertext compression. In this
paper, we will generalize to both, prime and power-of-two moduli, and to schemes that
undergo ciphertext compression.

The core idea for of the random sum method is to test if a list of input coefficients are
all zero: given n masked coefficients in S shares D0, · · · ,Dn−1 ∈ ZS

q we want to calculate
for every i, if the sensitive unmasked sum

∑
j D

(j)
i is zero.

Instead of performing the zero check for all coefficients individually, we compress them
in one term. However, to avoid giving away sensitive information we first want to do
this separately for each share, by calculating E(j) =

∑
i RiD

(j)
i for each share1. In a

second phase one then checks if
∑

j E(j) = 0. On one hand, if every unmasked coefficient∑
j D

(j)
i = 0 then clearly

∑
j E(j) = 0. On the other hand if at least one of the coefficients

is not zero, the term
∑

j E(j) will only be zero with limited probability (depending on the
random Ri’s).

For a prime q, one can show that the probability of such a false positive response
is equal to the probability that a random element of Zq is zero, which is 1/q. For a
power-of-two q, an adversary can choose his input coefficients as q/2 or 0 to increase
this false positive probability to 1/2. As in both cases, the straightforward scenario does
not give enough certainty to obtain security in typical cryptographic applications, it is
proposed in [BPO+20] to replicate the check L times, to limit the false positive probability
to 1/qL (or 1/2L times for power-of-two q). In [BPO+20] this is done by dividing the
coefficients into k sets and performing the check on each subset individually.

In [BDH+21] two vulnerabilities in the above repetition method were shown: Firstly,
leakage of intermediate results of the check results leads to a first-order side-channel attack
and must therefore be avoided. Secondly, performing the intermediate checks on only a
subset of the coefficients leads to a chosen-ciphertext attack where the adversary inputs a
slightly adapted ciphertext that only fails in one of the L intermediate checks, increasing
the false positive probability to 1/q (or 1/2 for power-of-two q). The authors concluded

1The original method [BPO+20] calculated E(j) =
∑

i
R0i(D

(j)
i + R1i). Bhasin at al. [BDH+21]

showed that one does not need the second randomness R1i. In this paper we will for sake of clarity discuss
their simplified method.

6 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

that a random sum algorithm must not leak any results of the intermediate checks and
that it must always be calculated over all coefficients.

In this paper, we construct a random sum-based technique that deals with the problems
in the original technique by moving to a large q. This reduces the false-negative probability,
which allows relying only on one check (L = 1). More information about our technique
will be given in Section 4.

3 Side-Channel Collision Attack on a 1st-Order Impl.
In this section, we present a side-channel attack that can easily break the first-order hash-
based comparison method of [OSPG18]. Our attack belongs to the category of horizontal
collision attacks [MME10], i.e., side-channel leakage is used to test if the same data is
processed at two selected points during computing H(c⊕ c′(0)) ?= H(c′(1)). As this can be
considered a second-order attack, no security claims of the masking approach are broken.
Still, the attack is unprofiled, requires only minimal knowledge of the implementation, is
likely robust in terms of noise, and for these reasons easy to perform. Hence, it shows
that the hash-based first-order approach and likely also other first-order approaches using
Boolean masking do not offer sufficient protection.

3.1 Attack Description
We use Kyber for all our explanations and experiments, but we note that the hash-based
comparison approach, and hence our attack, is also applicable to Saber. Our attack follows
along the lines of the generic side-channel attack using a decryption failure oracle described
in [BDH+21]. That is, we honestly generate a ciphertext and then manipulate a single
coefficient of the second ciphertext component c2 (corresponding to v) while keeping the
first component c1 (corresponding to u) untouched. Depending on the concrete value of
the secret key, this manipulation can lead to decryption failure, i.e., the recovered message
m′ can differ from the m used during encapsulation in a single bit.

Since the random coins r used for re-encryption are derived by hashing m′, this single-
bit error leads to entirely different values being used during re-encryption and thus a
ciphertext c′ having no resemblance of c. If, however, no decryption failure occurs, then c
and c′ differ only in a couple of bits (one coefficient of c2). While these two scenarios are
not discernable in a black-box setting (both lead to the ciphertext being rejected), they
can be distinguished using side-channel measurements, which in turn gives information on
the secret key.

Concretely, we use that when back-substituting decryption, we get

v − sTu =
⌈q

2

⌋
·m+ eT r − sT (e1 + ∆u) + e2 + ∆v, (2)

with ∆u and ∆v denoting the error introduced by compression of the two ciphertext
components. We call

d = eT r − sT (e1 + ∆u) + e2 + ∆v (3)

the decryption noise. The parameters of Kyber are chosen such that ||d||∞ < q/4 with
very high probability to ensure that no decryption errors occur. Since all elements of d are
in some form small and the range is limited, d can be lifted to Z.

For the attack, we honestly generate a ciphertext and then add q/4 to one selected
coefficient of v.2 The corresponding message bit at index i will still be correctly decoded

2Due to ciphertext compression, the actual value might differ slightly from q/4.

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 7

only if di + q/4 < q/4, i.e., if di < 0. If, however, di ≥ 0, then a decryption error will
occur.3

Detecting decryption errors. We use the following method to detect decryption errors
in the first-order hash-based masked comparison. As explained in Section 2.4.1 during
the comparison the two masked ciphertext components are hashed and their equality is
checked as H(c⊕ c′(0)) ?= H(c′(1)).

First, we note that for Kyber, c is at least 768 bytes large, which is larger than the
block size of the hash function. For example, when initiating H with SHAKE128, which
has a block size 1344 bits, c is split into at least 5 blocks. Moreover, the ciphertext consists
of two parts c = (c1||c2). Since c1 is typically larger than c2, we have that c2 is only part
of the last input blocks (in our case 2), while all previous blocks only contain c1.

We can now differentiate based on whether a decryption error occurs or not. Remember
that in case of a decryption error, c′ is essentially independent of c as it is generated using
entirely different coins r′. In this case, the inputs to H(c⊕ c′(0)) and H(c′(1)) differ already
in the first block. If, however, the correct message is still recovered, then c and c′ differ
only in a few bits of c2 in the last hash blocks. Followingly, the first couple of blocks of
H(c⊕ c′(0)) and H(c′(1)) use identical input.

Thus, by using a side-channel collision attack on the first blocks of H(c⊕ c′(0)) and
H(c′(1)), e.g., comparing the power consumption and determine if they are similar, one can
determine if a decryption failure occurred, and followingly, the sign of di. This collision
attack can use a large portion of the trace (at least 3 full Keccak-f permutations), which is
why a single trace is usually sufficient and the noise robustness is high.

Solving for the key. After gathering many traces and extracting the sign of the respective
di, one needs to extract the key from this information. In [BDH+21], the relation (v−us)i ≈
mi ·

⌈
q
2
⌋

+ di
4 is fed to the Leaky-LWE framework of Dachman-Soled et al. [DDGR20]. In

this framework, the lattice described by the public-key equation t = As+ e is transformed
using hints gathered via side channels. We found that this approach is not ideal for the
problem at hand: the runtime needed for including the hints in the lattice is quite high
and the security level decreases very slowly with the number of traces. For instance, after
gathering 217 approximate equations, each requiring multiple measurements, [BDH+21]
still report a key-recovery complexity of roughly 264 operations for Kyber512.

