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Abstract. This paper continues the study of memory-tight reductions (Auerbach et al, CRYPTO
’17). These are reductions that only incur minimal memory costs over those of the original adversary,
allowing precise security statements for memory-bounded adversaries (under appropriate assumptions
expressed in terms of adversary time and memory usage). Despite its importance, only a few techniques
to achieve memory-tightness are known and impossibility results in prior works show that even basic,
textbook reductions cannot be made memory-tight.

This paper introduces a new class of memory-tight reductions which leverage random strings in the
interaction with the adversary to hide state information, thus shifting the memory costs to the adversary.

We exhibit this technique with several examples. We give memory-tight proofs for digital signatures
allowing many forgery attempts when considering randomized message distributions or probabilistic
RSA-FDH signatures specifically. We prove security of the authenticated encryption scheme Encrypt-
then-PRF with a memory-tight reduction to the underlying encryption scheme. By considering specific
schemes or restricted definitions we avoid generic impossibility results of Auerbach et al. (CRYPTO
’17) and Ghoshal et al. (CRYPTO ’20).

As a further case study, we consider the textbook equivalence of CCA-security for public-key encryption
for one or multiple encryption queries. We show two qualitatively different memory-tight versions of
this result, depending on the considered notion of CCA security.

Keywords: Provable security, memory-tightness, time-memory trade-offs

1 Introduction

The aim of concrete security proofs is to lower bound, as precisely as possible, the resources needed
to break a cryptographic scheme of interest, under some plausible assumptions. The traditional resource
used in provable security is time complexity (as well as related metrics, like data complexity). Recent
works [1,27,26,21,14,13,8,18,17,11,25,12] have focused on additionally taking the memory costs of the adver-
sary into account. This is important, as the amount of available memory can seriously impact the feasibility
of an attack.

This paper presents new techniques for memory-tight reductions, a notion introduced by Auerbach et
al. [1] to relate the assumed time-memory hardness of an underlying computational problem to the security
of a scheme. More precisely, the end goal is to prove, via a reduction, that any adversary running in time t
and with s bits of memory can achieve at most advantage ε � εpt, sq in compromising a scheme, by assuming
that some underlying computational problem can only be solved with advantage δ � δpt1, s1q by algorithms
running in time t1 and with memory s1. A memory-tight reduction guarantees that s � s1, and usually, we
want this to be tight also according to other parameters, i.e., t � t1 and ε � δ.

� A preliminary version of this paper appears in the proceedings of EUROCRYPT 2022. This is the full version.



Memory-tight reductions are of value whenever the underlying problem is (conjectured to) be memory
sensitive, i.e., the time needed to solve it grows as the amount of memory available to the adversary is
reduced. Examples of memory-sensitive problems include classical ones in the public-key setting, such as
breaking RSA and factoring, lattice problems and LPN, solving discrete logarithms over finite fields,4 as well
as problems in the secret-key setting, such as finding k-way collisions (for k ¡ 2), finding several collisions
at once [13], and distinguishing random permutations from random functions [21,14,25].

Developing memory-tight reductions is not always easy, and can be (provably) impossible [1,27,18,17].
This makes it fundamental to develop as many techniques as possible to obtain such reductions. In this
paper, we identify a class of examples which admit a new kind of memory-tight reductions. Our approach
relies on the availability of random strings exchanged between the adversary and the security game, and
which the reduction can leverage to encode state which can be recovered from later queries of the adversary,
without the need to store this information locally, and thus saving memory. (In particular, the burden of
keeping this information remains on the adversary, which needs to reproduce this random string for this
state information to be relevant.) We present these techniques abstractly in the next section, with the help
of a motivating example, and then move on to an overview of our specific results.

1.1 Our Techniques - An Overview

As a motivating example, consider the standard UFCMA security notion for signatures. It is defined via a
game where the attacker, given the verification key vk, obtains signatures for chosen messages m1,m2, . . .,
after which it outputs a candidate message-signature pair pm�, σ�q, and wins if m� was not signed before,
and σ� is valid for m�. When ignoring memory, this notion is tightly equivalent to one (which we refer to as
mUFCMA) that allows for an arbitrary number of “forgery attempts” for pairs pm�, σ�q, and the adversary
wins if one of them succeeds in the above sense. This is convenient: we generally target mUFCMA, but only
need to deal with proving the simpler UFCMA notion.

The classical reduction transforms any mUFCMA adversary into a roughly equally efficient UFCMA
adversary, which wins with the same probability, by (1) simulating forgery queries using the verification key,
and (2) outputting the first forgery query pm�, σ�q which validates and such that m� is fresh. This reduction
is however not memory-tight, as we need to ensure the freshness of m�, which requires remembering the
previously signed messages. ACFK [1] prove that this is in some sense necessary, by showing that a (restricted)
class of reductions cannot be memory-tight via a reduction to streaming lower bounds.

Our idea: Efficient tagging. To illustrate our new technique, which we refer to as efficient tagging,
imagine now that we only use the signature scheme to sign random messages m1,m2, . . . ,mq Ð$ t0, 1u`, and
consider a corresponding variant of mUFCMA security, which we want to reduce to (plain) UFCMA security.
This, intuitively, does not seem to help resolve the above issue, because random messages are hardest to
compress.

However, what is important here is that the reduction is responsible for simulating the random messages,
and can simulate them in special ways, and program them so that they encode state information. For
instance, assume that the reduction has access to an injective random function f : rqs Ñ t0, 1u`, with inverse
f�1, which can be simulated succinctly from a short key as a pseudorandom object. Then, the reduction
to UFCMA can set mi Ð fpiq for the i-th query, and upon simulating a forgery query for pm�, σ�q, the
reduction checks whether f�1pm�q P rqs to learn whether m� is a fresh signing query or not.

Of course, the simulation is not perfect: The original mi’s are not necessarily distinct (this can be handled
via the classical “switching lemma”). Also, the reduction could miss a valid forgery if the adversary outputs
mi before it is given to the adversary, but this again only occurs with small probability.

Inefficient tagging and non-time-tight reductions. In the above example, we can efficiently check
that f�1pm�q P rqs. However, in some cases we may not – again, consider an example where the messages
to be signed are sampled as mi Ð hpriq, where h is a hard-to-invert function and ri is random. Then, we

4 However, the discrete logarithm problem in elliptic-curve groups, or any other group in which the best-known
attacks are generic, is not memory sensitive, since optimal memory-less attacks are known.
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could adapt our proof above by setting mi Ð hpfpiqq, but now, to detect a prior signing query, we would
have to check whether m� � hpfpiqq for some i P rqs, and this can only be done in linear time. The resulting
UFCMA adversary runs in time t1 � t�ΘpqF � qq, where t is the running time of the original adversary and
qF is the number of forgery attempts. For example, if q � qF � t, the reduction is not time tight, and the
adversary runs in time t1 � Opt2q.

Are non-time-tight reductions useless? It turns out that such non-time-tight reductions can still be
helpful to infer that breaking a scheme requires memory, although this ultimately depends on the concrete
security of the problem targeted by the reduction. Say, for example, a reduction for a given scheme transforms
a successful adversary running in time t and using memory s into an adversary running in time t2 and using
memory s breaking discrete logarithms over Fp, for a 4096-bit prime p. It turns out that if we have fewer
than 278 bits of memory, no known discrete logarithm algorithm is better than a generic one (i.e. runs in
time better than 22048), which means that our non-time-tight reduction is still sufficient to infer security for
any s   278 as long as t   21024.

Message encoding.At the highest level, what happens is that the reduction is in control of certain random
values which we can exploit to hide state information which can later be uniquely recovered, since triggering a
situation where the reduction needs to remember requires the adversary to actually give back to the reduction
this value. In the above, this state information is simple, namely whether the query is old or not. But as
we will show below, the paradigm can be used to store complex information – we refer to this technique as
message encoding, and discuss an example below.

A New Viewpoint: F-oracle adversaries. In our technique described above we needed access to a large
random injection, which we argue can be simulated pseudorandomly. Prior works have similarly used PRFs
to pseudorandomly simulate random oracles [1,7] with low memory. The fact that one needs to decide how to
simulate such objects when stating a memory-tight reduction is rather inconvenient: different instantiations
seemingly lead to quantitatively different reductions, although this fact does not appear to be a reflection
of any particular reality. In this paper, we propose (and advocate for) what we believe to be the “right”
viewpoint: Our reductions are stated in terms of F-oracle adversaries where F is a set of functions and such
an adversary expects oracle access to a random f P F . Then, a memory-tightness theorem is obtained in one
of two ways, by either (1) applying a generic lemma stating that f can be instantiated in low memory using
an F-pseudorandom function, or (2) assuming that the use of f does not functionally increase the success
chances of the adversary because f is independent of the problem instance being solved (this is provably the
case for some information theoretic problems). In particular, (1) is more conservative than (2), but it is very
likely that (2) is also a viable approach which leads to cleaner result – indeed, we do not expect any of the
considered memory-sensitive problems to become easier given access to an oracle from any natural class F
– e.g., Factoring does not become easier given access to a random injection.

1.2 Our Results

We now move to an overview of our results (summarized in Fig. 1) which exemplify different applications of
the tagging and message-encoding techniques.

Multi-challenge Security of Digital Signatures. Our first results consider the security of digital
signatures in the face of multiple forgery attempts (i.e., challenge queries), generalizing the examples discussed
above. We work with a notion we refer to as UFRMA (unforgeability under randomized message attack).
This notion is parameterized by a message distribution D and when the attacker makes a signing query for
m it receives a signature of m1 � Dpm; rq for a random r. If m and r can be extracted from m1, giving
the notion xUFRMA (or mxUFRMA for many forgery attempts), we can generalize our efficient tagging
approach above by having the reduction to UFCMA choose r � fpm, iq where each fpm, �q is a random
injection. This setting can capture, e.g., the signatures used in key exchange protocols like TLS 1.3 where
the server signs a transcript which includes a random 256-bit nonce. A version of our inefficient tagging
example works when only m can be extracted from m1 (wUFRMA); we pick r � fpm, iq and in verification
of a forgery query perform the linear time check of whether m� � Dpm; fpm, iqq for some i P rqs. This setting
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captures places where the message to be signed includes a fresh public key or ciphertext. This includes, for
example, the use of signatures for signing certificates, in some key exchange protocols, and in signcryption.

We further prove mUFCMA security for particular schemes. First, we can randomize any digital sig-
nature scheme DS (obtaining a scheme we call RDS) by signing m } r for random r chosen by the signing
algorithm and including r as part of the signature. An immediate implication of our mxUFCRA result is
a tight reduction from the mUFCMA security of RDS to the UFCMA security of the underlying scheme.
One particular instantiation of RDS is Probabilistic Full Domain Hash with RSA (RSA-PFDH) which was
introduced by Coron [10] to provide a variant of Full Domain Hash [5] with an (advantage-) tighter security
proof. Using our efficient tagging technique we obtain a fully tight proof of the strong mUFCMA security of
RSA-PFDH from the RSA assumption.

In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [12] studied the mUFCMA security
of digital signature schemes. They also considered the RDS construction, proving that if DS can be proven
strong UFCMA1 secure5 with a restricted class of “canonical” memory-tight reductions then there is a
memory-tight reduction for the strong mUFCMA security of RDS. This complements our result, showing
memory-tight strong mUFCMA security of RDS based on a restricted class of schemes while our result
proves memory-tight plain mUFCMA security based on any plain UFCMA scheme. They apply their RDS
result to establish tight proofs for the strong mUFCMA security of RSA-PFDH (matching our direct proof
in Theorem 4). as well as schemes based on lossy identification schemes and pairings.

Authenticated Encryption Security.Ghoshal, Jaeger, and Tessaro [17] have recently observed that in
the context of authenticated encryption (AE), it is difficult to lift confidentiality of the scheme, in terms of
INDR security, to full AE security, when additionally assuming ciphertext integrity, if we want to do so in a
memory-tight way. This is well motivated, as several works establish tight time-memory trade-offs for INDR
security [26,21,14,11,25], which we would like to lift to their AE security. The difficulty in the proof is that
the INDR reduction must simulate a decryption oracle which rejects all ciphertexts except those forwarded
from an encryption query. Recognizing these forwarded ciphertexts seems to require remembering state.

Here, we give a different take and show that for specific schemes – in particular, those obtained by adding
integrity via a PRF, following the lines of [24,4,23] – a memory-tight reduction can be given. Our INDR
reduction is applied after arguing that the PRF looks like a random function f and thus forgeries are unlikely
to occur. It uses f in a version of our efficient tagging technique to identify whether a ciphertext queried to
decryption is fresh.6

Chosen ciphertext security: One to many. A classical textbook result for public-key encryption
shows that CCA-security against a single encryption query (1CCA) implies security against multiple queries
(mCCA), with a quantitative advantage loss accounting to the number of such queries. ACFK [1] claim,
incorrectly, that the associated reduction from 1CCA to mCCA is easy to make memory-tight, but this
appears to be an oversight: No such reduction is known, and here we use our techniques to recover a
memory-tight version of this result.

Let us consider concretely the “left-or-right” formulation of 1CCA/mCCA-security: The reduction from
1CCA to mCCA, given an adversary A, picks a random iÐ$ rqs (where q is the number of encryption
queries) and simulates the multi-query challenger to A by answering its first i � 1 encryption queries with
an encryption of the left message, whereas the last q � i queries are answered by encrypting the right
message. Only the answer to the i-th query is answered by the single-query challenger. A problem arises
when simulating the decryption queries: Indeed, we need to guarantee that a decryption query for any of the
challenge ciphertexts c�1 , . . . , c

�
q returns an error K, yet this suggests that we seemingly need to remember

the extra challenge ciphertexts c�j for j � i.

We will resolve this in two ways. First, we give a new memory-tight reduction using the inefficient tagging
method, with the same advantage loss as the original textbook reduction. Our reduction is non-time-tight,

5 The suffix ‘1’ indicates a variant of UFCMA security in which the adversary can only obtain a single signature per
message. The security game always returning the same signature if the adversary repeats signature queries.

6 Ghoshal et al. [17] in fact described three variants of AE with different conventions for how decryption responds
to non-fresh queries. By our results, memory-tight reductions to INDR are possible for two of the three variants.
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Assumption Scheme Result Time Memory Advantage New Technique

1UFCMA Any mxUFRMA 3 3 3 Efficient tagging
RDS mUFCMA 3 3 3 Efficient tagging
Any mwUFRMA 7 3 3 Inefficient tagging

RSA RSA-PFDH mSUFCMA 3 3 3 Efficient tagging

(PRF, INDR) EtP AE (3,3) (7,3) (3,3) Efficient tagging

1CCA Any mCCA 7 3 7 Inefficient tagging

1$CCA Any m$CCA 3 3 7 Message encoding

Fig. 1. Memory-tight reductions we provide. A 1 vs. an m prefix indicates whether one or many challenge queries are
allowed. A 3 vs. an 7 indicates whether the reduction is tight with respect to that complexity metric. Reductions
lacking tightness multiply running time/advantage by Opqq or add Opqq to the memory complexity, where q is the
number of queries. An x vs. a w indicates whether the coins underlying the distribution of messages can be extracted
from the message. RDS is randomization of any digital signature scheme by padding input messages with randomness.
RSA-PFDH is probabilistic full-domain hash with RSA. EtP is the Encrypt-then-PRF AE construction.

so may not be suitable for all situations. The main idea here is that we use the randomness used to generate
the challenge ciphertext as our tag.

To obtain a reduction which is also tight with respect to time, we resort to the observation that changing
to a stronger (but still commonly achieved) definition of CCA-security allows for different memory-tight
reductions. We give in particular a memory-tight and time-tight reduction (with the usual factor q advantage
loss) from the notion of 1$CCA-m security to the notion of m$CCA-m security. These are variants of CCA
security where (1) encryption queries are with respect to a single message, and return either the encryption
of the message, or a random, independent ciphertext, and (2) decryption queries on a challenge ciphertext
c�i returns the associated message.

Our reduction uses the full power of our message encoding approach, simulating random ciphertexts in
a careful way which allows for recovering the associated challenge plaintext.

A few remarks. The above results on CCA security show us that the ability to give a memory-tight
reduction is strongly coupled with definitional choices. In particular, different equivalent approaches to
modeling the decryption oracle in the memory unbounded regime may not be equivalent in the memory-
bounded setting. This means in particular that we need to exercise more care in choosing the right definition.
We believe, for example, that the approach taken in m$CCA-m security is the more “natural” one (as it does
not require artificially blocking the output of the decryption oracle, by always returning a message), but
there may be contexts where other definitional choices are favored.

Another important lesson learnt from our AE result is that impossibility results, such as those in [1,27,18,17],
do not preclude positive results in form of memory-tight reductions, either by leveraging the structure of
specific schemes, or by considering restricted security notions.

1.3 Paper Outline

Section 2 introduces notation, our computational model, and basic cryptographic background. Section 3 dis-
cusses our convention of using F-oracle adversaries. Section 4 gives our memory-tight reduction for digital
signature schemes when many forgery attempts are allowed. In particular, the generic results are in Sec-
tion 4.2, while the result specific to RSA-PFDH is in Section 4.5. Section 5 proves the security of Encrypt-
then-PRF with a memory-tight reduction to the INDR security of the encryption scheme. Section 6 gives our
results relating the one- and many-challenge query variants of CCA security. In particular, Section 6.1 gives
our result for the traditional “left-vs.-right” notion and Section 6.2 gives our result for the “indistinguishable
from random” variant.
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2 Preliminaries

Let N � t0, 1, . . . u and rns � t1, . . . , nu for n P N. If x P t0, 1u� is a string, then |x| denotes its length in
bits. If S is a set, then |S| denotes its size. We let x } y } . . . denote an encoding of the strings x, y, . . . from
which the constituent strings can be unambiguously recovered. We identify bitstrings with integers in the
standard way.

Functions.Let T be a set (called the tweak set) and for each t P T let Dt and Rt be sets. Then FcspT,D,Rq
denotes the set of all f such that for each t P T , fpt, �q is a function from Dt to Rt. Similarly, InjpT,D,Rq
denotes the set of all f such that for each t P T , fpt, �q is an injection from Dt to Rt. When Dt or Rt are
independent of the choice of t we may omit the subscript.

If f P InjpT,D,Rq, then its inverse f�1 is defined by f�1pt, fpt, xqq � x for all pt, xq and f�1pt, yq � K for
y R fpt,Dtq. For such f we let f� denote the function defined by f�p�, xq � fpxq and f�p�, xq � f�1pxq.
We let Inj�pT,D,Rq � tf� : f P InjpT,D,Rqu.

2.1 Computational Model

Pseudocode. We regularly use pseudocode inspired by the code-based framework of [6]. We think of algo-
rithms as randomized RAMs when not specified otherwise. If A is an algorithm, then y Ð AO1,...px1, . . . ; rq
denotes running A on inputs x1, . . . with coins r and access to the oracles O1, . . . to produce output y. When
the coins are implicit we write Ð$ in place of Ð and omit r.

We let xÐ$ D denote sampling x according to the distribution D. If D is a set, we overload notation and
let D also denote the uniform distribution over elements of D. The domain of D is denoted by rDs.

Security notions are defined via games; for an example see Fig. 2. The probability that G outputs true is
denoted PrrGs. In proofs we sometimes define a sequence of “hybrid” games in one figure, using comments
of the form “//Hri,jq.” A line of code commented thusly is only included in the hybrids Hk for i ¤ k   j.
(We are of course referring only to values of k P N.) By this convention to identify the differences between
Hk�1 and Hk one looks for comments Hri,kq (code no longer included in the k-th hybrid) and Hrk,jq (code
new to the k-th hybrid).

We let K be a special symbol used to indicate rejection. If we do not explicitly include K in a set, then
K is not contained in that set. If K is an input to a function or algorithm, then we assume its output is K.
We do not distinguish between K and tuples pK, . . . ,Kq. Algorithms cannot query K to their oracles.

Complexity measures. To measure the complexity of algorithms we follow the conventions of measuring
their local complexity, not including the complexity of whatever oracles they interact with. Local complexity
was preferred by Auerbach et al. [1] for analyzing memory-limited adversaries so that analysis can be agnostic
to minor details of security definitions’ implementations. We focus on worst-case runtime TimepAq and
memory complexity MempAq (i.e. how many bits of state it stores for local computation). These exclude
the internal complexity of oracles queried by A, but include the time and memory used to write the query
and receive the response. If A expects access to n oracles then we let QuerypAq � pq1, . . . , qnq where qi is an
upper bound on the number of queries to its i-th oracle. (Here we index from left to right, so for AO1,...,On

the i-th oracle is Oi.) If S is a scheme, then TimepSq and MempSq are the sums of the corresponding
complexities over all of its algorithms. If G is a game, then we define TimepGq and MempGq to exclude the
complexity of any adversaries embedded in the game.

2.2 Cryptographic Background

Ideal models. Some schemes we look at may be proven secure in ideal models (e.g. the random oracle or
ideal cipher models). To capture this we can think of a scheme S as specifying a set of functions S.I. At the
beginning of a security game a function h will be sampled from this set. The adversary and all algorithms
of S are given oracle access to h.
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Game Gpr
F,bpAq

hÐ$ F.I
KÐ$ F.K
f Ð$ F.F
b1 Ð$ AEv,h

Return b1 � 1

Evpxq

y1 Ð Fh
Kpxq

y0 Ð fpxq
Return yb

Fig. 2. Security game capturing
the pseudorandomness of function
family F.

