
Extending the Tally-Hiding Ordinos System: Implementations for
Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting?

Fabian Hertel1, Nicolas Huber2, Jonas Kittelberger3, Ralf Küsters2, Julian Liedtke2, and Daniel Rausch2

1 University of Stuttgart st151599@stud.uni-stuttgart.de
2 University of Stuttgart {firstname.lastname}@sec.uni-stuttgart.de

3 University of Stuttgart jonas.kittelberger@gmail.com

Abstract. Modern electronic voting systems (e-voting systems) are designed to achieve a variety of
security properties, such as verifiability, accountability, and vote privacy. Some of these systems aim
at so-called tally-hiding : they compute the election result, according to some result function, like the
winner of the election, without revealing any other information to any party. In particular, if desired,
they neither reveal the full tally consisting of all (aggregated or even individual) votes nor parts of it,
except for the election result, according to the result function. Tally-hiding systems offer many attractive
features, such as strong privacy guarantees both for voters and for candidates, and protection against
Italian attacks. The Ordinos system is a recent provably secure framework for accountable tally-hiding
e-voting that extends Helios and can be instantiated for various election methods and election result
functions. So far, practical instantiations and implementations for only rather simple result functions
(e.g., computing the k best candidates) and single/multi-vote elections have been developed for Ordinos.

In this paper, we propose and implement several new Ordinos instantiations in order to support
Borda voting, the Hare-Niemeyer method for proportional representation, multiple Condorcet meth-
ods, and Instant-Runoff Voting. Our instantiations, which are based on suitable secure multi-party
computation (MPC) components, offer the first tally-hiding implementations for these voting methods.
To evaluate the practicality of our MPC components and the resulting e-voting systems, we provide
extensive benchmarks for all our implementations.

Keywords: E-Voting · Tally-Hiding · MPC · Accountability · Privacy · Implementations · Benchmarks.

1 Introduction

There is a multitude of different voting methods ranging from relatively simple ones, such as plurality/single-
choice voting, to more complex ones, such as cumulative voting with multiple votes as well as preferential
elections and multi-round votings. Also, there are many different result functions used in elections. For
example, one might be interested only in the winner of the election (e.g., for presidential elections), the
number of seats of parties in a parliament, or the k best or worst candidates (ranked or not ranked), e.g., to
fill positions or to decide who moves on to a runoff election.

Tally-Hiding. A desirable and strong security property that several e-voting systems try to achieve is tally-
hiding [1,2,3,4,5,6,7]. A tally-hiding system computes and publishes the election result, according to some
result function, e.g., the winner of an election, without revealing any other information to any party. In
particular, if desired, except for the election result itself, they neither reveal the full tally consisting of all
(aggregated or even individual) votes nor parts of it, such as the winner of an election round or the number
of votes of a candidate. Even internal parties, like trustees, should not learn anything besides the result.
In essence, tally-hiding is a strong form of privacy that not just avoids leaking the content of individual
ballots but rather avoids leaking any unnecessary information altogether. As discussed, e.g., in [6], tally-
hiding is an attractive feature in many situations: it prevents introducing biases in voters during multi-round
elections, losing candidates are not unnecessarily embarrassed due to a (potentially very low) number of

? This work was in part funded by the Deutsche Forschungsgemeinschaft (DFG) KU 1434/11-1 and the Center for
Integrated Quantum Science and Technology (IQST).

votes, mandates of winning candidates remain strong even if they won only by a small margin, tally-hiding
helps prevent gerrymandering since the exact vote distributions remain hidden, and it also prevents Italian
attacks. To retain trust in the overall result, tally-hiding elections, like other elections, have to provide
verifiability : Each voter must be able to verify that her vote was counted correctly and that the overall result
is correct. Moreover, it should not only be possible to verify the result, but, if verification fails, it should
be possible to identify misbehaving parties and hold them accountable for the failure. This stronger form of
verifiability is called accountability [8].

There are also several systems that achieve what we call partial tally-hiding, e.g., [9,10,11,12,13,14]. These
systems generally focus on solving specific issues, most notably Italian attacks, and achieve this by hiding
only those parts of the tally that are critical for the issue at hand, e.g., the individual votes. However, they
still reveal certain information besides the election result, e.g., the losers of intermediate election rounds. In
this work, we focus on (full) tally-hiding where nothing but the final result is revealed.

Current State. As mentioned, several e-voting systems have been designed to be tally-hiding. These systems
generally follow the same underlying idea, namely, using a publicly verifiable secure multi-party computation
(MPC) protocol to compute the election result from an encrypted tally. From a theoretical point of view,
it is clear that essentially arbitrary functions, and thus election results, can be computed in this way. The
main challenge lies in constructing an efficient MPC tallying component. For example, in recent work Cortier
et al. [7] tackles, among others, this challenge by proposing tally-hiding MPC components (for single-vote
elections, majority judgement, Condorcet-Schulze, and STV) and studying their asymptotic complexity.

So far, there are only very few (fully) tally-hiding protocols that have been implemented, benchmarked,
and shown to be viable. Specifically, Canard et. al. [5] proposed and implemented a tally-hiding protocol
for majority judgement that is shown to achieve practical performance. In [6], Küsters et. al. proposed the
general Ordinos framework for provably secure accountable tally-hiding e-voting. They also designed and
implemented several Ordinos instantiations and demonstrated their practicality. Specifically, they considered
the following highly relevant but relatively simple result functions for single/multi-vote elections: computing
the k candidates with the highest/lowest number of votes, computing all candidates that pass a certain
threshold of votes, a combination of both, with or without revealing the ranking among the winners, and
with or without revealing the number of votes the candidates in question have obtained.