Recently, [PP21] and [HPP21] presented fault attacks on several CCA-secure lattice-
based KEMs, including Kyber. Their attacks can be classified as safe-error attacks [YJ00]
in that they inject a specific fault and then observe if decapsulation still returns the correct
result. As it turns out, their key-recovery problem is identical to ours. They propose a
different solving approach, which we now briefly describe.

Their approach exploits the composition of d, i.e., the structure of the right-hand
side of eq. (3). Note that if the attacker honestly generated the ciphertext by running
encapsulation using the public key, then only the secret key (e, s) is unknown; all other
values in d are also generated or can be computed during encapsulation. Since di is small,
we thus have that di is linear (in Z) in the key coefficients. Since the side-channel attack
only extracts the sign of di, the equalities turn into inequalities of form

eT r − sT (e1 + ∆u) + e2 + ∆v Q 0. (4)

3In [BDH+21], the range of di was further narrowed down using a binary search over all 2T = 16
possible values of c2, performing a measurement in each step. However, since |d| < q/16 (which is the
smallest possible increment of v due to compression to c2) in the vast majority of cases, using a new
ciphertext for each measurement appears to leak more information on the key compared to using multiple
measurements on a single base ciphertext.

4Approximation since di is only known up to an interval of size q/16.

8 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

After gathering enough inequalities, they solve for the key using an approach akin to linear
decoding. We employ the improved method of [HPP21], which reaches a success rate close
to 1 when using roughly 5750, 6750, and 8500 inequalities (and thus measurements) for
Kyber512, Kyber768, and Kyber1024, respectively.

3.2 Attack Setup and Measurement

We verified the correctness of our attack by attacking a microcontroller running Kyber.
Our target is an STM32F405 (ARM Cortex-M4) mounted on a ChipWhisperer side-
channel evaluation board [Newb]. The microcontroller was clocked at 24MHz to match the
frequency used in the popular PQM4 PQC benchmarking framework [KRSS]. We measured
the voltage drop over the on-board shunt resistor using a LeCroy AP034 differential probe.
Due to the length of the measurements (multiple Keccak-f permutations per trace) and
the limited sample memory of the ChipWhisperer Lite platform [Newa], we performed
measurements using an oscilloscope sampling at 100 MS/s. To reduce noise, we used the
scopes in-built 20 MHz analog filter.

The microcontroller runs the most recent ASM-optimized Kyber512 implementation
included in PQM4 [KRSS]. This implementation is unprotected; we added the first-order
masked comparison as described above, where we used the included ASM-optimized
SHAKE128 for H. A trigger signal is set to mark the start of the masked comparison,
i.e., the computation of the hash functions. We generated the manipulated ciphertexts on
a PC (using the known public key) and then send them to the device for decapsulation.

Trace processing. Each trace contains two invocations of H, namely H(c ⊕ c′(0)) and
H(c′(1)). To localize these calls and align them for the horizontal side-channel attack, we
compute an autocorrelation over the trace and then select its peak index as the beginning
of the second subtrace. This method can also be used to find the hashes if no dedicated
trigger signal is available.

We then perform a pointwise subtraction of the two trace segments and compute the
mean of the squared difference. If this quantity is above a certain threshold, we conclude
that the two hash calls processed vastly different inputs, i.e., a decryption error occurred.
If the score is below the threshold, then the message m′ was correctly recovered and the
first input blocks of the two hashes are identical. This principle is illustrated in Figure 1,
which shows collision scores obtained by adding all 2T − 1 = 15 possible offsets to one
coefficient c2 (compressed v).

We dynamically determine the threshold by sending two modified ciphertexts and
taking the midway point of the mean-squared difference as threshold. The first ciphertext
is random, hence a decryption error will occur and the hashes will have different inputs.
The second ciphertext is honestly generated, but we add 1 to one coefficient of c2. It is
highly unlikely that this change leads to a decryption error, the hash inputs thus differ
only in 1 bit in one of the later blocks.

3.3 Results

We performed a total of 10 experiments, each using a different key. We collected 6000
measurements per experiment, which, according to [HPP21], should suffice for key recovery.
All 10 experiments were successful; we only observed 2 misclassified di throughout all
60 000 measurements.

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 9

2 4 6 8 10 12 14

c2 offset

0.30

0.35

S
co

re

Figure 1: Values of the “collision score” obtained by adding “c2 offset” mod 2T to one
coefficient of c2 (keeping the ciphertext the same on all other positions). Adding values
between 5 and 12 lead to a decryption error, all other offsets do not. The two cases can be
easily distinguished.

4 Higher-Order Masked Comparison
In this section, we describe our new higher-order masked comparison. We start with
explaining our method and continue with three security proofs, showing correctness,
security, and masking security. Contrary to previous random sum methods, our method
works for both schemes that use a power-of-two and prime modulus and so accommodates
both Saber and Kyber.

As explained in Section 2.4.2, the random sum method has a false-positive probability
in which the method wrongly thinks all input coefficients equal zero. In both [BPO+20]
and [BDH+21], false positives happen with a non-negligible probability, and these works
proposed to perform multiple checks to further reduce this probability.

In this work, we want to perform only one check. We achieve this by enlarging the
masking modulus q up to a point where the false positive probability is sufficiently small.
While previous works only considered a prime modulus as it avoids zero divisors that lead
to a higher false positive probability, we prove that in our design it is also possible to
use a power-of-two modulus. We specifically choose a large power-of-two modulus as it
interplays well with other masking techniques such as Arithmetic to Boolean (A2B) or
Boolean to Arithmetic (B2A) mask conversion. However, it would also be possible to
choose a large prime as new modulus. We specifically focus our method on lattice-based
encryption schemes with compression (e.g., Saber [DKRV18] or Kyber [BDK+18]) which
require additional preprocessing of the inputs.

Algorithm 7 gives an overview of our technique. It relies on three subfunctions: A2B,
which transforms an arithmetic sharing into a Boolean sharing, B2Ap→q, which transforms
a p bit Boolean masking to a q bit arithmetic masking, and BooleanEqualityTest, which
tests if a sharing of a single coefficient E represents zero (i.e.,

∑
S E(j) = 0).

The algorithm consists of five steps. Step 1 and 2 convert the input from a small
modulus to a larger modulus p · 2s−1 where s is a security parameter that will determine
the false positive probability (which will equal 2−s). In step 3 we perform the compression
as proposed in [BPO+20] and improved in [BDH+21] and step 4 performs a check on only
one (large) coefficient.

Step 0 does an application-specific preprocessing. For our case this consists of three
parts: First, in the case of lattice-based encryption, we actually need to compare two
coefficients (a masked one with a public one) instead of performing a zero check. The
addition of the constant 2fbits,B/2 is used to mimic a rounding operation when shifting right
in step 1. By subtracting the public coefficients from the first share of each corresponding
masked coefficient (lines 5 and 11) we convert the comparison to a zero check.