Function families. A family of functions F specifies, for each K P F.K,
an efficiently computable function FK P F.F. We refer to F.F as the func-
tion space of F. Pseudorandom (PR) security of F is captured by the
game defined in Fig. 2. It measures how F with a random key can be
distinguished from a random function in F.F via oracle access. We define
AdvprF pAq � PrrGpr

F,1pAqs � PrrGpr
F,0pAqs. The standard notions of (tweak-

able) pseudorandom functions/injections/permutations or strong injec-
tions/permutations are captured by appropriate choices of F.F.

Switching lemma. We make use of the following standard result which
bounds how well a random function and a random injection can be dis-
tinguished.

Lemma 1 (Switching Lemma). Fix T , D, and R. Let N � mintPT |Rt|. Then for any adversary A with
q � QuerypAq we have that

|PrrAf ñ 1s � PrrAg ñ 1s| ¤ 0 � q2{N.

The probabilities are measured over the coins of A, the uniform choice of f from FcspT,D,Rq, and the
uniform choice of g from InjpT,D,Rq.

Recent papers [21,13,25] have given improved versions of the switching lemma for adversaries with bounded
memory complexity, as long as it does not repeat oracle queries. In our application of the switching lemma
the adversary’s memory complexity is too large for these bounds to provide any improvement.

Other primitives. We recall relevant syntax and security definitions for digital signatures, nonce-based
encryption, and public key encryption schemes in the sections where we consider them (Sections 4, 5, and 6
respectively).

3 Adversaries With Access to Random Functions

This paper proposes and adopts what we consider to be a better formalism to deal with memory-tight
reductions. Namely, all of our reductions will require access to some variety of large random functions which
it will query on a small number of inputs (specifically uniformly random functions and invertible random
injections). That is, our reduction adversaries can be written in the form shown of the left below, for some
set of functions F and algorithm A2. (On the right is a pseudorandom version of A which we will discuss
momentarily.)

Adversary AOpinq

f Ð$ F
outÐ$ AO,f

2 pinq
Return out

Adversary AO
F pinq

KÐ$ F.K

outÐ$ AO,FK

2 pinq
Return out

We refer to such an A as an F-oracle adversary. In this section we will generally discuss such adversaries,
rather than separately providing the discussion for such adversaries each time we apply them.

The time and memory complexity of any F-oracle adversary must include the complexity of sampling,
storing, and evaluating f . This will be significant if F is large. However, as we will argue, this additional
state and time should be assumed to not significantly increase the advantage of A. As such, we will define
the reduced complexity of A by

Time�pAq � TimepA2q and Mem�pAq � MempA2q.

Later we state theorems in terms of reduced complexity.

7



Pseudorandom replacement. The most conservative justification of F-oracle adversaries is to bound
how much the oracle can help by replacing it with a pseudorandom version. This was the approach taken
by Auerbach et al. [1] when they used pseudorandom functions for purposes such as emulating random
oracles and storing the coins required by an adversary with low memory, and has been adopted by follow-up
work [27,8,12]. If F is a function family with F.F � F , then the adversary AF we gave above does exactly this.
It replaces A2’s oracle access to f with access to FK for a random K. The following lemma is straightforward.

Lemma 2. Let A be an F-oracle adversary for a game G. Then for any function family F with F.F � F we
can define a pseudorandomness adversary Ai such that

PrrGpAqs ¤ PrrGpAFqs � AdvprF pAiq,

QuerypAiq � q, and

TimepAiq � Time�pAq �TimepGpAqq,
MempAiq � Mem�pAq �MempGpAqq.

Here q is an upper bound on the number of queries A2 makes to its second oracle.

Note that the complexity of AF is given by TimepAFq � Time�pAq � q � TimepFq and MempAFq �
Mem�pAq �MempFq. Thus the existence of an appropriate pseudorandom F ensures that the memory and
time complexity excluded by Time� and Mem� cannot significantly aid an adversary. In the use of this
technique by Auerbach et al. [1] the reduction Ai was memory-tight. Note this is not strictly necessary as
long as we are willing to assume the existence of F with sufficient security as a function of attackers’ time
and query complexities without regard to memory complexity.

We could have combined Lemma 2 with any of our coming theorems to obtain bounds in terms of Time
and Mem, rather than their reduced version. However we find the use of reduced complexity cleaner as it
simplifies our theorems, allowing us to focus on the conceptual core of the proofs without having to repeat
the rote step of replacing random objects with pseudorandom ones.

When combining the lemma with a theorem, game G would correspond to the security game played by
the reduction adversary. For our theorems, that game will have low time and memory overhead over that of
A, so the application of the lemma would be time- and memory-tight. That said, the tightness of this is less
important than the tightness of the other components of the theorem we would apply it to. Note that the
definition of Ai is independent of the choice of F. Consequently, we can always choose F with a very high
security threshold to counteract any looseness in the lemma. In Appendix A, we summarize the F used in
our theorems and how they could be pseudorandomly instantiated.

Assumed independence. As a second observation why the storage of f may not help A, note that f is
completely “independent” of the problem A is trying to solve (as specified by in and the behavior of O).
In various settings it seems likely that such independent state does not help. For example, it would be
very surprising (or even a breakthrough) to show a better factoring or lattice algorithm given access to a
random function f from a natural set. Indeed, cryptanalytic work often makes use of random oracles without
significant comment (from which other types of random functions can be constructed).

Information theoretic settings. In some information theoretic settings, the “independence” of f from
the problem can be made rigorous. Information theoretic results are typically depending only on the query
complexity of the attacker or its memory usage, ignoring code size. In such settings, we expect bounds of
the form AdvpAq ¤ εpMempAq,QuerypAqq for some function ε. Because this bound does not depend on the
code size of A, if A is an F-oracle adversary we should be able to prove AdvpAq ¤ εpMem�pAq,QuerypAqq
by a coin-fixing argument in which we fix the random choice of function ahead of time and embed it in the
description of the adversary. This is, for example, the case for the recent time-memory tradeoffs shown for
distinguishing between a random function and a random injection without repeating queries [21,13,25]. A
coin-fixing readily shows that these tradeoffs hold when using Mem�pAq in place of MempAq,QuerypAq.

4 Multi-challenge Security of Digital Signature Schemes

In the context of memory-tightness, the security of digital signature schemes has been considered in several
works [1,27,12]. The standard security notion for signatures asks the attacker, given examples, to come up
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with a forged signature on a fresh message. A straightforward proof shows (in the standard setting where
memory efficiency is not a concern) that the security notion is equivalent whether the attacker is allowed
one or many forgery attempts. However, Auerbach et al. [1] proved an impossibility result showing that a
(certain form of black-box) reduction cannot be time, memory, and advantage tight. The difficulty faced by
the reduction is in distinguishing between when the adversary has produced a novel forgery and when it is
simply repeating a signature that it was given.

In this section we show a few ways that security against many forgery attempts (i.e., multiple challenges)
can be proven to follow from security against a single forgery (i.e., a single challenge) in a memory-tight
manner. Our first results consider a variant definition of digital signature security we introduce (called
UFRMA) in which the adversary has only partial control over the messages being signed. Using our new
techniques, we show that single challenge UFCMA security implies multi-challenge UFRMA security in
a memory-tight manner (for some practically relevant distributions over messages). We also consider the
security of the RSA full domain hash digital signature scheme. Auerbach et al. [1] gave a memory-, but not
advantage-tight proof of the security of the standard version of this scheme in the single challenge setting. By
considering a probabilistic variant of the scheme introduced by Coron [10] we are able to provide a memory-,
time-, and advantage-tight proof of the many-forgery SUFCMA security of the variant.

4.1 Syntax and Security

DS Syntax

hÐ$ DS.I
pvk, skq Ð$ DS.K
σÐ$ DS.Signhpsk,mq
dÐ DS.Verhpvk,m, σq

Fig. 3. Syntax of digital signa-
ture scheme.

Digital signature syntax.A digital signature scheme DS specifies a key
generation algorithm DS.K, a signing algorithm DS.Sign, and a verification
algorithm DS.Ver. The syntaxes of these algorithms are shown in Fig. 3. We
capture ideals models by providing DS.Sign and DS.Ver with oracle access
to a function h drawn at random from the set DS.I. When relevant we let
DS.M denote the set of messages it accepts. The verification and signing
keys are respectively denoted by vk and sk. The message to be signed is m,
the signature produced is σ, and the decision is d P ttrue, falseu. Correctness
requires DS.Verhpvk,m, σq � true for all h P DS.I, all pvk, skq P rDS.Ks, all
m P DS.M, and all σ P rDS.Signhpsk,mqs.

Message distribution syntax. One of the security notions we consider
for digital signature schemes will be parameterized by a message distribu-
tion via which the adversary is given incomplete control over the messages
which are signed. A message distribution D specifies sampling algorithm D.S
which samples an output message m1 based on parameters m given as input (written m1 Ð$ D.Spmq). The
parameters m must be drawn from a set D.M, which we typically leave implicit. When making the random-
ness of the sampling algorithm explicit we let D.R be the set from which its randomness is drawn and write
m1 Ð D.Spm; rq. If there exists an extraction algorithm D.X such that D.XpD.Spm; rqq � pm, rq for all m,
r then we say D is extractable. If D.XpD.Spm; rqq � m for all m, r then we say D is weakly extractable. We
assume that D.Xpm1q � K if m1 � D.Spm; rq for all m, r. We define the min-entropy of D as

D.H8 � � lg max
m

PrrrÐ$ D.R : D.Spm; rq � m1s .

Unforgeability security. The unforgeability security notions we consider are defined in Fig. 4. The
standard notion of UFCMA (unforgeability under chosen message attack) security is captured by Gufcma

which includes the boxed but not the highlighted code, giving the adversary access to a regular signing oracle
Sign. The goal of the adversary is to query Forge with a valid signature σ� of a message m� which was
not previously included in a signing query (as stored by the set S). We define Advufcma

DS pAq � PrrGufcma
DS pAqs.

Our new security notion UFRMA (unforgeability under randomized message attack) is captured by the
game Gufrma which is parameterized by a message distribution D. In this game the adversary is instead given
access to the randomized signing oracle RSign where the message to be signed is chosen by D. Note that
the coins used by D are returned to the adversary along with the signature. Otherwise this game matches
that of UFCMA security. We define Advufrma

DS,D pAq � PrrGufrma
DS,D pAqs.
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Game Gufcma
DS pAq , Gufrma

DS,DpAq
hÐ$ DS.I
pvk, skq Ð$ DS.K
S ÐH
win Ð false
Run ASign,Forge,hpvkq

Run ARSign,Forge,hpvkq
Return win

Signpmq

S Ð S Y tmu
σÐ$ DS.Signhpsk,mq
Return σ

Forgepm�, σ�q

If m� R S:
If DS.Verhpvk,m, σq:

win Ð true

RSignpmq

rÐ$ D.R
m1 Ð D.Spm; rq
S Ð S Y tm1u
σÐ$ DS.Signhpsk,m1q
Return pσ, rq

Fig. 4. Security games capturing the unforgeability of a digital signature scheme.

We will relate the advantage of attacks making only a single forgery attempt and those making many such
attempts. When wanting to make the distinction explicit we prefix the abbreviation of a security notion with
an ‘m’ or ‘1’. Strong UFCMA security, denoted SUFCMA, is captured by modifying Gufcma to store the tuple
pσ,mq in S in Sign and checking pm�, σ�q R S in Forge. We denote this by Gsufcma and the corresponding
advantage by Advsufcma. We define SUFRMA, Gsufrma, and Advsufrma analogously. We write xUFRMA when
assuming that D is extractable and wUFRMA when assuming it is weakly extractable.

4.2 Multi-Challenge Security for Extractable Message Distributions

The first applications we show for our techniques are generic methods of tightly implying security of a digital
signature scheme against multiple forgery attempts (i.e., multi-challenge security). Recall that Auerbach et
al. [1] gave a lower bound showing that a black-box reduction proving that single UFCMA security implies
many UFCMA cannot be made memory-tight and time-tight. We avoid this in two ways; first by considering
mUFRMA, rather than mUFCMA, security and then by considering a particular choice of digital signature
scheme.

High-level idea.The primary difficulty of a tight proof that 1UFCMA security implies mUFCMA security
is that a successful mUFCMA attacker may have made many Forge queries which verify correctly, one of
which is a valid forgery and the rest of which were just forwarded from its Sign oracle. A 1UFCMA reduction
must then somehow be able to identify which of the queries is the true forgery so it can forward this to its
own Forge oracle.

The technical core of the coming proof for mUFRMA is that our reduction adversary will use the random
coins of the message distribution D to signal things to its future self. In particular, when Ar makes a query
RSignpmq, the reduction will choose coins for D.S via r Ð fpm, iq where i is a counter which is incremented
with each query and f is a random tweakable function/injection. The coins then act as a sort of authentication
tag for m. On a later Forgepm�, σ�q query, if m� � D.Spm; rq where r � fpm, iq for some i P rqSigns the
reduction can safely assume this message was signed by an earlier RSign query.

When D is fully extractable, we can perform the requisite check for Forge by having f be an injection.
We extract m and r from m� and then compute iÐ f�1pm, rq. This is the strategy used in Theorem 1. If we
assume only that D is weakly extractable, we can extract m if D has a sufficient amount of entropy, and then
individually check if D.Spm; fpm, iqq holds for each choice of i. This reduction strategy, used in Theorem 3,
obtains the same advantage at the cost of an extra runtime being needed to iterate over the possible choices
of i in Forge.

Extractable Message Distribution. If the message distribution D is extractable, the following theorem
captures that 1UFCMA security tightly implies mUFRMA security. The proof makes use of our efficient
tagging technique.

Theorem 1 (1UFCMA ñ mxUFRMA). Let DS be a digital signature scheme and D be an extractable
message distribution. Let Ar be an adversary with pqSign, qForge, qhq � QuerypArq and assume qSign ¤
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Adversary ASign,Forge,h
u pvkq

iÐ 0
f Ð$ Inj�pDS.M, rqSigns,D.Rqq
Run ASimRSign,SimForge,h

r pvkq

SimRSignpmq

iÐ i� 1
r Ð fpm, iq
m1 Ð D.Spm; rq
σ Ð Signpm1q
Return pσ, rq

SimForgepm�, σ�q

pm, rq Ð D.Xpm�q
If f�1pm, rq R rqSigns:

If DS.Verhpvk,m�, σ�q:
Query Forgepm�, σ�q
Halt execution

Fig. 5. Adversary Au used in proof of Theorem 1.

0.5|D.R|. Let Au be the Inj�pDS.M, rqSigns,D.Rq-oracle adversary shown in Fig. 5. Then,

Advufrma
DS,D pArq ¤ Advufcma

DS pAuq � p0.5 � q2Sign � 2 � qSign � qForgeq{|D.R|

QuerypAuq � pqSign, 1, qh � qForge �QuerypDSqq

Time�pAuq � TimepArq � qSign �TimepDq � qForgepTimepDq �TimepDSqq

Mem�pAuq � MempArq �MempDq �MempDSq � lgpqSignq.

This is time-tight because TimepArq P ΩpqSign� qForgeq must hold and TimepDq and TimepDSq will be
small. This is memory-tight because MempDq, MempDSq, and lgpqSignq will be small.

The main idea of Au is using the output of an invertible random injection f on the message and a
counter as coins instead of sampling them uniformly at random when answering RSign queries. Since D is
fully extractable, during a Forge query on m�, we can extract pm, rq Ð D.Xpm�q and use the fact that f
is invertible to compute f�1pm, rq and check if the index is in rqSigns. This is used to avoid remembering
S. If m� P S, and pm, rq Ð D.Xpm�q, then there exists j P rqSigns such that r � fpm, jq – so the check
passes. We can argue that if m� R S, our check is unlikely to pass. We give the formal proof of this theorem
in Section 4.3. It applies the switching lemma to argue the use of f cannot be distinguished from honestly
sampling r with advantage better than 0.5 � q2Sign{|D.R| and shows that the probability of falsely making the
check pass is bounded by 2qSignqForge{|D.R|.

We would not be able to use the technique in this proof to prove mxSUFRMA from 1SUFCMA in a
memory-tight way. In particular, since the coins r of the message distribution are chosen before σ is known,
our trick of using r to signal freshness of a forgery query does not work for a message-signature pair.

4.3 Proof of Theorem 1 (1UFCMAñmUFRMA)

Proof. We consider a sequence of hybrids H0 through H4 defined in Fig. 6. When examining these hybrids
recall our conventions regarding “//Hri,jq” comments described in Sec. 2.1. Of these hybrids we will make
the following claims, which establish the upper bound on the advantage of Ar claimed in the proof.

1. PrrGufrma
DS,D pArqs � PrrH0s � PrrH1s

2. PrrH1s ¤ PrrH2s � 0.5 � q2Sign{|D.R|
3. PrrH2s � PrrH3s

4. PrrH3s ¤ PrrH4s � 2qSignqForge{|D.R|

5. PrrH4s � Advufcma
DS pAuq

Transition H0 to H1.The hybrid H0 is simply a copy of the game Gufrma. (We also added code to initialize
variables i and Ir�s that will be used in later hybrids.) Hence PrrGufrmapArqs � PrrH0s. In hybrid H1, we
replace the random sampling of r for D in RSign with the output of a random function f applied to m, using
a counter i to provide domain separation between different queries. This method of choosing r is equivalent,
so PrrH0s � PrrH1s.

Transition H1 to H2. In hybrid H2 we replace the random function with a random injection. This modifies
the behavior of the game only in that values of r are guaranteed not to repeat across different signing queries
that used the same message. There are at most qSign invocations of f , so the switching lemma (Lemma 1)
tells us that PrrH1s ¤ PrrH2s � 0.5 � q2Sign{|D.R|.
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Games Hh for 0 ¤ h ¤ 4

hÐ$ DS.I
pvk, skq Ð$ DS.K; S ÐH
win Ð false
iÐ 0; Ir�s Ð H
f Ð$ FcspDS.M, rqSigns,D.Rq //Hr1,2q

f Ð$ Inj�pDS.M, rqSigns,D.Rq
//Hr2,8q

Run ARSign,Forge,h
r pvkq

Return win

RSignpmq

rÐ$ D.R //Hr0,1q

iÐ i� 1 //Hr1,8q

r Ð fpm, iq //Hr1,8q

Irms Ð Irms Y tiu //Hr3,4q

m1 Ð D.Spm; rq
S Ð S Y tm1u //Hr0,3q

σÐ$ DS.Signhpsk,m1q
Return pσ, rq

Forgepm�, σ�q

pm, rq Ð D.Xpm�q
If m� R S: //Hr0,3q

If f�1pm, rq R Irms: //Hr3,4q

If f�1pm, rq R rqSigns: //Hr4,8q

If DS.Verhpvk,m�, σ�q:
win Ð true

Fig. 6. Hybrid games used in proof of Theorem 1.

Transition H2 to H3. In hybrid H3, we replace the check whether m� R S in oracle Forge with a check
if f�1pm, rq R Irms where pm, rq � D.Xpm�q. Here Ir�s is a new table introduced into the game. In RSign,
code was added which uses Irms to store each of the counter values for which Ar made a signing query for
m. Hence f�1pm, rq will be in Irms iff m� is in S and so PrrH2s � PrrH3s.

Transition H3 to H4. In the final transition to hybrid H4 we replace the Forge check f�1pm, rq R Irms
with f�1pm, rq R rqSigns. This does change behavior if Ar ever makes a successful forgery query for m� �
D.Spm; fpm, iqq without its i-th signing query having used the message m. This would require guessing fpm, iq
for some i P rqSignszIrms. We can bound the probability of this ever occurring by a union bound over the
Forge queries made by Ar. Consider the set fpm, rqSignszIrmsq � tfpm, iq : i P rqSignszIrmsu. It has size at
most qSign. Because f is a random injection it is uniform subset of the set D.Rzfpm, Irmsq (which has size at
least |D.R|�qSign). Hence the probability of any particular query triggering this different behavior is at most
qSign{p|D.R|�qSignq ¤ 2qSign{|D.R|. Applying the union bound gives us PrrH3s ¤ PrrH4s�2qSign �qForge{|D.R|.

Reduction to UFCMA.We complete the proof using adversary Au from Fig. 5 which simulates hybrid H4

and succeeds whenever Ar would. The adversary Au samples f at random from InjpDS.M, rqSigns,D.Rq. When
run on input vk, it runs Ar on the same input. It gives Ar direct access to h. To simulate a query RSignpmq,
it computes m1 Ð D.Spm; fpm, iqq, increments i, and queries Signpm1q, returning the result to Ar. On a
query Forgepm�, σ�q, it computes pm, rq Ð D.Xpm�q. If f�1prq R rqSigns and DS.Verpvk,m�, σ�q � true
then it queries its own oracle with pm�, σ�q and halts. Otherwise it ignores the query.

If adversary Au ever makes a Forge query, it will succeed. It ensured that pm�, σ�q is verified correctly
and f�1prq R rqSigns ensures that it is has not previously made a Sign query for m�. If Ar would have
succeeded in hybrid H4, its winning query will cause Au to make a Forge query. Hence, we have PrrH4s �
Advufcma

DS pAuq.