Our Goal. In this work, we want to extend the state-of-the-art by implementing and benchmarking MPC
components for tally-hiding elections also for many other voting methods. To this end, we build on the
Ordinos system, since, as mentioned, Ordinos provides a general provably secure framework for accountable
(and hence, verifiable) tally-hiding elections, and because we can base our work on the practical instantiations
of Ordinos that have been proposed before.

Our Contributions. We propose and implement several new instantiations of Ordinos for complex election
types and result functions. Specifically, we propose MPC components for Borda voting, the Hare-Niemeyer
method for proportional representation, Instant-Runoff Voting, and multiple versions of Condorcet (plain
Condorcet, weak Condorcet, Copeland evaluation, Minimax evaluation, Smith set, and Schulze evaluation).
As we explain, our MPC components for tallying satisfy the requirements of the Ordinos framework and
therefore yield provably secure e-voting systems, i.e., they inherit the accountability, privacy, and tally-hiding
properties of the Ordinos framework.

Our implementations of the MPC components are available at [15]. We accurately assess the performance
and scalability of our MPC components for practical applications. While our algorithms do not asymptotically
improve over naturally expected baselines (e.g., IRV performs exponentially in the number of candidates),
which was not the main goal of this work anyways, we are indeed able to show that the concrete performance
is practical for real world elections (in the case of IRV and Schulze only for relatively small numbers of
candidates).

Structure. In Section 2 we recall the Ordinos framework. We then, in Section 3, present and construct
important building blocks used in subsequent sections. In Sections 4 to 7, we present our instantiations,
implementations, and evaluations for the various voting methods we consider. We conclude in Section 8.

2

2 The Ordinos Framework

We need the following notation and terminology. We write [n] to denote the set {0, . . . , n− 1}. Let nc be the
number of candidates/choices on a ballot and let nv be the (maximal) number of voters. The format of a plain
ballot is defined via a finite choice space C ⊆ Nnc , i.e., a ballot assigns each candidate/choice a number subject
to constrains defined by C. For example, a single vote election where a plain ballot contains one vote for a
single candidate/choice can be modeled via the choice space Csingle := {(b0, . . . , bnc−1) ∈ {0, 1}nc |

∑
i bi =

1}. For voter j we denote her plain ballot by vj := (vji)i∈[nc] ∈ C. Ordinos uses an additively homomorphic
t-out-of-nt threshold4 public key encryption scheme E = (E,D) with Epk(a) denoting a ciphertext obtained
as an encryption of plaintext a under the public key pk of the election.

Given this terminology, Ordinos [6] works roughly as follows. The protocol is run among a voting authority,
the voters, nt trustees, an authentication server, and an append-only bulletin board (BB). In the setup phase,
parameters of the election are generated, including a public key and corresponding secret key shares for E ,
one for each trustee, along with a NIZKP πKeyShareGen from each trustee to prove knowledge of their key
share. Additionally, C and the result function fres of the election (see below) are fixed and published. In
the voting phase, the voters first encrypt their ballots and then publish them on the BB, authenticating
themselves as eligible voters with the help of the authentication server. An encrypted ballot of voter j has
the form (Epk(v

j
i))i∈[nc], i.e., each component of the plain ballot is encrypted separately. The encrypted

ballot also contains a NIZKP πEnc that proves validity of the plain ballot, i.e., vj = (vji)i∈[nc] ∈ C. The
published encrypted ballots can then be (publicly) homomorphically aggregated to obtain the encrypted
and aggregated full tally, i.e., one obtains ciphertexts for vi :=

∑
j∈[nv] v

j
i where vi is the total number

of votes/points that candidate/choice i obtained in the election. In the tallying phase, the trustees run a
publicly accountable MPC protocol PMPC to compute fres. This protocol takes as (secret) inputs the secret
key shares of the trustees and the (public) encrypted aggregated tally and outputs fres(v0, . . . , vnc−1). This
result, along with any material that is needed to verify the MPC computation, is published by the trustees on
the BB. Finally, in the verification phase, voters can check that their ballots appear on the BB and everyone
can verify the result by checking all NIZKPs as well as the (accountable) MPC computation.

Security of Ordinos (privacy and accountability) was shown independently of specific instantiations of
the mentioned primitives, and hence, security is guaranteed by any instantiation fulfilling the necessary
requirements. In what follows, we briefly recall the two generic security results of Ordinos (including the
requirements for the underlying primitives), which have been formalized and proven in [6]. The first result
states accountability of Ordinos, where accountability was formalized using the KTV framework [8].

Theorem 1 (Accountability [6], informal). Let E be a correct additively homomorphic threshold public-
key encryption scheme E, πKeyShareGen and πEnc be secure NIZKPs for E, and PMPC be a publicly accountable
MPC protocol, i.e., if the result does not correspond to the input, then this can be detected and at least one
misbehaving trustee can be identified; this must hold true even if all trustees running the MPC protocol are
malicious. Then (the resulting instance of) Ordinos is accountable.5

Importantly, Ordinos provides accountability (and hence, by results in [8] also verifiability) even if all trustees
are malicious.

The following theorem (that was formalized and proven in [6]) states privacy of Ordinos, i.e., the tally-
hiding property that no information besides the final result, according to the result function, is revealed to
anyone, including the trustees. It was proven using the privacy definition given in [16].

Theorem 2 (Privacy/Tally Hiding [6], informal). Let E be an additively homomorphic IND-CPA-
secure t-out-of-nt threshold public-key encryption scheme, πKeyShareGen and πEnc be secure NIZKPs for E, and
let PMPC be an MPC protocol that securely realizes (in the sense of UC [17,18]) an ideal MPC functionality
which essentially takes as input a vector of ciphertexts and returns ftally evaluated on the corresponding

4 I.e., there are nt secret key shares with t ≤ nt secret shares being necessary for successful decryption.
5 We note that the security proof for accountability (and also for privacy) makes certain standard assumptions, such

as honesty of the BB. We refer interested readers to [6] for full details. We also note that if PMPC provides only
public verifiability, instead of public accountability, then Ordinos provides verifiability.