Secondly, for non power-of-two moduli q we scale to a power-of-two modulus to make
the conversion to the larger modulus p ·2s−1 easier (line 3 and line 9). To avoid introducing
errors during rounding we take into account a sufficient number of fractional bits. In

10 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

Algorithm 7: Masked Comparison
Input : masked vector of elements B∗ ∈ Zkn,(S)

q , vector of elements B ∈ Zkn
p ;

masked vector of elements C∗ ∈ Zn,(S)
q , vector of elements C ∈ Zn

T ;
with p, T powers of two and p ≥ T

Output :

{
1 if:

(
∀ib p

q

∑
j

B
∗,(j)
i e = Bi mod p

)
and

(
∀ib p

q

∑
j

C
∗,(j)
i e = Ci mod T

)
0 else

// step 0: preprocessing
1 for i = 0 to kn− 1 do
2 for j = 0 to S − 1 do
3 B

A,(j)
i = b p·2fbits,B

q
B
∗,(j)
i c

4 end
5 B

A,(0)
i =

(
B

A,(0)
i − 2fbits,B ·Bi + 2fbits,B/2

)
mod p · 2fbits,B

6 end
7 for i = 0 to n− 1 do
8 for j = 0 to S − 1 do
9 C

A,(j)
i = bT ·2fbits,C

p
C
∗,(j)
i c

10 end
11 C

A,(0)
i =

(
C

A,(0)
i − 2fbits,C · Ci + 2fbits,C/2

)
mod T · 2fbits,C

12 end

// step 1: convert to Boolean masking
13 for i = 0 to kn− 1 do
14 BB

i = A2B(BA
i)� fbits,B

15 end
16 for i = 0 to n− 1 do
17 CB

i = A2B(CA
i)� fbits,C

18 end

// step 2: convert to arithmetic masking modulo p · 2s−1

19 for i = 0 to kn− 1 do
20 Di = B2Ap→p·2s−1 (BB

i)
21 end
22 for i = 0 to n− 1 do
23 Di+kn = B2AT→p·2s−1 (CB

i)
24 end

// step 3: combine all checks in one term
25 E = 0
26 for i = 1 to (k + 1)n do
27 Ri

$←− U([0, 2s))
28 for j = 0 to S − 1 do
29 E(j) = E(j) +Ri ·D(j)

i mod p · 2s−1

30 end
31 end

// step 4: Test if
∑

j
E(j) = 0 mod p · 2s−1

32 return BooleanEqualityTest(E)

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 11

practice we have to choose:

fbits,B = fbits,C > log2(S)− log2

(
dq/2e
q
− 1

2

)
.

For example, fbits,B = fbits,C = 13 for masked Kyber with two shares as discussed
in [FVBR+21]). This step is ignored for power-of-two schemes, where 2fbits,B = q/p and
2fbits,C = T/p.

Finally, we need to perform compression from modulus q to a modulus p or T . This is
performed in line 14 and line 17 as this operation is trivial to do in the Boolean domain.
Note that previous random sum comparison methods [BPO+20, BDH+21] were not capable
of handling the compression of the ciphertext.

As with previous random sum methods, our method is prone to false positives (also
named collisions in [BDH+21]) with a small probability of 2−s. When such a collision
occurs, a non-valid ciphertext is accepted and as shown in [BDH+21] an adversary can
use these collisions to reduce the security of the attacked scheme.

An adversary needs to submit on average 2s invalid ciphertexts to obtain one collision.
In our security proof we will show that this collision probability is independent of the input
of an adversary and as such an adversary can not increase the probability of triggering
a collision. Therefore techniques like failure boosting [DGJ+19] to reduce the failure
probability are not applicable in this context. Moreover, multiple collisions would be
required to significantly reduce the security of the scheme.

The security parameter s can be chosen at any arbitrary value depending on the applica-
tion scenario (at the cost of additional operations and randomness). In our implementation,
we choose s = 54 so that the maximal bitwidth of the variables is 64 bits. This corresponds
to a collision probability of 2−54 or an expected 254 queries that an adversary needs to do
to obtain one collision. We provide additional implementations with s = 118 (maximal
bitwidth 128 bits) and s = 128 (maximal bitwidth 138 bits) in Appendix A.

4.1 Security Proof
Theorem 1 (Correctness and Security of Algorithm 7). Let p, T be powers of two, let
q be a power of two or a prime, and let k, n, s be integers. If q is prime then we require
fbits,B and fbits,C to be larger than log2(S)− log2

(
dq/2e

q − 0.5
)
. If q is a power of two then

2fbits,B = q/p and 2fbits,C = T/p. Then upon input B∗ ∈ Zkn,(S)
q , B ∈ Zkn

p , C∗ ∈ Zn,(S)
q ,

C ∈ Zn
T , Algorithm 7 returns:

• 1 if:
(
∀kn−1

i=0 b
p
q

∑S−1
j=0 B

∗,(j)
i e = Bi mod p

)
and

(
∀n−1

i=0 bT
q

∑S−1
j=0 C

∗,(j)
i e = Ci mod T

)
• 0 with probability at least 1− 2−s if the above condition is not fulfilled

Proof. We will start with proving correctness, i.e. showing that the output will be 1 if the
conditions are met. Our proof follows the strategy of [BDH+21] using the power-of-two
technique of [CDE+18].

By simple substitution we have:∑
j

E(j) mod p · 2s−1 =
∑

j

∑
i

RiD
(j)
i mod p · 2s−1 (5)

=
∑

i

Ri ·
∑

j

(D(j)
i mod p · 2s−1) mod p · 2s−1 (6)

=
(∑kn−1

i=0 Ri · (
⊕

j B
B,(j)
i)

+
∑n−1

i=0 Rkn+i · (
⊕

j C
B,(j)
i)

)
mod p · 2s−1 (7)

12 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

We continue by focussing on the term
⊕

j B
B,(j)
i , which can be further expanded to:

⊕
j

B
B,(j)
i =

∑
j

B
A,(j)
i /2fbits,B

 mod p (8)

=

∑
j

bp · 2
fbits,B

q
B
∗,(j)
i c/2fbits,B + 1

2

−Bi mod p (9)

For power-of-two moduli where 2fbits,B = q/p the inner flooring operates on integers
and can therefore be ignored. For non power-of-two moduli q we used the trick as described
in [FVBR+21]. In this case we can rewrite the equation as:

=

∑
j

(
p · 2fbits,B

q
B
∗,(j)
i − e(j)

)
/2fbits,B + 1

2

−Bi mod p (10)

=

∑
j

p

q
B
∗,(j)
i − e(j)/2fbits,B + 1

2

−Bi mod p, (11)

where e(j) is the flooring error that can be bounded by 0 ≤ e(j) < 1.
Note that we can drop the error term as long as this does not produce an overflow,

that is by − e+ 1
2c = by + 1

2c as long as e < (y + 1
2 mod 1). On one hand we can see that

y + 1
2 mod 1 has only a limited number of possible values, which can be decribed as the

set {i/q + 1
2 mod 1 | i ∈ [0, q)]} (as described in [FVBR+21]). The worst case scenario is

with i = dq/2e, in which case we have that y + 1
2 mod 1 = dq/2e

q − 1
2 . On the other hand,

we have a worst case error value e(j) = 1, so that e < S/2fbits,B . Thus, to remove the error
term we need to have that:

e < (y + 1
2 mod 1) or: (12)

S/2fbits,B <
dq/2e
q
− 1

2 or: (13)

fbits,B > log2(S)− log2(dq/2e
q
− 1

2). (14)

Since we chose fbits,B to fulfill this condition, we can remove the error and write:

⊕
j

B
B,(j)
i =

∑
j

p

q
B
∗,(j)
i

−Bi mod p (15)

(16)

An analogous derivation is also possible for the C terms. For sake of convenience we
will denote βi =

⌊∑
j

p
q B
∗,(j)
i

⌉
−Bi mod p and similarly γi =

⌊∑
j

T
q C
∗,(j)
i

⌉
− Ci mod T .