The claimed complexity of Au is straightforward. Clearly it makes qSign queries to its signing oracle and
1 query to its forgery oracle. It forwards all of Ar’s queries to h and additionally may make queries when
running DS.Ver in SimForge giving qh � qForge �QuerypDS.Verq queries total. The time complexity of Au

includes that of Ar, plus the time to execute D.S for each signing query, and the time to run D.X and DS.Ver
for each forgery attempt. The memory complexity of Au includes that of Ar, plus the amount of memory
required to run the algorithms D.S, D.X, and DS.Ver and to store the counter i. [\
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4.4 Applications and Weakly Extractable Variant

We discuss some applications of Theorem 1. This includes scenarios where extractable message distributions
are used and proving security of digital signature schemes when their messages are padded with randomness.
Additionally, we give a variant of the theorem when the underlying message distribution is only weakly
extractable. The resulting reduction is memory- but not time-tight.

Example extractable distributions.The simplest extractable distribution does not accept parameters
as input and simply outputs its randomness as the message. Security with respect to this is the standard
notion of security against random message attacks which was originally introduced by Even, Goldreich, and
Micali [15].

Extractable distributions arise naturally when the messages being signed include random values. For
example, protocols often include random nonces in messages that are signed. In TLS 1.3, for example, when
the server is responding to the Client Hello Message it signs a transcript of the conversation up until that
point which includes a 256-bit nonce just chosen by the server. We could think of the security for this setting
being captured by an extractable distribution Dtls that takes as input message parameter m that specifies
all of the transcript other than the nonce and sets the nonce to its randomness r P t0, 1u256.

Padding schemes with randomness.Using Theorem 1, we can see that augmenting any digital signature
scheme by appending auxiliary randomness will give us a memory-tight reduction from the mUFCMA security
of the augmented scheme to the 1UFCMA security of the original scheme.

Let DS be a digital signature scheme and R be a set. We define RDSrDS,Rs by having RDSrDS,Rs.Signpsk,mq
do “rÐ$ R; Return DS.Signpsk,m } rq } r” and having RDSrDS,Rs.Verpvk,m, σ1q do “σ } r Ð σ1; Return
DS.Verpvk,m } r, σq.” We also define a related message distribution RDrRs by RDrRs.R � R and RDrRs.Spm; rq �
m } r. Clearly it is extractable.

The following reduces the mUFCMA security of RDS to the mUFRMA security of DS. Theorem 1 can in
turn be used to reduce this to the 1UFCMA security of DS. It also relates the mSUFCMA security of RDS
to the mSUFRMA security of DS. We note this because if DS has unique signatures, then its mSUFRMA
and mUFRMA security are identical and hence UFCMA security of DS implies mSUFCMA security of RDS
in a memory-tight way.

Theorem 2. Let DS be a digital signature scheme and R be a set. Then for any Au we can construct Ar

such that Advufcma
RDSrDS,RspAuq � Advufrma

DS,RDrRspArq. It additionally holds that Advsufcma
RDSrDS,RspAuq � Advsufrma

DS,RDrRspArq.
Adversary Ar has essentially the same complexity as Au.

Proof (Sketch). The proof of this is straightforward. If Au queries Signpmq, then Ar queries Signpmq and
receives pσ, rq and returnsσ } r to Au. If Au queries Forgepm�, σ� } r�q, then Ar queries Forgepm� } r�, σ�q.
Note that Ar wins whenever Au would. [\

In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [12] also considered RDS, proving that
if DS can be proven SUFCMA1 secure (in this notion the game records its responses to signature queries and
repeats them if the adversary repeats a query) with a restricted class of “canonical” memory-tight reductions,
then there is a memory-tight reduction for the mSUFCMA security of RDS. This complements our results
as they use a more restrictive assumption to prove mSUFCMA while we use a generic assumption to prove
mUFCMA.

Weakly extractable message distribution. If D is only weakly extractable (but still has high entropy),
then we can prove a variant of Theorem 1 with a less efficient reduction. (In particular, the running time of
the reduction has an additional term of qForge � qSign �TimepD.Sq.) This difference arises because rather than
extracting r and computing j Ð f�1pm, rq in Forge we instead need to iterate over the possible values of
fpm, jq to check for consistency. Thus the proof is an instance of our inefficient tagging technique.

Theorem 3 (1UFCMA ñ mwUFRMA). Let DS be a digital signature scheme and D be a weakly
extractable message distribution. Let Ar be an adversary with pqSign, qForge, qhq � QuerypArq. Define the
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Adversary ASign,Forge,h
u pvkq

iÐ 0
f Ð$ FcspDS.M, rqSigns,D.Rq
Run ASimRSign,SimForge,h

r pvkq

SimRSignpmq

iÐ i� 1
r Ð fpm, iq
m1 Ð D.Spm; rq
σ Ð Signpm1q
Return pσ, rq

SimForgepm�, σ�q

pm, rq Ð D.Xpm�q
If @j P rqSigns,D.Spm; fpm, jqq � m�:

If DS.Verhpvk,m�, σ�q:
Query Forgepm�, σ�q
Halt execution

Fig. 7. Reduction adversary used in proof of Theorem 3.

Games Hh for 0 ¤ h ¤ 4

hÐ$ DS.I
pvk, skq Ð$ DS.K; S ÐH
win Ð false
iÐ 0; Ir�s Ð H
f Ð$ FcspDS.M, rqSigns,D.Rq //Hr1,8q

Run ARSign,Forge,h
r pvkq

Return win

RSignpmq

rÐ$ D.R //Hr0,1q

iÐ i� 1 //Hr1,8q

r Ð fpm, iq //Hr1,8q

Irms Ð Irms Y tiu //Hr3,4q

m1 Ð D.Spm; rq
S Ð S Y tm1u //Hr0,3q

σÐ$ DS.Signhpsk,m1q
Return pσ, rq

Forgepm�, σ�q

mÐ D.Xpm�q
If m� R S: //Hr0,3q

If @j P Irms,D.Spm; fpm, jqq � m�: //Hr3,4q

If @j P rqSigns,D.Spm; fpm, jqq � m�: //Hr4,8q

If DS.Verpvk,m�, σ�q:
win Ð true

Fig. 8. Hybrid games used in proof of Theorem 3.

FcspDS.M, rqSigns,D.Rq-oracle adversary Au as shown in Fig. 7. Then.

Advufrma
DS,D pArq ¤ Advufcma

DS pAuq � qSign � qForge � 2
�D.H8

QuerypAuq � pqSign, 1, qh � qForge �QuerypDSqq

Time�pAuq � TimepArq � qSign �TimepDq � qForgepqSignTimepDq �TimepDSqq

Mem�pAuq � MempArq �MempDq �MempDSq � lgpqSignq.

This running time is not time-tight because TimepArq P OpqSign � qForgeq may hold, while Time�pAuq P
ΩpqForge � qSignq. This is memory-tight because we expect MempDq � MempDSq � lgpqSignq to be small.
Recall that, as discussed in the introduction, such non-time-tight reductions may be useful when the best
attack for the underlying problem with low memory requires significantly more running time than the best
attack with high memory.

This theorem is useful when the messages being signed include values derived from randomness which
are hard to invert to recover the underlying randomness. Examples of this include the signing of public keys,
as is done for certificates or some key exchange protocols, and the signing of ciphertexts, as is done for
signcryption. We could capture such settings with appropriate choices of D.

The main idea behind adversary Au is very similar to the idea behind the adversary in Theorem 1.
Because we now only assume weak extractability, we extract m and then iterate over each choice of j to
check whether D.Spm; fpm, jqq � m�. Moreover, since we no longer need to invert f here, it suffices for f to
be a random function. We give formal proof of Theorem 3.
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Proof. We consider a sequence of hybrids H0 through H4 defined in Fig. 8. Of these hybrids we will make
the following claims, which establish the upper bound on the advantage of Ar claimed in the proof.

1. PrrGufrma
DS,D pArqs � PrrH0s � PrrH1s

2. PrrH1s � PrrH2s
3. PrrH2s � PrrH3s
4. PrrH3s ¤ PrrH4s � qSign � qForge � 2

�D.H8

5. PrrH4s � Advufcma
DS pAuq

Transition to H0. The hybrid H0 is simply a copy of the game Gufrma. (We also added code to initialize
variables i and Ir�s that will be used in later hybrids.) Hence PrrGufrmapArqs � PrrH0s.

Transition H0 to H1. In hybrid H1, we replace the random sampling of r for D in RSign with the output of
a random function f applied to m, using a counter i to provide domain separation between different queries.
This method of choosing r is equivalent, so PrrH0s � PrrH1s.

Transition H1 to H2.Hybrid H2 is identical to hybrid H1. So PrrH1s � PrrH2s. We include this redundant
hybrid to maintain consistency of the hybrid numbers with the proof of Theorem 3.

Transition H2 to H3. In hybrid H3, we replace the check whether m� R S in oracle Forge with a check
if @j P Irms,D.Spm; fpm, jqq � m�. Here Ir�s is a new table introduced into the game. In RSign, code was
added which uses Irms to store each of the counter values for which Ar made a signing query for m. It is
easy to see that if for all j P Irms, D.Spm; fpm, jqq � m�, then m� R S. Also if there exists j P Irms such
that D.Spm; fpm, jqq � m�, the j-th signing query was on m and hence m� P S. Therefore the new check is
equivalent to the replaced one and so PrrH2s � PrrH3s.

Transition H3 to H4. In the final transition to hybrid H4 we replace the Forge check @j P Irms,
D.Spm; fpm, jqq � m� with @j P rqSigns,D.Spm; fpm, jqq � m�. This does change behavior if Ar ever makes a
successful forgery attempt for m� � D.Spm; fpm, jqq without its j-th signing query having used the message
m. Note that the view of the adversary would be independent of fpm, jq in this case and hence fpm, jq can
be thought of as a value chosen uniformly at random from D.R. Thus for every Forge query and j P rqSigns
the probability that m� � D.Spm; fpm, jqq is at most 2�D.H8 . By an union bound over all values of j it
follows that for every Forge this happens with probability at most qForge � 2

�D.H8 . By a union bound over
all Forge queries we get that PrrH3s ¤ PrrH4s � qSign � qForge � 2

�D.H8 .

Reduction to UFCMA. We complete the proof by designing an adversary Au (see Fig. 7)). It is easy
to see that adversary Au simulates hybrid H4 to Ar and succeeds whenever Ar would. It follows that,
PrrH4s � Advufcma

DS pAuq.
The claimed complexity of Au is straightforward. Clearly it makes qSign queries to its signing oracle and

1 query to its forgery oracle. It forwards all of Ar’s queries to h and additionally may make queries when
running DS.Ver in SimForge giving qh � qForge �QuerypDS.Verq queries total. The time complexity of Au

includes that of Ar, plus the time to execute D.S for each signing query, and the time to run D.X at most
qSign times and DS.Ver once for each forgery attempt. The memory complexity of Au includes that of Ar,
plus the memory required to run the algorithms D.S, D.X, and DS.Ver and to store the counter i. [\

4.5 mSUFCMA Security of RSA-PFDH

We saw that augmenting any digital signature scheme by including extra randomness gives us a memory-
tight reduction for the mUFCMA security of the augmented scheme from the 1UFCMA security of the
original scheme in Theorem 2. Now we will consider a particular signature scheme, RSA-based Probabilistic
Full-Domain Hash (RSA-PFDH) which was originally introduced by Coron [10]. This is a digital signature
scheme obtained by including extra randomness in the standard RSA-based Full Domain Hash (RSA-FDH)
scheme. Theorem 2 gives us a memory-tight reduction from the mUFCMA security of RSA-PFDH to the
1UFCMA security of RSA-FDH, but the UFCMA security reduction of the latter to hardness of inverting
the RSA permutation is not tight in terms of advantage. In this section, we use the efficient tagging trick to
give a direct reduction from the mSUFCMA security of RSA-PFDH to the hardness of RSA which is tight
in terms of both memory and advantage.
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RSA.K

pN, e, dq Ð$ R.Gen
sk Ð pN, dq
vk Ð pN, eq
Return psk, vkq

RSA.Signhpsk,mq

pN, dq Ð sk
rÐ$ t0, 1url

w Ð hpN,m } rq
z Ð wd mod N
Return z } r

RSA.Verhpvk,m�, σ�q

pN, eq Ð vk
z } r Ð σ�

w Ð ze mod N
Return (w � hpN,m� } rq)

Fig. 10. Digital signature scheme RSA � RSA-PFDHrR, rls.

RSA trapdoor permutation. The RSA function defines a trapdoor permutation that is plausibly one-
way. It is based on the observation that given modulus N P N and an integer e ¥ 2 relatively prime to φpNq
(where φ is Euler’s totient function), exponentiation to the e-th power modulo N is a permutation on Z�

N .

Game Gow-rsa
R pAq

pN, e, dq Ð$ R.Gen
xÐ$ Z�

N

y Ð xe mod N
x1 Ð ApN, e, yq
Return x � x1

Fig. 9. RSA one-wayness secu-
rity game.

An RSA generator R specifies a generation algorithm R.Gen such that R.Gen
returns pN, e, dq where N is an integer such that e is co-prime to N and d �
e�1 mod φpNq. We assume N is always of a fixed bit-length R.k. Typically
N � pq for distinct pR.k{2q-bit primes p and q. The one-wayness of an
RSA generator R is defined by the game Gow-rsa

R in Fig. 9. The game runs
R.Gen to obtain pN, e, dq, and then samples x uniformly at random from
Z�
N . It computes y � xe mod N and runs the adversary on input pN, e, yq.

The adversary wins if it returns x1 � x. The advantage of an adversary A
against RSA generator R is Advow-rsa

R pAq � PrrGow-rsa
R pAqs.

We let TimepRq denote the time required by R.Gen plus an upper bound
on the time to compute multiplication or exponentiation by e in Z�

N for any
pN, e, dq output but R. We define MempRq analogously.

Full domain hash. Full Domain Hash (FDH) [5] is a digital signature
scheme where the message m is first hashed using a hash function h onto
the domain of a one-way trapdoor permutation f . Then the signature is f�1phpmqq. When instantiated with
the RSA trapdoor permutation, it is known as RSA-FDH.

Assuming h is a random oracle, it can be proven [5,9] that for every adversary A that makes qSign queries
to its signing oracle and achieves advantage ε against the UFCMA security of RSA-FDH, we can construct
an adversary B that breaks RSA with advantage ε1 � qSign � ε. Auerbach et al. [1] showed how to make this
reduction memory-tight.

In order to overcome the advantage loss factor of qSign, Coron [10] introduced Probabilistic FDH (PFDH)
where a random salt r is hashed with the message m and the signature is f�1phpm } rqq } r. Using Theorem 2,
and the result of Auerbach et al. we can give a memory-tight reduction for the mUFCMA security of RSA-
PFDH, but the reduction is not-tight in terms of advantage. Via a more direct proof we will obtain a
reduction that is tight in all metrics.

We let RSA-PFDHrR, rls denote the instantiation of RSA-PFDH with a given RSA generator R and
randomness length rl P N. For compactness we typically define RSA � RSA-PFDHrR, rls. Its algorithms are
given in Fig. 10. They expect access to a random oracle h P RSA-PFDHrR, rls.I � Fcspt0, 1uR.k, t0, 1u�,Z�

p�qq.

Typical analysis of FDH constructions (e.g., [5,9]) uses a single non-tweakable hash function with range Z�
N .

Thus h depends on N which is determined by the verification key used. This dependence does not make
sense with our notation conventions for treating ideal models, so we instead represent h as a hash function
tweaked by N . Here the Z�

p�q indicates that for h P RSA-PFDHrR, rls.I, the function hpN, �q has a range of

Z�
N . Thus RSA-PFDHrR, rls is the same as the scheme considered by Coron, merely with different notational

conventions.

Security result.The following result gives a memory-tight and advantage-tight reduction for the mSUFCMA
security of RSA-PFDH.
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Adversary ARSApN, e, yq

f1 Ð$ Fcspt0, 1uR.k, t0, 1u�,Z�
p�qq

f2 Ð$ Inj�pt0, 1u�, rqSigns, t0, 1u
rlq

iÐ 0
Run ASign,Forge,h

m ppN, eqq

hpN 1,m } rq

If N � N 1:
Return f1pN

1,m } rq
If f�1

2 pm, rq R rqSigns:
Return y � f1pN,m } rqe mod N

Return f1pN,m } rqe mod N

Signpmq

iÐ i� 1
r Ð f2pm, iq
z Ð f1pN,m } rq
σ Ð z } r
Return σ

Oracle Forgepm�, σ�q

z } r Ð σ�

If f�1
2 pm, rq R rqSigns:
w Ð ze mod N
If w � hpN,m } rq:

Halt(z � f1pN,m } rq�1 mod N)

Fig. 11. Adversary for Theorem 4. Highlighting shows where it halts with the specified output.

Theorem 4 (mSUFCMA security of RSA-PFDH). Let R be an RSA generator. Let rl P N and assume
rl   R.k. Let RSA � RSA-PFDHrR, rls. Let Am be an adversary with pqSign, qForge, qhq � QuerypAmq and
assume qSign ¤ 2rl�1. Let ARSA be the adversary defined in Fig. 11. Then,

Advsufcma
RSA pAmq ¤ Advow-rsa

R pARSAq � p0.5 � q2Sign � 2 � qSign � qForgeq{2
rl

Time�pARSAq � OpTimepAmqq �Oppqh � qForgeqTimepRqq

Mem�pARSAq � OpMempAmqq �OpMempRqq � lgpqSignq.

Adversary ARSA is an F-oracle adversary for

F � Fcspt0, 1uR.k, t0, 1u�,Z�
p�qq � Injpt0, 1u�, rqSigns, t0, 1u

rlq.

The advantage of the adversary ARSA is nearly the same as the advantage of Am if rl is chosen so that
0.5 � q2Sign�2 � qSign � qForge ! 2rl will hold. The reduced complexity of ARSA is nearly the same as the running
time and memory of Am. Therefore, the reduction is tight with respect to advantage, time, and memory.

Its main idea of ARSA is based around its simulation of h using the random function f1. We have
hpN 1,m } rq simply return f1pN

1,m } rq whenever N 1 � N because these queries are not relevant for se-
curity. We want to return f1pN,m } rqe mod N for any m } r that will be signed in Sign. This allows us
to return f1pN,m } rq } r as the signature because then hpN,m } rqd mod N � f1pN,m } rq. Finally we
want to embed our challenge y into all other h queries by returning y � f1pN,m } rqe mod N . Then given a
forgery with respect to such a value (that is, given z such that ze mod N � hpN,m } rq) we can see that
yd mod N � z � f1pN,m } rq�1 mod N , solving the RSA game.

If memory was not a concern we could sample r at random in Sign and remember each m } r used to
respond appropriately to them in h and Forge. To make things memory-tight we instead chose r as f2pm, iq
for a random function f2 and counter i. Then whenever we see m } r such that f�1

2 pm, rq P rqSigns we assume
this must have been used in a signing query and respond appropriately. In concurrent work, Diemert, Gellert,
Jager, and Lyu [12] also give a time, memory, and advantage tight reduction for RSA-PFDH via a different
proof.

We give the formal proof of Theorem 4.

Proof. We consider a sequence of hybrids H0 through H3 and L0 through L3 defined in Fig. 12 and 13. Of
these hybrids we will make the following claims, which establish the upper bound on the advantage of Am

claimed in the proof.

1. PrrGsufcma
RSA pAmqs � PrrH0s � PrrH1s � PrrH2s

2. PrrH2s ¤ PrrH3s � 0.5 � q2Sign{2
rl

3. PrrH3s � PrrL0s

4. PrrL0s ¤ PrrL1s � 2qSign � qForge{2
rl

5. PrrL1s � PrrL2s
6. PrrL2s � Advow-rsa

R pARSAq
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Transition to H0. Hybrid H0 was obtained by embedding the code of RSA into Gsufcma and rewriting h as
an oracle that simply evaluates the random function f1 chosen in the same way that h was sampled. Hence,
PrrGsufcma

RSA pAmqs � PrrH0s.

Transition from H0 to H1. In hybrid H1, we assign f1pN,m } rqe mod N to hpN,m } rq instead of f1pN,m } rq.
Because exponentiation by e us a permutation this is still a uniformly random element. Then for a Sign
query, we directly assign f1pN,m } rq to z since pf1pN,m } rqeqd mod N � f1pN,m } rq. This does not change
the distribution of the hash values or the signatures, so PrrH0s � PrrH1s.

Transition from H1 to H2. In hybrid H2, we replace the random sampling of r during signing with the
output of a random function f2, using a counter i to provide domain separation between different Sign
queries. This method of choosing r is equivalent, so PrrH1s � PrrH2s.

Transition from H2 to H3. In hybrid H3 we replace the random function f2 with a random injection
(tweaked by the message m). This modifies the behavior of the game only in that values of r are guaranteed
not to repeat across different signing queries that used the same message. There are at most qSign invocations
of f2, so the switching lemma (Lemma 1) tells us that PrrH2s ¤ PrrH3s � 0.5 � q2Sign{2

rl.