3

plaintexts without leaking any other information if at most t− 1 trustees are malicious. Then (the resulting
instance of) Ordinos provides privacy/is tally-hiding in presence of up to t− 1 malicious trustees.

Instantiations of Ordinos. As mentioned in the introduction, for practical instantiations of Ordinos
the main challenge lies in finding efficient and suitable instantiations of the primitives, including the MPC
component, that work well and efficiently together. For certain kinds of elections and result functions this has
been achieved by Küsters et al. in [6]. These instantiations use a threshold variant of the Paillier encryption
scheme [19] to implement E . To design their MPC protocols PMPC for their result functions, Küsters et
al. make use of and combine NIZKPs and publicly accountable MPC protocols from the literature that
implement the following basic operations:

– Epk(c) = fadd(Epk(a), Epk(b)) s.t. c = a+ b, directly from the additive homomorphic property of Paillier
encryption; for brevity we write Epk(a) + Epk(b). Similarly, Epk(c) = fmul(Epk(a), b) s.t. c = a · b; for
brevity we write Epk(a) · b.

– Epk(c) = fmul(Epk(a), Epk(b)) s.t. c = a · b, using a publicly accountable MPC protocol for multiplication
[19]; for brevity we write Epk(a) · Epk(b).

– Epk(c) = fgt(Epk(a), Epk(b)) s.t. c = 1 iff a ≥ b and 0 otherwise, using a publicly accountable MPC
protocol for the greater-than test [20].

– Epk(c) = feq(Epk(a), Epk(b)) s.t. c = 1 iff a = b and 0 otherwise, using a publicly accountable MPC
protocol for equality tests from [20].

– c = fdec(Epk(a)) s.t. Epk(a) is an encryption of c, using publicly accountable distributed Paillier decryp-
tion [19].

The above components have been chosen not only because they meet the necessary security requirements
but also due to their efficiency, which facilitates constructing practical instantiations. That is, fadd and
multiplication with a publicly known value can be computed locally for the Paillier scheme. Furthermore,
both fgt and feq as proposed by [20] run in sublinear time independently of the actual plaintext space of
the encryption scheme if plaintexts contained within the ciphertexts are upper bounded by some bound bct.
Ordinos indeed has this property, where the bound generally depends on nv and C. Furthermore, both fgt
and feq and Paillier synergize rather well. As discussed in [6], while fgt and feq can in principle also be used
with exponential ElGamal, both functions use decryption for a (upper-bounded but still) relatively large
plaintext space, and hence, would perform poorly with exponential ElGamal.

We note that the above components have a useful property, namely, they can be combined to compute
more complex functions such that the resulting protocol is still a secure publicly accountable MPC protocol.
In other words, they allow for building protocols PMPC for Ordinos that meet the requirements of Theorems 1
and 2.

Our Instantiations and Parameters. In this work, we use Paillier encryption and the above basic building
blocks. The main challenge and indeed a core contribution of our paper is to show and empirically demonstrate
that these components are not just suitable for constructing protocols PMPC for simple result functions (e.g.,
revealing the candidate with the most votes in a single-vote election), but also for much more complex voting
methods and result functions. To benchmark our implementations, we use the parameters as [6]. That is,
we use a Paillier key of size 2048 bits and for the greater-than and equality protocols we use the range
[216], i.e., bct = 216, for the (encrypted) plaintext inputs. This range can be increased if needed, i.e., to
account for cases where aggregated ciphertexts might contain plaintexts outside of [216]. Note that, except
for requiring a suitable upper bound bct, the performance of our MPC protocols is otherwise independent of
the exact number of voters nv due to aggregation of the ballots. The setup for our benchmarks consists of
three trustees communicating over a local network. Each trustee ran on an ESPRIMO Q957 (64bit, i5-7500T
CPU @ 2.70GHz, 16 GB RAM). As in [6], the benchmarks of our MPC protocols start with an already
aggregated tally. Küsters et al. [6] showed for their MPC protocols that the number of trustees does not
influence the benchmarks in a noticeable way and that, due to the sublinear communication complexity of
the comparison protocols, there is no significant difference between a local network and the Internet. Both
results also hold for our MPC constructions which are based on the same primitives. Hence, our benchmarks
focus on the number of candidates which is the main factor for the performance of our protocols.

4

Floor Division
Input: Epk(a), b, n
Result: Epk(i) with i ∈ [n] such that i · b ≤ a and (i + 1) · b > a

1 for j ∈ [n + 1] do
2 Epk(rj) = fgt(Epk(a), Epk(j · b))
3 for j ∈ [n] do
4 Epk(r̂j) = Epk(rj)− Epk(rj+1)
5 Epk(i) =

∑
j∈[n] Epk(j) · Epk(r̂j)

6 return Epk(i)

Fig. 1: Algorithm for Floor Division.

3 Building Blocks

In this section, we describe three MPC building blocks that can be obtained using the basic operations
described in Section 2 and which we use to construct PMPC for our Ordinos instances, where the first building
block is from [6].

Minimum k and Maximum k Values. Often, we have a vector (Epk(ai))i∈[n] and want to compute
ciphertexts (Epk(bi))i∈[n] of a vector (bi)i∈[n] such that bi = 1 if ai is one of the k largest (resp. smallest)
values in (ai)i∈[n] and bi = 0 otherwise. We do so as described in [6]. That is, we first construct the
lower halve of the comparison matrix M such that Mi,j<i := fgt(Epk(ai), Epk(aj)). From this matrix, which
consists of ciphertexts containing 0 or 1, one can compute a ciphertext for each ai that contains the number
of comparisons that i has won, i.e., where ai ≥ aj for some j 6= i. We can then use fgt to compare this
ciphertext (containing the results for ai) with a ciphertext on the number n−k−1 and obtain Epk(bi).