This results in the following equality:

∑
j

E(j) mod p · 2s−1 =
(∑kn−1

i=0 Ri · βi

+
∑n−1

i=0 Rkn+i · γi

)
mod p · 2s−1 (17)

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 13

Correctness When the conditions are met, i.e.
(
∀ibp

q

∑
j B
∗,(j)
i e = Bi mod p

)
and(

∀ibT
q

∑
j C
∗,(j)
i e = Ci mod T

)
, all terms βi and γi equal zero modulo p and T respectively.

Furthermore, they are in [−p/2, p/2) and [−T/2, T/2) respectively and thus:∑
j

E(j) mod p · 2s−1 = 0

Security When the conditions are not met, at least one of the coefficients of B or C does
not equal the corresponding masked value of B∗ or C∗. We will first look at the case
where at least one of the coefficients of B does not match its corresponding value, and
treat the case where only coefficient(s) of C differ later.

Without loss of generality, we can assume that a non-corresponding coefficient is located
at the zeroth coefficient (i = 0). The output of Algorithm 7 is binary and the (incorrect)
return value 1 is given when

∑
j E(j) = 0 mod p · 2s−1. We will first derive an equivalent

condition in terms of the inputs and then show that due to the randomness of R0, it is
hard to guess an input that gives returns 1 when the condition is not fulfilled.

Rewriting
∑

j E(j) = 0 mod p · 2s−1 using Equation 17 we get:∑
j

E(j) = 0 mod p · 2s−1 (18)

⇐⇒
(∑kn−1

i=0 Ri · βi

+
∑n−1

i=0 Rkn+i · γi

)
= 0 mod p · 2s−1 (19)

⇐⇒

 R0 · β0
+
∑kn−1

i=1 Ri · βi

+
∑n−1

i=0 Rkn+i · γi

 = 0 mod p · 2s−1 (20)

Now we choose z so that 2z = gcd(p · 2s−1, β0). Notice that 2z ≤ p/2 as β0 is strictly
smaller than p. Moreover, when an incorrect response 1 is given, Equation 20 is satisfied
and thus 2z divides ∑kn−1

i=1 Ri · βi

+
∑n−1

i=0 Rkn+i · γi
.

We can then define the variables X and Y as follows:

X ← β0/2z and Y ←
(∑kn−1

i=1 Ri · βi

+
∑n−1

i=0 Rkn+i · γi

)
/2z (21)

To rewrite the condition (Equation 20) further as:∑
j

E(j) = 0 mod p · 2s−1 (22)

⇐⇒ R0X2z + Y 2z = 0 mod p · 2s−1 (23)
⇐⇒ R0X + Y = 0 mod p · 2s−1−z (24)
⇐⇒ R0 = −Y ·X−1 mod p · 2s−1−z (25)

Where in the latter step we use the fact that 1 = gcd(X, p · 2s−1−z) to conclude that
X has an inverse. Notice that the modulus of this expression is p · 2s−1−z and we know
that 2z ≤ p/2, from which we can conclude that the modulus p · 2s−1−z ≥ 2s and thus R0
retains its entropy in this expression.

As R0 is independent of the terms X and Y and is unknown to any adversary, the
probability of obtaining

∑
j E(j) = 0 mod p · 2s−1 when the condition is not met is

upper-bounded by the guessing probability of R0 which is 2−s.

14 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

G1,B0

G1,Bi

G1,C0

G1,Ci

G2,B0

G2,Bi

G2,C0

G2,Ci

G3,E0

G3,Ej

G4

G0,B0

G0,Bi

G0,C0

G0,Ci

G0,B0

G0,Bi

G0,C0

G0,Ci

B∗,00

B∗,j0

B∗,0i

B∗,ji

C∗,00

C∗,j0

C∗,0i

C∗,ji

Figure 2: Overview of Gadgets in Algorithm 7. Different line types correspond to different
shares.

A similar reasoning can be constructed if only coefficients of C are incorrect. The only
difference is that 2z is upper-bounded as 2z ≤ T/2 due to the different modulus. However,
as T ≤ p we can state 2z ≤ p/2. The rest of the proof is analogous to the one outlined
above.

Theorem 2 (t-(S)NI of Algorithm 7). Let BooleanEqualityTest be a t-NI gadget and
let A2B and B2A be t-SNI gadgets. Let B∗ and C∗ be the masked inputs of Algorithm 7.
For any set of tc ≤ t intermediate variables there exists subsets IB and IC of input indices
with |IB |+ |IC | ≤ tc such that the tc intermediate values can be perfectly simulated from
the input variables B∗,(IB) and C∗,(IC). This t-NI security also implies t-SNI security as
there is no sensitive output value.

Proof. We divide Algorithm 7 into five types of gadgets representing the five steps in the
algorithm. The first three types of gadgets G0 to G2 work on the coefficients individually,
outputting variables with S shares. Gadget G3 combines all coefficients, but works on each
share individually (different shares are indicated with different arrow types in Figure 2).

Each gadget is subdivided into separate subgadgets that perform the same operation
on different input data. An overview is given in Figure 2. The exact definition of the
gadgets is:

Table 1: Overview of gadgets and their relation to the lines in Algorithm 7.
G0 Step 0 G1,B

(j)
i

line 3 (and line 5 for share j = 0)
G1,C

(j)
i

line 9 (and line 11 for share j = 0)

G1 Step 1 G1,Bi
line 14

G1,Ci
line 17

G2 Step 2 G2,Bi
line 20

G2,Ci
line 23

G3 Step 3 G3,Ej
line 27-29 (for one specific j)

G4 Step 4 G4 line 32

Starting with the last gadget we will work our way back through the algorithm. We will
denote the number of intermediate values probed by the adversary in each gadget with t0 to
t4, for G0 to G4 respectively. The adversary can probe at most tc = t0 + t1 + t2 + t3 + t4 ≤ t
intermediate variables.

Gadget G4 Gadget G4 is by definition t-NI. As it has no sensitive output variables,
output probes are not relevant. By definition of t-NI, the t4 intermediate variables can be
simulated with at most t4 input values.