Transition from H3 to L0. Now consider L0 shown in Fig. 13. We’ve used grey highlighting to indicate
places where code was changed from H3 to L0. In hybrid L0’s oracle Forge, we replace the check whether
pm�, σ�q R S with a check whether f�1pm, rq R Irms. Here Ir�s is a new table; code was added to Sign which
in Irms stores each of the counter values for which Am made a signing query for m. Note that f�1pm, rq is in
Irms iff the f�1pm, rq-th signing query was for m and returned z1 } r for some z1. Hence, if pm�, σ�q P S, then
f�1pm, rq P Irms. If pm�, σ�q R S either f�1pm, rq R Irms or f�1pm, rq P Irms, but in the latter case it must
be that σ� � z } r for some z not equal to the z1 returned by the signing query and so ze � hpN,m� } rq.
Hence these games are equivalent, giving PrrH3s � PrrL0s.

Transition L0 to L1. Next, in hybrid L1 we replace the Forge check f�1pm, rq R Irms with f�1pm, rq R
rqSigns. Detecting this change requires guessing f2pm

�, iq for some i P rqSignszIrms. We can bound the
probability of this ever occurring in L0 by a union bound over the Forge queries made by the adversary.
Consider the set fpm�, rqSignszIrm

�sq � tfpm�, iq : i P rqSignszIrm
�su. It has size at most qSign. Because

f2 is a random injection, this is uniform subset of the set t0, 1urlzf2pm
�, Irm�sq (which has size at least

2rl � qSign). Hence the probability of any particular query being the first to trigger this different behavior is
at most qSign{p2

rl�qSignq ¤ 2qSign{2
rl. Applying the union bound gives us PrrL0s ¤ PrrL1s�2qSign �qForge{2

rl.

Transition from L1 to L2. In hybrid L2 we now begin the game by sampling x at random from Z�
N and

setting y Ð xe mod N . Our goal is to “embed” y into the responses to random oracle queries so that a
successful forgery allows x to be recovered. In particular, we change the output of h whenever f�1pm, rq R
rqSigns, now returning y � f2pm } rqe mod N . Note that multiplying the fixed element y P Z�

N by a uniformly
random element still gives a uniformly random element. Because we only perform this modification for
f�1pm, rq R rqSigns, it will not cause any inconsistency with Sign where f�1pm, rq P rqSigns always holds.
Hence the view of the adversary is unchanged and so PrrL1s � PrrL2s.

Reduction to RSA. We complete the proof by arguing that ARSA perfectly simulates hybrid L2 and
succeeds whenever Am would. It is formally defined in Fig. 11. Examining its code, we can see that the code
is basically identical to that of L2, except it is given pN, e, yq as input rather than generating them locally.
The grey highlighted code in Forge shows where ARSA will halt early whenever Am would win. The check
immediately before this ensures that ze mod N � y �f3pm } rqe mod N . Hence y � pz �pf3pm } rqq�1qe mod N ,
meaning that z � pf3pm } rqq�1 is indeed the correct response. Hence PrrL2s � Advow-rsa

R pARSAq.
The complexity of ARSA follows from its description. The counter i is the additional lgpqSignq storage.

The TimepRq and MempRq terms come from performing operations in Z�
N for h and Forge queries. [\

5 AE Security of Encrypt-then-PRF

For nonce-based secret-key encryption schemes, we often want Authenticated Encryption (AE) security
which simultaneously asks for confidentiality and ciphertext integrity. The common approach to prove AE
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Hybrids Hh for 0 ¤ h ¤ 3

pN, e, dq Ð$ R.Gen
S ÐH
f1 Ð$ Fcspt0, 1uR.k, t0, 1u�,Z�

p�qq

f2 Ð$ Fcspt0, 1u�, rqSigns, t0, 1u
rlq //Hr2,3q

f2 Ð$ Injpt0, 1u�, rqSigns, t0, 1u
rlq //Hr3,8q

iÐ 0 //Hr2,8q

win Ð false
Run ASign,Forge,h

m ppN, eqq
Return win

hpN 1,m } rq

Return f1pN
1,m } rq //Hr0,1q

If N � N 1: //Hr1,8q

Return f1pN
1,m } rq //Hr1,8q

Return f1pN,m } rqe mod N //Hr1,8q

Signpmq

iÐ i� 1 //Hr2,8q

rÐ$ t0, 1url //Hr0,2q

r Ð f2pm, iq //Hr2,8q

w Ð hpN,m } rq //Hr0,1q

z Ð wd mod N //Hr0,1q

z Ð f1pN,m } rq //Hr1,8q

σ Ð z } r
S Ð S Y tm,σu
Return σ

Forgepm�, σ�q

z } r Ð σ�

If pm�, σ�q R S:
w Ð ze mod N
If w � hpN,m� } rq:

win Ð true

Fig. 12. Hybrid games H0 through H3 used in proof of Theorem 4.

Hybrids Lh for 0 ¤ h ¤ 2

pN, e, dq Ð$ R.Gen
xÐ$ Z�

N ; y Ð xe mod N //Lr2,8q

Ir�s Ð H
f1 Ð$ Fcspt0, 1uR.k, t0, 1u�,Z�

p�qq

f2 Ð$ Inj�pt0, 1u�, rqSigns, t0, 1u
rlq

iÐ 0
win Ð false
Run ASign,Forge,h

m ppN, eqq
Return win

hpN 1,m } rq

If N � N 1:
Return f1pN

1,m } rq
If f�1

2 pm, rq R rqSigns: //Lr2,8q

Return y � f1pN,m } rqe mod N //Lr2,8q

Return f1pN,m } rqe mod N

Signpmq

iÐ i� 1
Irms Ð Irms Y tiu
r Ð f2pm, iq
z Ð f1pN,m } rq
σ Ð z } r
Return σ

Forgepm�, σ�q

z } r Ð σ�

If f�1
2 pm�, rq R Irm�s: //Lr0,1q

If f�1
2 pm�, rq R rqSigns: //Lr1,8q

w Ð ze mod N
If w � hpN,m� } rq:

win Ð true

Fig. 13. Hybrid games L0 through L2 used in proof of Theorem 4. Grey highlighting indicates where L0 differs from
H3.

security of a nonce-based encryption scheme is to give separate reductions to the indistinguishability of its
ciphertexts from truly random ones (INDR security) and its ciphertext integrity. Ghoshal et al. [17] proved an
impossibility result showing that a (certain form of black-box) reduction from AE security to INDR security
and ciphertext integrity cannot be memory-tight. Making the INDR part memory-tight is of particular
interest because of results which establish tight time-memory trade-offs for INDR security [26,21,14,11,25].

In this section we look at a particular scheme which we refer to as Encrypt-then-PRF. Given a nonce-
based encryption scheme NE that only has INDR security, one generic way to construct a new encryption
scheme NE1 which also achieves ciphertext integrity is to use a PRF and let the ciphertext of NE1 be the
concatenation of the ciphertext of NE and a tag which is the evaluation of the PRF on the ciphertext and
the nonce.
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Game Gindr
NE,bpAq

KÐ$ NE.K
b1 Ð AEncb

Return b1 � 1

Game Gae-w
NE,b pAq

KÐ$ NE.K
b1 Ð AEncb,Decwb

Return b1 � 1

Encbpn,mq

c1 Ð NE.EpK,n,mq
c0 Ð$ t0, 1uNE.clp|m|q

M rn, cbs Ð m
Return cb

Decwb pn, cq

If M rn, cs � K:
Return M rn, cs if w � m

Return � if w � �
Return K if w � K

m1 Ð NE.Dpk, n, cq
m0 Ð K
Return mb

Fig. 14. Games defining INDR and AE-w security of NE for w P tm, �,Ku.

We show that in the context of Encrypt-then-PRF, for two of the notions of AE security introduced
in [17], we can give a memory-tight reduction to the INDR security of the underlying encryption scheme
and a non-memory-tight reduction to the security of the PRF. This shows that we can bypass the generic
impossibility result of [17] if we consider specific constructions of nonce-based authenticated encryption
schemes. In more detail, the impossibility result of [17] rules out lifting the INDR security of a scheme to full
AE security in a memory tight way, when additionally assuming ciphertext integrity for a generic scheme.
Here, we show that for the specific case of Encrypt-then-PRF schemes, lifting the INDR security of the
encryption scheme to full AE security of Encrypt-then-PRF is possible in a memory-tight way, assuming
security of the PRF.

5.1 Syntax and Security Definitions

Nonce-Based Encryption. A nonce-based (secret-key) encryption scheme NE specifies algorithms NE.K,
NE.E, and NE.D. It specifies message space NE.M and nonce space NE.N. The syntax of the algorithms
is shown in Fig. 15. The secret key is denoted by K, the message is m, the nonce is n, and the ci-
phertext is c. The decryption algorithm may return m � K to indicate rejection of the ciphertext.

NE Syntax

KÐ$ NE.K
cÐ NE.EpK,n,mq
mÐ NE.DpK,n, cq

Fig. 15. Syntax of (nonce-based)
secret-key encryption scheme.

Correctness requires for all K P rNE.Ks, n P NE.N, and m P NE.M that
NE.DpK,n,NE.EpK,n,mqq � m. We assume there is a ciphertext-length
function NE.cl : N Ñ N such that for all K P rNE.Ks, n P NE.N, and
m P NE.M we have |c| � NE.clp|m|q where c Ð NE.EpK,n,mq. We define
NE.C �

�
mPNE.Mt0, 1u

NE.clp|m|q. Typically, a nonce-based encryption scheme
also takes associated data as input which is authenticated during encryption.
This does not meaningfully affect our proof, so we omit it for simplicity.

Encrypt-then-PRF. In this section we consider the Encrypt-then-PRF
construction of a nonce-based encryption scheme, due to Rogaway [24].
Namprempre et al. [23] gave a more extensive exploration of the many
ways to construct an AEAD encryption scheme via generic composition.
Given nonce-based encryption scheme NE and function family F, we define
EtPrNE,Fs by the following algorithms. We refer to the t component of the
ciphertext returned by EtPrNE,Fs.E as the “tag” below. When including associated data, it would be input
to F.

EtPrNE,Fs.K

KÐ$ NE.K
K 1 Ð$ F.K
Return pK,K 1q

EtPrNE,Fs.EpK,n,mq

pK,K 1q Ð K
c1 Ð NE.EpK,n,mq
tÐ FK1pn, c1q
Return pc1, tq

EtPrNE,Fs.DpK,n, cq

pK,K 1q Ð K; pc1, tq Ð c
If t � FK1pn, c1q:

Return NE.DpK,n,mq
Return K
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Our security result will analyze the authenticated security of EtP assuming NE has ciphertexts indistinguish-
able from random ciphertexts and F is pseudorandom. Let us recall these security notions.

Indistinguishability From Random (INDR) Security. This security notion requires that ciphertexts
output by the encryption scheme cannot be distinguished from random strings. Consider the game Gindr

NE,b

defined in Fig. 14. Here an adversary A is given access to an encryption oracle Encb to which it can query
a pair pn,mq and receive an honest encryption of message m with nonce n if b � 1 or a random string of the
appropriate length if b � 0. We restrict attention to “valid” adversaries that never repeat the nonce n across
different encryption queries. We define AdvindrNE pAq � PrrGindr

NE,1pAqs � PrrGindr
NE,0pAqs.

Authenticated Encryption (AE) security. AE security simultaneously asks for integrity and con-
fidentiality. Consider the games Gae-w

NE,b which defines three variants of authenticated encryption security
parameterized by w P tm, �,Ku shown in Fig. 14. In this game, the adversary is given access to an encryption
oracle and a decryption oracle. Its goal is to distinguish between a “real” and “ideal” world. In the real world
(b � 1) the oracles use NE to encrypt messages and decrypt ciphertexts. In the ideal world (b � 0) encryption
returns random messages of the appropriate length and decryption returns K. For simplicity, we will again
restrict attention nonce-respecting adversaries which do not repeat nonces across encryption queries. (Note
that there is no restriction placed on nonces used for decryption queries.)

The decryption oracle is parameterized by the value w P tm, �,Ku corresponding to three different security
notions. In all three, we use a table M r�, �s to detect when the adversary forwards encryption queries on to
its decryption oracle. When w � m, the decryption oracle returns M rn, cs. When w � �, it returns a special
symbol �. When w � K, it returns the symbol K which is also used by the encryption scheme to represent
rejection. For w P tm, �,Ku we define the advantage of an adversary A by Advae-wNE pAq � PrrGae-w

NE,1pAqs �
PrrGae-w

NE,0pAqs.
Discussion of variants.This choice of considering three variants of the definition follows the same choice
made by Ghoshal et al. [17]. First off, we note that if there are no restrictions on the memory of the adversary,
all the three definitions are tightly equivalent. An adversary can simply remember its past encryption queries
and answers, and without loss of generality never make a decryption query on the answer of an encryption
query. In the memory restricted setting these definitions no longer appear to be equivalent. The only known
implication is that w � � security tightly implies w � K security. Other implications seem to require
remembering all encryption queries to properly simulate the decryption oracle. In Sec. 6 we parameterize
public-key encryption CCA definitions similarly. This discussion applies to those definitions as well.

Ghoshal et al. argued that w � m is the “correct” definition. They argue that chosen ciphertext security is
intended to capture the power of an adversary that can observe the behavior of a decrypting party. Both the
w � K and w � � definitions restrict what the adversary learns about this behavior when honestly generated
ciphertexts are forwarded, which does not seem to model anything about real use of encryption. The w � m

definition avoids this unnatural restriction.

We provide some technical context for this philosophical argument. In Appendix B we give memory-
tight proofs for the security of encryption schemes constructed with the KEM/DEM paradigm with w � m

and noting this does not seem possible for the other choices of w. In this section and Sec. 6 we prove the
AE/CCA-w security of encryption schemes for differing choices of w. We view this as a general exploration
of what results are possible with memory-tight proofs. A proof which works for some w, but not others helps
build some understanding of how these notions related.

5.2 Security Result

Now we give a proof of the AE-� security of EtPrNE,Fs. In particular we provide a memory-tight reduction
to the INDR security of NE and a non-memory-tight reduction to the security of F. Such a result is useful if
a time-memory tradeoff is known for NE and F is sufficiently secure even against high-memory attackers.

Theorem 5 (Security of EtP). Let NE be a nonce-based encryption scheme and F be a family of function
with F.F � FcspNE.N,NE.C, t0, 1uτ q for τ P N. Let Aa be an AE-� adversary with pqEnc, qDecq � QuerypAaq.
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Adversary AEv
p

KÐ$ NE.K
b1 Ð ASimEnc,SimDec

a

Return b1

SimEncpn,mq

c1 Ð NE.EpK,n,mq
tÐ Evpn, c1q
cÐ pt, c1q
M rn, cs Ð m
Return c

SimDecpn, cq

If M rn, cs � K: Return �
pt, c1q Ð c
If t � Evpn, c1q: Return NE.Dpk, n, c1q
Return K

Adversary AEnc
r

f Ð$ FcspNE.N,NE.M, t0, 1uτ q
b1 Ð ASimEnc,SimDec

a

Return b1

SimEncpn,mq

c1 Ð Encpn,mq
tÐ fpn, c1q
cÐ pt, c1q
Return c

SimDecpn, cq

pt, c1q Ð c
If t � fpn, c1q: Return �
Return K

Fig. 16. Adversaries used for proof of Theorem 5.

Define adversaries Ap and Ar as shown in Fig. 16. Then,

Advae-�EtPrNE,FspAaq ¤ AdvprF pApq � AdvindrNE pArq � 2qDec{2
τ

QuerypApq � qEnc � qDec

TimepApq � TimepGae-�
EtPrNE,FspAaqq

MempApq � MempGae-�
EtPrNE,FspAaqq

QuerypArq � qEnc

Time�pArq � TimepAaq

Mem�pArq � MempAaq.

Adversary Ar is an F.F-oracle adversary.

The standard (not memory-tight) proof of the security of EtP begins identically to our proof; we start in
Gae-�
EtPrNE,Fs,1 replace the use of F with a truly random function (using Ap) and then information theoretically

argue that the attacker shall be incapable of creating any forgeries. In the standard proof we would transition
to a game where the decryption oracle is exactly that of Dec�0, i.e. it always returns K when M rn, cs � K.
Then we reduce to the security of NE to replace the generated ciphertexts with random. However this
standard reduction will not be memory-tight because the attacker must store the table M r�, �s to know
whether it should return � or K when simulating decryption queries.7 Instead we first transition to a world
where F has been replaced by the random function f and Dec always returns � when given a ciphertext
with a correct tag. (Which we can do because either M rn, cs � K held or the attacker managed to guess a
random tag, which is unlikely.) Now we can make our INDR reduction memory-tight. It forwards encryption
queries to its encryption oracle and then uses its own function f to create the tag. For decryption queries
it checks fpn, c1q � t, returning � if so and K otherwise. Then we can finally conclude by switching to the
decryption oracle Dec�0 by arguing that noticing this change requires guessing a random tag.

It does not seem possible to extend this proof technique to AE-m security because the tag would be too
short to embed values of m we need to remember.

We give the formal proof of Theorem 5.

Proof. We consider a sequence of hybrids H0 through H4 defined in Fig. 17. Of these hybrids we will make
the following claims, which establish the upper bound on the advantage of Aa claimed in the proof.

7 Note this would be memory-tight for AE-K security.
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Games Hh for 0 ¤ h ¤ 4

KÐ$ NE.K
K 1 Ð$ F.K //Hr0,1q

f Ð$ FcspNE.N,NE.C, t0, 1uτ q //Hr1,8q

b1 Ð AEnc,Dec
a

Return b1 � 1

Encpn,mq

c1 Ð NE.EpK,n,mq //Hr0,3q

c1 Ð$ t0, 1uNE.clp|m|q //Hr3,8q

tÐ FK1pn, c1q //Hr0,1q

tÐ fpn, c1q //Hr1,8q

cÐ pt, c1q
M rn, cs Ð m
Return c

Decpn, cq

If M rn, cs � K: Return �
pt, c1q Ð c
If t � FK1pn, c1q : //Hr0,1q

If t � fpn, c1q: //Hr1,8q

bad Ð true
Return NE.DpK,n, c1q //Hr0,2q

Return � //Hr2,4q

Return K //Hr4,8q

Return K

Fig. 17. Hybrid games for proof of Theorem 5.

1. PrrGae-�
EtPrNE,Fs,1pAaqs � PrrH0s

2. PrrH0s ¤ PrrH1s � AdvprF pApq
3. PrrH1s ¤ PrrH2s � qDec{2

τ

4. PrrH2s ¤ PrrH3s � AdvindrNE pArq
5. PrrH3s ¤ PrrH4s � qDec{2

τ

6. PrrH4s � PrrGae-�
EtPrNE,Fs,0pAaqs

The claims regarding the complexities of the adversaries considered are clear from their code.

Transition to H0. The hybrid H0 was obtained by plugging the code of EtPrNE,Fs into Gae-�
EtPrNE,Fs,1pAaq,

so the first claim is clear.

Transition H0 to H1. In H1 we replace each use of F with a random f sampled from F.F. The reduction to
the PR security of F is given by Ap in Fig. 16. It simply simulates these hybrids for Aa, using its Ev oracle
in place of F or f . The claimed bound follows (and is in fact an equality).

Transition H1 to H2. In H2, we change the behavior of Dec. Now the oracle returns � when M rn, cs � K
and t � fpn, c1q. Note that this is the only case in which the hybrids we are considering differ. In particular,
they are identical-until-bad and so the Fundamental Lemma of Game Playing [6] gives PrrH1s ¤ PrrH2s �
PrrH2 sets bads. Setting bad requires guessing a value fpn, c1q which is a uniform value in t0, 1uτ . Hence by
a union bound PrrH2 sets bads ¤ qDec{2

τ , giving the claim.

Transition H2 to H3. In H3, we replace the real encryption of m in Enc with a uniformly random c1.
Consider the adversary Ar given in Fig. 16. It perfectly simulates hybrid H2 to Aa when interacting with
Gindr
NE,1 and hybrid H3 to Aa when interacting with Gindr

NE,0. Note that Ar avoids storing the table M – this is
possible because observe that M rn, cs � K holds if and only if fpn, c1q � t also holds in H2,H3. Since the
check M rn, cs � K is the sole place in the code of hybrids H2,H3 where M affects execution, Ar replaces it
with the equivalent check fpn, c1q � t and avoids storing M . So it follows that PrrH2s ¤ PrrH3s�AdvindrNE pArq.

Transition H3 to H4. In H4, we change the behavior of Dec. Now the oracle returns K when M rn, cs � K
and t � fpn, c1q. Using an identical-until-bad argument analogous to when we transitioned between H1 and
H2 we get PrrH1s ¤ PrrH2s � qDec{2

τ as desired.