6 One
can proceed similarly in order to find the smallest k values. Note that this algorithm can also be applied if
k is not publicly known but rather only available as a ciphertext; in this situation, k is also not revealed by
the algorithm. We make use of this property in the context of the Hare-Niemeyer method, see Section 4. We
denote these algorithms for computing the vectors Epk(bi) by GetBest(), resp. GetWorst(). These algorithms
have runtime O(n2).

Maximum. If we are just interested in obtaining a ciphertext Epk(ai) of the maximum value ai in the vector
(Epk(ai))i∈[n], we can do so more efficiently in linear runtime. That is, we start with the possible maximum
m = Epk(a0) and iterate through all ai’s. For each ai we test whether it is greater than the current maximum
with g = fgt(Epk(ai),m) and adapt the maximum accordingly with m = g · Epk(ai) + (Epk(1)− g) ·m. The
minimum can be computed accordingly. We denote these algorithms by GetMax() resp. GetMin(). If we
are interested in the indices of the values that are the maximum resp. minimum, we can first compute the
encrypted maximum m and then compute for each index the encrypted indicator Epk(bi) := feq(Epk(ai),m),
bi ∈ {0, 1}. We denote these algorithms for obtaining the tuple of encrypted indicators with GetMaxIdx()
and GetMinIdx().

Floor Division. Given a ciphertext Epk(a) of some a ∈ N and a plain value b ∈ N>1, this algorithm,
described in Figure 1, is used to compute a ciphertext Epk(i) with i = bab c. The algorithm also requires a
value n ∈ N, s.t. n ·b does not exceed the plaintext space size and i ∈ [n]. The algorithm compares all possible
values. The sequence (rj)j∈[n+1] consists of a sequence of zeros followed by a sequence of ones, where rj = 0
if a < jb and rj = 1 otherwise. We are interested in the index i such that ri = 1 and ri+1 = 0. We obtain
this index by computing for each j the value r̂j := rj − rj+1. Then, we can use these r̂j as indicators to
obtain the correct division result.

4 Hare-Niemeyer Method

The Hare-Niemeyer method is an evaluation method for proportional allocation of seats that is used for
example in Ukraine and Italy, but has also been used for German federal elections until 2005. The Hare-
Niemeyer method is used for situations where a fixed number of seats needs to be assigned to candidates from

6 If there are multiple ai with the same value, there might be more than k bi that are 1. In cases where always
exactly k such values are required, one can use a tie breaker mechanism such as the one described in [7].

5

different parties, where a voter typically votes only for the party and not the candidates themselves. Often,
this type of proportional voting is also combined with some form of plurality or majority voting, such as
first-pass-the-post-voting for electing single representatives for electoral districts, in so-called mixed electoral
systems. Such mixed systems are also used for elections in many state parliaments in Germany, elections
for the Scottish and Welsh parliaments and elections for the New Zealand House of Representatives. More
specifically, the Hare-Niemeyer method for proportional voting works as follows: Assume that there are ns
seats to be assigned among nc parties. Then, if there are a total of nv valid votes and party ci has received
vi votes, the number of seats that ci is awarded is computed using the “ideal quota” given by qi := vi·ns

nv
.

Initially, the number of seats awarded to each ci is set to be s′i := bqic. However, since these s′i usually do not
add up to ns, the remaining nr ∈ [nc] seats are distributed in the order of the highest remainders of vi·ns

nv
.

That is, the nr parties ci with the highest remainders di = qi − s′i receive one additional seat each. Note
that it could happen that multiple parties have the same remainders di, and thus, more than nr additional
seats are assigned. If this is not desired, then one would use a tie-breaking algorithm (cf. Section 5 and
Footnote 6). There are many possible ways to vote in proportional elections. Our algorithm can handle every
possible ballot format, as long as the ballots can be aggregated such that we obtain one ciphertext per party
containing the total number of votes for the party. In the simplest case, one can use Csingle as choice space
with ballot format NIZKPs πEnc from, for example, [21] and [19].

Our MPC algorithm for computing the Hare-Niemeyer method is presented in Figure 2. On a high-level,
the algorithm follows the above description, i.e., it first computes the seat distribution without taking the
remainder seats into account. Next, for each party, the remainder of the division (see above) is computed
and the remainder seats are distributed among the parties with the highest remainder values. Importantly,
this is achieved without revealing the total number of remainder seats or the set of parties that have received
an additional seat.

We present benchmarks for our MPC tallying protocol in Figure 3. The runtime of the algorithm is
linear in nc · ns. As the figure shows, evaluating the Hare-Niemeyer method is highly efficient for a practical
number of seats (1000) and (up to) 4 parties. Due to the linear growth, this should still be the case even if
there are more parties than the maximum of 4 that we benchmarked. Also, recall from Section 2 that these
benchmarks are essentially independent of the number of voters and trustees. In terms of security for our
Ordinos instantiation, we obtain the following.

Theorem 3 (Security of Hare-Niemeyer method with Ordinos). Let E be an additively homomorphic
IND-CPA-secure t-out-of-nt threshold public-key encryption scheme and πKeyShareGen be a secure NIZKP for
E such as, e.g., the primitives used in [6]. Let πEnc be the ballot format NIZKP from above, and let PMPC

be our MPC component for the Hare-Niemeyer method as defined above. Then, the Ordinos instance using
these primitives is an accountable and private (and hence tally-hiding) voting system for the Hare-Niemeyer
method.

Proof Sketch. This theorem is a direct corollary of Theorems 1 and 2 which were proven in [6]. Observe that
the primitives E , πKeyShareGen, and πEnc already fulfill the requirements of Theorems 1 and 2. The only thing
left to show for Theorems 1 and 2 is that our new tallying protocol PMPC is secure. That is, we have to show
that PMPC is a private and publicly accountable implementation of the Hare-Niemeyer method.