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 15

Gadget G3 There are S instantiations of gadget G3, each linked to a specific share
number j of the output values of G2. Each gadget G3,Ej

outputs one variable by iteratively
calculating:

E(j) =
∑

i

Ri ·D(j)
i mod p · 2s−1

with the Ri random values.
One can simulate the output value for gadget G3,Ej

using all D(j)
0 , · · ·D(j)

(k+1)n−1
corresponding to the number of the gadget j. To calculate an intermediate value E(j) at
a certain i in the loop, one needs to know all input values D(j)

0 , · · · , D(j)
i corresponding

the number of the gadget j. As such, to simulate the distribution of the probes in G3
and G4 one needs to probe at most t4 + t3 ≤ t of the shares of each G2 and thus at most
t4 + t3 ≤ t of the output variables of each gadget.

Gadget G2 The gadgets G2 are t-SNI secure by definition. From above we know that
each gadget is output probed in at most t4 + t3 output variables. There are t2 intermediate
probes divided over the different gadgets G2,Bi

and G2,Ci
, the number of which we will

denote with t2,Bi
or t2,Ci

respectively. We have that t2 =
∑

i t2,Bi
+ t2,Ci

. In the following
we will focus on the gadgets G2,Bi , but the reasoning can be trivially adapted for G2,Ci .

As each gadget is t-SNI secure we know that any O output variables and t2,Bi in-
termediate variables can be simulated by at most t2,Bi input variables, if O + t2,Bi ≤ t.
From above we know that O ≤ t3 + t4 and t2,Bi

≤ t2 and thus O + t2,Bi
≤ t. This means

that each gadget can be simulated with at most t2,Bi
input probes and thus G2 can be

simulated with at most t2 input probes.

Gadget G1 The gadgets G1 are also t-SNI secure by definition. Therefore, with a similar
reasoning as for gadget G2, for at most t2 output probes and t1 intermediate probes, we
have that the gadget G1 can be simulated with at most t1 input probes.

Gadget G0 Each output variable can be trivially simulated using the corresponding
input variable as the gadgets in G0 are simple operations on one share. The intermediate
values of the gadgets G0 can also be simulated by the corresponding input variable. As
such we have |IB |+ |IC | ≤ O + t0 ≤ t1 + t0 ≤ t, which proves our theorem.

5 Evaluation
After describing our new approach in depth, we now analyze its performance. We also
verify its soundness in practice using side-channel measurements.

5.1 Subroutines
Our masked comparison algorithm requires subroutines for A2B and B2A mask conversion,
as well as BooleanEqualityTest. There are many ways to instantiate these subroutines.
In this section, we detail our choices, aimed at maximum performance.

For A2B conversion, we employ the method of [CGV14, Algorithm 4]. As in [SPOG19],
we replace the function Expand [CGV14, Algorithm 5] with its t-SNI variant, RefreshXOR
[BBE+18, Algorithm 8]. The core building block of this specific A2B conversion is a
Boolean-masked binary adder. In such an adder, every call to an XOR (for the sum) or AND
(for the carry) is replaced by its masked variants SecXOR and SecAND. This is trivial for
XOR in a Boolean masking, but requires special treatment for SecAND. The Boolean-masked
binary adder requires bit-level manipulations, quickly leading to a large computational

16 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

blow-up depending on the size of the input (e.g p · 2fbits,B for BA). [CGV14] described
a method to avoid bit-level manipulations, but otherwise keep the same complexity.
However, we can exploit the fact that we need many conversions in parallel by bit-slicing
the implementation. On the 32-bit Cortex-M4, our A2B implementation uses bit-slicing to
compute 32 conversions in parallel.

For B2A conversion, we employ the method of [BCZ18]. We note that this conversion
is restricted to power-of-two moduli for the arithmetic masking. However, as mentioned in
Section 4, we can freely choose the (large) masking modulus to switch to. We choose a
power-of-two modulus, specifically to be able to use this efficient B2A conversion method.

After the right-shift on lines 14 and 17, the boolean shares BB and CB are of limited
bit-width. An ideal B2A conversion for this task is the one of [SPOG19], which converts
each bit separately. However, in our experiments, the B2A conversion of [SPOG19] was
outperformed by the conversion of [BCZ18]5.

Finally, BooleanEqualityTest requires to check that
∑S−1

j=0 E(j) = 0. We first convert
this to

⊕
EB = 0 using a A2B conversion from arithmetic sharing modulus p · 2s−1. Then,

for every bit i of EB we have that
⊕

EB[i] = 0. This can easily be implemented as the
masked circuit:

EB [0] SecAND EB [1] SecAND ... SecAND EB [log2(p · 2s−1)− 1] (26)

5.2 Performance Evaluation
To measure the performance of our new masked comparison algorithm, we benchmarked
our technique on an STM32F407-DISC1 board that features an ARM-Cortex M4F. We
compile with -O3, using arm-none-eabi-gcc version 9.2.1. We use the same settings as
the popular PQM4 benchmarking framework [KRSS], i.e. a 24 MHz system clock and a
48 MHz TRNG clock. We sample all masking randomness from the on-chip TRNG, and
we include the sampling cost as well as the total number of requested random bytes into
the benchmarks. On the STM32F407, the TRNG can supply 4 random bytes every 40
TRNG clock cycles, which corresponds to 20 cycles for the main system clock.

In table Table 2, we show the cycle counts of our implementation for the two considered
schemes, Kyber and Saber, and their main parameter sets (k = 3). We further profile our
implementation and break down cycle counts and random bytes in terms of the five steps
of Algorithm 7. We benchmark our implementations with collision probability 2−s = 2−54,
corresponding to a maximal bitwidth of 64 bits for the internal variables in Steps 2-4. We
provide additional implementations with s = 118 (maximal bitwidth 128 bits) and s = 128
(maximal bitwidth 138 bits) in Appendix A.

Steps 1 and 2, i.e. the A2B and B2A conversions, clearly constitute the main computa-
tional bottlenecks, taking up to 95% of the total algorithm execution time. High-performant
conversions are therefore critical, and this motivates our choices such as bit-slicing in the
previous section. In our employed conversions, the complexity of A2B is quadratic in the
number of shares, whereas the complexity of B2A is exponential. This difference is already
visible for Saber with 4 shares (3rd-order masking), where B2A becomes the more costly
routine.

Our masked comparison algorithm differs between Saber and Kyber only in the pre-
processing and the A2B conversion. The cycle count difference is most noticeable for the
A2B conversion. In this conversion, we have for Saber that p = 210, T = 24, fbits,B = 3,
and fbits,B = 6. In other words, we need 13-bit A2B conversions for B and 10-bit A2B
conversions for C. For Kyber, we have that p = 210, T = 24, and fbits,{B,C} = 13. In

5In the sequence B2A(A2B(·)� fbits) it is also possible to only compute B2A conversions for the carry,
further limiting the bit-width. Even with this optimization (called A2A conversion in [VBDK+21]) we
found that [BCZ18] is the preferred B2A conversion.