Final transition.Finally we claim that the view of Aa in H4 is identical to its view in Gae-�
EtPrNE,Fs,0, giving

PrrH4s � PrrGae-�
EtPrNE,Fs,0pAaqs. If M rn, cs � K in Dec, then the oracle it always returns K so we can ignore

its use of f . This means the only use of f is in Enc and these uses never repeat inputs because the nonces
do not repeat. Hence setting t Ð fpn, cq is equivalent to sampling t uniformly from t0, 1uτ which gives us
exactly the view expected in Gae-�

EtPrNE,Fs,0. [\

6 Chosen Ciphertext Security of Public Key Encryption

Now we apply our techniques to give memory-tight reductions between single- and multi-challenge notions
of chosen-ciphertext security. The standard reduction bounds the advantage of an adversary making qEnc
encryption queries by qEnc times the advantage of an adversary making 1 query. The reduction requires
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Game Gcca-w
PKE,bpAq

pek, dkq Ð$ PKE.K
b1 Ð AEncb,Decpekq
Return b1 � 1

Encbpm0,m1q

// |m0| � |m1|
c0 Ð$ PKE.Epek,m0q
c1 Ð$ PKE.Epek,m1q
M rcbs Ð m1

Return cb

Decwpcq

If M rcs � K:
Return M rcs if w � m

Return � if w � �
Return K if w � K

mÐ PKE.Dpdk, cq
Return m

Fig. 19. Game defining CCA-w security of PKE for w P tm, �,Ku.

memory linear in qEnc and so is not memory-tight.8 In Section 6.1, we consider the most common “left-or-
right” definition of CCA security and introduce three different variants (mirroring the three notions for AE
security in Section 5). We give a memory-tight reduction between single- and multi-challenge security for

PKE Syntax

pek, dkq Ð$ PKE.K
cÐ$ PKE.Epek,mq
mÐ PKE.Dpdk, cq

Fig. 18. Syntax of a public key
encryption scheme PKE.

two of the three variants (� and K), but the reduction is not time-tight. In
Section 6.2, we look at the CCA security variant that requires ciphertexts
be indistinguishable from random. We give a memory-tight and time-tight
reduction between single- and multi-challenge security for all three variants
of this notion.

Public key encryption. A public key encryption scheme PKE specifies
algorithms PKE.K, PKE.E, and PKE.D. The syntax of these algorithms is
shown in Fig. 18. The key generation algorithm PKE.K returns encryption
key ek and decryption key dk. The encryption algorithm PKE.E encrypts
message m with ek to produce a ciphertext c. We write PKE.Epek,m; rq
when making random coins r P PKE.R explicit. The decryption algorithm
decrypts c with dk to produce m. The decryption algorithm may output
m � K to indicate rejection.

Correctness requires that PKE.Dpdk, cq � m for all pek, dkq P rPKE.Ks, all m, and all c P rPKE.Epek,mqs.
We define the min-entropy of PKE as

PKE.H8 � � lg max
m,ek,c

PrrrÐ$ PKE.R : PKE.Epek,m; rq � cs .

6.1 Left-or-right CCA Security of PKE

Left-or-right CCA security. In this section, we consider the left-or-right definition of CCA-security
most commonly used in the literature. For w P tm, �,Ku we denote this as CCA-w9 and the corresponding
security game Gcca-w

PKE,b is defined in Fig. 19. The adversary gets the encryption key ek and has access to an
encryption and a decryption oracle. The encryption oracle takes in messages m0 and m1 and encrypts mb

where b is the secret bit. The decryption oracle returns the decryption of a ciphertext, unless the ciphertext
was previously returned by an encryption query. This is tracked by table M . When w � m, the decryption
oracle returns M rcs which is m1 from the earlier encryption query. When w � �, it returns �. When w � K, it
returns K which is also used by the encryption scheme to represent rejection. The advantage of an adversary
A against the CCA-w security of PKE is defined as Advcca-wPKE pAq � PrrGcca-w

PKE,1pAqs � PrrGcca-w
PKE,0pAqs.

The goal of this section is to relate the advantage of attacks making only a single encryption query and
those making many such queries. When wanting to make the distinction explicit we may use the adjectives
“many” and “single” or prefix the abbreviation of a security notion with an ‘m’ or ‘1’.

8 Auerbach et al. [1] stated that this reduction is memory-tight for both CPA and CCA security. While the former
is correct, the latter depends on the definition of CCA. In personally communication with Auerbach et al. [2], they
concurred that their claim was incorrect for their intended definition of CCA security (w � �) but pointed out
that it does work for an “exclusion” variant, w � E, which we will mention briefly.

9 The discussion in Section 5 about the choice to have three variants of the definitions is applicable here as well.
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Adversary AEnc,Dec
1 pekq

kÐ$ rqEncs
iÐ 0
Dp�q Ð t0, 1up�q � rqEncs
f Ð$ FcspN, D,PKE.Rq
b1 Ð ASimEnc,SimDec

m pekq
Return b1

SimEncpm0,m1q

iÐ i� 1
For d P t0, 1u:
rd Ð fp|md|, pmd, iqq
cd Ð PKE.Epek,md; rdq

If i   k: cÐ c1
If i � k:
cÐ Encpm0,m1q
c� Ð c
pm�

0 ,m
�
1 q Ð pm0,m1q

If i ¡ k: cÐ c0
Return c

SimDecpcq

If c � c�: Return �
mÐ Decpcq
If m � K: Return K
For j P ris do:

If m P tm�
0 ,m

�
1 u and j � k:

Skip to next j
r Ð fp|m|, pm, jqq
If PKE.Epek,m; rq � c:

Return �
Return m

Fig. 20. Adversary A1 for Theorem 6.

1CCA-� implies mCCA-�. The following theorem gives a memory-tight reduction establishing that CCA-�
security against adversaries making one encryption query implies security for an arbitrary number of queries.
The proof makes use of our inefficient tagging technique. The reduction performs a hybrid over the encryption
queries of the original adversary and is thus not advantage-tight.

Theorem 6 (1CCA-� ñ mCCA-�). Let PKE be a public key encryption scheme. Let Am be an adversary
with pqEnc, qDecq � QuerypAmq. Define Dp�q by Dn � t0, 1un�rqEncs. Let A1 be the FcspN, D,PKE.Rq-oracle
adversary shown in Fig. 20. Then,

Advcca-�PKE pAmq ¤ qEnc � Adv
cca-�
PKE pA1q � 4 � qEnc � qDec{2

PKE.H8

QuerypA1q � p1, qDecq

Time�pA1q � OpTimepAmqq � qEncpqDec � 1qTimepPKEq

Mem�pA1q � OpMempAmqq �MempPKEq � lg qEnc.

The standard (non-memory-tight) reduction against 1CCA security picks an index k P rqEncs where qEnc
is the number of encryption queries made by Am. It runs Am, simulating encryption queries as follows. For
the first k � 1 encryption queries, it answers with an encryption of m1, for the k-th encryption query it
forwards the query to its own encryption oracle, and the rest of the queries it answers with an encryption
of m0. To answer the decryption queries, the reduction returns � if it was ever queried the ciphertext for
a previous encryption query. Otherwise, it forwards the query to its own decryption oracle. Finally, the
reduction adversary outputs whatever Am outputs. Standard hybrid analysis shows that if the advantage
of Am is ε, then the advantage of the reduction adversary is ε{qEnc. Simulating decryption queries required
remembering all prior encryption queries and hence the reduction is not memory-tight.

We give an adversary A1 in Fig. 20 that is very similar to the reduction just described, but avoids
remembering prior encryption queries. The main idea is that it picks the coins when encrypting m0 or m1

locally as the output of a random function f applied to the message and a counter. This allows A1 to detect
whether a ciphertext c queried to the decryption oracle is one it answered to an earlier encryption query as
follows: it first asks for the decryption of c from its own decryption oracle and receives m. Then it iterates
over all counter values for which encryption queries have been made so far and checks if c was the encryption
of m using the output of f on m and the counter as coins. If any of these checks succeed it returns �,
otherwise it returns m. If c was the answer of an encryption query A1 detects it successfully. The probability
that A1 returns � for a decryption query when it should not is small.

Notice that the additional memory overhead for A1 is just that required to store a counter, run PKE.E,
and store pc�,m�

0 ,m
�
1 q. However, there is an increase in runtime by qEnc � qDec �TimepPKEq because of the

iteration over the counters to answer decryption queries. As discussed in the introduction, such reductions
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may be useful when the best attack for the underlying problem with low memory requires significantly more
running time than the best attack with high memory.

Extension to CCA-K. We can prove the same result for CCA-K, using a very similar proof flow. Alter-
natively, Theorem 6 directly implies the same result for CCA-K. First off, 1CCA-K implies 1CCA-� in a
memory-tight way because an adversary with access to DecK can simulate Dec� by just remembering the
ciphertext c� returned for the single Enc query, returning � if c� is queried to Dec, and otherwise forward-
ing the response of its own decryption oracle. We also noted above that mCCA-� implies mCCA-K in a
memory-tight way. Putting it together with Theorem 6 gives the desired result.

However, it does not seem possible to extend this proof technique to CCA-m security because if the
adversary queries the decryption oracle on a ciphertext c which was an answer to a previous query for
pm0,m1q the oracle needs to return m1 even if c is an encryption of m0. This seems to require memory to
simulate.

Other variants (exclusion and penalty). In personal communication with Auerbach et al. [2] they
pointed out two other variants of CCA security which were given in [3]. For the sake of concreteness we will
described them as based on CCA-K, but the way they are defined means we could just as well have started
from CCA-m or CCA-�. The first, which we will refer to as CCA-E (where ‘E’ stands for “exclusion”) is defined
the same as CCA-K except we require security only for adversaries that will never make a decryption query
Decpcq if c was ever returned by a prior encryption query. The standard hybrid argument is memory-tight for
CCA-E. This follows immediately because we do not have to simulate decryption for forwarded ciphertexts.

For the second, which we will refer to as CCA-P (where ‘P’ stands for “penalty”), we can think of the
adversary as being penalized at the end of the game if it even makes a decryption query Decpcq if c was
ever returned by a prior encryption query. Let Gcca-P

PKE,1 be identical to Gcca-K
PKE,1, except the game returns false

no matter what b1 is if the adversary ever made such a query. Similarly, let Gcca-P
PKE,0 be identical to Gcca-K

PKE,0,
except the game returns true no matter what b1 is if the adversary ever made such a query. Then we define
Advcca-PPKE pAq � PrrGcca-P

PKE,1pAqs � PrrGcca-P
PKE,0pAqs. It is not clear how to write a memory-tight hybrid argument

for CCA-P.
The philosophical and technical arguments from Sec. 5 for why w � m may be “correct” apply similarly to

argue in favor of it over w � E and w � P. Additionally, w � E seems particularly “weak” because it seems
overly restrictive. Consider a low-memory attacker that has made a large number of encryption queries so
far. It will be incredibly restricted in what decryption queries it can make because it is required to absolutely
avoid any query that has a non-zero chance of being a ciphertext returned by a prior encryption given its
current state. Note that even very naive adversaries are excluded, for example one that asks a random string
of appropriate format to the decryption oracle after seeing some challenge ciphertexts.

Time-tightness if messages do not repeat. If we require that Am never repeats messages queried to
Enc then we can make Theorem 6 time-tight as well. In that case, A1 would not need to use the counter i to
ensure domain separation for f and so it would not have to use the loop inside SimDec. One setting where
this suffices is if PKE is being used as a key-encapsulation mechanism. Then we can think of m0 and m1 being
picked uniformly at random. Using the switching lemma we can switch to m0 and m1 being sampled without
replacement, meaning the encryption queries do not repeat.10 We next give the formal proof of Theorem 6.

Proof. We start by considering the hybrid games Hbh for 0 ¤ h ¤ 2 defined in Fig. 21. Of these we make the
following claims for b P t0, 1u.

1. PrrGcca-�
PKE,bs � PrrHb0s

2. PrrHb0s � PrrHb1s
3. |PrrHb1s � PrrHb2s| ¤ qEnc � qDec � 2

�PKE.H8

Combining the above claims, we get that

Advcca-�PKE pAmq � PrrGcca-�
PKE,1s � PrrGcca-�

PKE,0s � PrrH1
0s � PrrH0

0s

� PrrH1
1s � PrrH1

0s ¤ PrrH1
2s � PrrH0

2s � 2 � qEnc � qDec � 2
�PKE.H8 . (1)

10 Here the list of m0 and m1 to be queried can be specified by an oracle given to the adversary.
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Games Hbh for 0 ¤ h ¤ 2

pek, dkq Ð$ PKE.K
iÐ 0
Dp�q Ð t0, 1up�q � rqEncs //Hbr1,8q

f Ð$ FcspN, D,PKE.Rq //Hbr1,8q

b1 Ð AEncb,Dec
m pekq

Return b1 � 1

Encbpm0,m1q

iÐ i� 1
For d P t0, 1u:
rdÐ$ PKE.R //Hbr0,1q
rd Ð fp|md|, pmd, iqq //Hbr1,8q

cd Ð PKE.Epek,md; rdq
M rcbs Ð mb //Hbr0,2q
Return cb

Decpcq

If M rcs � K then //Hbr0,2q
Return � //Hbr0,2q

mÐ PKE.Dpdk, cq
For j P ris: //Hbr2,8q

r Ð fp|m|, pm, jqq //Hbr2,8q

If c � PKE.Epek,m; rq: //Hbr2,8q

Return � //Hbr2,8q

Return m

Fig. 21. First set of hybrids Hbh used in the proof of Theorem 6.

Hybrids Hk,b

//pk, bq P rqEncs � t0, 1u
pek, dkq Ð$ PKE.K
iÐ 0
Dp�q Ð t0, 1up�q � rqEncs
f Ð$ FcspN, D,PKE.Rq
b1 Ð AEncb,Dec

m pekq
Return b1 � 1

Encbpm0,m1q

iÐ i� 1
For d P t0, 1u :
rd Ð fp|md|, pmd, iqq
cd Ð PKE.Epek,md; rdq

If i   k: cÐ c1
If i � k: cÐ cb
If i ¡ k: cÐ c0
Return c

Decpcq

mÐ PKE.Dpdk, cq
For j P ris:
r Ð fp|m|, pm, jqq
If c � PKE.Epek,m; rq:

Return �
Return m

Fig. 22. Second set of hybrids used in the proof of Theorem 6.

Next, we prove the claims.

Transition to Hb0. The game Hb0 was copied from the game Gcca-�
PKE,b. We added variable i that counts the

number of Enc queries and will be used for future hybrids and unrolled the encryption to make the sampling
of coins explicit. It follows that PrrGcca-�

PKE,bs � PrrHb0s.

Transition from Hb0 to Hb1. In game Hb1, we replace the random sampling of r0 and r1 with the output of
a random function f , using a counter i to provide domain separation between different queries. This method
of choosing r is equivalent, so PrrHb0s � PrrHb1s.

Transition from Hb1 to Hb2. In game Hb2, we stop using M r�s to keep track ciphertexts that were returned
by Enc. Instead we first decrypt c to m and then iterating over j P ris to check whether m encrypted with
ek using randomness r � fp|m|, pm, jqq is c. Note that if M rcs � K holds in Hb1 then there will necessarily
be such a j (in particular j being the value i held at the time of the query that set M rcs).

So Hb1 and Hb2 are identical unless the following bad event happens: there is a Dec query on c and for
some j P rjs, it holds that c � PKE.Epek,m; fp|m|, pm, jqqq and despite m was not mb for the j-th query to
Enc. We can analyze the probability of this in Hb1. Since m was not the j-th query to Enc, the view of the
adversary was independent of fp|m|, pm, jqq at this time. By the min-entropy of PKE, the probability of this
occurring for a given decryption query and j is at most 1{2PKE.H8 . Taking a union bound over all j P rqEncs
and decryption queries the overall probability is at most qEnc � qDec{2

PKE.H8 . We could formalize this via the
Fundamental Lemma of Game Playing [6], to get |PrrHb1s � PrrHb2s| ¤ qEnc � qDec{2

PKE.H8 as desired.

Transition to Hk,b hybrids. We next consider the hybrid games Hk,b for pk, bq P rqEncs � t0, 1u defined
in Fig. 22. In these hybrids, ciphertexts for m1 are returned when i   k, ciphertexts for m0 are returned
when i ¡ k, and a ciphertext for mb is returned when i � k. Note that at the extremes (k � 1, b � 0 and
k � qEnc, b � 1), Am will receive either all ciphertexts of m0 or all ciphertexts of m1. The decryption queries
are answered as in Hb2. So H1,0 perfectly matches H0

2 and HqEnc,1 perfectly matches H1
2. Hence combining with
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Hybrids Hh for 0 ¤ h ¤ 2

pk, bq Ð$ rqEncs � t0, 1u
pek, dkq Ð$ PKE.K
iÐ 0
Dp�q Ð t0, 1up�q � rqEncs
f Ð$ FcspN, D,PKE.Rq
b1 Ð AEncb,Dec

m pekq
Return b1 � b

Decpcq

If c � c�: Return � //Hr1,8q

mÐ PKE.Dpdk, cq
For j P ris do:

If m P tm�
0 ,m

�
1 u and j � k: //Hr1,8q

Skip to next j //Hr1,8q

r Ð fp|m|, pm, jqq
If PKE.Epek,m; rq � c:

Return �
Return m

Encbpm0,m1q

iÐ i� 1
For d P t0, 1u:
rd Ð fp|md|, pmd, iqq
cd Ð PKE.Epek,md; rdq

If i   k:
cÐ c1

If i � k:
cÐ cb //Hr0,1q

r Ð fp|mb|, pmb, iqq //Hr1,2q

rÐ$ PKE.R //Hr2,8q

cÐ PKE.Epek,mb; rq //Hr1,8q

c� Ð c //Hr1,8q

pm�
0 ,m

�
1 q Ð pm0,m1q //Hr1,8q

If i ¡ k:
cÐ c0

Return c

Fig. 23. Final set of hybrids for the proof of Theorem 6.

(1), we have
Advcca-�PKE pAmq ¤ PrrHqEnc,1s � PrrH1,0s � 2 � qEnc � qDec � 2

�PKE.H8 . (2)

In general, in Hk,b the first k� b�1 encryption queries use m1 and the rest use m0; so PrrHk,1s � PrrHk�1,0s
holds. Hence

PrrHqEnc,1s � PrrH1,0s � PrrHqEnc,1s � PrrH1,0s �
¸

kPrqEnc�1s

PrrHk,1s � PrrHk�1,0s

�
¸

kPrqEncs

PrrHk,1s � PrrHk,0s. (3)

Transition to Hh hybrids. Next, consider the games shown in Fig. 28. Of these we make the following
claims.

1. 2 PrrH0s � 1 � p1{qEncq
°
kPrqEncs

PrrHk,1s � PrrHk,0s

2. PrrH0s ¤ PrrH1s � qDec � 2
�PKE.H8

3. PrrH1s � PrrH2s
4. 2 PrrH2s � 1 � Advcca-�PKE pA1q

In the rest of the proof we address these one at a time. Putting them together along with (2) and (3) gives
the bound claimed in the theorem statement via,

Advcca-�PKE pAmq � 2 � qEnc � qDec � 2
�PKE.H8 �

¸

kPrqEncs

PrrHk,1s � PrrHk,0s

� 2 � qEnc � qDec � 2
�PKE.H8 � qEncp2 PrrH0s � 1q

¤ 2 � qEnc � qDec � 2
�PKE.H8 � qEncp2 PrrH2s � 2qDec � 2

�PKE.H8 � 1q

� Advcca-�PKE pA1q � 4qEnc � qDec � 2
�PKE.H8 .

Transition to H0.Game H0 is identical to Hk,b with pk, bq chosen at random and with the game returning
true if Am correctly guessed b. Standard calculations by conditioning on all the possible values of pk, bq gives
the claim.
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Game G$cca-w
PKE,b pAq

pek, dkq Ð$ PKE.K
b1 Ð AEncb,Decw pekq
Return b1 � 1

Encbpmq

c1 Ð$ PKE.Epek,mq
c0 Ð$ PKE.Cpek, |m|q
M rcbs Ð m
Return cb

Decwpcq

If M rcs � K:
Return M rcs if w � m

Return � if w � �
Return K if w � K

mÐ PKE.Dpdk, cq
Return m

Fig. 24. Game defining $CCA-w security of PKE for w P tm, �,Ku.

Transition from H0 to H1.We make three changes to transition to H1. First, when i � k in Enc we store
the two messages queried as m�

0 and m�
1 along with the ciphertext returned as c�. Then on a Dec query, �

is returned immediately if c � c�. Finally in Dec we skip over the iteration of j � k if m P tm�
0 ,m

�
1 u. When

m � m�
b this does not change anything because the c � c� check will have covered that case.

So this only changes the behavior of the oracle whenm � m�
1�b � m�

b and c � PKE.Epek,m; fp|m|, pm, kqqq,
in H0 it would return � while in H1 it may return m. Note then that in H1 the view of the adversary is
completely independent of this fp|m|, pm, kqq. So we can think of the adversary having Dec attempts to
guess a ciphertext generated with uniformly random coins. Hence the probability of this sort of query in H1

is at most qDec � 2
�PKE.H8 . This gives PrrH0s ¤ PrrH1s � qDec � 2

�PKE.H8 .

Transition from H1 to H2. The only change in H2 is that in Enc for i � k, the randomness is sampled
uniformly at random instead of by evaluating f . Because fp|mb|, pm

�
b , kqq is used nowhere else, this does not

change the behavior of the game. It follows that PrrH1s � PrrH2s.

Adversary A1. Finally we can see that our adversary A1 (defined in Fig. 20) perfectly simulates the view
of Am in H2. It was obtained by copying the code of H2 and then modifying it to query its Enc and
Dec oracle as appropriate. It follows that PrrH2s � 0.5 PrrGcca-�

PKE,1pA1qs � 0.5p1 � PrrGcca-�
PKE,0pA1qsq. Hence,

2 PrrH2s � 1 � Advcca-�PKE pA1q.
Adversary A1’s extra running time comes from using PKE.E in SimEnc and in the loop in SimDec. Its

extra memory is that required for running PKE.E, for storing i, and for storing pc�,m�
0 ,m

�
1 q. [\

6.2 Indistinguishable from Random CCA Security of PKE

We saw in the previous section that we could have a memory-tight reduction from mCCA-� to 1CCA-�;
however, the reduction is not tight with respect to running time. In this section, we show that for a different
formalization of CCA security, we can indeed have a memory-tight and time-tight reduction between many-
and single-challenge variants.