Both properties follow because our MPC protocol is built from combinations of the basic components
presented in Section 2. As mentioned in that section, each of these basic components guarantees privacy
and public accountability. As for the connections of these components, the respective inputs and outputs are
all encrypted (except for the final decryption of the election result) and published on the BB. Due to the
encryption, these intermediate results do not leak any additional information, neither to internal parties nor
to external observers. Also, since the intermediate results are published, external observers can check that
the output of one step is used correctly as the input to the next step. Thus, if some trustee tries to use a
different input, she can be held accountable. ut

5 Instant Runoff Voting (IRV)

Instant-runoff-voting (IRV) is a ranked voting method which can be used in single-seat elections. It is often
used, e.g., in Australia, India, the UK and the US. In IRV, if a candidate has been ranked first by an absolute

6

Tally-Hiding Hare-Niemeyer Evaluation

Input: Encrypted aggregated votes per party: {Epk(vi)}i∈[nc]

Number of seats in total ns and number of total votes nv

Result: Vector s such that si is the number of seats of party i.
1 for i ∈ [nc] do
2 mi = Epk(vi) · ns

3 Epk(s
′
i) = FloorDivision(mi, nv, ns)

4 Epk(nr) = Epk(ns)−
∑

i∈[nc]
Epk(s

′
i)

5 for i ∈ [nc] do
6 Epk(di) = Epk(vi) · ns − nv · Epk(s

′
i).

7 (Epk(d
best
i))i∈[nc] = GetBest((Epk(d0), . . . , Epk(dnc−1)), Epk(nr))

8 for i ∈ [nc] do

9 Epk(si) = Epk(s
′
i) + Epk(d

best
i)

10 si = fdec(Epk(si))

11 return s

Fig. 2: Tally-Hiding Hare-Niemeyer Evaluation

Candidates Runtime

3 6min 0s
4 18min 0s
5 327min 30s

Fig. 3: Benchmarks for the Hare-Niemeyer method (left) and IRV (right).

majority of voters, this candidate is the winner of the election. Otherwise, the candidate ranked first least
often is eliminated, i.e., removed from the pool of candidates. Then, all ballots are adjusted accordingly, i.e.,
the eliminated candidate is removed and other (lower-ranked) candidates are moved up a rank. This process
is repeated until one of the remaining candidates has received the absolute majority of votes and thus wins
the election. An algorithm for evaluating IRV in a fully tally-hiding way has already been proposed in [3].
However, this algorithm does not support aggregation and therefore scales with the number of ballots/voters.
Hence, instead of building on and providing the first implementations and benchmarks of this algorithm, we
rather follow a different approach: we propose an algorithm that is compatible with the aggregation approach
of Ordinos. By supporting aggregation, the performance of our solution remains essentially independent of
the number of voters. For our instantiation, we use Csingle but interpret each choice as a ranking of candidates.
For example, for ncand = 5, we have nc = ncand! = 120 choices, where each choice represents a permutation of
the set of candidates. Observe that this encoding indeed allows for aggregating IRV ballots to obtain the full
(encrypted) tally as usually done in Ordinos. NIZKPs πEnc for showing the well-formedness of such a ballot
are given in [21] and [19]. Note that the size of this choice space (and thus the runtime of our algorithm)
scales exponentially in the number of candidates. However, we are able to show that this approach is still
practical for a small amount of candidates (≤ 5) as they have occurred in practice (see benchmarks presented
in Figure 3 and the discussion below).

We present our algorithm to evaluate an IRV election with Ordinos in Figure 4. The idea of our algorithm
is that in round i, i.e. after i candidates have been eliminated, we have to consider the first k = i+1 candidates

7

Tally-Hiding IRV Evaluation

Input: ncand, (vj)j∈nc , the aggregated single-vote ballots for the choices.
Result: An indicator vector (bi)i∈ncand

such that bi = 1 iff i-th candidate is eliminated.

1 X = (Epk(0))i∈[ncand] // Encrypted indicator bits.

2 for i ∈ [ncand − 1] do // perform ncand − 1 elimination rounds
3 (vs

j = Epk(0))j∈[ncand] // Votes received in this round.

4 k = i + 1
5 for (ordered) k-tuple ri with entries in [ncand] do // go over ranking prefixes
6 cf = Epk(0), d = Epk(0) // cf will be the winner of prefix, d is a helper bit
7 for c in ri do // find winner in prefix
8 cf = d · cf + (1− d) · c, d = d + (1− d) · (1−Xc)
9 for c in ri do // add points from ballots for current prefix to the winner

10 b = feq(Epk(c), cf)
11 for j ∈ [nc] s.t. j represents a ranking where the top k candidates are ri do
12 vs

c = vs
c + b · vj

13 (ej)j∈[ncand] ← GetMinIdx((vs
0, . . . , v

s
ncand−1))

14 for r ∈ [ncand] do // Update/add one eliminated candidate
15 Xr = Xr + (1−Xr) · er
16 return fdec(X)

Fig. 4: Tally-Hiding IRV Evaluation.

of each ballot to find a candidate that has not been eliminated. We can then look at each possible ordering
ri of k candidates and check how many votes every permutation that starts with ri received. These votes are
then assigned to the respective first non-eliminated candidate in that permutation and the candidate with
the least votes is eliminated. Note that it can happen that two candidates are assigned the same (lowest)
number of votes in a round. Typically, IRV does not eliminate multiple candidates in the same round, hence
in these situations some kind of tie-breaking algorithm is required. Often, this is done by lot - for example,
this is the default method for IRV elections in Maine [22]. We address this issue, by letting GetMinIdx()
output only the first candidate (i.e., the lower index) with the least amount of votes. To obtain randomized
tie-breaking, one starts with a uniformly randomly ordered list of candidates. It is interesting future work
to explore implementations of more sophisticated tie-breaking algorithms.