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 17

Table 2: Performance breakdown of our masked comparison on ARM Cortex-M4 with
collision probability 2−s = 2−54

Scheme Comparison CPU [k]cycles #random bytes
1st 2nd 3rd 1st 2nd 3rd

Saber

Algorithm 7 1,510 3,363 6,543 30,764 90,264 205,104
|-Step 0 |-23 |-23 |-26 |-0 |-0 |-0
|-Step 1 |-978 |-1,926 |-3,015 |-5,888 |-23,552 |-47,104
|-Step 2 |-315 |-1,157 |-3,179 |-16,384 |-57,344 |-147,456
|-Step 3 |-167 |-182 |-197 |-8,192 |-8,192 |-8,192
|-Step 4 |-27 |-73 |-128 |-300 |-1,176 |-2,352

Kyber768

Algorithm 7 2,421 5,253 9,712 35,500 111,256 251,184
|-Step 0 |-251 |-355 |-467 |-0 |-0 |-0
|-Step 1 |-1,666 |-3,485 |-5,742 |-10,624 |-44,544 |-93,184
|-Step 2 |-315 |-1,157 |-3,179 |-16,384 |-57,344 |-147,456
|-Step 3 |-167 |-182 |-197 |-8,192 |-8,192 |-8,192
|-Step 4 |-27 |-73 |-128 |-300 |-1,176 |-2,352

[BGR+21]‡ 462 (0.2x) 22,017 (4.2x) 72,568 (7.5x) 12,072† 902,126† 2,434,170†

‡ : [BGR+21] does not have a false-positive collision probability †: Full masked decapsulation, rather than
only comparison. Masked comparison accounts for 15%/50%/63% of masked decapsulation cycle counts.

other words, we need 23-bit and 17-bit A2B conversions. Furthermore, to avoid a rounding
error as explained in [FVBR+21], for Kyber fbits has to increase logarithmatically with
the number of shares, e.g. fbits = 14 for 3 shares and fbits = 15 for 4 shares. The
complexity of A2B is linear in the number of considered bits, leading the increased runtime
for Kyber in Step 1. The randomness consumption follows the same trend as the cycle
counts. Due to the increased number of iterations within the A2B routine, Kyber requires
additional random bytes in Step 1. For B2A, similarly to its cycle counts, the randomness
consumption increases exponentially with the number of shares.

We also compare our new technique to results reported by Bos et al. [BGR+21] in their
masked implementation of Kyber. Rather than develop a masked compression method for
the re-encrypted ciphertext, DecompressedComparison chooses to decompress the input
ciphertext. Subsequently, a masked range check is employed to determine ciphertext
equality. Our method achieves factors 4.2x and 7.5x cycle count improvements for 2nd and
3rd-order maskings, respectively. In their higher-order masked Kyber implementations,
the masked comparison accounts for 50%, resp. 63%, of the total execution of masked
decapsulation, and our speedup could therefore contribute significantly to reduce overall
cycle counts.

In this work, we are concerned with a higher-order masked comparison method. Com-
pared to [BGR+21], for a 1st-order masking we did not employ custom A2B and B2A
algorithms, specialized only for this case. As a result, for only 2 shares our algorithm is
outperformed by other solutions (factor 5.0x for [BGR+21]).

5.3 Leakage Evaluation
We now present the results of our leakage evaluation. We performed side-channel mea-
surements (power consumption) using the ChipWhisperer Lite [Newa] board. The target
device is an STM32F303 board with an ARM Cortex-M4 core running at 7.37 MHz. We
capture the traces with a sample rate of 29 MS/s; the sample clock is synchronized to
the device clock [Newa]. The code for the side-channel evaluation was compiled using
arm-none-eabi-gcc, version 9.2.1. We take measurements on the complete algorithm
comparing two polynomials modulo 213 (Saber) with 32 coefficients, the smallest possible
option due to the bit-sliced A2B implementation. For the sake of clarity, only these results
are included in this section. To ensure that we do not miss any leakage due to the limited
sample buffer of the ChipWhisperer Lite, we perform measurements on the smaller building
blocks individually and include them in Appendix B.

We show that our method is applicable in practice and does not have any obvious

18 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

0 5000 10000 15000 20000

Samples

−500

0

500

t-
st

at
is

ti
c

Figure 3: First-order t-test results of the first-order implementation with masks disabled
and 10 000 measurements. The red lines indicate the threshold of ±4.5.

0 10000 20000

Samples

−2.5

0.0

2.5

t-
st

at
is

ti
c

(a) t-test for the two-share version.

0 10000 20000

Samples

−2.5

0.0

2.5

t-
st

at
is

ti
c

(b) t-test for the three-share version.

Figure 4: First-order t-test results of the first and second-order implementations with
masks enabled and 100 000 measurements. The red lines indicate the threshold of ±4.5.

weaknesses when confronted with first and second-order side-channel attacks. We use the
non-specific t-test of the Leakage Assessment Methodology presented in [SM15]. More
concretely, we use the fixed + noise variant presented in [BDH+21], which additionally
detects leakage caused by possibly unmasked partial comparisons. The first-order t-test
statistic is calculated as

t = µ0 − µ1√
s2

0
n0

+ s2
1

n1

, (27)

where m0 denotes the sample mean, s0 denotes the sample variance, and n0 the sample size
for the traces with fixed + noise input. The sample mean, sample variance, and sample
size for the random set are denoted by m1, s1, and n1, respectively.

The methodology presented in [SM15] calculates a threshold t-value of 4.5 to obtain
a confidence of 0.99999 to correctly reject the null hypothesis, i.e. the two sets are not
distinguishable. An absolute t-statistic larger than 4.5 thus indicates leakage.

When the Random Number Generator (RNG) is turned off, as in Figure 3, we can
observe that the algorithm shows first-order leakage after only 10 000 measurements. This
expected result confirms a correct setup of our measurement equipment.

We activate the RNG in our next experiment using two shares. The results are shown
in Figure 4a. We cannot identify any peaks in our measurements with 100 000 executions.
Additionally, we provide the first-order t-test statistics for the three-share option of our
algorithm in Figure 4b, where we also cannot detect any first-order leakage.

For the bivariate second-order t-test, we first combine each trace at two points in time
T = {i, j} using the so-called centered product∏

i∈T
(t(i) − µ(i)

y) (28)

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 19

0 10 20 30 40 50

Samples x10

0

10

20

30

40

50

S
am

p
le

s
x
10

0

2

4

6

8

10

12

t-statistic

Figure 5: Bivariate second-order t-test for the two-share version with 10 000 traces. The
t-statistic shows the absolute value.

with y ∈ {0, 1}. Then a second-order t-test is performed on the resulting two-dimensional
traces. As presented in [SM15], d-th order central moments CMd = E((X − µ)d) are
required. For our evaluation, the mean of the first-order t-test µ is replaced with the
second-order central moment CM2, whereas the variance is set to CM4−CM2

2 . Using the
methodology of [SM15], we calculate the t-statistic iteratively without separate sampling,
combination, and calculation steps. However, as this step is computationally very expensive,
we have to reduce the number of sample points during capturing significantly. This carries
the risk of missing leakage and thus a more efficient higher-order evaluation approach
might be interesting future work.