Ciphertext and encryption key space.Before describing the indistinguishable from random formaliza-
tion of CCA security, we need to make some assumptions on PKE. We define the encryption keyspace by
PKE.Ek � tek : pek, dkq P PKE.Ku. We assume for each ek P PKE.Ek and allowed message length n P N there
is a set PKE.Cpek, nq such that PKE.Epek,m; rq P PKE.Cpek, |m|q always holds. Let PKE.C�1pek, cq returns n
such that c P PKE.Cpek, nq. Correctness implies that PKE.Cpek, nq and PKE.Cpek, n1q are disjoint for n � n1.

Indistinguishable from random ciphertext CCA security. The security notion we will consider
in this section is captured by the game G$cca-w shown in Fig. 24. It requires that ciphertexts output by
the encryption scheme cannot be distinguished from ciphertexts chosen at random even given access to a
decryption oracle. The adversary gets the encryption key ek and has access to an encryption oracle Enc and
a decryption oracle Dec. The adversary needs to distinguish the following real and ideal worlds: in the real
world, a query to Enc with a message m returns an encryption of m under ek, while in the ideal world, the
same query returns a uniformly random element of PKE.Cpek, |m|q. The decryption oracle Decw acts exactly
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Adversary AEnc,Dec
1 pekq

//0 ¤ h ¤ 2
kÐ$ rqEncs
iÐ 0
f Ð$ Inj�pT,D,Rq
b1 Ð ASimEnc,SimDec

m pekq
Return b1

SimEncpmq

iÐ i� 1
c1 Ð$ PKE.Epek,mq
c0 Ð fpp|m|, ekq, pm, iqq
If i   k: cÐ c1
If i � k:
cÐ Encpmq
pc�,m�q Ð pc,mq

If i ¡ k: cÐ c0
Return c

SimDecpcq

If c � c�: Return m�

nÐ PKE.C�1pek, cq
pm, jq Ð f�1ppn, ekq, cq
If m � K and k ¤ j ¤ i:

If pm, jq � pm�, kq:
Skip next line

Return m
mÐ Decpcq
Return m

Fig. 25. Adversary A1 for Theorem 7.

as the corresponding oracle in Gcca-w.11 The advantage of an adversary A against the $CCA-w security of
PKE is defined as Adv$cca-wPKE pAq � PrrG$cca-w

PKE,1 pAqs � PrrG$cca-w
PKE,0 pAqs. If PKE.Epek,m; �q is injective, then this

is exactly identical to the standard CCA notion for PKE.Cpek, nq � tPKE.Epek,m; rq : |m| � n, r P PKE.Ru.

1$CCA-m implies m$CCA-m. The following theorem captures a memory-tight reduction establishing that
1$CCA-m security implies m$CCA-m security. The proof makes use of our message encoding technique.

Theorem 7 (1$CCA-m ñ m$CCA-m). Let PKE be a public key encryption scheme. Let τ satisfy
|PKE.Cpek, nq| ¥ 2n � 2τ for all n, ek. Let Am be an adversary with pqEnc, qDec, qhq � QuerypAmq and
assume qEnc � qDec ¤ 0.5 � 2τ . Let F � Inj�pT,D,Rq where T , D, and R are defined by T � N � PKE.Ek,
Dn,ek � t0, 1un � rqEncs and Rn,ek � PKE.Cpek, nq. Let A1 be the F-oracle adversary defined in Fig. 25.
Then,

Adv$cca-mPKE pAmq ¤ qEnc � Adv
$cca-m
PKE pA1q � 8qEncqDec{2

τ � 5q2Enc{2
τ

QuerypA1q � p1, qDec, qhq

Time�pA1q � OpTimepAmqq � qEncTimepPKEq

Mem�pA1q � OpMempAmqq �MempPKEq lg qEnc.

The standard (non-memory-tight) reduction against 1$CCA security that runs an m$CCA adversary Am

works in a similar manner as the standard reduction from an 1CCA adversary and an mCCA adversary that
we described in Section 6.1. Again here, simulating decryption queries requires remembering all the answers
of the encryption queries, and hence the reduction is not memory-tight.

We give an adversary A1 in Fig. 25 that is very similar to the standard reduction, but avoids remembering
all the answers of the encryption queries. The main idea here is picking the ciphertext c0 as the output of
a random injective function f evaluated on the message and a counter, instead of sampling it uniformly at
random. This way of picking the c0 allows A1 detect whether a ciphertext c queried to the decryption oracle
was the answer to an earlier encryption query as follows: it first checks if the inverse of f on the ciphertext
is defined (i.e., not K), it returns the message part of the inverse. Otherwise it asks for the decryption of
the ciphertext to its own decryption oracle and returns the answer. Using our assumption on the size of
PKE.Cpek, nq, we can argue that except with small probability, A1 simulates the decryption oracle correctly.
The additional memory overhead for A1 is only a counter. Moreover, there is no increase in the running time
of A1 unlike the adversary in Theorem 6.

11 As mentioned, the discussion in Section 5 about the three variants definitions is applicable here as well. In Ap-
pendix B we give an example where we can prove CCA security of a KEM/DEM scheme in the memory restricted
setting, but only if we use the w � m definition.
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Games HbhpAq for 0 ¤ h ¤ 3

pek, dkq Ð$ PKE.K
iÐ 0
f Ð$ Inj�pT,D,Rq
b1 Ð AEncb,Decmpekq
Return b1 � 1

Encbpmq

iÐ i� 1
c1 Ð$ PKE.Epek,mq
c0 Ð$ PKE.Cpek, |m|q //Hbr0,1q
c0 Ð fpp|m|, ekq, pm, iqq //Hbr1,8q

M rcbs Ð m
Return cb

Decmpcq

If M rcs � K then //Hbr0,2q
Return M rcs //Hbr0,2q

If b � 0 and i ¥ 1:
nÐ PKE.C�1pek, cq
pm, jq Ð f�1ppn, ekq, cq
If m � K and j ¤ i:

If M rcs � K then:
bad Ð true
Return m //Hbr3,8q

Else
Return m

mÐ PKE.Dpdk, cq
Return m

Fig. 26. First set of hybrids used for proof of Theorem 7. Highlighting indicates modifications in Hb0 from G$cca-m
PKE,b .

Extension to $CCA-�, $CCA-K. We can prove the same result for $CCA-�, $CCA-K but the adversary
would not be tight with respect to running time. The adversary in these cases would pick the coins for
encrypting m (to compute c1) like the adversary in Theorem 6. This would require iterating over counters to
answer decryption queries and hence lead to looseness with respect to running time. We omit the theorems
for these notions because they would not involve any new ideas beyond those presented in Theorems 6 and 7.

We give the formal proof of Theorem 7.

Proof. We start by considering the hybrid games Hbh defined in Fig. 26. In this and future games we define
T , D, and R by T � N� PKE.Ek, Dn,ek � t0, 1un � rqEncs and Rn,ek � PKE.Cpn, ekq Of these we make the
following claims for b P t0, 1u.

1. PrrG$cca-m
PKE,b s � PrrHb0s

2. |PrrHb0s � PrrHb1s| ¤ 0.5 � q2Enc{2
τ

3. PrrHb1s � PrrHb2s

4. |PrrHb2s � PrrHb3s| ¤ 2qDecqEnc{2
τ

Combining the above claims, we get that

Adv$cca-mPKE pAmq � PrrG$cca-m
PKE,1s � PrrG$cca-m

PKE,0s � PrrH1
0s � PrrH0

0s

¤ PrrH1
3s � PrrH0

3s � q2Enc{2
τ � 4qEncqDec{2

τ . (4)

Next, we prove the claims.

Transition to Hb0. The game Hb0 was copied from the game G$cca-m
PKE,b with some code added that has been

highlighted (note that the entire code inside the highlighted if statement is new). We added a variable i
that counts the number of Enc queries and sample a random injective function f that we will be used for
future hybrids. We add an if statement in Dec that checks if b � 0 and i ¥ 1 and if true it computes
pm, jq Ð f�1ppn, ekq, cq where nÐ PKE.C�1pek, cq and then if the check m � K and j ¤ i succeeds, it sets
a flag bad, otherwise returns m. We note that in Hb0, the return statement never occurs because if M rcs � K,
we would have returned before the execution of this if statement. Hence the code inside the highlighted if
statement can be ignored in Hb0. Therefore, there is no change in behavior in Hb0 compared to G$cca-m

PKE,b . It

follows that PrrG$cca-m
PKE,b s � PrrHb0s.
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Hybrids Hk,b

//pk, bq P rqEncs � t0, 1u
iÐ 0
pek, dkq Ð$ PKE.K
f Ð$ InjpT,D,Rq
b1 Ð AEnc,Dec

m pekq
Return b1 � 1

Encpmq

iÐ i� 1
c1 Ð$ PKE.Epek,mq
c0 Ð fpp|m|, ekq, pm, iqq
If i   k: cÐ c1
If i � k: cÐ cb
If i ¡ k: cÐ c0
Return c

Decpcq

If i ¥ k � b:
nÐ PKE.C�1pek, cq
pm, jq Ð f�1ppn, ekq, cq
If m � K and k � b ¤ j ¤ i:

Return m
mÐ PKE.Dpdk, cq
Return m

Fig. 27. Second set of hybrids used for proof of Theorem 7. Highlighting indicates modifications from Hb3.

Transition from Hb0 to Hb1. In game Hb1, we replace the random sampling of c0 with the output of the
random injective function f , using the counter i to provide domain separation between different queries. We
again note that in Hb1, we would never return anything from inside the highlighted if statement, and hence
the code inside it can be ignored. In particular that means the behavior of Dec is independent of f . So this
modification in how we compute c0 changes behavior only in Enc since the values of c0 will never repeat in
Hb1 unlike Hb0. Hence, the switching lemma (Lemma 1) gives us |PrrHb0s � PrrHb1s| ¤ 0.5 � q2Enc{2

τ (since the
image of f always has size at least 2τ ).

Transition from Hb1 to Hb2. In Dec of game Hb2, we stop returning M rcs if it is not K at the beginning. If
b � 1 the behavior remains the same as the highlighted if statement fails and we return m � PKE.Dpdk, cq
which we would have returned in H1

1 (not if M rcs � K then M rcs � PKE.Dpdk, cq holds in this game).
When b � 0 and M rcs � K, then both H0

1 and H0
2 return M rcs � f�1ppn, ekq, cq. If b � 0 and M rcs � K,

then both Hb1 and Hb2 return m � PKE.Dpdk, cq. Hence the behavior of Dec is identical in Hb1 and Hb2. So,
PrrHb1s � PrrHb2s.

Transition from Hb2 to Hb3. In game Hb3, we return m if the bad flag gets set. Note that for a Dec query
on c, bad is set in H2 only if M rcs � K and f�1ppn, ekq, cq � K. This has no effect when b � 1. The
probability that in H0

2 that a given Dec query has a c such that M rcs � K and f�1ppn, ekq, cq � K is at most
qEnc2n{p2n�τ � qEncq ¤ 2qEnc{2

τ . This follows because there are qEnc � 2n values in the domain (and hence
image) of f and the view of the adversary in Hb2 is dependent only on qEnc points of f which are mapped
to c1 satisfying M rc1s � K (i.e. those returned by Enc). Taking a union bound over all Dec queries, we get
that bad is set with probability at most 2qEnc � qDec{2

τ . Since Hb2 and Hb3 are identical-until-bad, using the
Fundamental Lemma of Game Playing [6], we get, for b P t0, 1u, |PrrHb2s � PrrHb3s| ¤ 2qEnc � qDec{2

τ .

Transition to Hk,b hybrids.We next consider the hybrid games Hk,b for pk, bq P rqEncs � t0, 1u defined in
Fig. 27 which have been derived by cleaning up (removing M and bad) and modifying the code of Hb3. The
modified code has been highlighted in Fig. 27. In Enc of Hk,b, ciphertexts c0 and c1 are computed as in Hb3,
but Hk,b returns c1 when i   k, c0 when i ¡ k, and cb when i � k. Note that at the extremes (k � 1, b � 0 and
k � qEnc, b � 1) Am will either always receive c0 or always receive c1. The decryption queries are answered
as in Hb3 with some modifications – the b � 0 and i ¥ 1 check is modified to i ¥ k � b and the check j ¤ i is
modified to k � b ¤ j ¤ i.12 Observe that Dec queries in H1,0 will be answered identically as in H0

3 because
the condition i ¥ k � b in H1,0 is i ¥ 1 and the condition b � 0 ^ i ¥ 1 is equivalent to i ¥ 1 in H0

3, and
1 ¤ j ¤ i is equivalent to j ¤ i since j ¥ 1. Similarly the Dec queries in HqEnc,1 will be answered identically
as in H1

3 because the condition i ¥ qEnc�1 in HqEnc,0 is always false and the condition b � 0^ i ¥ 1 is always
false in H1

3, and the check k � b ¤ j ¤ i is never executed in HqEnc,1 just like the check j ¤ i in H1
3. So H1,0

perfectly matches H0
3 and HqEnc,1 perfectly matches H1

3. Hence combining with (4), we have

Adv$cca-mPKE pAmq ¤ PrrH1,1s � PrrHqEnc,0s � pq2Enc � 4 � qEnc � qDecq{2
τ . (5)

12 The latter check already implies former, so in future games we remove the former.

32



Hybrids Hh
//0 ¤ h ¤ 2
pk, bq Ð$ rqEncs � t0, 1u
iÐ 0
pek, dkq Ð$ PKE.K
f Ð$ Inj�pT,D,Rq
b1 Ð AEnc,Dec

m pekq
Return b1 � b

Encpmq

iÐ i� 1
c1 Ð$ PKE.Epek,mq
c0 Ð fpp|m|, ekq, pm, iqq
If i   k:
cÐ c1

If i � k:
c0 Ð$ PKE.Cpek, |m|q //Hr2,8q

cÐ cb
pc�,m�q Ð pc,mq

If i ¡ k:
cÐ c0

Return c

Decpcq

If c � c�: Return m� //Hr1,8q

nÐ PKE.C�1pek, cq
pm, jq Ð f�1ppn, ekq, cq
If m � K and k�b ¤ j ¤ i: //Hr0,1q

If m � K and k ¤ j ¤ i: //Hr1,8q

If pm, jq � pm�, kq: //Hr1,8q

Skip next line //Hr1,8q

Return m
mÐ PKE.Dpdk, cq
Return m

Fig. 28. Final set of hybrids for the proof of Theorem 7. The highlighted line is new with respect to the code of Hk,b.

In general, in Hk,b the first k � b� 1 encryption queries use c1 and the rest use c0; also in Dec, the checks
involve k � b, making them identical in Hk,1 and Hk�1,0, so PrrHk,1s � PrrHk�1,0s holds. Hence

PrrHqEnc,1s � PrrH1,0s � PrrHqEnc,1s � PrrH1,0s �
¸

kPrqEnc�1s

PrrHk,1s � PrrHk�1,0s

�
¸

kPrqEncs

PrrHk,1s � PrrHk,0s. (6)

Transition to Hh hybrids. Next, consider the games shown in Fig. 28. Of these we make the following
claims.

1. 2 PrrH0s � 1 � p1{qEncq
°
kPrqEncs

PrrHk,1s � PrrHk,0s

2. PrrH0s ¤ PrrH1s � pqEnc � 2qDecq{2
τ

3. PrrH1s ¤ PrrH2s � qEnc{2
τ

4. 2 PrrH2s � 1 � Adv$cca-mPKE pA1q

In the rest of the proof we address these one at a time. Putting them together along with (5) and (3) gives the
bound claimed in the theorem statement via the following calculation, where we let ε � pq2Enc�4qEncqDecq{2

τ ,

Adv$cca-mPKE pAmq � ε�
¸

kPrqEncs

PrrHk,1s � PrrHk,0s

� ε� qEncp2 PrrH0s � 1q

¤ ε� qEncp2 PrrH1s � p2qEnc � 4qDecq{2
τ � 1q

¤ ε� qEncp2 PrrH2s � p2qEnc � 4qDecq{2
τ � 2qEnc{2

τ � 1q

� Adv$cca-mPKE pA1q � ε� 4qEncqDec{2
τ � 4q2Enc{2

τ

� Adv$cca-mPKE pA1q � 8qEncqDec{2
τ � 5q2Enc{2

τ

Transition to H0.Game H0 is identical to Hk,b with pk, bq chosen at random and with the game returning
true if Am correctly guessed b. We added highlighted code to Enc which stores the message and ciphertext
from when i � k in preparation for the next hybrid. We removed the i ¥ k � b check in Dec because it is
anyway implied by the k � b ¤ j ¤ i check. Standard calculations by conditioning on all the possible values
of pk, bq gives the claim.
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Transition from H0 to H1. We make three changes to Dec to transition to H1. First, it immediately
returns m� if given c � c�. Secondly, we modify the check k � b ¤ j ¤ i to k ¤ j ¤ i. Thirdly, we add an if
statement inside the if statement checking m � K and k ¤ j ¤ i, which checks if pm, jq � pm�, kq and skips
returning m if that is the case.

Note that if b � 0, a Dec query on c � c� would never exhibit different behavior in H1 compared to
H0 because it returns m� in both cases. A Dec query on c � c� would never exhibit different behavior in
H1 compared to H0 because in H1 the condition to skip a line never gets triggered since f�1ppn, ekq, cq �
f�1ppn, ekq, c�q � pm�, kq (because f is injective). Since b � 0, the change from k � b ¤ j to k ¤ j has no
effect.

For b � 1, a Dec query on c � c� would exhibit different behavior in H0 than in H1 only if f�1ppn, ekq, c�q �
K in H1 (recall that for b � 1, c� is an actual encryption of m�). Note that, up until c� is defined in H0,
the view of the adversary is independent of f . So, the probability that f�1ppn, ekq, c�q � K is at most
qEnc2n{2n�τ ¤ qEnc{2

τ .
For b � 1, a Dec query on c � c� would exhibit different behavior in H1 compared to H0 only if

f�1ppn, ekq, cq � pm, jq and m � K and k � j holds in H1. Because otherwise if m � K or k   j, the outer
if statements would not be true in either game or if k ¡ j then the skip condition (the only difference inside
the outer if statement for H0 and H1) would never be triggered for H1.

For every Decpcq query, the probability that it was first query where c satisfies f�1ppn, ekq, cq � pm, kq
is at most 2n{p2n�τ � qEnc � qDecq ¤ 2{2τ . This follows because there are 2n values in the domain of f�1

that map to pm, kq for some m and because it is the first query where c satisfies f�1ppn, ekq, cq � pm, kq, the
view of the adversary is dependent only on points of f�1 which are mapped to K or pm1, k1q where k1 � k.
Taking a union bound over all Dec queries, this event happens with probability at most 2qDec{2

τ (where
we use the fact that qDec � qEnc ¤ 0.5 � τ). This gives us, PrrH0s ¤ PrrH1s � pqEnc � 2qDecq{2

τ .

Transition from H1 to H2. The only change in H2 is that in Enc for i � k, c0 sampled uniformly at
random instead of evaluating f . Note that this changes behavior in Enc of H2 only if the c0 sampled is the
same as c0 for some previous Enc query – since the size of PKE.C is always at least 2τ , this happens with
probability at most qEnc{2

τ . For Dec queries on c � c�, the behavior is identical in H1 and H2 because of
the check at the beginning. For a Dec query on c � c�, the answer of the query in no way would depend on
c0 sampled for i � k. So the behavior of Dec is unchanged. It follows that PrrH1s ¤ PrrH2s � qEnc{2

τ .

Adversary A1.Finally we can see that our adversary A1 (defined in Fig. 25) perfectly simulates the view of
Am in H3. It was obtained by copying the code of H3 and then modifying it to query its Enc and Dec oracle as
appropriate. It follows that PrrH2s � 0.5 PrrG$cca-m

PKE,1s�0.5p1�PrrG$cca-m
PKE,0sq. Hence, 2 PrrH2s�1 � Adv$cca-mPKE pA1q.

Adversary A1’s extra running time comes from using PKE.E in SimEnc. Its extra memory is that required
for running PKE.E, for storing i, and for storing pc�,m�q. [\

Acknowledgements

Ashrujit Ghoshal, Joseph Jaeger, and Stefano Tessaro were partially supported by NSF grants CNS-1930117
(CAREER), CNS-1926324, CNS-2026774, a Sloan Research Fellowship, and a JP Morgan Faculty Award.
Joseph Jaeger’s work was done while at the University of Washington.

References

1. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight reductions. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 101–132. Springer, Heidelberg,
August 2017. 1, 2, 3, 4, 5, 6, 8, 9, 10, 16, 24

2. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Personal communication, 2021. 24, 26
3. Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the definition of IND-CCA: When and how should

challenge decryption be disallowed? Journal of Cryptology, 28(1):29–48, January 2015. 26
4. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of

the generic composition paradigm. Journal of Cryptology, 21(4):469–491, October 2008. 4

34



5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS
93, pages 62–73. ACM Press, November 1993. 4, 16

6. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
Heidelberg, May / June 2006. 6, 23, 27, 32

7. Daniel J Bernstein. Extending the salsa20 nonce. In Workshop record of Symmetric Key Encryption Workshop,
volume 2011. Citeseer, 2011. 3

8. Rishiraj Bhattacharyya. Memory-tight reductions for practical key encapsulation mechanisms. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
249–278. Springer, Heidelberg, May 2020. 1, 8
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A Extended Discussion of Oracle Adversaries

Following our convention from Section 3, the reduction adversaries we provide in a variety of our results are
F-oracle adversaries for different choices of F . This is summarized by the table in Fig. 29. One justification for
why this is acceptable is that this oracle can always be pseudorandomly instantiated, if needed (as captured
by Theorem 2). In this section we will give examples to show that appropriate pseudorandom objects exist.

Result Security Notion Required Oracle

Thm. 1 1UFCMA Inj�pDS.M, rqSigns,D.Rq

Thm. 3 1UFCMA FcspDS.M, rqSigns,D.Rq

Thm. 4 OW-RSA Fcspt0, 1uR.k, t0, 1u�,Z�
p�qq � Injpt0, 1u�, rqSigns, t0, 1u

rlq

Thm. 5 INDR FcspNE.N,NE.C, t0, 1uτ q

Thm. 6 1CCA-� FcspN, D,PKE.Rq
Thm. 7 1$CCA-m Inj�pN� PKE.Ek, t0, 1un � rqEncs,PKE.Cpek, nqq

Fig. 29. Summary of the F-oracle adversaries obtained by the results in out paper.

However we emphasize that our perspective is that, in general, fixing specific concrete choices for these
instantiations is a secondary concern. Suppose, for example, that an efficient, low-memory adversary A is
shown to exist against the security of a digital signature scheme DS which was proven secure with an F-oracle
reduction Rrs to cryptographic assumption Π. A motivated cryptographer could easily put together a list
F1,F2, . . . or many candidate F-pseudorandom functions. Either instantiating RrAs’s oracle with one of the
functions on this list would give an efficient, low-memory attack against Π or RrAs would be successfully
attacking the pseudorandomness of every Fi on our list (which was chosen after R and A were fixed).

Consequently, our priority in this section is to highlight the existence of appropriate pseudorandom
objects, not in making optimal choices for them. We optimize our choices for ease of explanation. For
example, all the required tweakable random functions (Theorems 3, 4, 5, and 6) can implemented using a
hash function (say SHA2 or SHA3) which is commonly modeled as a random oracle. For FcspT,D,Rq given
a hash function H : t0, 1u� Ñ R we simply define FKpt, dq � HpK } xt, dyq where is x�, �y encoding of tuples
from T � D. If R � t0, 1uτ , finding such an H is straightforward. For other R of interest we expect to be
able to use standard techniques to create such a H from H 1 with range t0, 1uτ (e.g. using rejection sampling,
so Hpxq � H 1pi, xq for the first i P rns such that H 1pi, xq P R).

Tweakable injections, Inj�pT,D,Rq, are needed for Theorems 1, 4, and 7. We first note that a tweak-
able pseudorandom injection with efficient inversion can be instantiated from blockciphers using the CMC
enciphering scheme [19]. Since blockciphers can in turn be constructed from PRFs [22], the assumption of ex-
istence of tweakable pseudorandom injection with efficient inversions is essentially same as the assumption of
existence of PRFs. A large, structured tweak set T can always be handled by using a collision-resistant hash
function to map it to a more standard tweak set. For examples of interest, the choices of R for Theorems 1
and 4 are likely to be t0, 1u128 or t0, 1u256. Thus we can implement them by taking tweakable blockciphers
obtained from standard blockciphers and restricting their domain to match D. Should Theorem 1 require a
larger R we can use a large-block blockcipher such as those designed by Hoang, Krovetz, and Rogaway [20].
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For Theorem 7, given tweak pn, ekq we need an injection from elements of t0, 1un�rqEncs to PKE.Cpek, nq
the ciphertext space of PKE using key ek for messages of length n. How this is achieved, will of course depend
on the choice of PKE. One common possibility is PKE.Cpek, nq � Cpekq�t0, 1un�τ where C is some structured
set dependent on ek (e.g. ZN for RSA) and τ is a constant (e.g. 128). If rlog qEncs bits of a random element
of c P Cpekq look uniformly random (when not conditioned on the rest of c) then we can use a misuse-
resistant authenticated encryption scheme with ciphertexts τ bits longer than the input message to encrypt
the message pm, iq P t0, 1un�rqEncs using pn, ekq as a nonce to obtain a ciphertext of length rlog qEncs�n�τ .
Treating the first rlog qEncs bits of the ciphertext as part of some c P Cpekq we can use deterministic rejection
sampling (using some PRF) to sample the rest of the bits of c.

B KEM/DEM (Application Requiring AE/$CCA-m)

In this section we exhibit reductions which are memory-tight when we use the w � m variant of definitions,
but for which this memory-tightness does not appear possible if we use w � � or K. The reductions are for
proving the security encryption schemes based on the KEM/DEM paradigm. In the paradigm we construct
an encryption scheme KD given two encryption schemes KEM and DEM. To encrypt a message m we first
sample a random key K for DEM which we encrypt using KEM. Then using DEM with key K we encrypt
m. Decryption proceeds by using KEM to recover K and then using it with DEM to recover m.

We consider the cases when KEM (and hence KD) is a secret-key or public-key encryption scheme.13 In
either case we use a secret-key encryption scheme for DEM. For now let us consider the secret-key case; the
public-key case is similar. Our goal is to show that if KEM is AE-w secure and DEM is AE-w secure (against
multi-user attacks making one encryption query per user), then KD is AE-w secure. Our goal is for these
reductions to be memory-tight.

In particular, for motivating the usefulness of -m style definition, we are most interested in the reduction
to the security of KEM. In fact, the standard reduction to the security of KEM works and is memory-tight
when w � m. (The reduction to the security of DEM will require non-standard steps making use of our
efficient tagging technique.) It seems unlikely the reduction to KEM’s security can be made memory-tight if
w P tK, �u instead.

To understand the issue at hand, let us discuss how the proof works at a high level. Broadly, we use a
reduction to the security of KEM to switch ciphertexts encrypting K to be random so that K itself is random
from the perspective of the adversary. With these random K we can then apply the security of DEM. Our
focus is on the memory-tightness of the first step. Given adversary Akd against KD we build Ak against
security of KEM as following. On an encryption query for m, adversary Ak will sample a random K and then
ask its own encryption oracle for an encryption ck of K and locally use K to encrypt m into the ciphertext
cd. It returns pck, cdq to Akd. The interesting challenge is in simulating decryption queries for some pck, cdq.
When w � m, adversary Ak can query ck to its own decryption oracle to receive some K and use that to
decrypt cd. For w P tK, �u, this works fine unless ck was previously returned by an encryption query in which
case Ak’s oracle returns K or � (as appropriate) which does not enable Ak to simulate decryption properly
if cd was not also returned by that encryption query. As such, it is not clear how Ak could respond correctly
without storing all prior encryption queries.

The step described above is main motivation of this section, showing how w � m can be useful for security
proofs. The second step of the proof also required some care to be memory-tight. The natural reduction to
the multi-user security of DEM works as follows. For an encryption query it samples a random ciphertext for
the KEM, samples key K at random, then queries its oracles to create a new user for DEM and have that user
encrypt K. On a decryption query pck, cdq, if ck was a ciphertext it picked randomly for a prior encryption
query, it wants to query its decryption oracle to get cd decrypted. This requires remembering the name of
the new user created during the encryption query that returned ck and would thus not be memory-tight.
We use our message encoding technique to make this memory-tight. In particular, to respond to encryption

13 The public-key case is a standard “textbook” construction of an encryption scheme. The secret-key case also arises
in practice where a master key is used to encryption subkeys which are used to encryption the message. See, for
example, some key-rotation schemes [16].
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KDrNEk,NEds.K

Kk Ð$ NEk.K
Return K

KDrNEk,NEds.EpKk, n,mq

KÐ$ NEd.K
ck Ð NEk.EpKk, n,Kq
cd Ð NEd.EpK, 0,mq
Return pck, cdq

KDrNEk,NEds.DpKk, n, cq

pck, cdq Ð c
K Ð NEk.DpKk, n, ckq
If K � K:

Return
NEd.DpK, 0, cdq
Return K

Fig. 30. Nonce-based AE scheme KDrNEk,NEds constructed from nonce-based AE schemes NEk and NEd via the
KEM/DEM paradigm.

Game Gmu-ae-w
NE,b pAq

uÐ 0
b1 Ð ANew,Encb,Decwb

Return b1 � 1

Newpq

uÐ u� 1
KuÐ$ NE.K

Encbpi, n,mq

c1 Ð NE.EpKi, n,mq
c0 Ð$ t0, 1uNE.clp|m|q

M ri, n, cbs Ð m
Return cb

Decwb pi, n, cq

If M ri, n, cs � K
Return M ri, n, cs if w � m

Return � if w � �
Return K if w � K

m1 Ð NE.DpKi, n, cq
m0 Ð K
Return mb

Fig. 31. Game defining multi-user AE security

queries we create ck as the output of an injection applied to the name of the new user being created which
allows us to later recover this when responding to decryption queries.

In Section B.1 we formalize the proof when KEM is a secret-key, nonce-based scheme and in Section B.2
we do the same for when it is a public-key scheme.

B.1 Secret-key KEM/DEM

KEM/DEM Scheme.Let NEk and NEd be nonce-based encryption schemes. Then we define the KEM/DEM
nonce-based encryption scheme KDrNEk,NEds as shown in Fig. 30. Technically KD does not meet our syntax
for nonce-based encryption from Section 5, due to being randomized. Requiring nonce-based encryption be
deterministic is not actually important for our purposes, so we ignore this technicality.

Multi-user AE security.For our proof we will require that NEd provide multi-user security against attacks
making one encryption query. So we require an extension of the notion of AE security to the multi-user setting.
The multi-user setting allows the adversary to make encryption and decryption queries for multiple keys. We
use the games in Fig. 31 to define the multi-user AE (muAE) security. For w P tm, �,Ku, the advantage against
multi-user AE security of a scheme NE is defined as Advmu-ae-w

NE pAq � PrrGmu-ae-w
NE,1 pAqs � PrrGmu-ae-w

NE,0 pAqs.
Security result.The following theorem captures our result, that KDrNEk,NEds can be proven AE-m secure
from the AE-m security of NEk and the muAE-m security of NEd, where both reductions are memory-tight.

Theorem 8. Let NEk, NEd be nonce-based encryption schemes and let τ � NEk.clpNEd.klq ¡ 0. Let Aa be
an AE-m adversary with QuerypAaq � pqEnc, qDecq. Define pT,D,Rq � pNEk.N, rqEncs, t0, 1u

τ q. Let Ba be as
defined in Fig. 33 and Ca be the Inj�pT,D,Rq-oracle adversary defined in Fig. 35. Then,

Advae-mKDrNEk,NEdspAaq ¤ Advae-mNEk
pBaq � Advmu-ae-m

NEd
pCaq � qEncpqEnc � 4qDecq{2

τ .

QuerypBaq � pqEnc, qDecq

TimepBaq � TimepAaq � pqEnc � qDecqTimepNEdq

MempBaq � MempAaq �MempNEdq.

QuerypCaq � pqEnc, qDecq

Time�pCaq � TimepAaq

Mem�pCaq � MempAaq.
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Hybrids Hh for 0 ¤ h ¤ 3

f Ð$ InjpT,D,Rq //Hr2,8q

lÐ I
uÐ 0 //Hr2,8q

Kk Ð$ NEk.K
b1 Ð AEnc,Dec

a

Return b1 � 1

Encpn,mq

uÐ u� 1 //Hr2,8q

KÐ$ NEd.K
ck Ð NEk.EpKk, n,Kq //Hr0,1q

ck Ð$ t0, 1uNEk.clp|K|q //Hr1,2q

ck Ð fpn, uq //Hr2,8q

cd Ð NEd.EpK, 0,mq
Y rlpn, ckqs Ð K
M rlpn, ckq, cds Ð m //Hr3,8q

Return pck, cdq

Decpn, cq

pck, cdq Ð c
If Y rlpn, ckqs � K:

If M rlpn, ckq, cds � K: //Hr3,8q

Return M rlpn, ckq, cds //Hr3,8q

K Ð Y rlpn, ckqs
Return NEd.DpK, 0, cdq

Else:
K Ð NEk.DpKk, n, ckq //Hr0,1q

K Ð K //Hr1,8q

If K � K:
Return NEd.DpK, 0, cdq

Return K

Fig. 32. First set of hybrids used for proof of Theorem 8. I denotes the identity function.

Adversary BEnc,Dec
a

b1 Ð ASimEnc,SimDec
a

Return b1

SimEncpn,mq

KÐ$ NEd.K
ck Ð Encpn,Kq
cd Ð NEd.EpK, 0,mq
Return pck, cdq

SimDecpn, cq

pck, cdq Ð c
K Ð Decpn, ckq
If K � K:

Return NEd.DpK, 0, cdq
Return K

Fig. 33. Adversary Ba for Theorem 8.

Proof. We consider the hybrids H0 through H3 and L0 through L4 defined in Figs. 32 and 34. Of these hybrids
we will make the following claims, which establish the claimed upper bound on the advantage of Aa.

1. PrrGae-m
KDrNEk,NEds,1

pAaqs � PrrH0s

2. PrrH0s ¤ PrrH1s � Advae-mNEk
pBaq

3. PrrH1s ¤ PrrH2s � 0.5 � q2Enc{2
τ

4. PrrH2s � PrrH3s
5. PrrH3s ¤ PrrL0s � 2qEncqDec{2

τ

6. PrrL0s ¤ PrrL1s � Advmu-ae-m
NEd

pCaq
7. PrrL1s ¤ PrrL2s � 2qEncqDec{2

τ

8. PrrL2s ¤ PrrL3s � 0.5 � q2Enc{2
τ

9. PrrL3s � PrrGae-m
KDrNEk,NEds,0

pAaqs

Transition to H0. We claim that H0 is identical to Gae-m
KDrNEk,NEds,1

. Note that, in the latter, Enc produces
honest encryptions using KD and Dec produces honest decryptions. It is immediately clear that the same
holds for Enc in H0 and the else branch of Dec in H0. Consider the first branch in Dec. We have used
grey highlighting to indicate the relevant code. Note that l is the identity function (its presence will be
notationally convenient for future game transitions). Y is a table indexed by n, ck pairs which stores the key
in encrypted ck. The use of Y in Dec simply recovers this K without decrypting ck. By the correctness of
NEk this is identical to having done the decryption, so PrrGae-m

KDrNEk,NEds,1
pAaqs � PrrH0s follows.

Transition H0 to H1. In hybrid H1, the ciphertext ck is now sampled uniformly at random. Also in Dec,
the key K is assigned the value K if the Y rn, cks � K. These difference correspond to what we expect from the
security of NEk. We define Ba in Fig. 33 from hybrid H1 by replacing encryption and decryption of K with
appropriate queries to its oracle. This adversary is nonce-respecting because Aa is. Note that the use of table
Y in the hybrids matches the table from Gae-m. We can see that when interacting with Gae-m

NEk,1
, Ba simulates

H0 to Aa and when interacting with Gae-m
NEk,0

, Ba simulates H1 to Aa. Hence PrrH0s � PrrH1s � Advae-mNEk
pBaq.

After this transition the else branch in Dec is dead code. We remove it later when transitioning to L0.
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Hybrids L` for 0 ¤ ` ¤ 3

f Ð$ Inj�pT,D,Rq //Lr0,3q
lÐ f�1 //Lr0,2q
lÐ I //Lr2,8q

uÐ 0 //Lr0,3q
Kk Ð$ NEk.K
b1 Ð AEnc,Dec

a

Return b1 � 1

Encpn,mq

uÐ u� 1 //Lr0,3q
KÐ$ NEd.K
ck Ð fpn, uq //Lr0,3q
ck Ð$ t0, 1uNEk.clp|K|q //Lr3,8q

cd Ð NEd.EpK, 0,mq //Lr0,1q
cd Ð$ t0, 1uNEd.clp|m|q //Lr1,8q

Y rlpn, ckqs Ð K
M rlpn, ckq, cds Ð m
Return pck, cdq

Decpn, cq

pck, cdq Ð c
If 1 ¤ f�1pn, ckq ¤ u: //Lr0,2q
If Y rlpn, ckqs � K: //Lr2,8q

If M rlpn, ckq, cds � K:
Return M rlpn, ckq, cds

K Ð Y rlpn, ckqs //Lr0,1q
Return NEd.DpK, 0, cdq //Lr0,1q

Return K

Fig. 34. Second set of hybrids used for proof of Theorem 8.

Adversary CNew,Enc,Dec
a

f Ð$ InjpT,D,Rq
uÐ 0
b1 Ð ASimEnc,SimDec

a

Return b1

SimEncpn,mq

uÐ u� 1
Newpq
ck Ð fpn, uq
cd Ð Encpu, 0,mq
Return pck, cdq

SimDecpn, cq

pck, cdq Ð c
iÐ f�1pn, ckq
If 1 ¤ i ¤ u:

Return Decpi, 0, cdq
Return K

Fig. 35. Adversary Ca for Theorem 8.

Transition H1 to H2. In hybrid H2, instead of sampling ck at random, we assign it the output of a random
injective function f applied to nonce n and a counter u (we will later make u correspond to users in Gmu-ae-w).
The switching lemma tells us that PrrH2s ¤ PrrH1s � 0.5 � q2Enc{2

τ .

Transition H2 to H3. In hybrid H3, we introduce a table M which is indexed by n, ck, cd (the first two via
l) and stores the value of m whose encryption under K � Y rlpn, ckqs is cd. This table is used in Dec to skip
the step of decrypting cd. By the correctness of NEd this does not change functionality, so PrrH2s � PrrH3s.

Transition H3 to L0.Next we transition to hybrid L0 shown in Fig. 34. We have highlighted all ways that
this differs from hybrid H3 (other than the elimination of the aforementioned dead code in the else branch of
Dec). Our changes were twofold, consisting of switching the function l indexing into our tables to f�1 and
switching the if condition in Dec. Considering the latter first, note that the checks Y rlpn, ckqs � K in H3 and
1 ¤ f�1pn, ckq ¤ u in L0 can only differ if the second is true and the first is false. This requires the adversary
to guess something in the image of fpn, �q other than the (at most) one example it can obtain from Enc.
Switching to using l � f�1 similarly can only change behavior if a Decpn, pck, cdqq query is made where ck
is in the image of fpn, �q, but ck was not returned in a prior Enc query with n. Note that the domain (and
hence the image) of fpn, �q has size qEnc and its range has size 2τ . So for a given decryption query this bad
event happens in H3 with probability at most qEnc{p2

τ � 1q ¤ 2qEnc{2
τ . Taking a union bound over all Dec

queries gives that PrrH3s ¤ PrrL0s � 2qEncqDec{2
τ .

Transition L0 to L1. In hybrid L1, the ciphertext cd is now sampled uniformly at random. Also in Dec,
if the M rlpn, ckq, cds � K then the oracle always returns K. These difference correspond to what we expect
from the multi-user security of NEd. We define Ca in Fig. 35 from hybrid L1 by replacing encryption and
decryption of cd with appropriate queries to its oracle. We claim that when interacting with Gmu-ae-m

NE,1 , Ca
simulates L0 to Aa and when interacting with Gmu-ae-m

NE,0 , Ca simulates L1 to Aa. To see this, note that the

variable u in these hybrids matches the same variable in Gmu-ae-m. Additionally, if i � lpn, ckq then the
values Y ris and M ri, cds in these hybrids always match Ki and M ri, 0, cds in Gmu-ae-m. (The claims can be
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Game Gmu-$cca-w
NE,b pAq

uÐ 0
b1 Ð ANew,Encb,Decwb

Return b1 � 1

Newpq

uÐ u� 1
KuÐ$ NE.K

Encbpi, n,mq

c1 Ð NE.EpKi, n,mq
c0 Ð$ t0, 1uNE.clp|m|q

M ri, n, cbs Ð m
Return cb

Decwb pi, n, cq

If M ri, n, cs � K
Return M ri, n, cs if w � m

Return � if w � �
Return K if w � K

mÐ NE.DpKi, n, cq
Return m

Fig. 36. Game defining multi-user $CCA security of nonce-based encryption.

rigorously verified by plugging the code of Gmu-ae-m
NE,b into Ca and comparing side-by-side with L1�b.) This gives

PrrL1s ¤ PrrL0s � Advmu-ae-m
NE pCaq.

Transition L1 to L2. In hybrid L2, we undo the code changes used to transition from H3 to L0. Namely,
l is set back to I and the if statement in Dec is reverted. By the same logic as that prior transition,
PrrL2s ¤ PrrL1s � 2qEncqDec{2

τ .

Transition L2 to L3. In hybrid L3, we undo the code changes used to transition from H1 to H2. Namely,
we get rid of the injection f and sample ck uniformly. By the same logic as that prior transition, PrrL3s ¤
PrrL2s � 0.5 � q2Enc{2

τ .

Final Transition.Finally, we claim that L3 and Gae-m
KDrNEk,NEds,0

are identical. Recall that in the latter, Enc
always returns random ciphertexts. The same holds in L3. Similarly, the two games have the same behavior in
only responding with non-K values to Dec queries for ciphertexts that were trivially forwarded from earlier
Enc queries. In particular, we can see this by noting that M rlpn, ckq, cds in L3 always has the same value as
M rn, pck, cdqs in Gae-m

KDrNEk,NEds,0
and that M rlpn, ckq, cds � K implies Y rlpn, ckqs � K. [\

B.2 Public-key KEM/DEM

KEM/DEM scheme. Let NE be a nonce-based encryption scheme. Let PKE be a public-key encryption
scheme. Then we define the KEM/DEM public-key encryption scheme KDrPKE,NEs as shown in Fig. 37.

Multi-user $CCA security of NE.For our proof we will again require that NE provide multi-user security
against attacks making one encryption query. For this proof we will use a $CCA-style definition rather than
AE. We use the games in Fig. 36 to define the multi-user $CCA (mu$CCA) security of NE. If differs from
muAE only in that the decryption oracle always returns honest decryptions of ciphertexts that were not
trivially forwarded. For w P tm, �,Ku, the advantage against multi-user AE security of a scheme NE is defined

as Advmu-$cca-w
NE pAq � PrrGmu-$cca-w

NE,1 pAqs � PrrGmu-ae-w
NE,0 pAqs.

Uniformity of PKE. For our proof we will additionally need to make the statistical assumption that the
distribution of sampling ciphertexts randomly from PKE.Cpek,NE.klq is close (in statistical distance) to the
distribution obtained by encrypting a random K. Formally, we say that PKE is pκ, εq-uniform if for all
pek, dkq P PKE.K and all (not necessarily efficient) A it holds that

PrrApcq � 1 : cÐ$ PKE.Cpek, κqs � PrrApcq � 1 : KÐ$ t0, 1uκ; cÐ$ PKE.Epek,Kqs ¤ ε.

As one example, this will hold with ε � 0 for schemes in which PKE.Epek,K; �q is injective for all K P t0, 1uκ

and PKE.Cpek, κq � tPKE.Epek,K; rquK,r.

Security result. The following theorem captures that KDrPKE,NEs can be proven $CCA-m secure from
the security of PKE and NE, where all reductions are memory-tight.

Theorem 9. Let NE be a nonce-based encryption scheme with NE.clpnq ¥ n � NE.xl for all n and let PKE
be a pNE.kl, εq-uniform public key encryption scheme. Let τ satisfy |PKE.Cpek,NE.klq| ¥ 2τ for all ek and
NE.xl ¥ τ . Let Ac be an $CCA-m adversary with QuerypAcq � pqEnc, qDecq and assume qEnc ¤ 0.5 � 2τ .
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KDrPKE,NEs.K

pek, dkq Ð$ PKE.K
Return pek, dkq

KDrPKE,NEs.Epek,mq

KÐ$ NE.K
ck Ð$ PKE.Epek,Kq
cd Ð NE.EpK, 0,mq
Return pck, cdq

KDrPKE,NEs.Dpdk, cq

pck, cdq Ð c
K Ð PKE.Dpdk, ckq
If K � K:

Return NE.DpK, 0, cdq
Return K

Fig. 37. A public-key scheme KDrPKE,NEs constructed from a public key encryption scheme PKE and a nonce-based
encryption scheme NE.

Hybrids Hh for 0 ¤ h ¤ 3

f Ð$ InjpT,D,Rq //Hr2,8q

lÐ I
uÐ 0 //Hr2,8q

pek, dkq Ð$ PKE.K
b1 Ð AEnc,Dec

c pekq
Return b1 � 1

Encpmq

uÐ u� 1 //Hr2,8q

KÐ$ NE.K
ck Ð$ PKE.Epek,Kq //Hr0,1q

ck Ð$ PKE.Cpek, |K|q //Hr1,2q

ck Ð fpek, uq //Hr2,8q

cd Ð NE.EpK, 0,mq
Y rlpek, ckqs Ð K
M rlpek, ckq, cds Ð m //Hr3,8q

Return pck, cdq

Decpcq

pck, cdq Ð c
If Y rlpek, ckqs � K:

If M rlpek, ckq, cds � K: //Hr3,8q

Return M rlpek, ckq, cds //Hr3,8q

K Ð Y rlpek, ckqs
Return NE.DpK, 0, cdq

Else:
K Ð PKE.Dpdk, ckq
If K � K:

Return NE.DpK, 0, cdq
Return K

Fig. 38. First set of hybrids used for proof of Theorem 9. I denotes the identity function.

Define T � PKE.Ek and pDek, Rekq � prqEncs,PKE.Cpek,NE.klqq for ek P T . Define T 1 � t0, 1u� � N,
D1
pck,lq

� t0, 1ul, and R1
pck,lq

� t0, 1uNE.clplq. Let Bc be as defined in Fig. 39, let Ca be the Inj�pT,D,Rq-oracle

adversary defined in Fig. 41, and let Ec be the Inj�pT 1, D1, R1q-oracle adversary defined in Fig. 43. Then,

Adv$cca-mKDrPKE,NEspAcq ¤ Adv$cca-mPKE pBcq � Advmu-$cca-m
NE pCaq � Advcca-mPKE pEcq � 2qEnc � ε� p2.5 � q2Enc � 4qDecq{2

τ

QuerypBcq � pqEnc, qDecq

TimepBcq � TimepAcq � pqEnc � qDecqTimepNEq

MempBcq � MempAcq �MempNEq.

QuerypCaq � pqEnc, qEnc, qDecq

Time�pCaq � TimepAcq

Mem�pCaq � MempAcq.

QuerypEcq � qEnc � qDec

TimepEcq � TimepAcq � pqEnc � qDecqTimepNEq

MempEcq � MempAcq �MempNEq.

Proof. We consider the hybrids H0 through H3 and L0 through L3 defined in Figs. 38 and 40. Of these hybrids
we the following claims establish the upper bound on the advantage of Ac claimed in the proof.
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Adversary BEnc,Dec
c pekq

b1 Ð ASimEnc,SimDec
c pekq

Return b1

SimEncpmq

KÐ$ NE.K
ck Ð EncpKq
cd Ð NE.EpK, 0,mq
Return pck, cdq

SimDecpcq

pck, cdq Ð c
K Ð Decpckq
If K � K:

Return NE.DpK, 0, cdq
Return K

Fig. 39. Adversary Bc for Theorem 9.

1. PrrG$cca-m
KDrPKE,NEs,1pAcqs � PrrH0s

2. PrrH0s ¤ PrrH1s � Adv$cca-mPKE pBcq
3. PrrH1s ¤ PrrH2s � 0.5 � q2Enc{2

τ

4. PrrH2s � PrrH3s � PrrL0s

5. PrrL0s ¤ PrrL1s � Advmu-$cca-m
NE pCaq

6. PrrL1s � PrrL2s � PrrL3s
7. PrrL3s ¤ PrrL4s � 0.5 � q2Enc{2

τ

8. PrrL4s � PrrM0s
9. PrrM0s ¤ PrrM1s � 0.5 � q2Enc{2

τ

10. PrrM1s ¤ PrrM2s � 2qDec{2
τ

11. PrrM2s ¤ PrrM3s � qEnc � ε
12. PrrM3s ¤ PrrM4s � Advcca-mPKE pEcq
13. PrrM4s ¤ PrrM5s � qEnc � ε
14. PrrM5s ¤ PrrM6s � 2qDec{2

τ

15. PrrM6s ¤ PrrM7s � 0.5 � q2Enc{2
τ

16. PrrM7s ¤ PrrM8s � 0.5 � q2Enc{2
τ

17. PrrM8s � PrrG$cca-m
KDrPKE,NEs,0pAcqs

Transition to H0. We claim that H0 is identical to G$cca-m
KDrPKE,NEs,1. Note that, in the latter, Enc produces

honest encryptions using KD and Dec produces honest decryptions. It is immediately clear that the same
holds for Enc in H0 and the else branch of Dec in H0. Consider the first branch in Dec. We have used
grey highlighting to indicate the relevant code. Note that l is the identity function I (its presence will be
notationally convenient for future game transitions). Y is a table indexed by ek, ck pairs which stores the
key encrypted in ck. The use of Y in Dec simply recovers this K without decrypting ck. By the correctness
of PKE this is identical to having done the decryption, so PrrG$cca-m

KDrPKE,NEs,1pAcqs � PrrH0s follows.

Transition H0 to H1. In hybrid H1, the ciphertext ck is now sampled uniformly at random. This difference
corresponds to what we expect from the $CCA-m security of PKE. We define Bc in Fig. 39 from hybrid H1 by
replacing encryption and decryption of K with appropriate queries to its oracle. Note that the use of table
Y in the hybrids is similar to the table M from G$cca-m (in Y all entries are additionally indexed by the same
ek). We can see that when interacting with G$cca-m

PKE,1 , Bc simulates H0 to Ac and when interacting with G$cca-m
PKE,0 ,

Bc simulates H1 to Ac. Hence PrrH0s ¤ PrrH1s � Adv$cca-mPKE pBcq.
Transition H1 to H2. In hybrid H2, instead of sampling ck at random, we assign it the output of a random
injective function f applied to the encryption key ek as the tweak and a counter u (we will later make u
correspond to users in Gmu-ae-m). The switching lemma tells us that PrrH1s ¤ PrrH2s � 0.5 � q2Enc{2

τ .

Transition H2 to H3. In hybrid H3, we introduce a table M which is indexed by ek, ck, cd (the first two via
l) and stores the value of m whose encryption under K � Y rlpek, ckqs is cd. This table is used in Dec to skip
the step of decrypting cd. By the correctness of NE this does not change functionality, so PrrH2s � PrrH3s.

Transition H3 to L0. Next we transition to hybrid L0 shown in Fig. 40. We have highlighted all ways
that this differs from hybrid H3. Our changes were twofold, consisting of switching the function l indexing
into our tables to f�1 and switching the if condition in Dec. Considering the latter first, note that the
checks Y rlpek, ckqs � K in H3 and 1 ¤ f�1pek, ckq ¤ u in L0 are identical. Note that Y rlpek, ckqs � K iff
ck was returned by the u1-th Enc query for some 1 ¤ u1 ¤ u which holds iff f�1pek, ckq � u1. Switching
to using l � f�1 cannot change behavior since pek, ckq � pek, c1kq iff f�1pek, ckq � f�1pek, c1kq � K. Thus
PrrH3s � PrrL0s.

Transition L0 to L1. In hybrid L1, the ciphertext cd is now sampled uniformly at random. We define Ca in
Fig. 41 from hybrid L1 by replacing encryption and decryption of cd with appropriate queries to its oracle.
We claim that when interacting with Gmu-$cca-m

NE,1 , Ca simulates L0 to Ac and when interacting with Gmu-$cca-m
NE,0 ,
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Hybrids L` for 0 ¤ ` ¤ 4

f Ð$ Inj�pT,D,Rq //Lr0,4q
gÐ$ FcspT 1, D1, R1q //Lr2,8q

lÐ f�1 //Lr0,3q
lÐ I //Lr3,8q

uÐ 0 //Lr0,4q
pek, dkq Ð$ PKE.K
b1 Ð AEnc,Dec

a pekq
Return b1 � 1

Encpmq

uÐ u� 1 //Lr0,4q
KÐ$ NE.K
ck Ð fpek, uq //Lr0,4q
ck Ð$ PKE.Cpek, |K|q //Lr4,8q

cd Ð NE.EpK, 0,mq //Lr0,1q
cd Ð$ t0, 1uNE.clp|m|q //Lr1,2q
cd Ð gppck, |m|q,mq //Lr2,8q

Y rlpek, ckqs Ð K
M rlpek, ckq, cds Ð m
Return pck, cdq

Decpcq

pck, cdq Ð c
If 1 ¤ f�1pek, ckq ¤ u://Lr0,3q
If Y rlpek, ckqs � K://Lr3,8q

If M rlpek, ckq, cds � K:
Return M rlpek, ckq, cds

K Ð Y rlpek, ckqs
Return NE.DpK, 0, cdq

Else:
K Ð PKE.Dpdk, ckq
If K � K:

Return NE.DpK, 0, cdq
Return K

Fig. 40. Second set of hybrids used for proof of Theorem 9.

Adversary CNew,Enc,Dec
a

f Ð$ Inj�pT,D,Rq
uÐ 0
pek, dkq Ð$ PKE.K
b1 Ð ASimEnc,SimDec

c pekq
Return b1

SimEncpmq

uÐ u� 1
Newpq
ck Ð fpek, uq
cd Ð Encpu, 0,mq
Return pck, cdq

SimDecpcq

pck, cdq Ð c
iÐ f�1pek, ckq
If 1 ¤ i ¤ u:

Return Decpi, 0, cdq
Else:
K Ð PKE.Dpdk, ckq
If K � K:

Return NE.DpK, 0, cdq
Return K

Fig. 41. Adversary Ca for Theorem 9.

Ca simulates L1 to Ac. To see this, note that the variable u in these hybrids matches the same variable in
Gmu-$cca-m. Additionally, if i � lpek, ckq then the values Y ris and M ri, cds in these hybrids always match Ki

and M ri, 0, cds in Gmu-$cca-m. (The claims can be rigorously verified by plugging the code of Gmu-$cca-m
NE,b into

Ca and comparing side-by-side with L1�b.) This gives PrrL0s ¤ PrrL1s � Advmu-$cca-m
NE pCaq.

Transition L1 to L2. In hybrid L2, the ciphertext cd is now the output of a random function g from
FcspT 1, D1, R1q, rather than being sampled uniformly. (Recall T 1 � t0, 1u��N, D1

pck,lq
� t0, 1ul, and R1

pck,lq
�

t0, 1uNE.clplq.) The inputs to g never repeat (because ck never repeats), so this does not modify the behavior
of the game, giving PrrL1s � PrrL2s.

Transition L2 to L3. In hybrid L3, we undo the code changes used to transition from H3 to L0. Namely,
l is set back to I and the if statement in Dec is reverted. By the same logic as that prior transition,
PrrL2s � PrrL3s.

Transition L3 to L4. In hybrid L4, we undo the code changes used to transition from H1 to H2. Namely,
we get rid of the injection f and sample ck uniformly. By the same logic as that prior transition, PrrL3s ¤
PrrL4s � 0.5 � q2Enc{2

τ .

Transition L4 to M0. Next we transition to the game M0 shown in Fig 42. In this game we made simpli-
fications to L4 to prepare us for our final transitions. In particular, we removed the labelling function l and
instead index into tables Y and M directly. We additionally drop the use of ek in this indexing. Then the
code in Dec was rewritten for ease of comparison to the final game we are trying to reach (M8, which we
will show is equivalent to G$cca-m

KDrPKE,NEs,0pAcq). Because M rek, ck, cds � K implies Y rek, cks � K, we separated
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Hybrids M` for 0 ¤ ` ¤ 8

pek, dkq Ð$ PKE.K
gÐ$ FcspT 1, D1, R1q //Mr0,1q,Mr7,8q

gÐ$ InjpT 1, D1, R1q //Mr1,7q

b1 Ð AEnc,Dec
c pekq

Return b1 � 1

Encpmq

KÐ$ NE.K
ck Ð$ PKE.Cpek, |K|q //Mr0,3q,Mr5,8q

K 1 Ð$ NE.K //Mr3,5q

ck Ð$ PKE.Epek,K 1q //Mr3,5q

cd Ð gppck, |m|q,mq //Mr0,8q

cd Ð$ t0, 1uNE.clp|m|q //Mr8,8q

Y rcks Ð K
M rck, cds Ð m
Return pck, cdq

Decpcq

pck, cdq Ð c
If M rck, cds � K: //Mr0,2q,Mr6,8q

Return M rck, cds //Mr0,2q,Mr6,8q

mÐ g�1ppck, |cd|�NE.xlq, cdq//Mr2,6q

If m � K: Return m//Mr2,6q

If Y rcks � K:
K Ð Y rcks//Mr0,4q

K Ð PKE.Dpdk, ckq//Mr4,8q

Else:
K Ð PKE.Dpdk, ckq

If K � K:
Return NE.DpK, 0, cdq

Return K

Fig. 42. Third set of hybrids used for proof of Theorem 9. Hybrids after M4 are mostly undoing prior transitions.

out the if statement which checks M , rather than leaving it nested inside of the check for Y . Rather than
repeating the code which runs NE.D in two separate branches we consolidated to be run at the end of the
oracle. None of these changes modify the behavior of the game, so PrrL4s � PrrM0s.

Note that the final game M8 we are moving toward differs from this game primarily in that, for decryption
queries when M rek, ck, cds � K but Y rek, cks � K game M0 uses the key stored in Y (which was chosen at
random) to decrypt cd while game M8 will used whatever key is encrypted in ck. These extra transition were
not needed in our secret-key KEM/DEM proof because the final game we were transitioning to in that proof
returned K for any decryption query not directly forwarded from encryption.

Transition M0 to M1. To transition to M1 we sample g as an injection, rather than a function. The
switching lemma tells us that PrrM0s ¤ PrrM1s � 0.5 � q2Enc{2

τ .

Transition M1 to M2. In M2 we replace the use of the tableM with g�1 in Dec. These games will differ only
if the adversary makes a decryption query for pck, cdq where M rck, cds � K and g�1ppck, |cd|�NE.xlq, cdq � K.
We can bound the probability of such a query in M1. To make such a query, the adversary must be “guessing”
a new point in the image of g�1ppck, |cd| �NE.xlq, �q other than the at most qEnc examples it may have been
given from Enc. Note that in M1, these examples from Enc are the only way that g affects the behavior of the
game. Note that the range of g�1ppck, |cd|�NE.xlq, �q has size 2|cd| and its image has size 2|cd|�NE.xl. Thus (using
that qEnc ¤ 0.5 �2τ ) any particular decryption query has probability at most 2|cd|�NE.xl{

�
2|cd| � qEnc

�
¤ 2{2τ .

Applying a union bound gives PrrM1s ¤ PrrM2s � 2qDec{2
τ .

Transition M2 to M3.Now in M3 we sample ck as the encryption of a random key K 1 rather than choosing
it uniformly at random. The key K 1 will thus be the key obtained if ck is decrypted in Dec. A standard
hybrid argument using the pNE.kl, εq-uniformity of PKE gives that PrrM2s ¤ PrrM3s � qEnc � ε.

Transition M3 to M4. Next we change the behavior of the decryption oracle when Y rcks � K and
g�1ppck, |cd| � NE.xlq, cdq � K. In M3, we used the key Y rcks to decrypt cd. In M4, we use the decryp-
tion of ck (which was called K 1 when originally sampled in Enc). This difference actually corresponds to the
CCA security of PKE.

Consider the adversary Ec shown in Fig. 43. It was obtained by modifying the code of hybrids M3 and
M4 to query its own encryption oracle to obtain ck when responding to encryption queries and to use its own
decryption oracle to obtain K when responding to and query for which it cannot obtain its response using
g�1. We claim that the view of Ac in M3�b perfectly matches its view when simulated by Ec in Gcca-m

PKE,b. In

particular, K sampled during encryption in M3�b “matches” the K1�b sampled for encryption in Gcca-m
PKE,bpEcq

and K 1 matches Kb. Note that Kb/K
1 is always the key encrypted in ck. When b � 0, a later decryption

query using ck will use the key stored in Y rcks which is K1/K. When b � 1, a later decryption query using
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Adversary EEnc,Dec
c pekq

gÐ$ InjpT 1, D1, R1q
b1 Ð ASimEnc,SimDec

c pekq
Return 1 � b1

SimEncpmq

K0 Ð$ NE.K
K1 Ð$ NE.K
ck Ð EncpK0,K1q
cd Ð gppck, |m|q,mq
Return pck, cdq

SimDecpcq

pck, cdq Ð c
mÐ g�1ppck, |cd| � NE.xlq, cdq
If m � K: Return m
K Ð Decpckq
If K � K:

Return NE.DpK, 0, cdq
Return K

Fig. 43. Adversary Ec for Theorem 9.

ck will use the key actually encrypted by ck which is K1/K 1 (in GPKE,1 this value is stored in Y , in M4 this
is obtained by encryption).

Now, noting that Ec returns the opposite bit of what Ac returned we have that PrrM3�bs � 1 �
PrrGPKE,bpEcqs and so PrrM3s ¤ PrrM4s � Advcca-mPKE pEcq.
Transitions M4 through M8. The next couple transition all serve to undo prior transitions. In M5, we
switch back to ck being sampled uniformly. By the same logic as our transition to M3 we have PrrM4s ¤
PrrM5s�qEnc �ε. In M6, we switch back to using the table M rather than g�1. By analogous reasoning to our
transition to M2 we have PrrM5s ¤ PrrM6s � 2qDec{2

τ . In M7, we switch from g being a random injection
to a random function. By the switching lemma, PrrM6s ¤ PrrM7s � 0.5 � q2Enc{2

τ . In M8, we switch back to
cd being sampled uniformly rather than using g. This give differing behavior only if ck ever repeats, giving
PrrM7s ¤ PrrM8s � 0.5 � q2Enc{2

τ .

Final Transition. Finally, we conclude by observing that M8 is identical to G$cca-m
KDrPKE,NEs,0pAcq. In both

Enc returns a uniformly random ciphertext. For a decryption query Decpcq, if c was returned by an earlier
encryption query, then the table M is used to return the message from that query. Otherwise, c is honestly
decrypted as specified by KDrPKE,NEs. Hence, PrrM8s � PrrG$cca-m

KDrPKE,NEs,0pAcqs. [\
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