We provide benchmarks for our IRV algorithm in Figure 3. Due to the encoding of IRV ballots as
permutations of [ncand], the algorithm has runtime O(ncand!). But as can be seen in Figure 3, for small
numbers of candidates the evaluation is still feasible. Indeed, 5 candidates is already a realistic scenario
for real world IRV elections. E.g., in the 2015 New South Wales state election [23], which, however, uses
a different IRV instance than we consider here, most electoral districts had 5 or less candidates. Using the
properties of our basic building blocks described in Section 2, one can check that our IRV algorithm does
not leak information. By the same reasoning as for Theorem 3 we obtain:

Theorem 4 (Security of Instant-Runoff voting with Ordinos). Let E and πKeyShareGen be as for The-
orem 3. Let πEnc be the NIZKP from above, and let PMPC be our MPC component for the Instant-Runoff
voting voting as defined in this section. Then, the Ordinos instance using these primitives is an accountable
and private (and hence tally-hiding) voting system for Instant-Runoff voting.

6 Condorcet methods

Condorcet is a ranked voting method that aims to determine a so-called Condorcet winner, i.e., a candidate
that would beat all other candidates in a pairwise runoff election (we will call these pairwise runoff elections
comparisons). It might happen that no candidate exists that wins all comparisons. There are several variants
of (plain) Condorcet that deal with this, i.e., they output the Condorcet winner if it exists but additionally
define mechanisms for obtaining a winner (or a set of winning candidates) also in some cases where no
Condorcet winner exists. We discuss certain variants and their applications in practice below. We represent
Condorcet ballots (which specify a full ranking of ncand candidates without ties7) in Ordinos by interpreting
them as a comparison matrix, i.e., an (ncand × ncand)-matrix M , where Mij ∈ {0, 1} and Mij = 1 means
that a voter V prefers ci over cj . In order to obtain a choice space in the sense of definition of Section 2, we
encode a comparison matrix as a vector of length nc = n2

cand as expected way. Combined with some checks

7 Often, one allows for ties in Condorcet voting. However, in this work we do not consider this case.

8

Fig. 5: Benchmarks for Condorcet voting (left) and benchmarks for Borda voting (right). The evaluation of
the Schulze method for Condorcet took 135 minutes for 5 candidates and 9 days, 10 hours and 27 minutes
for 20 candidates (not included in the figure).

that ensure such a matrix indeed encodes a ranking (e.g., comparisons must be transitive), we obtain the
choice space:

CCondorcet =
{
M ∈ {0, 1}ncand×ncand

∣∣∣ ∀i, j, k ∈ [ncand] :

i 6= j =⇒Mij +Mji = 1 ∧Mij = Mjk = 1⇒Mik = 1
}

We can use the NIZKP πEnc presented in [9] for showing the well-formedness of such ballots. As usual,
Ordinos aggregates all the comparison matrices of all voters, yielding (encryptions of) a matrix containing
at entry (i, j) the total number of comparisons that ci wins versus cj . This is then used as input for the
various Condorcet variants that (try to) compute a winner in different ways.

We have implemented MPC tallying protocols for several such Condorcet variants, with details provided
below. The benchmarks of these algorithms are presented in Figure 5. Apart from the Schulze method, the
runtime of the MPC components of all Condorcet versions grow quadratically in ncand, as expected due to
the nature of pairwise comparisons, but remain practical for reasonable numbers of candidates. (We note
that the verification of the NIZKPs given in [9] requires runtime that is asymptotically cubic in the number
of candidates but is not included/shown in the benchmarks.) Plain Condorcet in particular exhibits runtime
that suggests practicality even for very large numbers of candidates. Also, recall that our benchmarks are
essentially independent of nv and nt. With the same reasoning as for Theorem 3 we obtain:

Theorem 5 (Security of Condorcet voting with Ordinos). Let E and πKeyShareGen be as for Theorem 3.
Let πEnc be the NIZKP from above, and let PMPC be one of our MPC components for a Condorcet voting
method as defined below. Then, the Ordinos instance using these primitives is an accountable and private
(and hence tally-hiding) voting system for that Condorcet method.

Next, we give details of the individual Condorcet variants and our corresponding MPC algorithms.

Plain Condorcet. We denote the vanilla Condorcet method, that outputs the unique Condorcet winner if
and only if such a candidate exists, as Plain Condorcet. In Figure 6 (for bit b = 1), we present an algorithm
for Plain Condorcet that is based on the building blocks described in Section 3. Note that, by choosing the
bit b = 0 in Figure 6, the algorithm instead returns (encrypted) intermediate values, namely N , sg and s′g,
which can be used for computing other Condorcet methods. Here, N denotes the strict comparison matrix
that denotes in each entry Ni,j ∈ {0, 1} whether ci has won the majority of comparisons against cj (Ni,j = 1)
or won the same or less comparisons (Ni,j = 0). Additionally, for each candidate ci, s

g
i denotes the number

of comparisons that she has won or tied, while s′gi only counts the winning comparisons.

Weak Condorcet. In this method all candidates that did not lose any comparisons (but that might be
tied with other candidates and thus no Condorcet winners), i.e. all weak Condorcet winners are output. This

9

Condorcet Evaluation
Input: Encrypted aggregated comparison matrix: A := Epk(M)

b ∈ {0, 1}: indicator whether plain Condorcet should be evaluated.