In contrast to the first-order case, the effects of applying many t-tests simultaneously
are non-negligible in the second-order scenario. Similar to [BPO+20], we can apply the
Šidák Correction tth = Qt(1− L

√
1− α, ν) proposed in [BPG18], where Qt is the quantile

function of the t-distribution, L is the trace length, α is the confidence level, and ν is the
degree of freedom, to obtain a valid threshold value. In our example of 5002 sample points,
α = 0.00001 and 100 000 traces, the threshold t-value results in 6.50.

In the first-order implementation with two shares, the bivariate second-order t-test
shows some clear leakage points even when only 10 000 captured traces are taken into
account. This is expected behavior because a first-order implementation, in general, can
not withstand second-order attacks. We graphically illustrate the result in Figure 5, where
we depict the color of each 10x10 time sample square according to the maximum absolute
t-statistic.

In contrary to the first-order implementation, a second-order implementation should
not leak using a second-order t-test. The result of the second-order t-test of our three-share
version is shown in Figure 6. As expected, even with 100 000 traces, no leakage points
above 6.5 appear. Thus, all practical experiments confirm our theoretical results.

6 Future Work
Our new masked comparison algorithm heavily draws on A2B and B2A conversion tech-
niques. Consequently, its performance depends crucially on the performance of these two
algorithms. Table-based conversions are especially appealing, but they have been restricted
to first-order masked implementations [CT03, Deb12, VDV21]. Concurrently with our
work, higher-order table-based mask conversion methods have been proposed [CGMZ21],

20 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

0 10 20 30 40 50

Samples x10

0

10

20

30

40

50

S
am

p
le

s
x
10

0

2

4

6

8

10

12

t-statistic

Figure 6: Bivariate second-order t-test for the three-share version with 100 000 traces. The
t-statistic shows the absolute value.

specifically focused on lattice-based cryptography. These methods boast increased perfor-
mance compared to the A2B and B2A conversions we use in this work. The authors use
their new techniques to mask the CPA-secure decryption and the binomial sampling, but
specifically leave the masking of the polynomial comparison as future work. Opportunely,
the novel masked comparison method that we described in this work is generic and can
work with any A2B or B2A. Therefore, integrating these new higher-order table-based
conversion methods into our masked comparison is a clear direction for future work.

Acknowledgments
We would like to thank Nigel Smart and Barry van Leeuwen for the interesting discussions
on the effect of prime and power-of-two moduli on the false positive probability and for
pointing us to the relevant proving techniques in MPC literature. We would also like to
thank Thomas Pöppelmann for the discussions on how to optimize the masked comparison
operation and Julius Hermelink for his support on integrating his key-recovery algorithm
in our attack on the hash-based approach.

This work was supported in part by CyberSecurity Research Flanders with reference
number VR20192203, the Research Council KU Leuven (C16/15/058), the Horizon 2020
ERC Advanced Grant (695305 Cathedral) and SRC grant 2909.001. Michiel Van Beiren-
donck is funded by an FWO PhD fellowship strategic basic research. Jan-Pieter D’Anvers is
funded by FWO (Research Foundation – Flanders) as junior post-doctoral fellow (contract
number 133185 / 1238822N LV). This work was supported by the German Federal Ministry
of Education and Research (BMBF) under the project “Aquorypt" (16KIS1017). Presented
project results were partly supported by the project that has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No 830927. The authors would like to thank the Chair for Communication Systems and
Network Security as well as the research institute CODE at the Bundeswehr University in
Munich, headed by Prof. Dreo, for their comments and improvements.

References
[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin

Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 21

signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 354–384.
Springer, Heidelberg, April / May 2018.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from Boolean to arithmetic masking. IACR TCHES, 2018(2):22–45,
2018. https://tches.iacr.org/index.php/TCHES/article/view/873.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison. IACR TCHES, 2021(3):334–359, 2021. https://tches.iacr.
org/index.php/TCHES/article/view/8977.

[BDK+18] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle. Crystals - kyber: A cca-secure module-
lattice-based kem. In 2018 IEEE European Symposium on Security and
Privacy (EuroS P), pages 353–367, 2018.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR TCHES, 2021(4):173–214, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/9064.

[BPG18] Florian Bache, Christina Plump, and Tim Güneysu. Confident leakage as-
sessment - A side-channel evaluation framework based on confidence intervals.
In Jan Madsen and Ayse K. Coskun, editors, 2018 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany,
March 19-23, 2018, pages 1117–1122. IEEE, 2018.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
kems. IACR TCHES, 2020(3):483–507, 2020. https://tches.iacr.org/
index.php/TCHES/article/view/8598.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping
Xing. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 769–798. Springer, Heidelberg, August 2018.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[CGMZ21] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order table-based conversion algorithms and masking lattice-based
encryption. Cryptology ePrint Archive, Report 2021/1314, 2021. https:
//ia.cr/2021/1314.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order. In
Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of
LNCS, pages 188–205. Springer, Heidelberg, September 2014.

https://tches.iacr.org/index.php/TCHES/article/view/873
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/1314
https://ia.cr/2021/1314

22 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching
from arithmetic to Boolean masking. In Colin D. Walter, Çetin Kaya Koç,
and Christof Paar, editors, CHES 2003, volume 2779 of LNCS, pages 89–97.
Springer, Heidelberg, September 2003.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, Heidelberg, September 2012.

[DGJ+19] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson,
Frederik Vercauteren, and Ingrid Verbauwhede. Decryption failure attacks
on IND-CCA secure lattice-based schemes. In Dongdai Lin and Kazue Sako,
editors, PKC 2019, Part II, volume 11443 of LNCS, pages 565–598. Springer,
Heidelberg, April 2019.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and
Andrea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure encryp-
tion and CCA-secure KEM. In Antoine Joux, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 18, volume 10831 of LNCS,
pages 282–305. Springer, Heidelberg, May 2018.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Proceedings of ACM Workshop on Theory of Implementation Security
Workshop, TIS’19, page 2–9, New York, NY, USA, 2019. Association for
Computing Machinery.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, August 1999.

[FVBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
Cryptology ePrint Archive, Report 2021/479, 2021. https://eprint.iacr.
org/2021/479.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled
chosen-ciphertext attacks on kyber. Cryptology ePrint Archive, Report
2021/1222, 2021. https://eprint.iacr.org/2021/1222.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2021/479
https://eprint.iacr.org/2021/479
https://eprint.iacr.org/2021/1222

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 23

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-enhanced
power analysis collision attack. In Stefan Mangard and François-Xavier Stan-
daert, editors, CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
Heidelberg, August 2010.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-
channel attack on a masked IND-CCA secure saber KEM implementation.
IACR TCHES, 2021(4):676–707, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/9079.

[Newa] NewAE. CW1173 ChipWhisperer-Lite. https://rtfm.newae.com/Capture/
ChipWhisperer-Lite.html.

[Newb] NewAE. CW308T-STM32F. https://rtfm.newae.com/Targets/UFO%
20Targets/CW308T-STM32F.html.

[NIS16] NIST Computer Security Division. Post-Quantum Cryptogra-
phy Standardization, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR
TCHES, 2018(1):142–174, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/836.