1 N = 0ncand×ncand
, sg = 0ncand

, s′g = 0ncand
2 for i ∈ [ncand] do
3 for j ∈ [i + 1, ncand] do

4 g = fgt(Ai,j, Aj,i), e = feq(Ai,j, Aj,i), g
′ = g − e

5 Ni,j = g′, Nj,i = Epk(1) − g

6 s
g
i

= s
g
i

+ g, s
g
j

= s
g
j

+ Epk(1) − g′, s′g
i

= s
′g
i

+ g′, s′g
j

= s
′g
j

+ Epk(1) − g

7 if b = 1 then

8 if fdec(feq(s
′g
i

, Epk(ncand) − 1)) then

9 return i

10 return N, sg, s′g

Fig. 6: Condorcet Evaluation.

method can be obtained via a straightforward extension of Figure 6 for b = 0. That is, for each ci, compute
and check whether fdec(feq(s

g
i , Epk(ncand − 1))) = 1.

Copeland. This method, as opposed to the previous two methods, is guaranteed to output some winning
candidate(s). To do so, it considers the wins and losses of each candidate in their comparisons and outputs all
candidates with the most Copeland points, that is the highest difference between wins and losses. For b = 0,
Figure 6 can be extended to first obtain the Copeland points of a candidate ci via Epk(pi) := Epk(s

′g
i + sgi).

We then compute the candidate with the most Copeland points with the GetMaxIdx() discussed in Section 3
and applying fdec().

Schulze Method. This method is more complicated than the previous ones and is very commonly used in
practice (e.g., [24]). This method defines the score of candidate ci’s comparison versus cj to be the difference
of the number of comparisons that ci wins versus cj minus the number of comparisons that cj wins versus
ci. The candidates and the comparisons between them are considered as a directed weighted graph Γ , where
the nodes of Γ represent the candidates and an arrow ci → cj is weighted with the score of ci’s comparison
versus cj . Now, for any path p in Γ , we define the value of p as the lowest weight among the arrows involved
in p. We then consider the path value matrix PathMatrix, an (ncand × ncand)-matrix with entry PathMatrixij
being the highest path value among paths from ci to cj . The Schulze method then outputs all candidates ci
such that PathMatrixij ≥ PathMatrixji for each j ∈ [ncand]. Note that the Schulze method is guaranteed to
output some candidate(s). And if a unique Condorcet winner exists, then it will be returned by the Schulze
method. The intuitive and probably most natural way to implement the Schulze method is to simply compute
the standard algorithm while using MPC building blocks to implement all operations, which, for example,
is also done in [7]. The main challenge lies in choosing suitable MPC building blocks such that the resulting
tally-hiding Schulze algorithm performs well. Here we use the sublinear comparison protocols from Section 2,
with the resulting algorithm presented in Figure 7.

Further Condorcet methods: We have also implemented and benchmarked the so-called Smith set and
Minmax Condorcet methods. Intuitively, the smith set outputs a set of candidates such that each candidate
from this set wins the comparisons against every candidate outside of the set. Minmax intuitively considers
the “worst” comparison of each candidate and then output all candidates that have the “best” of these worst
comparisons. Our algorithms for these Condorcet methods are constructed using the same techniques and
building blocks as for the previous methods. Due to space constraints, we do not present our algorithms in
detail her but rather refer the reader to our implementation [15].

7 Borda

Borda count is a ranked voting method where each assignable rank is associated with a pre-defined number
of points that the corresponding candidate receives. The winner typically is the candidate who has received
the most points in total (summed over all ballots). A famous application of Borda count is the election of
the winner of the grand final in the Eurovision Song Contest, but it is also used for national elections, for
example in the Republic of Nauru.

The following choice space can be used to capture Borda, where we interpret P both as a list and a set:
CBorda(P) = {(x1, . . . , xnc

) | ∀i : xi ∈ P ∧ ∀i ∈ P∃j : xj = i}. A NIZKP πEnc for the well-formedness of

10

Condorcet: Schulze Evaluation
Input: Encrypted aggregated comparison matrix: M
Result: Vector (bi)i∈[ncand] such that bi = 1 if ci is a Schulze winner and bi = 0 otherwise.

1 PathMatrix = (Epk(0))ncand×ncand
2 for i ∈ [ncand], j ∈ [ncand] \ {i} do
3 PathMatrixi,j = Mi,j −Mj,i
4 for i ∈ [ncand], j ∈ [ncand] \ {i}, k ∈ [ncand] \ {i, j} do
5 m = GetMin(PathMatrixj,i, PathMatrixi,k)

6 PathMatrixj,k = GetMax(Mj,k,m)

7 MSchulze = (Epk(0))[ncand]×[ncand]

8 for i ∈ [ncand], j ∈ [i] do
9 g = fgt(PathMatrixi,j , PathMatrixj,i)

10 e = feq(PathMatrixi,j , PathMatrixj,i)

11 MSchulze
i,j = g,MSchulze

j,i = Epk(1) − g + e

12 b = (Epk(0))ncand
13 for i ∈ [ncand] do

14 w =
∑

j∈[ncand]\{i}MSchulze
i,j

15 bi = fdec(feq(w,Epk(ncand − 1)))

16 return (bi)i∈[ncand]

Fig. 7: Condorcet: Schulze Evaluation.

ballots for this choice space is presented in [21]. By definition of Ordinos, the encrypted aggregated tally
(Epk(pi))i∈[nc] then consists of encryptions of the sum of points pi that candidate ci received. In principle,
one can now use the same MPC tallying protocols presented in [6] for single-/multi-vote to (i) output the
candidate with the highest points, (ii) output the k candidates with the most points, or (iii) output all
candidates that cleared a certain threshold of points. However, for the standard case (i) we propose a more
efficient way that is not quadratic but linear in the number of candidates: We use the algorithm GetMaxIdx()
(cf. Section 3) and then apply fdec; the winner is the candidate for whom decryption yields 1.8

The benchmarks of these algorithms are presented in Figure 5, where the result functions (ii) and (iii) are
implemented using the algorithms by [6]. As the benchmarks show, our algorithm for (i) and the algorithm
for (iii) can be computed highly efficiently. Due to the linear growth, this should still be the case even if
there are much more candidates than the maximum of 40 that we benchmarked. Result function (ii) shows,
as expected, a quadratic growth in the number of candidates. However, the runtime for ≤ 40 candidates
remains in a range that is often still reasonable for practical elections. Also, recall that our benchmarks are
essentially independent from nv and nt. With the same reasoning as for Theorem 3 we obtain:
Theorem 6 (Security of Borda voting with Ordinos). Let E and πKeyShareGen be as for Theorem 3.
Let πEnc be the NIZKP from above, and let PMPC be one of our MPC components for (one of the result
functions for) Borda voting as defined in this section. Then, the Ordinos instance using these primitives is
an accountable and private (and hence tally-hiding) voting system for Borda (using that result function).