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on CCA-secure lattice KEMs.
IACR TCHES, 2021(2):37–60, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8787.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR TCHES, 2020(3):307–335, 2020. https://tches.iacr.org/
index.php/TCHES/article/view/8592.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and
Damien Stehlé. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Tim Güneysu and Helena
Handschuh, editors, CHES 2015, volume 9293 of LNCS, pages 495–513.
Springer, Heidelberg, September 2015.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443
of LNCS, pages 534–564. Springer, Heidelberg, April 2019.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis on
post-quantum kems. Cryptology ePrint Archive, Report 2021/849, 2021.
https://ia.cr/2021/849.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://rtfm.newae.com/Capture/ChipWhisperer-Lite.html
https://rtfm.newae.com/Capture/ChipWhisperer-Lite.html
https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html
https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/849

24 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

[VBDK+21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of SABER. ACM JETC, 17(2):10:1–10:26, 2021.

[VDV21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Verbauwhede.
Analysis and comparison of table-based arithmetic to boolean masking.
IACR TCHES, 2021(3):275–297, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/8975.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magni-
fying side-channel leakage of lattice-based cryptosystems with chosen cipher-
texts: The case study of kyber. Cryptology ePrint Archive, Report 2020/912,
2020. https://eprint.iacr.org/2020/912.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Trans. Computers, 49(9):967–970,
2000.

https://tches.iacr.org/index.php/TCHES/article/view/8975
https://tches.iacr.org/index.php/TCHES/article/view/8975
https://eprint.iacr.org/2020/912

D’Anvers, Heinz, Pessl, Van Beirendonck, Verbauwhede 25

A Supplementary Security
Our main benchmarks use s = 54, corresponding to a collision probability of 2−54, and
requiring a 64-bit type in Steps 2-4 of our Algorithm 7. We believe this collision probability
will be sufficiently low for the majority of use cases, but do provide implementation results
for s = 118 and s = 128 in Tables 3 and 4. These implementations require, respectively, a
custom 128-bit type and 138-bit type in Steps 2-4 of Algorithm 7. Moving up from a 64-bit
type causes bit-wise operations and randomness sampling to increase by roughly a factor
of two in these steps, whereas the multiplications in Step 3 incur a higher overhead. Even
with a reduced collision probability requiring custom types, our algorithm outperforms
[BGR+21].

Table 3: Performance breakdown of our masked comparison on ARM Cortex-M4 with
collision probability 2−s = 2−118

Scheme Comparison CPU [k]cycles #random bytes
1st 2nd 3rd 1st 2nd 3rd

Saber

Algorithm 7 2,155 5,352 11,096 55,628 156,944 363,040
|-Step 0 |-23 |-23 |-26 |-0 |-0 |-0
|-Step 1 |-978 |-1,926 |-3,015 |-5,888 |-23,552 |-47,104
|-Step 2 |-629 |-2,702 |-7,146 |-32,768 |-114,688 |-294,912
|-Step 3 |-481 |-568 |-679 |-16,384 |-16,384 |-16,384
|-Step 4 |-46 |-130 |-230 |-588 |-2,320 |-4640

Kyber768

Algorithm 7 3,069 7,241 14,262 60,364 177,936 409,120
|-Step 0 |-251 |-355 |-467 |-0 |-0 |-0
|-Step 1 |-1,666 |-3,485 |-5,742 |-10,624 |-44,544 |-93,184
|-Step 2 |-629 |-2,702 |-7,146 |-32,768 |-114,688 |-294,912
|-Step 3 |-481 |-568 |-679 |-16,384 |-16,384 |-16,384
|-Step 4 |-46 |-130 |-230 |-588 |-2,320 |-4,640

[BGR+21]‡ 462 (0.2x) 22,017 (3.0x) 72,568 (5.1x) 12,072† 902,126† 2,434,170†

‡ : [BGR+21] does not have a false-positive collision probability †: Full masked decapsulation, rather than
only comparison. Masked comparison accounts for 15%/50%/63% of masked decapsulation cycle counts.

Table 4: Performance breakdown of our masked comparison on ARM Cortex-M4 with
collision probability 2−s = 2−128

Scheme Comparison CPU [k]cycles #random bytes
1st 2nd 3rd 1st 2nd 3rd

Saber

Algorithm 7 2,436 6,261 13,095 63,876 185,836 437,208
|-Step 0 |-23 |-23 |-26 |-0 |-0 |-0
|-Step 1 |-978 |-1,926 |-3,015 |-5,888 |-23,552 |-47,104
|-Step 2 |-779 |-3,393 |-8,845 |-40,960 |-143,360 |-368,640
|-Step 3 |-610 |-779 |-965 |-16,384 |-16,384 |-16,384
|-Step 4 |-48 |-138 |-245 |-644 |-2,540 |-5,080

Kyber768

Algorithm 7 3,350 8,150 16,261 68,612 206,828 483,288
|-Step 0 |-251 |-355 |-467 |-0 |-0 |-0
|-Step 1 |-1,666 |-3,485 |-5,742 |-10,624 |-44,544 |-93,184
|-Step 2 |-779 |-3,393 |-8,845 |-40,960 |-143,360 |-368,640
|-Step 3 |-610 |-779 |-965 |-16,384 |-16,384 |-16,384
|-Step 4 |-48 |-138 |-245 |-644 |-2,540 |-5,080

[BGR+21]‡ 462 (0.1x) 22,017 (2.7x) 72,568 (4.5x) 12,072† 902,126† 2,434,170†

‡ : [BGR+21] does not have a false-positive collision probability †: Full masked decapsulation, rather than
only comparison. Masked comparison accounts for 15%/50%/63% of masked decapsulation cycle counts.

26 Higher-Order Masked Ciphertext Comparison for Lattice-Based Cryptography

B Supplementary TVLA

0 5000 10000 15000 20000

Samples

−2.5

0.0

2.5

t-
st

a
ti

st
ic

Figure 7: First-order t-test results of the first-order A2B implementation with 100 000
measurements. The red lines indicate the threshold of 4.5.

0 500 1000 1500 2000 2500

Samples

−2.5

0.0

2.5

t-
st

a
ti

st
ic

Figure 8: First-order t-test results of the first-order B2A implementation with 100 000
measurements. The red lines indicate the threshold of 4.5.

0 2500 5000 7500 10000 12500 15000 17500

Samples

−2.5

0.0

2.5

t-
st

at
is

ti
c

Figure 9: First-order t-test results of the first-order ReduceComparisons implementation
with 100 000 measurements. The red lines indicate the threshold of 4.5.

0 5000 10000 15000 20000

Samples

−2.5

0.0

2.5

t-
st

at
is

ti
c

Figure 10: First-order t-test results of the first-order BooleanEqualityCheck implementa-
tion with 100 000 measurements. The red lines indicate the threshold of 4.5.

	Introduction
	Preliminaries
	Notation
	Saber and Kyber
	FO-transformation
	Masked Comparison Algorithms

	Side-Channel Collision Attack on a 1st-Order Impl.
	Attack Description
	Attack Setup and Measurement
	Results

	Higher-Order Masked Comparison
	Security Proof

	Evaluation
	Subroutines
	Performance Evaluation
	Leakage Evaluation

	Future Work
	Supplementary Security
	Supplementary TVLA