8 Conclusion

We have proposed, implemented, and benchmarked several new accountable tally-hiding MPC components
for Ordinos. These are the first tally-hiding implementations for the Hare-Niemeyer method, IRV, multiple
variants of Condorcet, and Borda. The performance of our MPC components is determined by the number
of candidates while being essentially independent of the number of trustees and the number of voters, as long
as the aggregated ballots still meet the bound bct. Analogously to [6], due to the comparison protocols with
sublinear communication cost, our runtimes are almost independent of the network (local vs. Internet). Our
instantiations achieve reasonable runtimes that allow for deployment in real-world applications. In future
work, it would be interesting to investigate optimizations for our algorithms and to implement further voting
methods.

References

1. J. D. Cohen, Improving Privacy in Cryptographic Elections. Citeseer, 1986.

8 If always a single winner should be determined, one can use a tie-breaking algorithm after GetMaxIdx(), similarly
to what we describe in Section 5 for GetMinIdx(). Note that this adds only a small linear overhead.

11

2. A. Hevia and M. A. Kiwi, “Electronic jury voting protocols,” TCS, 2004.
3. R. Wen and R. Buckland, “Minimum Disclosure Counting for the Alternative Vote,” in VoteID, Luxembourg.,

2009.
4. A. Szepieniec and B. Preneel, “New Techniques for Electronic Voting,” ePrint Report 2015/809.
5. S. Canard, D. Pointcheval, Q. Santos, and J. Traoré, “Practical Strategy-Resistant Privacy-Preserving Elections,”

in ESORICS 2018, vol. 11099. Springer, 2018.
6. R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt, “Ordinos: A Verifiable Tally-Hiding E-Voting System,”

in EuroS&P. IEEE, 2020, pp. 216–235.
7. V. Cortier, P. Gaudry, and Q. Yang, “A toolbox for verifiable tally-hiding e-voting systems,” ePrint Report

2021/491.
8. R. Küsters, T. Truderung, and A. Vogt, “Accountability: Definition and Relationship to Verifiability,” in CCS,

2010.
9. T. Haines, D. Pattinson, and M. Tiwari, “Verifiable Homomorphic Tallying for the Schulze Vote Counting

Scheme,” in VSTTE 2019, 2019.
10. K. Ramchen, C. Culnane, O. Pereira, and V. Teague, “Universally Verifiable MPC and IRV Ballot Counting,”

in FC 2019, ser. LNCS. Springer, 2019.
11. W. Jamroga, P. B. Rønne, P. Y. A. Ryan, and P. B. Stark, “Risk-Limiting Tallies,” in E-Vote-ID 2019, 2019.
12. A. Juels, D. Catalano, and M. Jakobsson, “Coercion-Resistant Electronic Elections,” ePrint Report 2002/165.
13. J. Heather, “Implementing STV securely in Prêt à Voter,” in CSF, 2007.
14. J. Benaloh, T. Moran, L. Naish, K. Ramchen, and V. Teague, “Shuffle-sum: coercion-resistant verifiable tallying

for STV voting,” TIFS, 2009.
15. F. Hertel, N. Huber, J. Kittelberger, R. Küsters, J. Liedtke, and D. Rausch, “Ordinos Code Repository,” https:

//github.com/JulianLiedtke/ordinos.
16. R. Küsters, T. Truderung, and A. Vogt, “Verifiability, Privacy, and Coercion-Resistance: New Insights from a

Case Study,” in S&P 2011, 2011.
17. R. Canetti, “Universally Composable Security: A New Paradigm for Cryptographic Protocols,” in FOCS 2001.

IEEE Computer Society, 2001.
18. R. Küsters, “Simulation-Based Security with Inexhaustible Interactive Turing Machines,” in CSFW-19, 2006,

see [25] for a full and revised version.
19. I. Damg̊ard, M. Jurik, and J. B. Nielsen, “A Generalization of Paillier’s Public-Key System with Applications to

Electronic Voting,” Int. J. Inf. Sec., 2010.
20. H. Lipmaa and T. Toft, “Secure Equality and Greater-Than Tests with Sublinear Online Complexity,” in ICALP

2013, vol. 7966. Springer, 2013, pp. 645–656.
21. J. Groth, “Non-interactive Zero-Knowledge Arguments for Voting,” in ACNS 2005.
22. Maine State Legislature, “Ranked Choice Voting in Maine,” http://legislature.maine.gov/lawlibrary/

ranked-choice-voting-in-maine/9509, 2020.
23. Electoral Commission NSW, “NSW State Election Results 2015,” https://pastvtr.elections.nsw.gov.au/

SGE2015/la-home.htm, 2021.
24. M. Schulze, “The Schulze Method of Voting,” CoRR, 2018.
25. R. Küsters, M. Tuengerthal, and D. Rausch, “The IITM Model: A Simple and Expressive Model for Universal

Composability,” Journal of Cryptology, 2020.

12

https://github.com/JulianLiedtke/ordinos
https://github.com/JulianLiedtke/ordinos
http://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
http://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
https://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm
https://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm

	Extending the Tally-Hiding Ordinos System: Implementations for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting

