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ABSTRACT
Continuous group key agreements (CGKAs) are a class of proto-
cols that can provide strong security guarantees to secure group

messaging protocols such as Signal and MLS. Protection against

device compromise is provided by commit messages: at a regular
rate, each group member may refresh their key material by upload-

ing a commit message, which is then downloaded and processed by

all the other members. In practice, propagating commit messages

dominates the bandwidth consumption of existing CGKAs.
We proposeChained CmPKE, aCGKAwith an asymmetric band-

width cost: in a group of 𝑁 members, a commit message costs𝑂 (𝑁 )
to upload and𝑂 (1) to download, for a total bandwidth cost of𝑂 (𝑁 ).
In contrast, TreeKEM [19, 24, 76] costs Ω(log𝑁 ) in both directions,

for a total cost Ω(𝑁 log𝑁 ). Our protocol relies on generic primi-

tives, and is therefore readily post-quantum.

We go one step further and propose post-quantum primitives

that are tailored to Chained CmPKE, which allows us to cut the

growth rate of uploaded commit messages by two or three orders

of magnitude compared to naive instantiations. Finally, we realize

a software implementation of Chained CmPKE. Our experiments

show that even for groups with a size as large as 𝑁 = 2
10
, commit

messages can be computed and processed in less than 100 ms.

KEYWORDS
secure messaging; continuous group key agreement; post-quantum

assumptions; (committing) multi-recipient PKE

1 INTRODUCTION
Secure messaging applications have seen an exponential growth in

use over the last decade. For example, WhatsApp reports a user base

of two billion [27]. From a security point of view, secure (group)

messaging is subject to some specific constraints: end-to-end en-

cryption, asynchrony, long sessions and – in the group setting – a

number of users as large as 𝑁 ≤ 50000 [76, §2.4].
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End-to-end encryption (E2EE) informally requires that no entity

besides the participants in a conversation can access in the clear the

contents of said conversation. The use of E2EE can be concretely

motivated by the documented attempts of government agencies

to access conversations of Lavabit [48] and Signal [79] users by

issuing subpoenas to the providers. A common abstraction for

secure (group) messaging is to model the delivery service as a public

bulletin board, hence minimizing the level of trust and interactivity

that users expect from it. As we will discuss in this paper, making

the server slightly more active in a controlled manner can benefit

efficiency, while maintaining the same level of (dis)trust.

In a secure (group) conversation over e.g., Signal, the session

may last years, there may be hundreds of users, and they may not

be online simultaneously. This stands in stark contrast to a TLS

session, which is bounded in time and deals with two online users

(server and client). It also raises new security issues. For a crude

example, consider a conversation involving 𝑁 participants over a

span of 𝑡 units of time. If each participant has an independent proba-

bility 𝜖 of being compromised over a unit of time, this conversation

will have its contents compromised with probability 1 − (1 − 𝜖)𝑁𝑡 ,
which becomes significant as soon as 𝑁𝑡 = Ω(1/𝜖). This issue
can be resolved by having each participant refresh their key ma-

terial at a regular pace, thus limiting the scope of a compromise.

This practice, called ratcheting, provides post-compromise security

(PCS) and forward secrecy (FS) [10, 35, 38]. It also forms the basis

for more sophisticated techniques [11, 12, 24] providing various

levels of a stronger notion called post-compromise forward security

(PCFS) [11–13].

Continuous Group Key Agreement. The notions of continuous
(group) key agreement (CKA and CGKA) were put forward [9–

13] to capture the particular setting that secure (group) messaging

contends with, e.g., asynchrony and large groups, and achieve the

security notions it requires, e.g., PCFS. In addition to representing

a clean abstraction, CGKAs also include the complex cryptographic

machinery of secure group messaging, and are therefore convenient

objects to reason on.

The most widely academically discussed CGKA is TreeKEM [24].

It underlies the IETF draft standard for secure messaging, MLS [19,

76]. TreeKEM derives its name from its use of ratchet trees (bot-
tom left of Fig. 1, p. 2), and a significant amount of research and
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engineering effort has been undertaken to study the efficiency and

security implications of this signature feature [9, 11–13, 25, 83].

The most recent iterations of TreeKEM (i.e., after version 8 on

MLS) follow a “propose-and-commit” flow, in which members of

a group may propose to add new members, remove existing ones

or update their own keys, by sending proposal messages. These
proposals only take effect when a group member initiates a new

epoch by transmitting a commit message, which simultaneously

validates a list of indicated proposals.

Bandwidth and Commit Messages. In order to realize PCFS,

commit messages in TreeKEM include ⌈log𝑁 ⌉ encryption keys and

at least as many ciphertexts
1
(see Fig. 1), where log𝑥 denotes the

logarithm in base 2 of 𝑥 . As group members are arranged as the

leaves of a binary tree, these encryption keys and ciphertexts allow

all recipients to derive a fresh common group secret comSecret
(commit secret), which is the root of the tree.

Let us discuss bandwidth consumption through three metrics:

the cost of an upload and download, and the total cost. We fo-

cus on the bandwidth cost of the commit messages of TreeKEM,

as they are the dominant term. Indeed, commit messages are the

only cryptographically-heavy messages that need to be uploaded

and downloaded at a regular rate, and each of them has a size of

Ω(log𝑁 ). This therefore represents both the upload and download
cost. If each member of a group sends a single commit message in a

given time span, then they each must also download (𝑁 −1) commit

messages, for a total bandwidth cost of Ω(𝑁 log𝑁 ) per user.2 For
large groups, this can become significant. Ironically, large groups

are also those that need the PCFS provided by commit messages

the most, since their likelihood of compromise during a time span

is higher.

This tension between security and bandwidth efficiency can

be amplified by two factors: post-quantum cryptography, and the

fact that secure messaging applications target mobile devices. In

general, post-quantum cryptographic primitives consume more

bandwidth than their classical counterparts by at least an order of

magnitude, if not more: for example, all parameter sets of Classic

McEliece entail encapsulation keys of at least 255 kibibytes (KiB).

On the other hand, bandwidth can be a scarce resource over mobile

devices, especially for users with limited mobile plans that charge

an extra fee or block access to the network once a data cap has

been reached.
3
To give a concrete example, instantiating TreeKEM

with Classic McEliece in a group of 𝑁 = 256 members will deplete

a 1 GiB mobile plan once each user has sent two commit messages.

This motivates the need for CGKA protocols and post-quantum

primitives that remain efficient and secure for large groups. We note

that mobile plan providers typically calculate data usage by treating

uploaded and downloaded data as equal, and that being temporarily

1
A documented property [9] of TreeKEM is that the number𝑛𝑐 of ciphertexts depends

on the topology of the ratcheting tree, which might contain blank nodes. This number

is ⌈log𝑁 ⌉ in the best case, but may degrade to 𝑁 − 1 for heavily blanked trees.

2
Downloading and processing commit messages is important for security and func-

tionality: a member refusing to download a commit message will be unable to decrypt

subsequent messages.

3
Surveys on mobile data pricing [31] are interesting in that regard. The median cost

of 1 GiB of mobile data is on average (across all countries) $4.07. Mobile plans that

cost more than $20.00 / GiB are reported in 89 countries and, in expensive countries,

“People are often buying data packages of just a tens of megabytes at a time” [31]. This
illustrates that mobile data can be a limited and expensive resource.

blocked from, or asked to pay more to continue to access, the

mobile infrastructure is perhaps the most significant way in which

bandwidth usage affects user experience. Hence our bandwidth

cost model: downloading one byte costs as much as uploading one
byte.

One could argue that assigning different weights to uploaded

and downloaded data would be more appropriate, since uploading

speed may be lower than downloading speed [81]. We believe this

speed-based distinction is not necessary, for two reasons. First, the

bandwidth bottleneck of our CGKA resides in commit messages,

which are uploaded and downloaded in a manner that is invisible

to end users. Second, all our instantiations of our protocol achieve

uploaded commit messages of less than 50KiB for groups of at most

1024 users (see Fig. 6), which, even in countries with low uploading

speed (as of July 2021, the slowest is Afghanistan, with 2.90 Mbps

[81]), can be uploaded in less than 0.2 second. Both facts point to

a minimal impact of uploading and downloading speeds on user

experience.

1.1 Our Contributions
We propose a new CGKA called Chained CmPKE along with a for-

mal security proof (Sec. 4). The main technical tools we leverage are

the existence of very efficient post-quantum multi-recipient PKEs
(mPKE, Sec. 5), and the notion of a committing mPKE (CmPKE,
Sec. 3). We believe these tools may be of independent interest.

initSecret(𝑡−1) joinerSecret(𝑡 ) initSecret(𝑡 )

confKey(𝑡 )appSecret(𝑡 ) membKey(𝑡 )

comSecret(𝑡 )

TreeKEM Chained CmPKE

Welcome message

Figure 1: Initialization of a new epoch 𝑡 , here with a group of 𝑁 = 8

members. A dashed arrow from X to Y means that Y is computed
by passing X (and possibly other values) to a HKDF, a dashed line
means that 𝑋 = 𝑌 .
Here, the leftmost user in the TreeKEM (resp. Chained CmPKE) box
initiates a new epoch by issuing a commit message, which contains
one encryption key for each node, and one PKE (resp. CmPKE)
ciphertext for each node. Each recipient in the current group is
able to compute comSecret(𝑡 ) , which corresponds to the root .
A commit message may include a welcome message, which contains
ciphertexts ( ) encrypting joinerSecret(𝑡 ) ( ) under the encryption
key of each newly added member.
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1.1.1 The Chained CmPKE Protocol. At a very high level, our pro-

tocol is inspired by the Chained mKEM protocol [23, 25]. One way

of interpreting Chained mKEM is as TreeKEM with a tree of arity

𝑁 and depth 1. This makes the size of uploaded commit messages

scale as 𝑂 (𝑁 ), see the bottom right of Fig. 1. The main concep-

tual difference between our Chained CmPKE4 and variations of

TreeKEM (including Chained mKEM) is that we no longer consider

the delivery service as a public bulletin board, and instead allow

it to sanitize commit messages in a straightforward manner by

delivering to each group member the strict amount of data they

need, while maintaining the same level of (dis)trust. In our case,

this means that a member 𝑖 may only receive the ciphertext ct𝑖 that
they can decrypt.

Our first line of research realizes this sanitizability by authen-

ticating all ciphertexts with a single signature. To achieve this we

rely on the notion of a CmPKE, essentially a multi-recipient PKE
augmented with a commitment T. (Sec. 1.1.2). CmPKEs allow us

to reduce the size of downloaded commit messages from 𝑂 (𝑁 ) to
𝑂 (1). Effectively, this also reduces the total bandwidth cost of trans-

mitting a commit message to 𝑂 (𝑁 ), instead of 𝑂 (𝑁 2) for Chained
mKEM and Ω(𝑁 log𝑁 ) for TreeKEM. Alternatively, one could use

a Merkle tree to authenticate all ciphertexts, as in Certificate Trans-

parency [69]. However, each downloaded commit message would

need to include a membership proof of size 𝑂 (log𝑁 ), in contrast

to our 𝑂 (1) solution.
In a second line of research, we minimize the concrete cost of up-

loaded commit messages, which is 𝑂 (𝑁 ) and larger than Ω(log𝑁 )
as for TreeKEM, by proposing and analyzing new efficient post-

quantum mPKEs. (Sec. 1.1.3). As we show in Sec. 3, we can generi-

cally transform any mPKEs into CmPKEs with minimal overhead,

thus we simply focus on mPKEs.
Compared to a naive instantiation of mPKEs using standard

single-recipientPKEs, ourmPKEsmake the commitmessages asymp-

totically smaller (in 𝑁 ) by factors of between 16 (Kyber512 vs.

Ilum512) and 71 (Frodo640 vs. Bilbo640). In fact, while our upload-
ing cost scales asymptotically as 𝑂 (𝑁 ), it still compares favorably

to the Ω(log𝑁 ) solution of TreeKEM in concrete efficiency, even

for groups with hundreds of users.

Our bandwidth savings are summarized in an asymptotic man-

ner in (Tab. 1, p. 10), and in a concrete manner in (Fig. 6, p. 12)

and (Fig. 7, p. 13). While Fig. 6 illustrates the upload and down-

load cost, Fig. 7 illustrates the total bandwidth cost. Compared to

TreeKEM-based equivalents, our instantiations of Chained CmPKE
have consistently better upload costs for groups of less than 200

users indicating that 𝑂 (𝑁 ) solutions can be practically efficient.

In addition, our download and total costs are better by factors of

Ω(log𝑁 ) and performs well for any number of users.

1.1.2 Committing mPKEs. We introduce the notion of a commit-
ting mPKE, or CmPKE. First, a (decomposable) multi-recipient PKE
(mPKE) [66] takes as input a message M and a list of 𝑁 encryp-

tion keys, and outputs a multi-recipient ciphertext (ct0, (ĉt𝑖 )𝑖∈[𝑁 ] ).
Each recipient 𝑖 ∈ [𝑁 ] is able to recoverM by decrypting (ct0, ĉt𝑖 ).

4
We consciously use the term Chained CmPKE rather than Chained CmKEM since

we believe PKE better reflects the protocol description.

The syntax of a CmPKE is mostly similar to that of an mPKE, how-
ever it requires one additional component. The encryption pro-

cedure of a CmPKE outputs (T, (ct𝑖 )𝑖∈[𝑁 ] ), where T is called a

commitment. Decryption then works by taking the commitment-

ciphertext pair (T, ct𝑖 ). We require T to (a) have a size independent
of the number of recipients 𝑁 , and (b) be commitment-binding,
which means informally that T is bound to a unique message. This

notion resembles committing AEADs [50], however we operate in
a different setting (multi-user vs. single-user) and with a different

motivation (bandwidth efficiency vs. abuse reporting).

We show how to build a CmPKE from an mPKE [66] and a

key-committing SKE [2, 44, 46, 50], which can itself be built using

standard symmetric primitives [2]. Compared to the base mPKE,
the overhead is minimal: ct𝑖 = ĉt𝑖 , and T is formed of ct0 and a

term of size 2𝜅 bits, which is no larger than a hash digest.

In our protocol, after computing a CmPKE ciphertext (T, ®ct =
(ct𝑖 )𝑖∈[𝑁 ] ), the sender of a commit message does not authenticate

the whole ciphertext, only T. The server sends (T, ct𝑖 ) to each recip-

ient 𝑖 , and the commitment-binding property allows 𝑖 to indirectly

verify the authenticity of the message encrypted in ct𝑖 . As a result,
the download cost of a commit message is 𝑂 (1) for all recipients.

1.1.3 More Efficient mPKEs. An mPKE allows one to encrypt a

common message to 𝑁 recipients more efficiently than the naive

solution of computing and sending 𝑁 individual ciphertexts in

parallel. Indeed, as each recipient receives (ct0, ĉt𝑖 ),mPKEs provide
asymptotic bandwidth savings if ĉt𝑖 is smaller than a regular, single-

recipient ciphertext ct would be.

While mPKEs based on classical assumptions [20, 68] realize

|ĉt𝑖 |/|ct| = 1/2, existing PKEs based on the post-quantum problems

LWE, LWR, SIDH and CSIDH were recently adapted to the mPKE
setting in [66]. These mPKEs achieve ratios |ĉt𝑖 |/|ct| between 1/5
and 1/169, which could potentially translate into inversely propor-

tional bandwidth savings. The work of [66] has two shortcomings;

(a) their mPKEs are direct transpositions of existing PKEs, which
were not necessarily designed to minimize |ĉt𝑖 |, and (b) it does not

study the concrete impact of the mPKE setting on cryptanalysis.

We address these two shortcomings via a two-pronged approach.

On the constructive side, we note that minimizing the size of

uploaded commit messages gives a different optimization target

to that of PKEs, specifically we wish to minimize |ĉt𝑖 |, even at the

expense of some controlled growth of |ct0 |. We therefore attempt

to improve upon the efficiency gains already reported in [66] by

revisiting the designs of the NIST submissions [21, 74, 77] with

our new optimization target in mind. To achieve this we rely on

well known techniques such as coefficient dropping and modulus

rounding. We arrive at three new parametrizations; a variant of

Frodo640 [74] called Bilbo640, a variant of Kyber512 [77] called

Ilum512, and a variant of LPRime653 [21] called LPRime757. Com-

pared to using the NIST submissions as mPKEs we reduce |ĉt𝑖 | by
60–80%, which translates to an identical asymptotic reduction in

the size of uploaded commit messages. These parametrizations are

close to optimal in the sense that |ĉt𝑖 | ∈ (𝜅, 3𝜅] bits. Since in the

Lindner–Peikert framework, ĉt𝑖 encodes all the information about

the message (in our case, a 𝜅-bit symmetric key), it seems difficult

to beat the 𝜅-bit threshold without new techniques.

3



On the cryptanalytic side we must consider the effect of the

mPKE setting on the attack surface. In [66] theoretical, reduction

based, assurances for the security of the mPKE construction are

given. However, the concrete security of the mPKEs dervied from

NIST submissions is assumed to follow from their concrete security

analyses as PKEs. As an example of differences between the two

settings, variants of the Arora–Ge [5, 15] and BKW [28] attacks

are typically irrelevant to lattice-based PKEs, since they require

more ‘samples’ than provided by the single ciphertext of the PKE,
ct. However, in the mPKE setting, the per recipient ĉt𝑖 ciphertext
components each provide samples for an adversary. Therefore the

Arora–Ge and BKW attacks should be considered in a concrete

security analysis ofmPKE parameters. In App. G, we describe these

attacks in more detail, and provide estimates for the concrete se-

curity of our reparametrizations in a cryptanalytic model tailored

to the mPKE setting. This model targets NIST Security Level I.

Schemes satisfying this are conjectured to have comparable secu-

rity to AES-128 against classical and quantum adversaries. Inter-

estingly, our attempts to improve the efficiency of our mPKEs via
reparametrizing NIST submissions, specifically our use of heavy

modulus rounding on the ĉt𝑖 , naturally hardens our parametriza-

tions against these sample heavy attacks. To display the importance

of an mPKE-focused cryptanalysis, we provide an artificial ‘Kyber
like’ parameter set that is almost secure as a PKE, but insecure in
our mPKE cryptanalytic model.

1.1.4 Security of Chained CmPKE. Finally, we provide a formal

proof establishing that ourChainedCmPKE is as secure as TreeKEM.

We adopt the state-of-the-art UC security model presented by Al-

wen et al. [13] that was used to analyze the TreeKEM version 10

in MLS, which is itself an extension of [12]. In addition to party

corruptions (i.e., compromise party’s secret and group secrets), the

model captures active adversaries who may tamper with or inject

messages and deliver messages in an arbitrary order, and malicious
insiders who may interact with the PKI on behalf of the corrupted

parties. On a technical front, to model the sanitizing of the commit

messages by the delivery service, we extend the ideal functionality

in [13] and modify how the ideal functionality maintains the so-

called history graph. Our security model is a strict generalization

of prior models as it captures them as special cases.

1.2 Related Works
Secure Group Messaging. TreeKEM [24] originates from Asyn-
chronous Ratcheting Trees (ART) introduced by Cohn-Gordon et

al. [37]. To date, the TreeKEM discussed inMLS has gone through 11

versions, some of which have undergone formal security analyses.

For example, Alwen et al. [11] and Bhargavan et al. [25] analyzed

the security of TreeKEM version 7. The former proved its security

based on a game-based security model for CGKA, and the latter

presented a mechanized security proof. Recently, Alwen et al. [13]

analyzed TreeKEM version 10, which adopts the ‘parent hash’ and

‘tree-signing’ mechanisms and showed that it is secure against

active and insider adversaries.

In addition to the standard TreeKEM discussed in MLS, variants

of TreeKEM have been proposed. Tainted TreeKEM [9] enjoys effi-

ciency advantages for large groups maintained by a small number

of ‘administrators’. Re-randomized TreeKEM [11] and TreeKEM

with active security [12] improve the PCFS property against passive

and active adversaries, respectively, but require relatively heavy

cryptographic primitives. Finally, Causal TreeKEM [83] supports

concurrent changes to the group state but currently has no accom-

panying formal security proof.

Secure Two-Party Messaging. Secure messaging in the simpler

two-party setting has also been an active area of research, moti-

vated by the Signal protocol. The first full security analysis of the

Signal protocol is provided in [35, 36]. The notion of Continuous
Key Agreement (CKA) (that is, CGKA in the two-party setting) is

studied in [10]. This generalizes the public-key ratchet of Signal’s

Double Ratchet protocol [72]. The X3DH protocol [73] of the Signal

protocol, used to establish the initial secret key required for CKA, is

studied in [29, 58]. As these works provide a generic construction of

each building blocks from post-quantum assumptions, this results

in a post-quantum secure messaging for the two-party setting.

Other Real-World Post-Quantum Protocols. In the context of

post-quantum protocols, an ongoing trend is to propose proto-

cols that are tailored to the performance profiles of post-quantum

schemes. For example, KEMTLS [78] posits that post-quantum sig-

natures are generally less efficient than post-quantum KEMs. Simi-

larly, McTiny [22] and Post-Quantum WireGuard [62] exploit the

strengths of Classic McEliece [3] (long security track record, short

ciphertexts) while mitigating its main weakness (large public keys).

Our construction follows the same principles by harnessing the

existence of very efficient post-quantum mPKEs.

2 PRELIMINARIES
2.1 One-Time IND-CCA SKE
We use the standard syntax for SKE. Let K andM denote the key

and message space, respectively. We denote by Encs and Decs the
encryption and decryption algorithms, respectively, and as standard,

we assume perfect correctness. Details are provided in App. A.2.

We only require one-time IND-CCA security for SKEs in this work,

formally defined as follows.

Definition 2.1 (One-Time IND-CCA). A SKE is one-time IND-CCA
secure if for all PPT adversary A, we have | Pr[(𝑏, k) ←$ {0, 1} ×
K, (M0,M1) ← A(1𝜅 ), ct∗ ← Encs (k,M𝑏 ), 𝑏 ′ ← AC(·) (ct∗) :

𝑏 = 𝑏 ′]−1/2| ≤ negl(𝜅), where C(ct) returnsDecs (k, ct) if ct ≠ ct∗

and ⊥ otherwise.

We also define key commitment for a SKE [46] which roughly

states that it is difficult to find two secret keys that correctly de-

crypt the same ciphertext (to possibly different messages). As in

prior works [2, 44, 46, 50], we define this notion by providing the

(non-uniform) adversary oracle access to Encs and Decs, where we
implicitly assume these two algorithms are implemented using an

internal hash function modeled as a random oracle.

Definition 2.2 (Key Commitment). A SKE has key commitment if
for all PPT adversaryA, we have Pr[(k0, k1, ct) ← AEncs,Decs (1𝜅 ),
(M𝑏 ← Decs (k𝑏 , ct))𝑏∈{0,1} : M0 ≠ ⊥ ∧M1 ≠ ⊥] ≤ negl(𝜅).

Viewing SKE as (a weakened version of) AEAD, we can use [2,

Sec. 5.2.] to generically transform any IND-CCA SKE, regardless
of it being one-time secure or not, to one with key commitment.

The transform only adds an additional 𝜅 bits of overhead to the

4



original ciphertext: to encrypt, the key committing scheme expands

kenc ← Henc (key) and kcom ← Hcom (key), runs Encs (kenc,M)
and outputs the ciphertext as (ct, kcom). Here Henc and Hcom are

modeled as random oracles. Key committing simply follows from

the collision resistance of Hcom.

2.2 Decomposable Multi-Recipient PKE
Decomposable multi-recipient PKE (mPKE) was introduced in [66].

Similarly to a standard mPKE [17, 68, 80], a decomposable mPKE
allows a user to send a message to multiple recipients more ef-

ficiently than naively running a standard PKE to the individual

recipients. The main difference between a decomposable and non-

decomposablemPKE is whether the encryption algorithm can be de-

composed into a recipient dependent and independent part. In [66]

it was shown that many assumptions known to imply PKE (e.g.,

DDH, LWE, SIDH) can naturally be used to construct an IND-CPA
decomposablemPKE. In this work, we introduce a stronger security
notion than those provided in [66] where we allow the adversary

to adaptively corrupt users during the IND-CPA security game.

Looking ahead, this notion will be important when we target an

adaptively secure CGKA.

Definition 2.3 (Decomposable Multi-Recipient Public Key Encryp-
tion). A (single-message) decomposable multi-recipient public key

encryption (mPKE) over a message spaceM consists of the follow-

ing algorithms:

• mSetup(1𝜅 ) → pp : On input the security parameter 1
𝜅
, it

outputs a public parameter pp.
• mGen(pp) → (ek, dk) : On input a public parameter pp, it
outputs a pair of encryption key and decryption key (ek, dk).
• mEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M; r0, (r𝑖 )𝑖∈[𝑁 ] ) → ®ct = (ct0, (ĉt𝑖 )𝑖∈[𝑁 ] ) :

The (decomposable) encryption algorithm running with ran-

domness (r0, r1, · · · , r𝑁 ), splits into a pair of algorithms

(mEnci,mEncd) :

– mEnci (pp; r0) → ct0 : On input a public parameter pp and
randomness r0, it outputs an (encryption key independent)
ciphertext ct0.

– mEncd (pp, ek𝑖 ,M; r0, r𝑖 ) → ĉt𝑖 : On input a public pa-

rameter pp, an encryption key ek𝑖 , a message M ∈ M,

and randomness (r0, r𝑖 ), it outputs an (encryption key

dependent) ciphertext ĉt𝑖 .
• mDec(dk, ct𝑖 ) → M or ⊥ : On input a decryption key dk
and a ciphertext ct𝑖 = (ct0, ĉt𝑖 ), it outputs either M ∈ M or

⊥ ∉M.

Observe that any standard PKE can be used to construct a decom-

posablemPKE in the obvious way wheremEnci is the null-function
andmEncd is the encryption algorithm of the PKE. So naturally, the
main motivation for mPKE will be to reuse a large portion of the

encryption randomness r0 for all recipients and to obtain a more

efficient scheme compared to the obvious solution. The asymptotic

behavior will be the same as the obvious solution (i.e., the total

ciphertext size is 𝑂 (𝑁 )) but the concrete size can be drastically

reduced (see Sec. 5 for more details). We require the standard no-

tion of correctness and ciphertext-spreadness [49], where the latter

informally states that the ciphertext has high min-entropy. Due

to space constraints, definitions are given in App. A.3. We also

define indistinguishability of chosen plaintext attacks (IND-CPA)
with adaptive corruption for a decomposable mPKE.

Definition 2.4 (IND-CPA). The security notion is defined by the

game in Fig. 2, where we say the adversaryA wins if the game out-

puts 1. A decomposablemPKE is IND-CPA secure with adaptive cor-
ruption if for all PPT adversariesA, we have |Pr[A wins] − 1/2| ≤
negl(𝜅). If A is not given access to the corruption oracle C, this
game corresponds to standard IND-CPA security.

We show in Sec. 3.3 that any IND-CPA secure decomposable

mPKE can be generically bootstrapped into one that is additionally

secure against adaptive corruption with a minimal overhead.

3 COMMITTING MULTI-RECIPIENT PKE
We consider a strengthening of a standard mPKE which we coin

a committing mPKE (CmPKE). The motivation for this is similar

in spirit to those of key committing SKEs or AEADs [2, 44, 46, 50],
where we ask a ciphertext to be bound to a unique key and message

pair. Although it may sound like an obscure property at first glance,

this property has been shown to be vital for establishing security in

several practical applications such as Facebook Messenger [44], (see

[2] for more examples). In a CmPKE, we extend this to the multi-

user setting, which requires that if any of the recipients decrypt to

a messageM, then the other recipients should also decrypt either

toM or to ⊥. Informally, and unlike in the single-user setting, we

allow a ciphertext to be decryptable by many recipients (i.e., many

different keys) but enforce that their decryption values remain

consistent if not ⊥. Looking ahead, this is a natural property to

desire when guaranteeing the weak robustness of a CGKA protocol

(i.e., if a user receives a message then it should be consistent with

all the other group members, provided that they can process the

message).
5

3.1 Definition
Definition 3.1 (Committing Multi-Recipient Public-Key Encryp-

tion). A (single-message) committing multi-recipient public-key

encryption (CmPKE) over a message spaceM consists of the fol-

lowing four algorithms:

• CmSetup(1𝜅 ) → pp : On input the security parameter 1
𝜅
,

it outputs a public parameter pp.
• CmGen(pp) → (ek, dk) : On input a public parameter pp, it
outputs a pair of encryption key and decryption key (ek, dk).
• CmEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M) → (T, ®ct = (ct𝑖 )𝑖∈[𝑁 ] ) : On in-

put a public parameter pp, 𝑁 encryption keys (ek𝑖 )𝑖∈[𝑁 ] ,
and a message M ∈ M, it outputs a commitment T and 𝑁

ciphertexts ®ct = (ct𝑖 )𝑖∈[𝑁 ] .
• CmDec(dk, T, ct𝑖 ) → M or ⊥ : On input a decryption key

dk, a commitment T, and a ciphertext ct𝑖 , it outputs either
M ∈ M or ⊥ ∉M.

Definition 3.2 (Correctness). ACmPKE is correct if Pr[∀𝑖 ∈ [𝑁 ],M =

CmDec(dk𝑖 , T, ct𝑖 )] ≥ 1 − negl(𝜅) holds for all 𝑁 ∈ poly(𝜅) and
M ∈ M, where the probability is taken over pp← CmSetup(1𝜅 ),
5
Since weak robustness of the CGKA protocol is implicitly taken care of by the

confirmation tag, the committing nature of mPKE is not explicitly required. However,

considering the practical relevance of the “committing”-ness of SKE and AEAD, we
believe this notion is worth formalizing as it may have values in other contexts.
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((ek𝑖 , dk𝑖 ) ← CmGen(pp))𝑖∈[𝑁 ] , and (T, ®ct = (ct𝑖 )𝑖∈[𝑁 ] ) ←
CmEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M).6

Definition 3.3 (Succinctness). We say a CmPKE is succinct if in
the above Def. 3.2, the commitment T (and all ciphertext ct𝑖 ) have
size independent of the number of recipients 𝑁 .

In this work, we only consider a succinct CmPKE so we omit it

for simplicity. We define indistinguishability of chosen ciphertext

attacks (IND-CCA) with adaptive corruption for CmPKE.

Definition 3.4 (IND-CCAwith Adaptive Corruption). The security
notion is defined by a game illustrated in Fig. 2, where we say the

adversary A wins if the game outputs 1. A CmPKE is IND-CCA
secure with adaptive corruption if for all PPT adversaries A, we

have |Pr[A wins] − 1/2| ≤ negl(𝜅). If A is not given access to the

corruption oracle C, this game corresponds to standard IND-CCA
security.

Finally, we define commitment-binding which roughly says that

the commitment T is implicitly bound to a unique message. The

notion we consider is strong in the sense that the adversary can

use an arbitrary decryption key rather a correctly generated one to

break commitment-binding.

Definition 3.5 (Commitment-Binding). The security notion is de-

fined by a game illustrated in Fig. 2, where we say the adversaryA
wins if the game outputs 1. A CmPKE is commitment-binding if for

all PPT adversaries A, we have Pr[A wins] ≤ negl(𝜅).

Note that independently satisfying succinctness and commitment-

binding is trivial. If we run a standard PKE in parallel for all 𝑁

users and set T := ⊥, then we obtain a succinct scheme but this is

clearly not commitment-binding. On the other hand, if we add a

non-interactive zero-knowledge (NIZK) proof 𝜋 to further prove

that all the PKE ciphertexts encrypt the same message and set

T := (𝜋, ct1, · · · , ct𝑁 ) (as in the strongly robust TreeKEM variant

of [12]), then we obtain a commitment-binding scheme but the com-

mitment is no longer succinct. Therefore, the main non-triviality

is making the commitment size |T| independent of the number of

users, while simultaneously allowing the users to be convinced that

if (T, ct𝑖 ) decrypts to a valid message, then any other users’ (T, ct𝑗 )
will also decrypt to the same message (or to ⊥).

3.2 Construction of CmPKE: IND-CCA without
Adaptive Corruption

Weprovide a simple and efficient generic construction of an IND-CCA
secure CmPKE (without adaptive corruption) from a decomposable

IND-CPA secure mPKE and an one-time IND-CCA secure SKE fol-

lowing the Fujisaki–Okamoto transform generalized to the multi-

recipient setting. This is illustrated in Fig. 3, where G1,G2,H are

hash functions modeled as random oracles in the security proof.

These oracles can be simulated by a single random oracle by using

appropriate domain separation. Here, we assume the output space

of H is identical to the secret key space K of the SKE. The correct-
ness of this CmPKE follows immediately from the correctness of

6
In the proof of our CGKA protocol, we require that the adversary cannot find a “bad”

randomness that leads to a decryption error. Since we use a PRG modeled as a random

oracle to expand the randomness, standard correctness immediately implies that no

PPT adversary can find such bad randomness.

the decomposable mPKE and SKE. The following theorems assert

the IND-CCA security and commitment-binding of the CmPKE.
The proof for Thm. 3.6 is a standard adaptation of the KEM/DEM

framework to the multi-user setting. The proof for Thm. 3.7 follows

naturally from the key committing property of the underlying SKE.
Both proofs are provided in Appendices B.2 and B.3, respectively.

Theorem 3.6. TheCmPKE in Fig. 3 is IND-CCA secure (resp. with
adaptive corruption) assuming the SKE is one-time IND-CCA secure
and the decomposable mPKE is IND-CPA secure (resp. with adaptive
corruption) and ciphertext-spread.

Theorem 3.7. The CmPKE in Fig. 3 is commitment-binding as-
suming the SKE has key commitment.

3.3 Construction of CmPKE: IND-CCA with
Adaptive Corruption

The construction in Fig. 3 can be shown to be IND-CCA secure

against adaptive corruption by allowing the reduction algorithm

to guess the random choices made by the adversary. However,

this results in a reduction loss as large as 2
𝑁 log𝑁

, where 𝑁 is the

number of recipients. This exponential reduction loss will then be

inherited to the CGKA protocol. Although we are unaware of any

concrete attacks that take advantage of this large reduction loss, it is

natural to ask if there is an efficient and provably adaptively secure

CmPKE (and hence CGKA) without incurring such a reduction loss.

Due to Thm. 3.6, we only need to focus on an IND-CPA secure

with adaptive corruption decomposable mPKE. Below, we provide a
simple generic transformation from any IND-CPA secure decom-

posable mPKE that is not secure against adaptive corruptions into
one that is. The overhead is simply doubling the encryption key

and ciphertext size, where the transform is a natural adaptation of

the Katz–Wang technique [67]. The full detail of the construction is

provided in App. B.4, Fig. 10. Due to the page limitation, we provide

the proof of correctness and security in App. B.4.

4 OUR PROTOCOL: CHAINED CMPKE
We now present our protocol. At a conceptual level, there are two

core differences with TreeKEM:

(1) Instead of being arranged as the leaves of a (binary) tree,

group members are arranged in a set. This is similar to

Chained mKEM [25]. Alternatively, it can be interpreted

as TreeKEM using a tree of arity 𝑁 and depth 1.

(2) Instead of being a passive bulletin board, the delivery service

may edit a commit message uploaded by a member before

forwarding it to any of the (𝑁 − 1) other group members.

The impact of the first change on uploading commit messages

is illustrated in Fig. 1. A member may initiate a new epoch 𝑡 by

encrypting a commit secret comSecret(𝑡 ) directly to the (𝑁 − 1)
encryption keys of the other group members using aCmPKE. There
is no tree structure anymore and, as an immediate consequence,

removing a user no longer leads to “blanking” a node.

The second change is implemented via the use of a CmPKE.
Instead of signing the wholeCmPKE ciphertext (T, ®ct = (ct𝑖 )𝑖∈[𝑁 ] )
embedded in a commit message, the uploader of the message only

signs T. The delivery service is expected to forward (T, ct𝑖 ) to the

recipient 𝑖 . Any tampering on T by the server can be detected by a
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GAME IND-CPA

1 : 𝐶 := ∅
2 : pp← mSetup(1𝜅 )
3 : foreach 𝑖 ∈ [𝑁 ] do
4 : (ek𝑖 , dk𝑖 ) ← mGen(pp)

5 : (M0,M1, 𝑆 ⊆ [𝑁 ]) ← AC(·) (pp, (ek𝑖 )𝑖∈[𝑁 ] )
6 : 𝑏 ←$ {0, 1}

7 : ®ct∗ ← mEnc(pp, (ek𝑖 )𝑖∈𝑆 ,M𝑏 )

8 : 𝑏′ ← AC(·) (pp, (ek𝑖 )𝑖∈[𝑁 ] , ®ct
∗)

9 : if [𝐶 ∩ 𝑆 ≠ ∅] then
10 : return 𝑏

11 : return [𝑏 = 𝑏′]

Decapsulation Oracle D(𝑖, T, ct)
1 : req (T, ct) ≠ (T∗, ct∗𝑖 )
2 : M← CmDec(dk𝑖 , T, ct)
3 : return M

GAME IND-CCA

1 : 𝐶 := ∅
2 : pp← CmSetup(1𝜅 )
3 : foreach 𝑖 ∈ [𝑁 ] do
4 : (ek𝑖 , dk𝑖 ) ← CmGen(pp)

5 : (M0,M1, 𝑆 ⊆ [𝑁 ]) ← AC(·),D(·) (pp, (ek𝑖 )𝑖∈[𝑁 ] )
6 : 𝑏 ←$ {0, 1}

7 : (T∗, ®ct∗ := (ct∗𝑖 )𝑖∈𝑆 ) ← CmEnc(pp, (ek𝑖 )𝑖∈𝑆 ,M𝑏 )

8 : 𝑏′ ← AC(·),D(·) (pp, (ek𝑖 )𝑖∈[𝑁 ] , ®ct
∗)

9 : if [𝐶 ∩ 𝑆 ≠ ∅] then
10 : return 𝑏

11 : return [𝑏 = 𝑏′]

Corruption Oracle C(𝑖)
1 : 𝐶 ← 𝐶 ∪ { 𝑖 }
2 : return dk𝑖

GAME Commitment-Bind

1 : pp← CmSetup(1𝜅 )
2 : (T∗, (dk𝑏 , ct𝑏 )𝑏∈{0,1}) ← A(pp)
3 : foreach 𝑏 ∈ {0, 1} do
4 : M𝑏 ← CmDec(dk𝑏 , T∗, ct𝑏 )
5 : if dk0 = dk1 then

6 : return [ct0 ≠ ct1 ] ∧ [M0 ≠ ⊥] ∧ [M1 ≠ ⊥]
7 : else

8 : return [M0 ≠ M1 ] ∧ [M0 ≠ ⊥] ∧ [M1 ≠ ⊥]

Figure 2: IND-CPA with adaptive corruption of mPKE, and IND-CCA with adaptive corruption and commitment-binding of
CmPKE. If the condition following req does not hold, the game terminates by returning a random bit.

CmSetup(1𝜅 )
1 : pp← mSetup(1𝜅 )
2 : return pp

CmGen(pp)
1 : (ek, dk) ← mGen(pp)
2 : return (ek, dk)

CmEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M)
1 : M←$M

2 : ct0 := mEnci (pp;G1 (M))
3 : foreach 𝑖 ∈ [𝑁 ] do

4 : ĉt𝑖 := mEncd (pp, ek𝑖 ,M;G1 (M),G2 (ek𝑖 ,M))

5 : k := H(M)
6 : ct𝑠 ← Encs (k,M)

7 : return (T := (ct0, ct𝑠 ), ®ct := (ĉt𝑖 )𝑖∈[𝑁 ] )

CmDec(dk, T, ct)
1 : (ct0, ct𝑠 ) ← T

2 : M := mDec(dk, (ct0, ct))

3 : if M = ⊥ then return ⊥

4 : ct′
0

:= mEnci (pp;G1 (M))

5 : ĉt
′

:= mEncd (pp, ek,M;G1 (M),G2 (ek,M))

6 : if (ct0, ct) ≠ (ct′0, ĉt
′) then return ⊥

7 : return Decs (H(M), ct𝑠 )

Figure 3: An IND-CCA secure CmPKE from an IND-CPA secure decomposable mPKE and a one-time IND-CCA secure SKE.

recipient by checking the signature, and any tampering on ct𝑖 can
be detected during the CmPKE decryption procedure. In particular,

it achieves the same level of security as provided by TreeKEM.

4.1 Description of Our Protocol
We reuse most of the terminology and function names used by

[12, 13]. Due to space constraints, we only provide a high-level

description of our protocol in Fig. 4, and highlight the major algo-

rithmic changes below. A complete description is given in App. D.

Low-Level Primitives. The main changes relate to two classes of

low-level primitives.

The first class captures procedures related to (left-balanced bi-

nary) trees: simple ones such as computing the parent or children

of a node, determining whether it is the root, an internal node or a

leaf, etc., or more complex ones such as computing its path, co-path

or resolution. A list of 27 such procedures is given in [13, Tab. 1 and

3]. Removing binary trees trivializes or removes these procedures.

The second class relates to public-key encryption. Aswe replace a

standard PKE by a CmPKE, the main effects are that the encryption

procedure now takes as input a list of encryption keys (ek𝑖 )𝑖 instead
of a single key, and the presence of a commitment T as an additional
output (resp. input) of the encryption (resp. decryption) procedure.

Ripple Effects on Mid-Level Procedures. More notions and

procedures related to trees are heavily simplified. For example,

treeHash becomes memberHash, and its computation now entails

hashing a set in lexicographical order, instead of a binary tree (*set-
tree-hash becomes *set-member-hash). As there is no longer an

internal node to authenticate, parentHash and its computation

(*set-parent-hash and *parent-hash) are no longer necessary.

Impact at the Top Level. Since the group is no longer arranged in

a binary tree structure but in a set, each user now possess a single

encryption keypair instead of ⌈log𝑁 ⌉. This simplifies top level

procedures (Commit, Process, Join), which refresh these keypairs.
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Create

(Propose,
‘upd’-svk)

(Propose,
‘rem’-id𝑡 )

(Propose,
‘add’-id𝑡 )

Commit

Process

Join

*frame-prop

*rekey

*unframe-commit

*apply-rekey

*sign-commit

*apply-props

*frame-commit

*set-conf-trans-hash

*set-interim-trans-hash

*init-epoch

*(vrf-) conf-tag

*derive-keys

*vrf-group-state

*fetch-ssk-if-nec

genKp

*validate-kp

*assign-kp

*welcome-msg

*unframe-prop

*derive-epoch-keys

*set-member-hash

*initialize-group

CmPKE

SIG

MAC

HKDF

Figure 4: Call graph of Chained CmPKE. We use the notations function , function and function to denote functions that
undergo respectively minimal, moderate and strong changes compared to [12, 13].

In TreeKEM, commit messages may contain encryptions of path
secrets (to the resolution of the sibling of each concerned node,

via *rekey-path) or a path secret on the least common ancestor

node of the sender and each new group member (a common joiner
secret is also sent to new group members, via *welcome-msg). En-
cryption of path secrets produces Ω(log𝑁 ) ciphertexts, see Fig. 1
and Footnote 1.

In Chained CmPKE, there is no path secret; instead, a common

comSecret is encrypted to all recipients via a single call to CmEnc,
producing onemulti-recipient ciphertext (T, ®ct = (ĉtid′)id′∈receivers),
see Fig. 1. Similarly, a common joinerSecret may be encrypted to

newly added members. In each case, the sender of the commit

message signs data that includes T, but not ®ct.
As input to Process and Join, receivers of a commit message

will not receive the full package. Precisely, instead of including a

full CmPKE ciphertext (T, ®ct = (ĉtid′)id′∈receivers), the recipient id
only downloads (T, ĉtid) from the server. We call this selective (or
designated) downloading as the recipient only needs to download

a part of the commit message it requires. Since the data signed

by the sender includes T but not ®ct, each recipient can verify the

signature. Intuitively, the commitment-binding property (Def. 3.5)

then guarantees the authenticity of ĉtid despite it not being directly
signed.

4.2 Asymptotic Bandwidth Efficiency
We now discuss the bandwidth efficiency of our protocols. We

leave out elements that reflect logical group operations (e.g., a

bitstring encoding “id has been added to 𝐺”) or symmetric key

cryptography (e.g., hashes or MAC tags), as they add negligible

overheads (compared to public key cryptography) to all solutions.

The bottleneck of both TreeKEM and our solution resides in com-

mit messages, as these are processed on a daily basis (as the output

of Commit, and the input of Process) and contain a significant

amount of public key material. We recall that we note ek an encryp-

tion key, ct0 the (ek-independent) part of an mPKE ciphertext, ĉt𝑖
the part of a ciphertext dependent of ek𝑖 and sig a signature, and
note |𝑥 | the bytesize of 𝑥 . We consider a group of 𝑁 members, in a

epoch with no new member.
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TreeKEM. The size of an uploaded commit message is dominated

by 2 · |sig| + ⌈log𝑁 ⌉ · |ek| + Ω(log𝑁 ) · ( |ct0 | + |ĉt𝑖 |).7 Since all

ciphertexts in the commit message are signed jointly by a single

signature, recipients need to download all ciphertexts to verify the

signature.

Chained CmPKE. The size of an uploaded commit message is

dominated by 2 · |sig| + |ek| + |ct0 | +𝑁 · |ĉt𝑖 | +2𝜅 . The term 2𝜅 stems

from our construction of a CmPKE instead of a mPKE (Thm. 3.6).

This is no larger than a hash digest, and we henceforth ignore it.

Since each user performs a selective downloading, the size of a

downloaded commit message is reduced by a factor 𝑂 (𝑁 ), as it is
now dominated by 2 · |sig| + |ek| + |ct0 | + |ĉt𝑖 |.
New Members. In both TreeKEM and our protocol, newly added

members use the Join procedure to process welcome messages.
These contain all encryption keys ekid: 𝑁 in our case (included in

memberPublicInfo), and at most (2𝑁 − 1) in TreeKEM due to the

use of a binary tree. In both cases, the size of a welcome message is

dominated by these keys and is𝑂 (𝑁 ). Overall, it seems unlikely that

joining a group will be a bandwidth bottleneck, as each member of a

group typically performs this operation once, whereas the number

of commit messages may be unbounded.

We note that welcome messages encrypt-then-sign a common

joinerSecret to the (public) encryption keys of all new members.

If an epoch contains 𝑘 new members, this entails an overhead

|sig| +𝑘 · ( |ct0 | + |ĉt𝑖 |) for TreeKEM. In our protocol, this is done via

a CmPKE, which entails a smaller overhead |sig| + |ct0 | + 𝑘 · |ĉt𝑖 |.
Two Alternative Protocols.We briefly present two protocols that

also achieve a bandwidth complexity𝑂 (𝑁 ) and𝑂 (1) for uploading
and downloading commit messages, using only generic primitives.

The first protocol, that we refer to as a Parallel KEM, encrypts

the same comSecret to all group members using (𝑁 − 1) parallel
(non-committing, single-recipient) PKEs. A distinct signature sigid
is computed for each distinct ctid. The cost of an upload is |ek| +
𝑁 ( |ct| + 2 · |sig|) = 𝑂 (𝑁 ) and, since each ciphertext is individually

authenticated, the cost of a download is |ek| + |ct| + 2 · |sig| = 𝑂 (1).
See P. KEMs in Tab. 1.

Since any PKE is also a decomposable mPKE for ct0 = ⊥, a
slightly more involved solution is to build aCmPKE from any single-

recipient PKE as a special case of Thm. 3.6. Once we have a CmPKE,
the construction, which we refer to as Committing PKEs, is identical
to ours. The cost of an upload is now |ek| +𝑁 · |ct| +2 · |sig| = 𝑂 (𝑁 ),
and the cost of a download remains |ek| + |ct| + 2 · |sig| = 𝑂 (1), see
C. PKE in Tab. 1.

Applying Our Techniques to TreeKEM. We can apply to the

TreeKEM protocol the two techniques leveraged here: selective

downloading and mPKEs.
Thanks to the tree-based structure of TreeKEM, each user can

perform selective downloading to retrieve only one ciphertext per

commit message. Indeed a similar idea to selective downloading

was proposed for TreeKEM [18], but to the best of our knowledge

it has never been implemented or formally analyzed. One possible

7
In both TreeKEM and Chained CmPKE, a commit message contains two signatures:
one authenticates ciphertexts, and one signs the committer’s new encryption key(s)

(“tree signing” in [13]). A commit message may contain an optional welcome message,

which is then signed by a third signature. Our improvements target the first signature

(ciphertexts), and are orthogonal to the other two.

reason for this is because unlike in Chained CmPKE, TreeKEM has

the added complexity of maintaining the public keys associated

to the internal nodes of the tree. Specifically, a user only needs to

know the public keys associated to the internal nodes along its path

to the root in order to process commit message, however, it may

need to know more if it wants to upload commit messages. Notice

the nodes that the user needs to know is not fixed in advance since

add/remove/update proposals may adaptively change the topology

of the tree. Consequently, a user may need to download additional

key materials when performing a commit (which we call on-the-fly
downloading). Hence, although we believe it is possible to further

lower the download cost for TreeKEM using similar ideas, this

would entail more server-side bookkeeping of the tree structure and

the associating public keys for each internal nodes, which would

likely add complexity to the protocol description and security proof.

We leave it as an interesting future research to assess the full benefit

of such an approach.

Combining TreeKEM with mPKEs/mKEMs was done in [66],

which considered a variant of TreeKEM with trees of arity𝑚. This

reduces the number of encryption keys per commit message to

⌈log𝑚 𝑁 ⌉ in the best case (unblanked tree), which is still Ω(log𝑁 )
for any constant value of𝑚. Note that setting𝑚 = 𝑁 results in a

flat tree, which yields a protocol similar to Chained CmPKE. So
while it is possible to apply our techniques to TreeKEM, we found

that doing so with the goal of minimizing the total bandwidth cost

leads to a protocol very similar to ours, which a posteriori validates

our design choices.

Why Efficient mPKEs Matter. It may not be obvious that our

solution represents an improvement upon Parallel KEMs and Com-

mitting PKEs, since all three achieve the same asymptotic band-

width efficiency: 𝑂 (𝑁 ) in upload, 𝑂 (1) in download. However, a

perk of post-quantum cryptography is its ability to provide mPKEs
for which the ek𝑖 -dependent part ĉt𝑖 of ciphertexts are extremely

compact, as illustrated in Tab. 4. Our protocol directly benefits from

this fact, since the size of uploaded commit messages is ∼ |ĉt𝑖 | · 𝑁 .

In Sec. 5, we propose lattice-based mPKEs inspired by the (possibly

alternative) finalists to standardization by NIST Kyber [77], NTRU
LPRime [21] and FrodoKEM [74]. Our mPKEs make ĉt𝑖 as small

as {48, 32, 24} bytes. Concretely, this allows our protocol to reduce

the upload bandwidth cost by two to three orders of magnitude

compared to Parallel KEMs and Committing PKEs.

4.3 Provable Security
We prove our Chained CmPKE to be secure in an extended vari-

ant of the UC security model that was recently used to analyze

TreeKEM version 10 in MLS by Alwen et al. [13]. The security

model presented by [13] is an extension of [12] that further con-

siders insider security, allowing the adversary to maliciously inject

messages, deliver messages in an arbitrary order, and interact mali-

ciously with the PKI. In addition, it formalizes the PCFS guarantee

using the safe predicate, which decides whether the epoch key is

secure. In our work, since the uploaded and downloaded commits

are in different forms, we modify the ideal functionality in [13]

accordingly. Effectively, this creates a subtle difference in how the

history graph is maintained by the ideal functionality. We note that

prior constructions can be handled within our new extended model,

9



Table 1: Bandwidth cost of a commit message to a group of 𝑁 members (with no newly added member) in terms of public key
cryptography. For schemes that use single-recipient PKEs/KEMs, we assume |ct| = |ct0 | + |ct𝑖 |. All logarithms are in base 2. The
notation ⌈log𝑁 ⌉ expresses that for the row labelled [13] the best-case complexity is ⌈log𝑁 ⌉, and the worst-case is 𝑁 .

Upload Download (per recipient) Total (1 upload, then (𝑁 − 1) downloads)
Scheme |ek| |ct0 | |ĉt𝑖 | |sig| |ek| |ct0 | |ĉt𝑖 | |sig| |ek| |ct0 | |ĉt𝑖 | |sig|
[13] ⌈log𝑁 ⌉ ⌈log𝑁 ⌉ ⌈log𝑁 ⌉ 2 ⌈log𝑁 ⌉ ⌈log𝑁 ⌉ ⌈log𝑁 ⌉ 2 𝑵 ⌈log𝑵 ⌉ 𝑵 ⌈log𝑵 ⌉ 𝑵 ⌈log𝑵 ⌉ 2𝑵
Ours 1 1 (𝑁 − 1) 2 1 1 1 2 𝑵 𝑵 2(𝑵 − 1) 2𝑵
P. KEMs 1 (𝑁 − 1) (𝑁 − 1) 𝑁 1 1 1 2 𝑵 2(𝑵 − 1) 2(𝑵 − 1) 3𝑵 − 2
C. PKEs 1 (𝑁 − 1) (𝑁 − 1) 2 1 1 1 2 𝑵 2(𝑵 − 1) 2(𝑵 − 1) 2𝑵

Table 2: Bandwidth costs of mPKEs derived from existing
parametrizations ( gray background ) and new ones (white
background), for 𝜅 = 128 bits of classical security. Standard
(single-recipient) PKE instantiations of existing schemesmay
include a seed in the encryption key or a confirmation hash
in the ciphertext (in parentheses).

Scheme Reference |ek| |ct0 | |ĉt𝑖 |
Kyber512 [77] 768 (+32) 640 128

Ilum512 Sec. 5 768 704 48

LPRime653 [21] 865 (+32) 865 (+32) 128

LPRime757 Sec. 5 1076 1076 32

Frodo640 [74] 9600 (+16) 9600 120

Bilbo640 Sec. 5 10240 10240 24

SIKEp434 [63] 330 330 16

thus our model is a strict generalization of prior models. Full de-

tails on our security model are provided in App. C. The security of

Chained CmPKE is established by Thm. 4.1. The proof is provided

in App. E.

Theorem 4.1. Assuming that CmPKE is IND-CCA secure (resp.
with adaptive corruption) and SIG is sEUF-CMA secure, the Chained
CmPKE protocol selectively (resp. adaptively) securely realizes the
ideal functionality FCGKA, where FCGKA uses the predicate safe from
Fig. 28, in the (FAS, FKS,GRO)-hybrid model, where calls to the hash
function H, HKDF, and MAC are replaced by calls to the global
random oracle GRO.

5 MORE EFFICIENT LATTICE-BASED mPKES
To maximize the bandwidth savings of Chained CmPKE we must

reduce |ĉt𝑖 | as much as possible. Indeed, see Tab. 1, where the “Ours”

row is only less performant than another in one column, namely

Upload |ĉt𝑖 |. Therefore, in this section we outline the methods em-

ployed to achieve this. We adapt several PKEs from the literature

to mPKEs, specifically PKEs which underly KEMs that are either

finalists or alternative finalists of the final round of the NIST PQC

process [1]. Throughout this section we only consider IND-CPA
mPKEs, and use the notation of Def. 2.3. For the needs of the proto-

col in Sec. 4, these can be converted into IND-CCA CmPKEs with
a small overhead using Thm. 3.6.

We start from the construction of [66], reproduced in Fig. 5,

which adapts the Lindner–Peikert framework [70] to the mPKE

setting. As observed by [66], Fig. 5 can be readily applied to the

(possibly alternative) finalists FrodoKEM [74], Kyber [77], NTRU
LPRime [21] and Saber [41]. We take this one step further and

propose new parametrizations of [21, 74, 77] that are tailored to the

mPKE setting. At the cost of less than a 20% increase in |ek| + |ct0 |,
we reduce

��ĉt𝑖 �� by 60–80%. Since the size of an uploaded package is

asymptotically ∼
��ĉt𝑖 �� · 𝑁 , we view this trade-off as favorable.

This section is arranged as follows. In Sec. 5.1, we review the

techniques that one can leverage to minimize

��ĉt𝑖 ��. Then in Sec. 5.2

we provide new parametrizations of [21, 74, 77]. Finally, App. G

details our cryptanalytic model, and provides security estimates for

our parameter sets in this model.

5.1 Our Toolkit for Improving Efficiency
We review the known techniques at our disposal to minimize the

size of the (ĉt𝑖 )𝑖 while increasing as little as possible the sizes

of ek and ct0, and maintaining security against known attacks.

The coefficient dropping and modulus rounding techniques are

already present in [21] and [77] respectively. Concretely, for mod-

ulus rounding we will focus on the Compress and Decompress
functions of [77]. By more or less rounding, we mean a smaller or
larger 𝑑 in the definition of those functions, respectively. We note

that modulus rounding techniques can be applied to the original

parametrizations of [74], but save little in the |ek| + |ct0 | + |ĉt𝑖 | (i.e.,
single recipient) metric. We revisit these techniques in light of the

new constraints imposed by the mPKE setting, which in turn leads

to new parameter sets. Throughout we reference Fig. 5.

We note that the ciphertexts of some PKEs and mPKEs based on

lattices have a small probability of decrypting to a different message

than was initially encrypted. The probability of this occuring is

called the decryption failure rate, or DFR. Keeping the DFR low,

specifically 𝑂 (2−𝜅 ), is important for both correctness and security;

we discuss it more in App. G.

Coefficient Dropping. When trying to decode a message M from

(U,V𝑖 ) using S, not all of V𝑖 may be necessary. Indeed let 𝑅 =

Z[𝑥]/(𝑓 ), 𝑑 = deg(𝑓 ), 𝐼 < 𝑑 , and 𝑛 = 𝑚̄ = 1. If Encode(M) =
𝛼𝐼−1𝑥

𝐼−1 + · · · + 𝛼0 then only the 𝐼 lower order coefficients of V𝑖
are useful for decoding. In general, if 𝑓 is any degree 𝑑 polynomial

and one requires 𝐼 < 𝑑 coefficients to encode anyM, then V𝑖 may

consist of only low degree coefficients of a single 𝑣 ∈ 𝑅𝑞 . This
technique does not affect the DFR, improves efficiency, and cannot

be worse for security.
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mSetup(1𝜅 )
1 : A←$𝑅𝑛×𝑛𝑞

2 : return pp := A

mGen(pp)
1 : S←$𝐷𝑛×𝑛̄

𝑠

2 : E←$𝐷𝑛×𝑛̄
𝑒

3 : B← AS + E
4 : return ek := B, dk := S

mEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M)
1 : r0 := (R, E′) ←$𝐷𝑚̄×𝑛

𝑠 ×𝐷𝑚̄×𝑛
𝑒′

2 : ct0 := mEnci (pp; r0)
3 : foreach 𝑖 ∈ [𝑁 ] do
4 : r𝑖 := E′′𝑖 ←$𝐷𝑚̄×𝑛̄

𝑒′′

5 : ĉt𝑖 := mEncd (pp, ek𝑖 ,M; r0, r𝑖 )

6 : return ®ct := (ct0, ĉt1, . . . , ĉt𝑁 )

mEnci (pp; r0)
1 : U← RA + E′

2 : return ct0 := U

mEncd (pp, ek𝑖 ,M; r0, r𝑖 )
1 : V𝑖 ← RB𝑖 + E′′𝑖 + Encode(M)
2 : return ĉt𝑖 := V𝑖

mDec(sk, ct)
1 : return M := Decode(V − US)

Figure 5: Lattice-based mPKE construction of [66]. 𝑅 is the base ring, 𝐷𝑠 , 𝐷𝑒 , 𝐷𝑒′, 𝐷𝑒′′ are distributions over 𝑅.

Modulus Rounding. Rounding away the least significant bits of

B,U, and V𝑖 provides more compact ek, ct0 and ĉt𝑖 (respectively),
but mechanically raises the DFR. Our goal is to minimize the size of

ĉt𝑖 , so we will maximize the rounding on V𝑖 , while upper bounding
the DFR. To do so we may round fewer bits from B or U to give us

more DFR headroom. Thankfully, all else being equal, rounding V𝑖
incurs a milder increase in the DFR than on B or U. It also makes

the numerous samples introduced by the (V𝑖 )𝑖 noisy enough to

nullify Arora–Ge and BKW attacks, see App. G.

Increasing the Modulus. All else being equal, increasing the mod-

ulus 𝑞 reduces the DFR and therefore allows one to perform more

rounding. If this extra rounding is concentrated on the (V𝑖 )𝑖 , the
net effect on the size of each ĉt𝑖 is to decrease it. On the other hand,

it slightly increases the size of ct0 and ek and, more importantly,

decreases the error rate, making lattice attacks more efficient.

Error-Correcting Codes (ECCs). Whenever in Fig. 5 we want to

encrypt 𝜅 bits, for 𝜅 < |M|, we can use an ECC, i.e. Encode(M) =
Encode(ECC(𝜅)), and lower the DFR. However, this method can

lead to attacks when improperly implemented [40] or analyzed [43,

55]. In addition, if the goal is to minimize |ĉt𝑖 |, then coefficient

dropping seems to always be a safer and more efficient alternative.

Hence we will not employ ECCs.

5.2 New Parametrizations
Given the methods outlined in Sec. 5.1, we make a number of

alterations to the NIST Level I parameters of FrodoKEM, Kyber,
and NTRU LPRime. In each case we maintain the spirit of the
original design by e.g. keeping unique features. In all cases the new

schemes satisfy the cryptanalytic model specified in App. G, see

also Fig. 31 for concrete security estimates against a number of

attacks.

Note that the number of bits of shared secret encoded in V differs

in these KEMs; Frodo640 encodes 128, whereas all parameter sets

of Kyber and NTRU LPRime encode 256. For the purpose of fair
comparison, in all cases we encode 128 bits. We note that in the

case of Ilum512 and LPRime757, encoding 128 bits rather than 256

automatically reduces |ĉt𝑖 | from 128 bytes to 64. Reductions below

this size are a result of the techniques outlined in Sec. 5.1.

More subtle changes are discussed in App. G, we briefly present

them in this paragraph. For each scheme we give a table comparing

(in the notation of the original scheme) the old and new parameter

sets. We also give a dictionary of the form {Figure: value}, where
Figure is a parameter from Fig. 5 and value either comes from the

relevant table or is defined in prose. The tables and descriptions of

𝐷𝑒′ and 𝐷𝑒′′ in this section do not reflect wider error distributions

implied by modulus rounding. We also discuss the effect of modulus

rounding on security and decryption failures in App. G. The savings

achieved by our new parametrizations are given in Tab. 2.

Kyber. We introduce a new parameter set, Ilum512. We apply one

less bit of rounding to U, and one more to V. We also drop co-

efficients from V, see Tab. 3. Although altering 𝑞 allowed other

parametrizations, ring arithmetic over 𝑅𝑞 consistently represents

a significant fraction of the effort involved in providing embed-

ded implementations of Kyber [8, 84]. Keeping the same ring 𝑅𝑞
as Kyber helps make Ilum512 fast and easy to deploy. Letting

𝐵𝜂 be the binomial distribution over 𝑅 defined in [77], we have

{𝑅 : Z[𝑥]/(𝑥256 + 1), 𝑛 : 𝑘, 𝑞 : 𝑞, 𝑛 = 𝑚̄ : 1, 𝐷𝑠 = 𝐷𝑒 : 𝐵𝜂1
, 𝐷𝑒′ =

𝐷𝑒′′ : 𝐵𝜂2
}.

Table 3: Parameter sets of Kyber512 and Ilum512, using the
notation of [77], we drop 𝑛 − 𝐼 coefficients.

Scheme 𝑛 𝑘 𝑞 𝜂1 𝜂2 𝑑𝑢 𝑑𝑣 𝐼

Kyber512 256 2 3329 3 2 10 4 256

Ilum512 256 2 3329 3 2 11 3 128

FrodoKEM. We introduce a new parameter set, Bilbo640. Com-

pared to Frodo640, Bilbo640 introduces aggressive rounding on V,
which has a positive effect on both the bandwidth cost and the

security. To mitigate the effect on the DFR, we increase 𝑞 to 2
16
.

We use a slightly larger new error distribution, 𝜒Bilbo640, which

requires 32 bits of randomness per sample, see Tab. 4. We have

{𝑅 : Z, 𝑛 : 𝑛, 𝑞 : 2
16, 𝑛 : 𝑛,𝑚̄ : 𝑚̄, 𝐷𝑠 = 𝐷𝑒 = 𝐷𝑒′ = 𝐷𝑒′′ = 𝜒Bilbo640}.

NTRU LPRime. We introduce a new parameter set, LPRime757.
We reduce the number of bits per entry of V from 4 to 2, and must

increase the modulus, and decrease the weight, to account for this,

see Tab. 5. The authors of NTRU LPRime [21] place a great emphasis

on having (𝑥𝑝 − 𝑥 − 1) irreducible in Z𝑞 and a DFR equal to zero.

This is also the case for LPRime757.
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Table 4: Parameter sets of Frodo640 and Bilbo640, using the
notation of [74], plus 𝑏/𝑠 to denote the random bits needed to
sample an integer coefficient, and {DB,DU,DV} to denote the
bits/coefficient in {B,U,V} (instead of a common D in [74]).

Scheme 𝑛 DB DU DV 𝜎 𝐵 𝐼 𝑚̄ 𝑛 𝑏/𝑠
Frodo640 640 15 15 15 2.8 2 128 8 8 16

Bilbo640 640 16 16 3 2.9 2 128 8 8 32

We slightly alter the rounding function Top to Top′ which main-

tains perfect correctness while allowing us a larger weight than oth-

erwise, see App. G. We keep the original Right. As NTRU LPRime
uses rounding for its errors the syntax of Fig. 5 is not strictly cor-

rect, and we will report the errors induced by rounding. Let Short
define the distribution that samples uniformly from the set Short
of [21], let 𝑋 assign probability (𝑞 − 1)/3𝑞 to ±1 and (𝑞 + 2)/3𝑞
to 0, and let 𝑌 denote the probability mass function for a partic-

ular error value Right(Top′(𝐶)) − 𝐶 over all 𝐶 ∈ Z𝑞 . We have

{𝑅 : Z[𝑥]/(𝑥𝑝 − 𝑥 − 1), 𝑛 = 𝑛 = 𝑚̄ : 1, 𝑞 : 𝑞, 𝐷𝑠 : Short, 𝐷𝑒 = 𝐷𝑒′ :

𝑋, 𝐷𝑒′′ : 𝑌 }.

Table 5: Parameter sets of LPRime653 and LPRime757, using
the notation of [21]. We drop 𝑝 − 𝐼 coefficients from V.

Scheme 𝑝 𝑞 𝑤 𝛿 𝜏 𝐼

LPRime653 653 4621 252 289 16 256

LPRime757 757 7879 242 2001 4 128

A Note on Isogeny-Based mPKEs. One of our instantiations of
Chained CmPKE uses a mPKE variant of SIKE proposed in [66].

Bandwidth-wise, it seems asymptotically optimal, as ĉt𝑖 is 𝜅 bits.

Security-wise, [66] provides a security reduction to the SSDDH

problem [47], with a loss of 1/𝑁 in the advantage. This security

loss is minimal: concretely, it means that using mPKE-SIKE with

𝑁 recipient loses at most ⌈log𝑁 ⌉ bits of security compared to one

recipient, which is small even for large groups. A downside of using

SIKE is its slower running time, see Fig. 8.

6 INSTANTIATION AND IMPLEMENTATION
We instantiate Chained CmPKE as follows:

• One-time IND-CCA SKE. Since the message to be encrypted

has 𝜅 = 128 bits, we may take plain AES-128 without a

need for a mode. If we model plain AES as a pseudorandom

permutation (PRP), then it satisfies Def. 2.1. We then obtain

key-commitment by applying [2, Sec. 5.2.].

• Signature scheme.We choose Dilithium for two reasons: (a)

its performances are well-balanced, (b) it claims sEUF-CMA
security from standard lattice assumptions [71].

• mPKE. If we choose to rely on isogeny-based assumptions,

we may use the SIKE mPKE from [66]. If we rely on lattice-

based assumptions, wemay use one of our three lattice-based

mPKEs from Sec. 5: Bilbo640, Ilum512, LPRime757.
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Figure 6: The graphs “X vs Y ” give the bandwidth overhead (in
termof encryption keys and ciphertexts) of commitmessages
when using Chained CmPKE with the CmPKE X ( when
uploaded, when downloaded), compared to TreeKEM
with the KEM Y ( both when uploaded and downloaded).
The 𝑥-axis is the group size 𝑁 , the 𝑦-axis is the overhead in
KiB.

ThemKEMs which are at the core of themPKEs are implemented

in C, starting from the optimized public platform-independent im-

plementations of [21, 63, 74, 77]. For Ilum512 and SIKEp434, the
changes are straightforward. The modifications for Bilbo640 are
only slightly more involved due to the new distribution and the Ky-
ber-style compression. Finally, LPRime757 required most work: all

encoding/decoding routines, rounding, Top and Barrett reduction

had to bemodified.We also improved polynomialmultiplication per-

formance, by computing them in the larger ring𝐺𝐹 (𝑞′) [𝑥]/⟨2𝑝′+1⟩ ,
with 𝑞′ = 1907713 > 𝑤 (𝑞 − 1) and 𝑝 ′ = 1536 = 3 · 29

, which admits

fast NTT-based multiplication as 3 · 28 | 𝑞′ − 1. We do not use

a full NTT, but leave out the layer corresponding to the factor 3

and multiply degree 2 polynomials in the NTT-domain, which is

slightly more efficient than a full NTT. Chained CmPKE and the

mPKEs are implemented in Go, using C bindings for the mKEMs.

Bandwidth Consumption. In Fig. 7, we compare the total band-

width overheads of TreeKEM and Chained CmPKE in terms of

ciphertexts and encryption keys. For a better comparison, terms

that are identical between both protocols, such as signatures,MACs,
etc, are ignored. For readability, the bandwidth cost of each graph is

normalized by the group size 𝑁 . As predicted by the theory, our pro-

tocol performs better than TreeKEM by factors Ω(log𝑁 ) for similar

instantiations. In addition, while the size of our uploaded commit

messages is asymptotically worse compared to TreeKEM (𝑂 (𝑁 )
vs Ω(log𝑁 )), in practice we compare favourably against compara-

ble post-quantum instantiations of TreeKEM, even for groups of

hundreds of users, see Fig. 6.
8

8
In the absence of post-quantum parameter sets for TreeKEM in MLS, we came up

with our own parameter sets relying on NIST PQC KEMs (finalists or alternate).
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Figure 7: The graphs “X vs. Y ” (Figs. 7a to 7d) give the normal-
ized total bandwidth overhead (in term of encryption keys
and ciphertexts) of a commit message with Chained CmPKE
using the CmPKE X ( ), compared to TreeKEM using the
KEM Y ( ). The 𝑥-axis is the group size 𝑁 , the 𝑦-axis is the
total bandwidth cost in KiB normalized by 𝑁 . Graphs are
computed using Tabs. 1 and 2.

Computational Efficiency. In Fig. 8, we provide timings for what

we expect to be the two computational bottlenecks of our protocol:

Commit (Fig. 8b) and Process (Fig. 8c). We also provide timings for

CmEnc (Fig. 8a).
Even for group of 2

10
members, lattice-based CmPKEs perform

a multi-recipient encryption in less than 100 ms. This operation

– and by extension, Commit– may take significantly longer when

instantiating Chained CmPKE with SIKEp434 (about 7.5 s for 2
10

recipients). Note however that Commit is a transparent operation
for end users, and can be performed even when the end device is

locked.We conclude from ourmeasurements that the computational

efficiency of Chained CmPKE is likely to have a minimal impact

on the user experience.

Note that large groups also provide an amortization effect on

the computational efficiency of CmPKEs. For example, encrypting a

message to 2
10

recipients with Bilbo640 (resp. Ilum512, LPRime757,
SIKEp434) is about 29 (resp. 4, 3, 2) times faster than to perform 2

10

encryptions. Finally, even though Process only entails a constant

number of public-key operations, its running time eventually gets

linear in 𝑁 (Fig. 8c), due to the hashing of 𝑁 encryption keys when

verifying the group state. This is also the case in TreeKEM, and can

be mitigated to some extent by storing the hashes of the encryption

keys.

Code. Our code is available at the following repository:
https://github.com/PQShield/chained-cmpke
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A OMITTED PRELIMINARIES
A.1 Notation
We denote the set of natural numbers (non-negative integers) by

N and the security parameter by 𝜅 ∈ N. For an algorithm 𝐴, we

write 𝐴(·; r) to denote that 𝐴 is run with the explicit randomness r.
For 𝑛 ∈ N, we write [𝑛] to denote the set [𝑛] := { 1, . . . , 𝑛 }. We use

𝑣 ← 𝑥 and 𝑣 := 𝑥 to denote assigning the value 𝑥 to the variable

𝑣 , and use 𝑣 ←$ 𝑆 to denote sampling an element 𝑣 uniformly and

randomly from a set 𝑆 . We denote by [cond] the bit that is 1 if the

boolean statement cond is true, and 0 otherwise.

Data structure. If 𝑉 is a set, we write 𝑉 +← 𝑥 and 𝑉 -← 𝑥 as

shorthands for 𝑉 ← 𝑉 ∪ { 𝑥 } and 𝑉 ← 𝑉 \ { 𝑥 }, respectively.
For another set𝑊 , we write 𝑉 +← 𝑊 and 𝑉 -← 𝑊 as short-

hands for 𝑉 ← 𝑉 ∪𝑊 and 𝑉 ← 𝑉 \𝑊 , respectively. For lists

(vectors) 𝑥 := (𝑥1, . . . , 𝑥𝑛) and 𝑦 := (𝑦1, . . . , 𝑦𝑚), we denote the

concatenation by 𝑥 ∥𝑦 = (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) and use 𝑥 ++← 𝑣

as a shorthand for 𝑥 ← 𝑥 ∥(𝑣). We further use associative arrays

and use 𝐴[𝑖] ← 𝑥 and 𝑦 ← 𝐴[𝑖] to assignment and retrieval of

element 𝑖 , respectively. We denote by 𝐴[∗] ← 𝑣 the Initialization

of the array to the default value 𝑣 . For simplicity, we use the wild-

card notation when dealing with sets of tuples and multi-argument

associative arrays. For example, for an array with domain I × J ,

we write 𝐴[∗, 𝑗] := {𝐴[𝑖, 𝑗] | 𝑖 ∈ I } and for a set 𝑆 ⊆ I × J , we

write (𝑖, ∗) ∈ 𝑆 as a shorthand for the condition ∃ 𝑗 ∈ J : (𝑖, 𝑗) ∈ 𝑆 .
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Keywords.We use the following keywords:

• req cond denotes that if the condition cond is false, then the

current function unwinds all state changes and immediately

returns ⊥.
• parse (𝑚1, . . . ,𝑚𝑛) ← 𝑚 denotes an attempt to parse a

message𝑚 as a tuple. If𝑚 is not of the correct format, the

current function unwinds all state changes and immediately

returns ⊥.
• try 𝑦 ← ∗func(𝑥) is a shorthand notation for calling a

helper function ∗func and executing req 𝑦 ≠ ⊥.
• assert cond is only used to describe functionalities. It denotes
that if cond is false, then the functionality permanently halts,

making the real and ideal worlds trivially distinguishable

(this is used to validate inputs of the simulator).

A.2 Secret Key Encryption
We provide the formal syntax and correctness definition of SKEs.

Definition A.1 (Secret-Key Encryption). A secret-key encryption

(SKE) over a key space K and message spaceM consists of the

following two algorithms:

• Encs (k,M) → ct : On input a secret key k ∈ K and a

messageM ∈ M, it outputs a ciphertext ct.
• Decs (k, ct) → M or ⊥ : On input a secret key k and a ci-

phertext ct, it (deterministically) outputs eitherM ∈ M or

⊥ ∉M.

Definition A.2 (Correctness). A SKE is correct if Pr[Decs (k, Encs (k,
M)) = M] = 1 holds for all M ∈ M and k ∈ K .

A.3 Decomposable mPKE
We provide the definition of correctness and ciphertext-spreadness

for a decomposable mPKE. The later roughly states that the proba-

bility of generating an identical ciphertext is negligibly small if we

use proper randomness.

Definition A.3 (Correctness). A mPKE is correct if

E

 max

M∈M
Pr


ct0 ← mEnci (pp),

ĉt← mEncd (pp, ek,M) :

M = mDec(dk, (ct0, ĉt))


 ≥ 1 − negl(𝜅), (1)

where the expectation is taken over pp← mSetup(1𝜅 ) and (ek, dk) ←
mGen(pp).

Definition A.4 (Ciphertext-Spreadness). For all pp ∈ mSetup(1𝜅 ),
and (ek, dk) ∈ mGen(pp), define Γ(pp, ek) as

max

ct,M∈M
Pr

r0,r
[ct =

(
mEnci (pp; r0),mEncd (pp, ek,M; r0, r)

)
] .

We saymPKE is ciphertext-spread ifE[Γ(pp, ek)] ≤ negl(𝜅), where
the expectation is taken over pp ← mSetup(1𝜅 ) and (ek, dk) ←
mGen(pp).

A.4 Digital Signatures
We provide the standard notion of digital signatures.

Definition A.5 (Signature Scheme). A signature scheme SIG over

a message spaceM consists of the following algorithms:

• Setup(1𝜅 ) → pp: On input the security parameter 1
𝜅
, it

outputs a public parameter pp.
• KeyGen(pp) → (svk, ssk): On input a public parameter pp it
outputs a pair of verification key and signing key (svk, ssk).
• Sign(pp, ssk,m) → sig: On input a public parameter pp, a
signing key ssk and a message m, it outputs a signature sig.
• Verify(pp, svk,m, sig) → ⊤/⊥: On input a public parameter

pp, a verification key ssk, a message m and a signature sig,
it outputs ⊤ or ⊥.

Definition A.6 (Correctness). A signature scheme SIG is correct

if for all 𝜅 ∈ N, all messages m ∈ M and all pp ∈ Setup(1𝜅 ),

Pr

[
Verify(pp, svk,m, sig) = ⊤ :

(svk, ssk) ← KeyGen(pp);
sig← Sign(pp, ssk,m)

]
≥ 1 − negl(𝜅) .
Definition A.7 (sEUF-CMA). A signature scheme is sEUF-CMA

secure if for all PPT adversary A, we have

Pr

 Verify(pp, svk,m∗, sig∗) = ⊤
∧(m∗, sig∗) ∉ 𝐿∗ :

pp← Setup(1𝜅 );
(svk, ssk) ← KeyGen(pp);
(m∗, sig∗) ← AS(·) (pp, svk)


≤ negl(𝜅),
whereS is the signing oraclewhich on inputm returns Sign(ssk,m),
and 𝐿∗ is the set of pairs of message and signature generated by

the signing oracle.

A.5 Message Authentication Codes
We provide the standard notion of (deterministic) message authen-

tication codes (MAC).

Definition A.8 (MAC). A (deterministic) message authentication

code MAC over a key space K and a message spaceM consists of

the following algorithms:

• TagGen(k,m) → tag: On input a key k ∈ K and a message

m ∈ M, it (deterministically) outputs a tag tag.
• TagVerify(k,m, tag) → ⊥/⊤: On input a key k, a messagem
and a tag tag, it (deterministically) outputs ⊤ or ⊥.

Since the TagGen algorithm is deterministic, we can simply de-

fine TagVerify to run TagGen on (k,M) and check if the generated

tag′ is identical to the provided tag.

Definition A.9 (Correctness). A MAC is correct if for all keys

k ∈ K and all messages m ∈ M,

Pr [TagVerify(k,m, TagGen(k,m)) = ⊤] = 1.

We define collision resistance of MAC by providing the (non-

uniform) adversary oracle access to TagGen and TagVerify, where
we implicitly assume these two algorithms are implemented using

an internal hash function modeled as a random oracle. We note

that natural and practical constructions of a MAC based on a hash

function modeled as a random oracle possesses this property.

Definition A.10 (Collision Resistant). A MAC is collision resistant
if for all PPT adversary A, we have

Pr

(k,m, k′,m′, tag) ← ATagGen,TagVerify (1𝜅 ) :

(k,m) ≠ (k′,m′)∧
TagVerify(k,m, tag) =
TagVerify(k′,m′, tag)


≤ negl(𝜅) .

16



A.6 HKDF
HKDF is the key derivation function (KDF) based on HMAC. It

consists of the two algorithms HKDF.Extract and HKDF.Expand.
The extraction algorithm k ← HKDF.Extract(s0, s1) outputs an
uniform and random key k if either s0 or s1 has high min-entropy.

The expansion algorithm klbl ← HKDF.Expand(k, lbl), on input a

key k, outputs a random key klbl for (public) label lbl. In the security
proof of our Chained CmPKE, we model both HKDF.Extract and
HKDF.Expand as a random oracle.

B OMITTED DETAILS FROM SEC. 3
In this section, we provide the omitted details from Sec. 3.

B.1 Omitted Property of CmPKE
Definition B.1 (Ciphertext-Spreadness). For all pp ∈ CmSetup(1𝜅 ),

and (ek𝑖 , dk𝑖 ) ∈ CmGen(pp) for all 𝑖 ∈ [𝑁 ], define Γ(pp, (ek𝑖 )𝑖∈[𝑁 ] )
as

max

T,𝑖,ct,M∈M
Pr

r
[ct = ct𝑖 ∧ (T, (ct𝑖 )𝑖∈[𝑁 ] ) = CmEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M; r)] .

We sayCmPKE is ciphertext-spread ifE[Γ(pp, (ek𝑖 )𝑖∈[𝑁 ] )] ≤ negl(𝜅),
where the expectation is taken over pp← mSetup(1𝜅 ) and (ek𝑖 , dk𝑖 ) ←
mGen(pp) for all 𝑖 ∈ [𝑁 ].

B.2 Proof of Thm. 3.6: IND-CCA Security
We provide the proof of Thm. 3.6. For reference, we restate the

statement below.

Theorem B.2. The CmPKE in Fig. 3 is IND-CCA secure (resp.
with adaptive corruption) assuming the SKE is one-time IND-CCA
secure and the decomposable mPKE is IND-CCA secure (resp. with
adaptive corruption) and ciphertext-spread.

Proof of Thm. 3.6. LetA be an adversary against the IND-CCA
security of CmPKE with advantage 𝜖 . Without loss of generality,

we make a simplifying argument thatA’s random oracle queries to

G1 and G2 are answered as (G1 (M),G2 (ek1,M), · · · ,G2 (ek𝑁 ,M)),
where (ek𝑖 )𝑖∈[𝑁 ] are the encryption keys generated by the secu-

rity game. It is clear that this modification does not weaken A.

Moreover, we can always transform an adversary A that does not

conform to this style to a one that does. Below, we upper bound

A’s advantage 𝜖 by considering a sequence of games. We denote

by E𝑖 the event A wins in Game 𝑖 .

- Game 1: This is the real IND-CCA security game. By definition

|Pr[E1] − 1/2| = 𝜖 . We assume without loss of generality that the

random messageM
∗ ←M used to generate the challenge cipher-

text is sampled at the beginning of the game.

- Game 2: In this game, we modify the random oracle G so that

the output is distributed randomly over the space of randomness

for which the decomposable mPKE does not fail decryption. That

is, we requireM = mDec(dk𝑖 , (ct0, ĉt𝑖 )) for all 𝑖 ∈ [𝑁 ] andM ∈ M,

where ct0 := mEnci (pp;G1 (M)) and ĉt𝑖 := mEncd (pp, ek𝑖 ,M;G1 (M),
G2 (ek𝑖 ,M)). Due to correctness of the decomposable mPKE, for
anyA making at most polynomial random oracle queries, we have

|Pr[E1] − Pr[E2] | ≤ negl(𝜅).

Game 4 : Decryption. Oracle D(𝑖, T, ct)
1 : req (T, ct) ≠ (T∗, ĉt∗𝑖 )
2 : (ct0, ct𝑠 ) ← T

3 : if (ct0, ct) = (ct∗0, ĉt
∗
𝑖 ) then

4 : return Decs (H(M
∗), ct𝑠 )

5 : M := mDec(dk𝑖 , (ct0, ct))

6 : if M ∉ 𝐿G ∨M = ⊥ then

7 : return ⊥

8 : ct′
0

:= mEnci (pp;G1 (M))

9 : ĉt
′
𝑖 := mEncd (pp, ek𝑖 ,M;G1 (M),G2 (ek𝑖 ,M))

10 : if (ct0, ct) ≠ (ct′0, ĉt
′) then

11 : return ⊥

12 : return Decs (H(M), ct𝑠 )

Game 5 : Decryption. Oracle D(𝑖, T, ct)
1 : req (T, ct) ≠ (T∗, ĉt∗𝑖 )
2 : (ct0, ct𝑠 ) ← T

3 : if (ct0, ct) = (ct∗0, ĉt
∗
𝑖 ) then

4 : return Decs (H(M
∗), ct𝑠 )

5 : foreach M ∈ 𝐿G do

6 : ct′
0

:= mEnci (pp;G1 (M))

7 : ĉt
′
𝑖 := mEncd (pp, ek𝑖 ,M;G1 (M),G2 (ek𝑖 ,M))

8 : if (ct0, ct) = (ct′0, ĉt
′
𝑖 ) then

9 : return Decs (H(M), ct𝑠 )
10 : return ⊥

Figure 9: decryption oracles of Game 4 and Game 5.

(The next Game 3, Game 4 and Game 5 aim to get rid of the secret
keys ek𝑖 to answer A’s decryption oracle queries.)

- Game 3: In this game, the challenger modifies how it answers

the decryption oracle query. When A queries (𝑖, T = (ct0, ct𝑠 ), ct)
such that (ct0, ct) = (ct∗

0
, ĉt∗𝑖 ), the challenger simply returns Decs (

H(M∗), ct𝑠 ). This is in contrast to the previous game where the

challenger decrypted (ct0, ct) using mDec. Nonetheless, since the
decomposable mPKE is perfect correct due to the modification we

made in Game 2, this modification does not alter the view of the

adversary. In particular, we have Pr[E2] = Pr[E3].
- Game 4: In this game, the challenger adds an additional check

when answering the decryption oracle query. This is illustrated in

Fig. 9, where the red underline indicates the modification. Here, 𝐿G
is a list that stores the random oracle queries made to G1 and G2

by the adversary. We have M ∈ 𝐿G if G1 was queried on M and G2

was queried on (ek,M) for any ek. Note that due to our assumption

on A, if one of the oracles G1 or G2 was queried on M, then so

would have the other.

The only difference occurs when A queries (𝑖, T = (ct0, ct𝑠 ), ct)
such that M := mDec(dk𝑖 , (ct0, ct)) has not been queried to the
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random oracles G1 and G2 but ct0 = mEnci (pp;G1 (M)) and ct =
mEncd (pp, ek𝑖 ,M;G1 (M),G2 (ek𝑖 ,M)). NoticeG1 (M) andG2 (ek𝑖 ,M)
are information theoretically hidden fromA unlessA queries them.

Therefore, due to ciphertext-spreadness of the decomposablemPKE,
we must have had (ct0, ct) ≠ (ct′

0
, ĉt′𝑖 ) in the previous game as well.

Hence, we have |Pr[E3] − Pr[E4] | ≤ negl(𝜅).
- Game 5: In this game, the challenger further modifies how it an-

swers the decryption-oracle query. This is illustrated in Fig. 9, where

notice that the challenger no longer requires the secret keys dk𝑖 to
answer the queries.

We check the output of the decryption oracles in Game 4 and

Game 5 are identical. Since the two oracles run identically in case

(ct0, ct) = (ct∗
0
, ĉt∗𝑖 ), we only focus on the case that this does not

hold. Assume the decryption oracle in Game 4 outputs a non-

⊥ message M (i.e., M = Decs (H(M), ct𝑠 )). Then M ∈ 𝐿G and

(ct0, ct) = (ct′
0
, ĉt′𝑖 ) hold, where M := mDec(dk𝑖 , (ct0, ct)). There-

fore, the decryption oracle in Game 5 outputs the same non-⊥mes-

sageM. On the other hand, assume the decryption oracle inGame 5

outputs a non-⊥ messageM. Then, there exists aM ∈ 𝐿G such that

ct′
0

:= mEnci (pp;G1 (M)) and ĉt′𝑖 := mEncd (pp, ek𝑖 ,M;G1 (M),
G2 (ek𝑖 ,M)) such that (ct0, ct) = (ct′

0
, ĉt′𝑖 ). Conditioning on no cor-

rectness error occurring, (ct0, ct) decrypts to M. Therefore, this

implies that the decryption oracle in Game 4 outputs the same

non-⊥ message M. Combining the arguments together, we have

Pr[E4] = Pr[E5] .
- Game 6: In this game, we undo the change we made in Game 2

and alter the output of the random oracles G1 and G2 to be over all

the randomness space. Due to the same argument we made before,

we have |Pr[E5] − Pr[E6] | ≤ negl(𝜅)
(We are now ready to invoke IND-CPA security of the decomposable
mPKE and IND-CCA security of the SKE.)
- Game 7: Let us define QUERY as the event thatA queries the ran-

dom oracles H(·), G1 (·), or G2 (★, ·) on input M
∗
, where ★ denotes

an arbitrary element. (Recall the change we made in Game 1 for

M
∗
. ) In this game, the challenger aborts the game and forces A

to output a random bit when QUERY occurs. We show in Lem. B.3

that we have |Pr[E6] − Pr[E7] | ≤ negl(𝜅) assuming the decompos-

able mPKE is IND-CPA secure (with adaptive corruption) and the

message spaceM is sufficiently large. So as not to interrupt the

main proof, we postpone the proof of Lem. B.3 to the end.

We finally show in Lem. B.4 that assuming the IND-CCA security

of the SKE, we have

Pr[E7] =
1

2

+ negl(𝜅) .

Combining all the bounds together, we obtain the statement in

Thm. 3.6.

It remains to prove Lems. B.3 and B.4 below.

Lemma B.3. We have |Pr[E6] − Pr[E7] | ≤ negl(𝜅) assuming the
decomposable mPKE is IND-CPA secure (with adaptive corruption)
and the message spaceM is super-polynomially large.

Proof. Since the two games are identical unless QUERY occurs,

we have |Pr[E6] − Pr[E7] | ≤ Pr[QUERY]. In the following, we up-

per bound Pr[QUERY]. Let us construct an IND-CPA adversary B

which runs A as a subroutine: On input (pp, (ek𝑖 )𝑖∈[𝑁 ] ), B sam-

ples two random messages M
∗
0
,M
∗
1
←M and a random SKE key

k∗ ← K . It then invokes A on input (pp, (ek𝑖 )𝑖∈[𝑁 ] ). B can simu-

late the decryption queries as it no longer requires knowledge of the

secret key. WhenA corrupts a user, B simply relays the corruption

to its own challenger. Finally, when A submits (M0,M1, 𝑆 ⊆ [𝑁 ])
as its challenge, B submits (M∗

0
,M
∗
1
, 𝑆) to its challenger and re-

ceives (ct∗
0
, (ĉt∗𝑖 )𝑖∈[𝑆 ] ) ← mEnc(pp, (ek𝑖 )𝑖∈𝑆 ,M

∗
𝑏 ) for an unknown

randomly chosen bit 𝑏. B then samples a random challenge bit

𝑏 ′ ← {0, 1} and generates ct∗𝑠 ← Encs (k∗,M𝑏′). It finally provides

the challenge ciphertext (T∗ := (ct∗
0
, ct∗𝑠 ), ®ct

∗
:= (ĉt∗𝑖 )𝑖∈𝑆 ) to A. B

outputs
ˆ𝑏 := 0, ifM

∗
0
is queried toH(·), G1 (·), or G2 (★, ·) beforeM

∗
1

is; outputs
ˆ𝑏 := 1, if M

∗
1
is queried to H(·), G1 (·), or G2 (★, ·) before

M
∗
0
is; and a random

ˆ𝑏 when neither M
∗
0
nor M

∗
1
are queried. Let

us denote GOOD (resp. BAD) the event that A queries M
∗
𝑏 (resp.

M
∗
1−𝑏 ) before M

∗
1−𝑏 (resp. M

∗
𝑏 ) to H(·), G1 (·), or G2 (★, ·). More-

over, let us denote RAND the event that neither M
∗
0
nor M

∗
1
are

queried. Observe that until either GOOD or BAD occurs, B simu-

lates the view of Game 6 and Game 7 perfectly toA. SinceQUERY
is the event that M

∗
𝑏 is ever queried throughout the game, we have

Pr[QUERY] ≤ Pr[GOOD] + Pr[BAD]. Moreover, since M∗
1−𝑏 is

completely hidden fromA, we have Pr[BAD] ≤ negl(𝜅) assuming

the message size is super-polynomially large and A only makes

polynomially many random oracle queries.

Using these observation, we can rewrite the advantage of B as

follows:����Pr[ ˆ𝑏 = 𝑏] − 1

2

����
=

����Pr[ ˆ𝑏 = 𝑏 ∧ GOOD] + Pr[ ˆ𝑏 = 𝑏 ∧ BAD] + Pr[ ˆ𝑏 = 𝑏 ∧ RAND] − 1

2

����
=

����Pr[GOOD] + 1

2

· Pr[RAND] − 1

2

����
=

����Pr[GOOD] + 1

2

· (1 − Pr[GOOD] − Pr[BAD)] − 1

2

����
=

����1
2

(Pr[GOOD] − Pr[BAD)]
����

≥ 1

2

(Pr[QUERY] − 2 Pr[BAD]) .

Assuming the hardness of the IND-CPA security of the decompos-

able mPKE, we have

���Pr[ ˆ𝑏 = 𝑏] − 1

2

��� ≤ negl(𝜅). Thus, rewriting
the inequality and plugging in Pr[BAD] ≤ negl(𝜅), we obtain

Pr[QUERY] ≤ negl(𝜅) as desired. This concludes the proof. □

Lemma B.4. We have Pr[E7] = 1

2
+ negl(𝜅) assuming the SKE is

IND-CCA secure.

Proof. AssumeA has advantage 𝜖 in Game 7. We construct an

adversary B that breaks the IND-CCA security of the SKE with the

same advantage by internally running A as follows:

B generates (pp, (ek𝑖 , dk𝑖 )𝑖∈[𝑁 ] ) and samples a randomM
∗ ←

M used to generate the challenge ciphertext. B then invokesA on

input (pp, (ek𝑖 )𝑖∈[𝑁 ] ) as in Game 7. When A queries any of the

random oracles on inputM
∗
(i.e., when event QUERY occurs), then

abort as specified by the modification we made in Game 6. When
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A queries for a challenge ciphertext on input (M0,M1, 𝑆 ⊆ [𝑁 ]),B
first generates (ct∗

0
, (ĉt∗𝑖 ))𝑖∈[𝑁 ] . It then queries its SKE-challenger

for a challenge ciphertext on challenge messages (M0,M1) and re-

ceives back ct∗𝑠 . Finally,B returns (T∗ := (ct∗
0
, ct∗𝑠 ), ®ct

∗
:= (ĉt∗𝑖 )𝑖∈[𝑁 ] )

to A. Here, notice that B implicitly sets H(M∗) = k∗, where k∗ is
the secret key used by the SKE-challenger. When A queries the

decryption oracle on input (𝑖, T, ct), if (ct0, ct) ≠ (ct∗
0
, ĉt∗𝑖 ), then B

proceeds exactly as in Game 7. Otherwise, it queries its own SKE-
decryption oracle on input ct𝑠 (which is guaranteed to be different

from ct∗𝑠 ) and outputs A the decryption result. Corruption queries

made by A can be handled as in the real game since B knows all

the user secrets. Finally, whenA outputs 𝑏 ′ at the end of the game,

B outputs 𝑏 ′ as its guess.
Conditioning on event QUERY not occurring, B perfectly simu-

lates Game 7 to A. Therefore, B has the same advantage of win-

ning the IND-CCA security game of SKE as A does in winning

Game 7. Hence, assuming the IND-CCA security of SKE, we con-
clude Pr[E7] = 1

2
+ negl(𝜅). □

□

B.3 Proof of Thm. 3.7: Commitment-Binding
We provide the proof of Thm. 3.7. For reference, we restate the

statement below.

Theorem B.5. The CmPKE in Fig. 3 is commitment-binding as-
suming the SKE has key commitment.

Proof. Assume by contradiction that A breaks commitment-

binding of CmPKE. By assumption A outputs (T∗, (dk𝑏 , ct𝑏 )𝑖∈𝑏 ).
Let T∗ := (ct∗

0
, ct∗𝑠 ) and M𝑏 ← CmDec(dk𝑏 , T∗, ct𝑏 ) for 𝑏 ∈ {0, 1}.

Moreover, let M𝑏 ← mDec(dk𝑏 , ct∗0, ct𝑏 ) for 𝑏 ∈ {0, 1} be the

internal random message decrypted while running CmDec.
We first show that we must haveM0 ≠ M1. If this does not hold,

then in case dk0 = dk1, we must have (ct∗
0
, ct0) = (ct∗

0
, ct1) due to

the re-encryption check during decryption.
9
However, this does not

constitute a valid attack. On the other hand, in case dk0 ≠ dk1, we

have Decs (H(M0), ct∗𝑠 ) = Decs (H(M1), ct∗𝑠 ) = M. Therefore, this

too does not constitute a valid attack either.

Next, conditioning onM0 ≠ M1, we can further assumeH(M0) ≠
H(M1) with making negligible difference in the advantage of the

adversary since H is modeled as a random oracle. This implies

that the adversary implicitly outputs two keys k0 := H(M0) and
k1 := H(M1) such that Decs (k0, ct∗𝑠 ) = M0 and Decs (k1, ct∗𝑠 ) = M1.

However, this contradicts the key commitment property of SKE (re-

gardless ofM0 being the same or different fromM1). This concludes

the proof.
10 □

B.4 mPKE with Adaptive Corruption Security
We provide in Fig. 10 the simple generic transformation from any

IND-CPA secure decomposable mPKE that is not secure against

adaptive corruptions into a one that is.

9
Here, we assume that a decryption key dk implicitly includes the encryption key ek
required for reencryption.

10
To be precise, we will provide the adversary A against the commitment-binding

game oracle access to Encs and Decs , which are both instantiated using the random

oracle to formally invoke the key commitment property of SKE.

It is clear that the construction satisfies correctness. We provide

the proof of Lem. B.6, which establishes the IND-CPA security with

adaptive corruption.

Lemma B.6. The decomposable mPKE in Fig. 10 is IND-CPA se-
cure with adaptive corruption assuming the decomposable mPKE′ is
IND-CPA secure.

Proof. Let A be an adversary against the IND-CPA security

with adaptive corruption. Consider the following game sequence

where the first and last correspond to the case where the challenger

uses 𝑏 = 0 and 1 as the challenge, respectively. We denote E𝑖 as the
event that A wins in game Game 𝑖 .

Game 0 : This is the real security game where the challenger uses

𝑏 = 0 as its challenge. That is, the challenge ciphertext ®ct∗ encrypts
the message M0.

Game 1 : We modify how the challenger creates the challenge

ciphertext. Let b ∈ {0, 1}𝑁 be the random string associated to the

decryption keys of each user. That is, let user 𝑖’s encryption and

decryption keys be ek𝑖 := (ek𝑖,0, ek𝑖,1) and dk𝑖 := (b𝑖 , dk𝑖,b𝑖 ). Then,
when A outputs (M0,M1, 𝑆 ⊆ [𝑁 ]), the challenger creates the

challenge ciphertext as

(ct0,0, (ĉt𝑖,b𝑖 )𝑖∈[𝑆 ] ) ← mEnc′(pp, (ek𝑖,b𝑖 )𝑖∈[𝑁 ] ,M0)
(ct0,1, (ĉt𝑖,1−b𝑖 )𝑖∈[𝑆 ] ) ← mEnc′(pp, (ek𝑖,1−b𝑖 )𝑖∈[𝑁 ] ,M0).

Recall in the previous game, the challenger sampled a random string

w ≠ b to answer the challenge ciphertext. Due to the winning

condition, A never queries a user 𝑖 ∈ 𝑆 to the corruption oracle.

Therefore, b𝑖 is information theoretically hidden to A and the

challenge ciphertexts are distributed identically in both games.

Therefore, we have Pr[E0] = Pr[E1].
Game 2 : We further modify how the challenger creates the chal-

lenge ciphertext. When A outputs (M0,M1, 𝑆 ⊆ [𝑁 ]), the chal-

lenger creates the challenge ciphertext as

(ct0,0, (ĉt𝑖,b𝑖 )𝑖∈[𝑆 ] ) ← mEnc′(pp, (ek𝑖,b𝑖 )𝑖∈[𝑁 ] ,M0)
(ct0,1, (ĉt𝑖,1−b𝑖 )𝑖∈[𝑆 ] ) ← mEnc′(pp, (ek𝑖,1−b𝑖 )𝑖∈[𝑁 ] ,M1).

We have |Pr[E1] − Pr[E2] | ≤ negl(𝜅) assumingmPKE′ is IND-CPA
secure. This can be checked in a straightforward fashion by ob-

serving that the only secret information in Game 2 is (dk𝑖 :=

(b𝑖 , dk𝑖,b𝑖 ))𝑖∈[𝑁 ] , which the reduction can simulate on its own.

Namely, the reduction embeds the given encryption keys into

ek𝑖,1−b𝑖 .

Game 3: We further modify how the challenger creates the chal-

lenge ciphertext. When A outputs (M0,M1, 𝑆 ⊆ [𝑁 ]), the chal-

lenger creates the challenge ciphertext as

(ct0,0, (ĉt𝑖,b𝑖 )𝑖∈[𝑆 ] ) ← mEnc′(pp, (ek𝑖,b𝑖 )𝑖∈[𝑁 ] ,M1)
(ct0,1, (ĉt𝑖,1−b𝑖 )𝑖∈[𝑆 ] ) ← mEnc′(pp, (ek𝑖,1−b𝑖 )𝑖∈[𝑁 ] ,M0).

Swapping themessageM0 andM1 keeps the distribution of the chal-

lenge ciphertext identical following the same argument we made

to jump between Game 0 and Game 1. Hence, Pr[E2] = Pr[E3].
At this point, we simply undo the changes we made. For com-

pleteness, we explain the games.
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mSetup(1𝜅 )
1 : pp← mSetup′ (1𝜅 )
2 : return pp

mGen(pp)
1 : foreach 𝑏′ ∈ {0, 1} do
2 : (ek𝑏′ , dk𝑏′ ) ← mGen′ (pp)
3 : 𝑏 ←$ {0, 1}
4 : return (ek := (ek0, ek1), dk := (𝑏, dk𝑏 ))

mEnc(pp, (ek𝑖 )𝑖∈[𝑁 ] ,M)
1 : ( (ek𝑖,0, ek𝑖,1))𝑖∈[𝑁 ] ← (ek𝑖 )𝑖∈[𝑁 ]
2 : w←$ {0, 1}𝑁

3 : (ct0,0, (ĉt𝑖,w𝑖
)𝑖∈[𝑁 ] ) ← mEnc′ (pp, (ek𝑖,w𝑖

)𝑖∈[𝑁 ] ,M)
4 : (ct0,1, (ĉt𝑖,1−w𝑖

)𝑖∈[𝑁 ] ) ← mEnc′ (pp, (ek𝑖,1−w𝑖
)𝑖∈[𝑁 ] ,M)

5 : return ®ct := (ct0 := (ct0,0, ct0,1), (ĉt𝑖 := (ĉt𝑖,0, ĉt𝑖,1))𝑖∈[𝑁 ] )

mDec(dk, ct)
1 : (𝑏, dk𝑏 ) ← dk

2 : (ct0, ĉt) ← ct

3 : (ct0,0, ct0,1) ← ct0

4 : (ĉt0, ĉt1) ← ĉt

5 : foreach 𝑏′ ∈ {0, 1} do
6 : M𝑏′ := mDec′ (dk𝑏 , (ct0,𝑏′ , ĉt𝑏′ ))
7 : if M𝑏′ ≠ ⊥ then returnM𝑏′

8 : return ⊥

Figure 10: An IND-CPA secure with adaptive corruption decomposable mPKE from an IND-CPA secure decomposable mPKE′.

Game 4: We make the same change we made in Game 2 and swap

M0 to M1. We have |Pr[E3] − Pr[E4] | ≤ negl(𝜅) assuming mPKE′

is IND-CPA secure.

Game 5: We make the same change we made in Game 1 and use w
instead of b to answer the challenge ciphertext. We have Pr[E4] =
Pr[E5]. This corresponds to the real game where 𝑏 = 1 is chosen.

Collecting all the bounds, we conclude |Pr[E1] − Pr[E5] | ≤ negl(𝜅).
This completes the proof. □

C CONTINUOUS GROUP KEY AGREEMENT
In this section, we define the syntax and security of continuous

group key agreement (CGKA) protocols. We adopt the state-of-the-

art syntax and (UC) security model presented in [13], which was

used to analyze TreeKEM in MLS version 10. The model presented

by [13] is an extension of those presented by [12] that further

considers insider security.

C.1 Syntax

Proposal and Commit. As in the TreeKEM discussed by the cur-

rent MLS group, we follow a ‘propose-and-commit’ flow where

current group members propose to add new members, remove ex-

isting ones, or update their own keys by sending proposal messages.

These proposals only take effect when a group member initiates

a new epoch by issuing a commit message, i.e., a special message

that commits to the (subset of) proposals. Upon receiving such

commit message, a party applies the now committed proposals and

transitions to the new epoch.

Akin to the recent specification of TreeKEM and also considered

in [13], we require the proposals to be ordered. Namely, proposals

are structured as a vector where it contains all update, then all

removes, and finally all adds in this order. As done by prior work,

we delegate the buffering of proposals to the high-level protocol.

Formal Syntax. We extend the syntax presented in [13] so that

the commit and welcome messages can be divided into two parts.

Commit (and welcome) message consists of a party independent
message and a party dependent message. When the server receives

a request from a party id, it constructs the necessary packets for id
from the stored commitmessage (which is initially created for all the

group member) and only sends the portion of the commit message

necessary for id. In other words, during a process operation, each

receiving party takes a party independent message and the receiver

dependent message.

We consider a stateful protocol for a single group that takes the

following inputs. Below, we assume the protocol knows the party’s

identity id running the protocol:

Group Creation (Create, svk): It initializes a new group state.

Only the party id using the verification key svk belongs to
this group. In our model, Group Creation is only allowed

once.

Add Proposals (Propose, ‘add’-id𝑡 ) → p : It outputs a message p
proposing to add a party id𝑡 , or ⊥ if either id is not in the

group or it tries to add an id𝑡 that already belongs to the

group.

Remove Proposals (Propose, ‘rem’-id𝑡 ) → p: It outputs a mes-

sage p proposing to remove a party id𝑡 , or ⊥if either id is

not in the group or it tries to remove an id𝑡 that is not in the

group.

Update proposals (Propose, ‘upd’-svk) → p: It outputs amessage

p proposing to update the party id’s key material, and op-

tionally the signature key svk, or ⊥ if id is not in the group.

Commit (Commit, ®p, svk) → (c0, ®c,𝑤0, ®𝑤): It commits a vector of

proposals ®p and outputs a commit message (c0, ®c). c0 is a

party independent message while ®c = (̂cid′)id′ is a vector of
party dependent messages ĉid′ designated to id

′
. If ®p contains

at least one add proposal, then it outputs a welcome message

(𝑤0, ®𝑤). As in a commit message,𝑤0 is a party independent

message and ®𝑤 = (𝑤id𝑡 )id𝑡 is a vector of party dependent

messages. The operation optionally updates the committer’s

signature key svk.
Process (Process, c0, ĉid, ®p) → (id𝑐 , propSem): It processes ames-

sage (c0, ĉid) and committed proposals ®p, and advances id to

the next epoch. It outputs the committer’s identity id𝑐 and
the semantics of the applied proposals.

Join (Join,𝑤0,𝑤id) → (id𝑐 ,mem): It allows id (who is not yet a

group member) to join the group using the welcome message

(𝑤0,𝑤id). It outputs the committer’s identity id𝑐 and mem,

the set of a pair of identity and signature key of all group

members.

Key Key→ k: It outputs the current group key. This can be queried
once every epoch by any group member (otherwise retuning

⊥).
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We note that we omit ‘add-only’ mode of commits in MLS for

simplicity. This allows for a special commit where the proposals

®p consist of all add proposals. In such case, MLS allows to per-

mit skipping the implicit update performed by the committer. Our

construction naturally handles this ‘add-only’ mode as well.

C.2 Security Model
We adopt the universally composable (UC) securitymodel presented

in [13] with some modifications. The model of [13] is an extension

of the UCmodel presented in [12] that captures the strong notion of

insider security. Here, a corrupted party can not only send arbitrary

network packets but can further interact with the PKI to inject

maliciously generated long-term keys and key packages. In our

model, since we allow the delivery service (i.e., environment) to

sanitize commit messages by delivering to each group member the

strict amount of data they need, we further extend [12, 13] in the

following way:

• We extend the input and output interface of the ideal func-

tionality according to the new format of commit message

and welcome message. The commit function outputs a com-

mit and welcome messages for all the receivers while the

process and join functions only take the relevant part of the

commit and welcome messages as input. Accordingly, we

modify what to store in the commit node of the history graph.

(In previous works, since the receiver downloads the same

content as those uploaded by the sender, the commit node

was simply defined by the uploaded content.) We note that

prior constructions can be handled within our new extended

model, thus our model is as general as the previous ones.

• We separate the inj-allowed predicate into two predicates

sig-inj-allowed andmac-inj-allowed. This is only a con-

ceptual modification but we believe it allows for a more

modular proof since we can differentiate between different

types of injected messages, i.e., injected by forging a MAC

or a signature.

C.2.1 Universal Composable Security. The following description
in this sub-section is taken almost verbatim from [13, Sec.2.2 and

Sec.3.2]. For further details we refer the readers to [12, 13].

We formalize security in the generalized universal composability

(GUC) framework [34], an extension to the UC framework [33].

We moreover use the modification of responsive environments in-

troduced by Camenisch et al. [32] to avoid artifacts arising from

seemingly local operations (such as sampling randomness or pro-

ducing a ciphertext) to involve the adversary.

The (G)UC framework requires a real-world execution of the pro-

tocol to be indistinguishable from an ideal world, to an interactive

environment. The real-world experiment consists of the groupmem-

bers executing the protocol (and interacting with the PKI setup).

In the ideal world, on the other hand, the protocol is replaced by

dummy instances that just forward all inputs and outputs to an

ideal functionality characterizing the appropriate guarantees. The

functionality interacts with a so-called simulator, that translates

the real-world adversary’s actions into corresponding ones in the

ideal world. Since the ideal functionality is secure by definition, this

implies that the real-world execution cannot exhibit any attacks

either.

The Corruption Model.We use the — standard for CGKA/SGM

but non-standard for UC — corruption model of continuous state

leakage (transient passive corruptions) and adversarially chosen

randomness of [12]. This corruption model allows the adversary to

repeatedly corrupt parties by sending them two types of corruption

messages: (1) a message Expose causes the party to send its current
state to the adversary (once), (2) a message (CorrRand, 𝑏) sets the
party’s rand-corrupted flag to 𝑏. If 𝑏 is set, the party’s randomness-

sampling algorithm is replaced by the adversary providing the coins

instead. Ideal functionalities are activated upon corruptions and

can adjust their behavior accordingly.

Restricted Environments. In order to avoid the so-called commit-

ment problem, caused by adaptive corruptions in simulation-based

frameworks, we restrict the environment not to corrupt parties at

certain times. We consider a weakened variant of UC security that

only quantifies over a restricted set of so-called admissible environ-

ments that do not exhibit the commitment problem. Whether an

environment is admissible or not is defined by the ideal functionality

F with statements of the form restrict cond and an environment is

called admissible (for F ), if it has negligible probability of violating
any such cond when interacting with F .
Security via Idealized Services.We consider an ideal CGKA func-

tionality that represents an idealized “CGKA service” agnostic to

the usage of the protocol. That is, whenever a party performs a

certain group operation (e.g., creating a proposal or commit) the

functionality simply hands back an idealized protocol message to

that party — it is then up to the environment to deliver those pro-

tocol messages to the other group members, thus not making any

assumptions on the underlying network or the architecture of the

delivery service. Additionally, this also allows us to consider cor-

rectness and robustness guarantees, in contrast to more “classical”

UC treatments that let the adversary deliver the messages. (Such

models typically permit trivial protocols that just reject all messages

with the simulator just not delivering them in the ideal world.)

The Real-World Experiment. In the real-world experiment, the

parties execute the protocol that furthermore interacts with the

Authentication Service (AS) and Key Service (KS) PKI functionali-

ties. For instance, the environment can instruct the Authentication

Service (via the party’s protocol) to register a new key for a party.

As a result, the AS generates a new key pair for the party and hands

the public key to the environment, making the secret key available

to the party’s protocol upon request. The PKI is defined in detail in

the next section.

The Ideal World. The ideal world formalizes the security guaran-

tees via the ideal functionality FCGKA, which internally maintains

a so-called history graph. The history graph is a labeled directed

graph that acts as a symbolic representation of a group’s evolution.

It has two types of nodes: commit and proposal nodes, representing

all executed commit and propose operations, respectively. Note

that each commit node represents an epoch. The nodes’ labels, fur-

thermore, keep track of all the additional information relevant for

defining security. For instance, proposal nodes have a label that

stores the proposed action, and commit nodes have labels that store

the epoch’s application secret and the set of parties corrupted in

the given epoch. Security of the application secrets is then formal-

ized by the functionality choosing a random and independent key
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for each commit node whenever security is guaranteed; otherwise

the simulator gets to choose the key. Whether security is guaran-

teed in given node, is determined via an explicit safe predicate on

the node and the history graph. In addition to the secrecy of the

keys, the functionality also formalizes authenticity by appropriately

disallowing injections. As the PKI management is exposed to the

environment in the real world, we consider “ideal-world variants”

of the AS and KS interacting with FCGKA. Those variants essentially
record which keys have been exposed, which in turn is then used

to define the safe predicate. The actual keys in the ideal world do

not convey any particular meaning beyond serving as identifiers —

thus in the ideal world we can leak all secret keys to the simulator

(they are necessary to simulate signatures on protocol messages).

We note that this roughly corresponds to treating the PKI setup as

local rather than global (in the sense UC versus GUC).

C.2.2 PKI functionality. We model untrusted PKI, where the ad-

versary can register arbitrary signature keys for any party. This

models insider adversary.

Authentication Service (AS). The AS certifies the ownership of

a signature key. The functionality FAS is defined in Fig. 12. FAS
allows a party, identified by id, to register a fresh signature key pair

via register-svk query and verifies whether a verification key svk
is registered by another party via certSvks query. On registration,

the new key pair for a party id is generated by FAS using genSsk()
algorithm (see Fig. 11). If id’s current randomness is corrupted

(i.e., RandCor[id] = ‘bad’), FAS asks the adversary to provide the

randomness. After registration, the party id receives the new verifi-

cation key svk. A party id can retrieve its signing keys via get-ssk
query and delete signing keys via del-ssk query.

The adversary can register arbitrary verification keys in the name

of any party. Moreover, when a party is corrupted, all signing keys

except for the deleted ones are leaked to the adversary. Security is

modeled by the ideal-world variant of FAS, called F IW

AS
. It marks

leaked and adversarially registered keys as exposed (see boxes in

Fig. 12).

FAS allows the Key Service functionality FKS to signal that a

certain ssk is leaked. FKS sends this signal when the signature key

is leaked due to the leakage of key packages.

Finally, F IW

AS
always leaks all signing keys to the simulator.

Key Service (KS). The KS allows parties to upload one-time key

package used to add them to groups while they are offline.

The KS is formalized by the functionality FKS defined in Fig. 13.

Similar to FAS, a party id can register a key package via register-
kp query. Upon receiving register-kp query, FKS generates a

new key package using genKp(id, svk, ssk) algorithm (see Fig. 11),

which takes on input the party’s identity id and its signature key

pair (svk, ssk) and outputs a key package and the corresponding de-
cryption key. If id’s randomness is corrupted, FKS uses the random-

ness provided from the adversary. Moreover, signatures generated

with bad randomness may leak the signing key ssk. Hence, FKS
signals to FAS that svk is exposed and sends ssk to the adversary.

Parties can request another party’s key package via get-kp
query. The returned key package is specified by the adversary

reflecting that we allow the adversary to maliciously inject key

packages that were not registered by honest parties. Finally, parties

can retrieve all their (not yet deleted) decryption keys alongside

the respective key package via get-keys query. The other queries

are analogous to FAS.

C.2.3 History Graph. As in [13], we use the history graph to man-

age sent or received messages. A history graph contains proposal

nodes and commit nodes. All nodes in the history graph stores the

following values:

• orig: the identity of the party who created the node, i.e., the

message sender.

• par: the parent commit node, representing the sender’s cur-

rent epoch.

• stat ∈ { ‘good’, ‘bad’, ‘adv’ }: the status flag indicatingwhether
the secrets corresponding to the node is known to the ad-

versary. ‘good’ means this node is secure, ‘bad’ means this

node is created with adversarial randomness (hence it is

well-formed but the adversary knows the secret), and ‘adv’
means this node is created by the injected message from the

adversary.

Proposal nodes further store the following values:

• act ∈ { ‘upd’-svk, ‘add’-id𝑡 -svk𝑡 , ‘rem’-id𝑡 }: the proposal ac-
tion. The history graph also stores the signature verification

key svk. ‘add’-id𝑡 -svk𝑡 means id𝑡 is added with the verifica-

tion key svk𝑡 .

Commit nodes further store the following values:

• pro: the ordered list of committed proposals.

• mem: the list of a pair of group member’s identity and its

signature verification key.

• key: the group (application) secret key.

• chall: the flag indicating whether the group key is challenged.
That is, chall = true if a random group key was generated

for this node, and false if the key was set by the adversary

(or not generated).

• exp: the set keeping track of corrupted parties in this node.

It includes a flag whether only their secret state is leaked

(the flag is false), or also the current group key is leaked (the

flag is true).

C.2.4 CGKA Functionality. Using the history graph and the PKI

functionality, we introduce the ideal functionality FCGKA, formally

defined in Figs. 14 to 16 with the helper functions in Figs. 17 to 19.

FCGKA is parameterized by the predicates safe, sig-inj-allowed
andmac-inj-allowed, which specify which epoch secrets are se-

cure and when authenticity is guaranteed. The predicates are de-

fined in Fig. 28. In previous works [12, 13], sig-inj-allowed and

mac-inj-allowed were handled by a single predicate inj-allowed
that checked any injection regardless of it being a forgery of the

MAC or signature. We intentionally divide the inj-allowed predi-

cate into two predicates to make the proof more accessible. This

modification is merely conceptual. Moreover, we add an explicit

additional check for sig-inj-allowed in case id is assigned to a

detached root (highlighted in Fig. 19). This was implicitly checked

by the simulator in previous works and we only made it explicit.

Namely, the inclusion of this check is aimed to improve the read-

ability of the ideal functionality, and has no effect on the security.

Below, we extend the input and output interface of the function-

ality according to the new format of commit message and welcome

message.
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genSsk()
1 : (svk, ssk) ← SIG.KeyGen(ppSIG)
2 : return (svk, ssk)

genKp(id, svk, ssk)
1 : s ←$ {0, 1}𝜅

2 : (ek, dk) ← CmGen(ppCmPKE;H(s))
3 : sig← SIG.Sign(ppSIG, ssk, (id, ek, svk))
4 : kp← (id, ek, svk, sig)
5 : return (kp, dk)

Figure 11: Key generation algorithms.

Initialization

1 : Registered← ∅; Exposed← ∅

2 : SSK[∗, ∗] ← ⊥
3 : RandCor[∗] ← ‘good’

Inputs from a party id
Input (register-svk)

1 : if RandCor[id] = ‘good’ then

2 : (svk, ssk) ← genSsk()
3 : else

4 : Send (rnd, id) to the adversary and receive r

5 : (svk, ssk) ← genSsk(r)

6 : Exposed +← svk

7 : Registered +← (id, svk)
8 : SSK[id, svk] ← ssk

9 : Send (register-svk, id, svk, ssk ) to the adversary

10 : Send svk to the party id

Input (get-ssk, svk) from id

1 : Send SSK[id, svk] to id

Input (del-ssk, svk)
1 : SSK[id, svk] ← ⊥

Input (verify-cert, id′, svk) from id

1 : Send (id′, svk) ∈ Registered to id

Inputs from the adversary
Input (register-svk, id, svk)
1 : if (∗, svk) ∉ Registered then

2 : Exposed +← svk

3 : Registered +← (id, svk)

Input (expose-ssk, id)
1 : Exposed +← { svk | SSK[id, svk] ≠ ⊥ }

2 : Send SSK[id, ∗] to the adversary

Input (CorrRand, id, 𝑏), 𝑏 ∈ { ‘good’, ‘bad’ }
1 : RandCor[id] ← 𝑏

Inputs from FCGKA and FKS
Input (exposed, id, svk)
1 : Exposed +← svk

2 : Send SSK[id, svk] to the adversary

Inputs from FCGKA
Input (has-ssk, id, svk)
1 : Send SSK[id, svk] ≠ ⊥ to FCGKA

Figure 12: The ideal authentication service functionality FAS and its variant F IW
AS used during the security proof.

States. FCGKA maintains the history graph. It addresses proposal

nodes by (idealized) proposal message p and non-root commit nodes

by (idealized) proposal messages c0. We consider the single main

group. The root node corresponding to the main group is addressed

by the special label root0. Moreover, other roots may be created

without a commit message (e.g., when a party uses an injected

welcome message to an adversarially created epoch, which is not

directly related to the main group). Such roots are addressed by the

special labels rootrt for rt ∈ N and their tree are called detached.
FCGKA also stores a pointer Ptr[id] for each party id. Ptr[id] in-

dicates id’s current commit node (i.e., current epoch). If id currently

is not in the group, Ptr[id] = ⊥.

Interfaces. FCGKA offers interfaces for creating group, creating

a proposal, committing a list of proposals, processing a commit,

joining a group, and retrieving the current group key. We assume

the main group is created by the designated party idcreator. Initially,
the main group has a single party idcreator, and it can invite addi-

tional members. All interface except create and join are for group

members only (i.e., parties for which Ptr[id] ≠ ⊥).

Proposals. When a party id create a proposal, FCGKA notifies the

adversary. Then it returns a flag ack, a node identifier p (i.e., a

message) and a signature verification key svk𝑡 . FCGKA allows the

adversary to send ack = false to report that the protocol fails, i.e.,

the output is p = ⊥. If the protocol succeeds, and if no node with

identifier p exists, FCGKA creates a new proposal node Prop[p]. For
add proposals, it extends the action by the verification key svk𝑡
(specified by the adversary) of the added party id𝑡 .
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Initialization

1 : DK[∗, ∗] ← ⊥; SVK[∗, ∗] ← ⊥
2 : RandCor[∗] ← ‘good’

Inputs from a party id
Input (register-kp, svk, ssk)
1 : if RandCor[id] = ‘good’ then

2 : (kp, dk) ← genKp(id, svk, ssk)
3 : if kp = ⊥ then return

4 : else

5 : Send (rnd, id) to the adversary and receive r

6 : (kp, dk) ← genKp(id, svk, ssk; r)
7 : if kp = ⊥ then return

8 : Send (exposed, id, svk) to FAS
9 : DK[id, kp] ← dk; SVK[id, kp] ← svk

10 : Send (register-kp, id, svk, kp, dk ) to the adversary

11 : Send kp to the party id

Input (get-dks)
1 : Send { (kp,DK[id, kp]) | DK[id, kp] ≠ ⊥ } to id

Input (get-kp, id′)
1 : Send (get-kp, id, id′) to the adversary and receive kp

2 : Send kp to id

Input (del-dk, kp)
1 : DK[id, kp] ← ⊥

Inputs from the adversary
Input (CorrRand, id, 𝑏), 𝑏 ∈ { ‘good’, ‘bad’ }
1 : RandCor[id] ← 𝑏

Inputs from the adversary and FCGKA
Input (exposed, id)
1 : Send DK[id, ∗] to the adversary

2 : foreach svk ∈ SVK[id, ∗] s.t. svk ≠ ⊥ do

3 : Send (exposed, id, svk) to FAS

Figure 13: The ideal key service functionality FKS and and its variant F IW
KS used during the security proof.

In certain situations, FCGKA may not create a new proposal node.

For example, id proposes to remove the same party twice in the same

epoch. Another such situation is that a party proposes to update us-

ing the same randomness. In these cases, the adversary can specify

the preexisting p. FCGKA enforces that the states on the existing

node is consistent to the expected one using *consistent-prop.
Finally, FCGKA returns the proposal identifier p to the calling

party id.

Commits. When id creates a commit message, it specifies a list

of proposals ®p, a (possibly fresh) signature verification key svk.
Then FCGKA forwards the all inputs to the adversary and receives

a flag ack and identifiers c0 of commit node with a list ®c and𝑤0 of

welcome node with a list𝑤 . ®c (resp. ®𝑤 ) contains the party dependent

information ĉid (resp. 𝑤id), and it is used when id processes the

message c0 (resp. 𝑤0). The adversary sets ack := false to report

that the protocol fails. If the commit protocol succeeds, FCGKA first

asks the adversary to interpret the injected proposals, i.e., proposal

where no node has been created, by calling *fill-prop. It then
computes the member set resulting from applying ®p by calling

*members (which returns ⊥ if ®p is invalid).

ThenFCGKA either creates a new commit node or verifies that the

existing node is consistent (cf. *consistent-com). It may happen

that the existing node is the detached root. In such case, FCGKA
attaches it to id’s current node calling *attach. This helper assigns
c0 as the proper identifier of the detached root and deletes the

root. Once the detached root is attached, the root’s tree achieves

the same security guarantee as the main group. Since attaching

a detached root changes the the history graph, FCGKA enforces

two invariants: cons-invariant enforcing the consistency of the

graph; and auth-invariant enforcing the authenticity guarantee.

Finally, when add proposals are committed, FCGKA records the

welcome message that leads the newmember to the created commit

node. Then FCGKA returns (c0, ®c,𝑤0, ®𝑤) to the calling party id.

Processing Commits. When id processes a commit message, it

specifies the commit message (c0, ĉ), where ĉ is the id-dependent
message, and a list of committed proposals ®p. Then FCGKA forwards

all the inputs to the adversary and receives the interpreted result

from (c0, ĉ).
If the processing succeeds, FCGKA either creates a new commit

node or verifies that the existing node is consistent. If corresponding

nodes do not exist, FCGKA checks the validity of ®p and creates a new
commit node with the committer identity orig′ and its signature key
svk′ which are interpreted by the adversary from (c0, ĉ). If the node
Node[c0] ≠ ⊥ exists, FCGKA enforces that it is a valid successor of

id’s current node (cf. *valid-successor). If c0 matches a detached

root, FCGKA attaches them.

Finally, depending on whether c0 removes id, FCGKA either

moves id’s pointer Ptr[id] to the new node or sets the pointer

to ⊥. The calling party receives the committer’s identity and the

semantics of the applied proposals.

Joining. When a party id joins a group, it specifies the welcome

message 𝑤0 and the id-dependent message 𝑤 . Then FCGKA for-

wards all the inputs to the adversary and receives the interpreted

result from (𝑤0,𝑤). As usual, the adversary sets ack := false to

report that the protocol fails.

If the processing succeeds, FCGKA identifies the commit c0 =

Wel[𝑤0] corresponding to 𝑤0. If this is the first time FCGKA sees

𝑤0, i.e.,Wel[𝑤0] = ⊥, the adversary chooses c′
0
. If the commit node

for c′
0
does not exist (i.e., Node[c′

0
] = ⊥), FCGKA creates a new

detached root where all stored values are chosen by the adversary.
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Finally, FCGKA returns the state of the joining group (the com-

mitter’s identity and the list of (id, svk)-pair) to the calling party

id.
Group keys and Corruptions. Parties can fetch the current group

key via Key query. The Key is random if the protocol guarantees

its secrecy as identified by the safe predicate. Otherwise, the key
is set by the adversary.

The predicate safe uses information which are recorded by

FCGKA. When the state of a current group member id is exposed,

FCGKA records leakage of the following information.

• The current group key (if not retrieved yet) and any key ma-

terials (e.g., encryption key and signing key) to process future

messages. This is recorded by adding the pair (id,HasKey[id])
to the exposed set of id’s current node (cf. line 2 in (Expose, id)).
The flag HasKey[id] indicates whether id currently stores

the group key (if the group key has not calculated yet or was

already retrieved, HasKey[id] = false).
• The key material for updates and commits created by id in

the current epoch. This is recorded by setting the status of

all child nodes created by id (i.e., nodes with par = Ptr[id])
to ‘bad’ (cf. *update-stat-after-exp function).
• The current signature signing key ssk. This is recorded by

signaling to FAS that svk is exposed and sends ssk to the

adversary (cf. line 5 in (Expose, id)).
In addition, exposure of party id who is not a group member

reveals key packages that will be used to process welcomemessages.

FCGKA signals to FKS that key packages (including signing key) are
exposed and sends the corresponding decryption keys and signing

keys to the adversary (cf. line 6 in (Expose, id)).
Adaptive corruptions become a problem if the adversary reveals

a key material that can be used to compute a group key which has

already been outputted as random by FCGKA, i.e., the challenge key.
Hence, we restrict the environment not to corrupt key materials

such that it would cause safe to switch to false for some commit

nodes with chall = true.
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Initialization

1 : Ptr[∗],Node[∗], Prop[∗],Wel[∗] ← ⊥
2 : RandCor[∗] ← ‘good’;HasKey[∗] ← false; rootCtr← 0

Inputs from a party idcreator
Input (Create, svk)
1 : req Node[root0 ] = ⊥
2 : req *valid-svk(idcreator, svk)
3 : mem← { (idcreator, svk) }
4 : Node[root0 ] ← *create-root(idcreator,mem,RandCor[idcreator ])
5 : HasKey[idcreator ] ← true;Ptr[idcreator ] ← root0
6 : Send (Create, idcreator, svk) to the adversary

Inputs from a party id
Input (Propose, act), act ∈ { ‘upd’-svk, ‘add’-id𝑡 , ‘rem’-id𝑡 }
1 : req Ptr[id] ≠ ⊥
2 : Send (Propose, id, act) to the adversary and receive (ack, p, svk𝑡 )
3 : req ack

4 : if act = ‘upd’-svk then req *valid-svk(id, svk)
5 : if act = ‘add’-id𝑡 then act← ‘add’-id𝑡 -svk𝑡
6 : if Prop[p] = ⊥ then

7 : Prop[p] ← *create-prop(Ptr[id], id, act,RandCor[id])
8 : else

9 : *consistent-prop(p, id, act)
10 : if act = ‘upd’-svk ∧ RandCor[id] = ‘bad’ then

11 : Send (exposed, id, svk) to FAS
12 : return p

Input (Commit, ®p, svk)
1 : req Ptr[id] ≠ ⊥
2 : Send (Commit, id, ®p, svk) to the adversary and receive (ack, rt, c0, ®c, 𝑤0, ®𝑤)
3 : req *succeed-com(id, ®p, svk) ∨ ack
4 : *fill-prop(id, ®p)
5 : req *valid-svk(id, svk)
6 : (mem, ∗) ← *members(Ptr[id], id, ®p, svk)
7 : assert mem ≠ ⊥ ∧ (id, svk) ∈ mem

8 : if Node[c0 ] = ⊥ ∧ rt = ⊥ then

9 : Node[c0 ] ← *create-child(Ptr[id], id, ®p,mem,RandCor[id])
10 : if 𝑤0 ≠ ⊥ then

11 : assert Wel[𝑤0 ] = ⊥
12 : Wel[𝑤0 ] ← c0

13 : else

14 : if Node[c0 ] = ⊥ then c′
0
← rootrt

15 : else c′
0
← c0

16 : *consistent-com(c′
0
, id, ®p,mem)

17 : if c′
0
= rootrt then *attach(c0, c′0, id, ®p)

18 : if 𝑤0 ≠ ⊥ then

19 : assert Wel[𝑤0 ] ∈ { ⊥, c0 }
20 : Wel[𝑤0 ] ← c0

21 : assert cons-invariant ∧ auth-invariant
22 : if RandCor[id] = ‘bad’ then

23 : Send (exposed, id, svk) to FAS
24 : return (c0, ®c, 𝑤0, ®𝑤)

Figure 14: The ideal CGKA functionality FCGKA: Create, Propose, Commit.
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Input (Process, c0, ĉ, ®p)
1 : req Ptr[id] ≠ ⊥
2 : Send (Process, id, c0, ĉ, ®p) to the adversary and

receive (ack, rt, orig′, svk′)
3 : req *succeed-proc(id, c0, ĉ, ®p) ∨ ack
4 : *fill-prop(id, ®p)
5 : if Node[c0 ] = ⊥ ∧ rt = ⊥ then

6 : (mem, ∗) ← *members(Ptr[id], orig′, ®p, svk′)
7 : assert mem ≠ ⊥
8 : Node[c0 ] ← *create-child(Ptr[id], orig′, ®p,mem, ‘adv’)
9 : else

10 : if Node[c0 ] = ⊥ then c′
0
← rootrt

11 : else c′
0
← c0

12 : id𝑐 ← Node[c′
0
] .orig; svk𝑐 ← Node[c′

0
] .mem[id𝑐 ]

13 : (mem, ∗) ← *members(Ptr[id], id𝑐 , ®p, svk𝑐 )
14 : assert mem ≠ ⊥
15 : *valid-successor(c′

0
, id𝑐 , ®p,mem)

16 : if c′
0
= rootrt then *attach(c0, c′0, id, ®p)

17 : if ∃p ∈ ®p : Prop[p] .act = ‘rem’-id then

18 : Ptr[id] ← ⊥
19 : else

20 : assert (id, ∗) ∈ Node[c0 ] .mem

21 : Ptr[id] ← c0;HasKey[id] ← true

22 : assert cons-invariant ∧ auth-invariant
23 : return *output-proc(c0)

Input (Join,𝑤0,𝑤)
1 : req Ptr[id] = ⊥
2 : Send (Join, id, 𝑤0, 𝑤) to the adversary and

receive (ack, c′
0
, orig′,mem′)

3 : req *succeed-wel(id, 𝑤0, 𝑤) ∨ ack
4 : c0 ←Wel[𝑤0 ]
5 : if c0 = ⊥ then

6 : if Node[c′
0
] ≠ ⊥ then c0 ← c′

0

7 : else

8 : rootCtr++

9 : c0 ← rootrootCtr // Assume root𝑖 are reserved words

10 : Node[c0 ] ← *create-root(orig′,mem′, ‘adv’)
11 : Wel[𝑤0 ] ← c0

12 : assert (id, ∗) ∈ Node[c0 ] .mem

13 : Ptr[id] ← c0

14 : HasKey[id] ← true

15 : assert cons-invariant ∧ auth-invariant
16 : return (Node[c0 ] .orig,Node[c0 ] .mem)
Input Key

1 : req Ptr[id] ≠ ⊥ ∧ HasKey[id]
2 : if Node[Ptr[id] ] .key = ⊥ then *set-key(Ptr[id])
3 : HasKey[id] ← false

4 : return Node[Ptr[id] ] .key

Figure 15: The ideal CGKA functionality FCGKA: Process and Join.

Input (Expose, id)
1 : if Ptr[id] ≠ ⊥ then

2 : Node[Ptr[id] ] .exp +← (id,HasKey[id])
3 : *update-stat-after-exp(id)
4 : svk← Node[Ptr[id] ] .mem[id]
5 : Send (exposed, id, svk) to FAS
6 : Send (exposed, id) to FKS
7 : restrict ∀c0 if Node[c0 ] .chall = true then safe(c0) = true

Input (CorrRand, id, 𝑏), 𝑏 ∈ { ‘good’, ‘bad’ }
1 : RandCor[id] ← 𝑏

Figure 16: The CGKA functionality FCGKA: Corruptions from the adversary.
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*create-root(id,mem, stat)
1 : return new node with par← ⊥, orig← id, pro← ⊥,

mem← mem, stat← stat.

*create-child(c0, id, ®p,mem, stat)
1 : return new node with par← c0, orig← id, pro← ®p,

mem← mem, stat← stat.

*create-prop(c0, id, act, stat)
1 : return new node with par← c0, orig← id,

act← act, stat← stat.

*fill-prop(id, ®p)
1 : foreach p ∈ ®p s.t. Prop[p] = ⊥ do

2 : Send (Propose, p) to the adversary and receive (orig, act)
3 : Prop[p] ← *create-prop(Ptr[id], orig, act, ‘adv’)

*output-proc(c0)
1 : id𝑐 ← Node[c0 ] .orig
2 : svk𝑐 ← Node[c0 ] .mem[id𝑐 ]
3 : (∗, propSem) ← *members(c0, id𝑐 ,Node[c0 ] .pro, svk𝑐 )
4 : return (Node[c0 ] .orig, propSem)

*valid-svk(id, svk′)
1 : if Ptr[id] ≠ ⊥ then

2 : svk← Node[Ptr[id] ] .mem[id]
3 : if svk ≠ ⊥ ∧ svk = svk′ then return true

4 : Send (has-ssk, id, svk′) to FAS and receive ack

5 : return ack

*set-key(c0)
1 : if safe(c0) then
2 : Node[c0 ] .key←$K ;Node[c0 ] .chall← true

3 : else

4 : Send (Key, id) to the adversary and receive k

5 : Node[c0 ] .key← k;Node[c0 ] .chall← false

*update-stat-after-exp(id)
1 : foreach p s.t. Prop[p] ≠ ⊥ ∧ Prop[p] .par = Ptr[id]

∧ Prop[p] .orig = id ∧ Prop[p] .act = ‘upd’- ∗ do

2 : Prop[p] .stat← ‘bad’

3 : foreach c0 s.t. Node[c] ≠ ⊥ ∧ Node[c] .par = Ptr[id]
∧ Node[c] .orig = id do

4 : Node[c] .stat← ‘bad’

Figure 17: The helper functions for creating and maintaining the history graph.

*consistent-prop(p, id, act)
1 : assert Prop[p] .par = Ptr[id] ∧ Prop[p] .orig = id

∧ Prop[p] .act = act

*consistent-com(c0, id, ®p,mem)
1 : *valid-successor(c0, id, ®p,mem)
2 : assert RandCor[id] = ‘bad’ ∧ Node[c0 ] .orig = id

*valid-successor(c0, id, ®p,mem)
1 : assert Node[c0 ] ≠ ⊥ ∧ Node[c0 ] .mem = mem

∧ Node[c0 ] .pro ∈ { ⊥, ®p }
∧ Node[c0 ] .par ∈ { ⊥, Ptr[id] }

*attach(c0, c′
0
, id, ®p)

1 : assert c′
0
≠ root0

2 : Node[c′
0
] .par← Ptr[id];Node[c′

0
] .pro← ®p

3 : Node[c0 ] ← Node[c′
0
];Node[c′

0
] ← ⊥

4 : foreach p s.t. Prop[p] .par = c′
0
do

5 : Prop[p] .par← Ptr[id]
6 : foreach 𝑤0 s.t.Wel[𝑤0 ] = c′

0
do

7 : Wel[𝑤0 ] ← c0

8 : foreach id s.t. Ptr[id] = c′
0
do

9 : Ptr[id] ← c0

*succeed-com(id, ®p, svk)
1 : return *members(Ptr[id], id, ®p, svk) ≠ (⊥,⊥)

∧ *valid-svk(id, svk) ∧ ∀p ∈ ®p : Prop[p] .stat ≠ ‘adv’

*succeed-proc(id, c0, ĉ, ®p)
1 : return Node[c0 ] ≠ ⊥ ∧ Node[c0 ] .par = Ptr[id]

∧ Node[c0 ] .pro = ®p ∧ Node[c0 ] .stat ≠ ‘adv’

∧ ∀p ∈ ®p : Prop[p] .stat ≠ ‘adv’

*succeed-wel(id,𝑤0,𝑤)
1 : c0 ←Wel[𝑤0 ]
2 : return Ptr[id] = ⊥ ∧ c0 ≠ ⊥

∧ Node[c0 ] ≠ ⊥ ∧ Node[c0 ] .stat ≠ ‘adv’

∧ (id, ∗) ∈ (Node[c0 ] .mem \ Node[Node[c0 ] .par] .mem)

Figure 18: The helper functions for consistency and correctness.
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*members(c0, id𝑐 , ®p, svk𝑐 )
1 : if Node[c0 ] ≠ ⊥ ∧ (id𝑐 , ∗) ∈ Node[c0 ] .mem

∧ ∀p ∈ ®p : Prop[p] ≠ ⊥ ∧ Prop[p] .par = c0

∧ ®p = ®p
‘upd’ ∥®p‘rem’

∥®p
‘add’ for some ®p

‘upd’, ®p‘rem’
, ®p

‘add’

with ∀act(∀p ∈ ®pact : Prop[p] .act = act-∗) then
2 : mem← Node[c0 ] .mem

3 : mem -← (id𝑐 , ∗) ;mem +← (id𝑐 , svk𝑐 )
4 : 𝐿 ← { id𝑐 } // set of updated parties

5 : foreach p ∈ ®p
‘upd’ do

6 : (id𝑠 , ‘upd’-svk) ← (Prop[p] .orig, Prop[p] .act)
7 : if ¬( (id𝑠 , ∗) ∈ mem ∧ id𝑠 ∉ 𝐿) then return (⊥,⊥)
8 : mem -← (id𝑠 , ∗) ;mem +← (id𝑠 , svk)
9 : 𝐿 +← id𝑠

10 : foreach p ∈ ®p
‘rem’

do

11 : (id𝑠 , ‘rem’-id𝑡 ) ← (Prop[p] .orig, Prop[p] .act)
12 : if ¬( (id𝑠 , ∗) ∈ mem ∧ (id𝑡 ∈ mem ∧ id𝑡 ∉ 𝐿)) then return (⊥,⊥)
13 : mem -← (id𝑡 , ∗)
14 : foreach p ∈ ®p

‘add’ do

15 : (id𝑠 , ‘add’-id𝑡 -svk𝑡 ) ← (Prop[p] .orig, Prop[p] .act)
16 : if ¬( (id𝑠 , ∗) ∈ mem ∧ (id𝑡 , ∗) ∉ mem) then return (⊥,⊥)
17 : mem +← (id𝑡 , svk𝑡 )
18 : 𝑃 ← ((Prop[p] .orig, Prop[p] .act) : p ∈ ®p)
19 : return (mem, 𝑃 )
20 : else

21 : return (⊥,⊥)

auth-invariant

return true iff

(a) ∀c0 with c𝑝 := Node[c0 ] .par, c𝑝 ≠ ⊥ and id := Node[c0 ] .orig,
if Node[c0 ] .stat = ‘adv’ then sig-inj-allowed(c𝑝 , id) ∧mac-inj-allowed(c𝑝 ) and

(b) ∀p with c𝑝 := Prop[p] .par and id := Prop[p] .orig,
if Prop[p] .stat = ‘adv’ then sig-inj-allowed(c𝑝 , id) ∧mac-inj-allowed(c𝑝 ) and

(c) ∀rootrt ≠ ⊥ with id := Node[rootrt ] .orig, sig-inj-allowed(rootrt , id)

cons-invariant

return true iff

(a) ∀c0 s.t. Node[c0 ] .par ≠ ⊥ : (Node[c0 ] .pro ≠ ⊥
∧ ∀p ∈ Node[c0 ] .pro : Prop[p] .par = Node[c0 ] .par) and

(b) ∀id s.t. Ptr[id] ≠ ⊥ : id ∈ Node[Ptr[id] ] .mem and

(c) the history graph contains no cycle

Figure 19: The helper functions to determine the group state after applying a commit and the history graph invariants. We
explicitly add the authentication invariant concerning welcome messages which is highlighted in yellow .
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D THE CHAINED CMPKE PROTOCOL
In this section, we provide amore in-depth exposition of ourChained
CmPKE protocol.

As already explained in Sec. 4, unlike TreeKEM, we no longer re-

quire to maintain a tree structure since the structure we maintain is

a depth-1 tree (which is much like a comb). This makes the descrip-

tion of our protocol much simpler relative to TreeKEM and relieves

us from “blanking” nodes when updating and removing users from

the group. Effectively, the security analysis is also simpler since

we no longer need to keep track of the exposed/unexposed secrets

assigned to the internal nodes of the tree.

Moreover, during a commit protocol, the committer does not

sign the whole ciphertext but only the part that binds the message,

i.e., the commitment T in CmPKE. The delivery server is expected

to parse the uploaded commit message and forward the relevant

parts to the receivers.

Below we describe our Chained CmPKE protocol and provide

details on the differences between TreeKEM version 10 of MLS

formalized by [13].

D.1 Protocol States
Each user holds a group state G. It consists of the variables listed
in Tab. 6. The G.member array stores the information of the group

members. The index of G.member is specified by the party identi-

ties and each entry consists of the variables listed in Tab. 7. The

member hash G.memberHash is the hash of all key packages stored

in G.member.
The group state contains three hashes: confirmation transcript

hash (confTransHash), confirmation transcript hash without com-
mitter identifier (confTransHash-w.o-‘idc’) and interim transcript
hash (interimTransHash). Roughly, these hashes maintain the con-

sistency between the previous and current epoch and are used to

enforce a consistent view within the group members.

If a group member issues an update proposal or commit message

that did not get confirmed by the server, the corresponding secrets

are stored in G.pendUpd and G.pendCom, respectively. When a

member receives a message which has been created by itself, it re-

trieves the corresponding secrets from G.pendUpd or G.pendCom
(rather than processing it from scratch).

For readability, we define the useful helper methods correspond-

ing to the group state, listed in Tab. 8. In the security proof, G
additionally stores the variables listed in Tab. 9

Differences from TreeKEM. All variables except for G.member,
G.memberHash and G.confTransHash-w.o-‘idc’ are defined iden-

tically to TreeKEM. G.member corresponds to the left-balanced

binary tree 𝜏 considered in [13], restricted to arity 𝑁 and depth 1.

Namely, G.member only maintains a simply array rather than a

tree. G.memberHash is a replacement of treeHash in TreeKEM. We

newly define the hash value G.confTransHash-w.o-‘idc’, which is

used in the join protocol to confirm the sender of the welcome

message.

D.2 Protocol Algorithms
The main protocol is depicted in Figs. 20 and 21. The associated

helper functions are depicted in Figs. 23 to 27. In these figures, the

differences from TreeKEM version 10 in MLS considered by [13]

are highlighted in yellow.

(1) Group Creation. The group is created (by the designated party

idcreator in our model) using the input (Create, svk). This input
initializes the group state and creates a new group with the sin-

gle member idcreator. The group creator fetches the corresponding

signing key ssk from FAS using the helper function *fetch-ssk-
if-nec.

Differences from TreeKEM. The group creation protocol is defined

identically to TreeKEM except that party idcreator maintains a sim-

pler group protocol state G compared to TreeKEM. Note that, unlike

TreeKEM, our protocol initializes a random joiner secret and derive

the epoch secrets from it. Then, it computes the confirmation tag

confTag for the initial group. This is because confTag is necessary

to discuss the security of the protocol.

(2) Proposals. The protocol first prepares a preliminary proposal

message P .

• To create an update proposal, the protocol generates a fresh

key package together with the corresponding decryption

key dk. The key package kp is included in the proposal and

dk is stored in G.pendUpd. When a new verification key svk
is used, the protocol fetches the corresponding signing key

ssk from FAS. (ssk is also stored in G.pendUpd.)
• To create an add proposal, the protocol fetches the key pack-

age for the added party from FKS. The proposal consists of
the key package which includes the added party’s identity.

• The remove proposal consists of the identity of a removed

party.

All proposals are framed using *frame-prop. It first signs the pro-
posal P together with the string ‘proposal’, the group context in-

cluding confTransHash, and the sender’s identity. This signature

prevents impersonation by another group member. In addition, to

ensure the PCS security and group membership of the sender, ev-

erything including the signature is MACed using the membership

key. The MAC tag ties the proposal to a specific group/epoch since

the signature key may be shared across groups and is long-lived.

In summary, to inject or modify messages, the adversary must cor-

rupt both the sender’s signing key and the current epoch secrets.

The actual proposal message p consists of everything except the

G.memberHash and G.confTransHash since the other components

can be retrieved from the protocol state of the recipients.

Differences from TreeKEM. The propose issue protocol is defined

identically to TreeKEM.

(3) Commits. To create a new commit message, a party id runs

the protocol on input (Commit, ®p, svk). The protocol first initializes
the next epoch’s group state by copying the current one. It then

applies the proposals ®p using *apply-props. It verifies the validity
of the MAC tag and signature in each proposal. The protocol then

derives id’s new CmPKE key pair and a new commit secret using
the helper function *rekey. It outputs a fresh commit secret, a fresh

key package kp for the committer, and a CmPKE ciphertext (T, ®ct)
encrypting the commit secret. Note that the commit secret will

be shared among existing users who are not removed in the next

epoch.
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G.groupid The identifier of the group.

G.epoch The current epoch number.

G.confTransHash The confirmed transcript hash.

G.confTransHash-w.o-‘idc’ The confirmed transcript hash without the committer identity.

G.interimTransHash The interim transcript hash for the next epoch.

G.member[∗] A mapping associating party id with its state.

G.memberHash A hash of the public part of G.member[∗].
G.certSvks[∗] A mapping associating the set of validated signature verification keys to each party.

G.pendUpd[∗] A mapping associating the secret keys for each pending update proposal issued by id.
G.pendCom[∗] A mapping associating the new group state for each pending commit issued by id.

G.id The identity of the party.

G.ssk The current signing key.

G.appSecret The current epoch’s shared key.

G.membKey The key used to MAC proposal packages.

G.initSecret The next epoch’s init secret.

Table 6: The protocol state.

id The identity of the party.

ek The encryption key of a CmPKE scheme.

dk The corresponding decryption key.

svk The signature verification key of a signature scheme.

sig The signature for (id, ek, svk) under the signature singing key corresponding to svk.

kp() Returns (id, ek, svk, sig) (if G.member[id] ≠ ⊥).
Table 7: The party id’s state stored in G.member[id] and helper method.

G.clone() Returns (independent) copy of G.
G.memberIDs() Returns the list of party ids sorted by dictionary order.

G.memberIDsvks() Returns the list of party ids and its associating svk sorted by dictionary order in the ids.

G.memberPublicInfo() Returns the public part of G.member[∗].
G.groupCont() Returns (G.groupid,G.epoch,G.memberHash,G.confTransHash).

Table 8: The helper methods on the protocol state.

G.joinerSecret The current epoch’s joiner secret.

G.comSecret The current epoch’s commit secret.

G.confKey The key used to MAC for commit and welcome messages.

G.confTag The MAC tag included either in the commit or welcome message.

G.membTags The set of MAC tags included in the proposal messages.

Table 9: The protocol state maintained only during the security proof.

The commit message consists of two parts: a party independent

message c0 and a party dependent message ĉ. The protocol first
prepares a preliminary commit message 𝐶0 including the list of

the hash of all the applied proposals propIDs, the key package kp,
and the commitment T. This commit message is signed alongside

the group context using *sign-commit. Afterwards, the protocol
derives the epoch secrets using *derive-keys and computes the

confirmation tag (see *gen-conf-tag). c0 is constructed from 𝐶0,

the signature, and the confirmation tag. Then, the protocol prepares

the party dependent message ĉ. It is set as (id, ĉtid), or (id,⊥) if the
party id is removed in the next epoch. (Here, ®c is the list of ĉ.)

If new members are added, the protocol creates a welcome

message using the function *welcome-msg. The welcome message

also consists of two parts: a party independent message 𝑤0 and

a party dependent message 𝑤 . It first encrypts the joiner secret

(which will be used to derive epoch secrets) with the added mem-

bers’ encryption keys, and obtains a CmPKE ciphertext (T, ®ct =

(ĉtid𝑡 )id𝑡 ∈addedMem). Then the protocol composes a group infor-

mation groupInfo which contains the public part of the group

state, the confirmation tag, and the sender’s identity. groupInfo
and T are signed by the sender’s signing key and 𝑤0 is set as
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(groupInfo, T, sig). Then, the protocol prepares the party depen-

dent message𝑤 . It is set as (id, kphash, ĉtid) where kphash is the

hash of the used key package. (Here, ®𝑤 is the list of𝑤 .)

Finally, the protocol computes the interim transcript hash for

the next epoch by hashing the current confirmation hash and the

newly generated confirmation tag. The next epoch’s state is stored

in G.pendCom.

Differences from TreeKEM. The following summarizes the differ-

ences between Chained CmPKE and TreeKEM.

(1) Our *apply-props simply rewrites entries in G.member: if
id is deleted, it sets G.member[id] to ⊥; if id is added, it

stores its key package in a new entry; if id is updated, it

replaces the old key package with the new one. In contrast,

TreeKEM additionally runs the ‘blank node’ operation after

updating the leaf nodes. That is, the committer blanks the

nodes on the path from the updated or removed leaf to the

root.

(2) Our *rekey operation simply encrypts a new comSecret
with the recipients’ CmPKE encryption keys. In contrast,

TreeKEM runs a ‘path update’ operation to derive comSecret.
It refreshes all PKE keys along the path from the committer’s

leaf to the root. Each path secret is then encrypted to the

resolution of the sibling of the concerned node. Here, the

secret on the root is used as comSecret.
(3) ChainedCmPKE signs only T, rather than T and (ĉtid)id∈receivers.

This allows the delivery server to send only the message

needed for each user, and effectively lowers the downloaded

package size from 𝑂 (𝑁 ) to 𝑂 (1). In contrast, in TreeKEM,

all the ciphertexts (each encrypting a path secret) is signed.

The size of the downloaded package is therefore 𝑂 (log𝑁 )
in the best case (i.e., full non-blanked tree) and 𝑂 (𝑁 ) in the

worst case (i.e., heavily blanked tree).

(4) Our commit message consists of two parts: c0 is a party

independent message and will be sent to all the recipients.

ĉid is a party dependent message that contains the identity

of a single recipient id and the ciphertext its corresponding

ĉtid. This is only sent to the specific party id. In contrast,

in TreeKEM, a commit message is viewed as a monolithic

bloc and the commit message is sent to all the recipients

without any modification. This corresponds to setting c0 = ⊥
and ĉtid = ĉtid′ for all id, id

′ ∈ receivers in our new ideal

functionality.

(5) Our welcomemessage only encrypts a new joinerSecretwith
the added members’ CmPKE encryption keys. There is no

need to send the secrets assigned to the internal nodes of a

tree as in TreeKEM. Analogous to the commit message, the

welcome message also consists of two parts.

The other process (e.g., generating hash values, re-keying) are

identical.

(4) Process. Consider the input (Process, c0, ĉ, ®p). If the party id
is the creator of the received commit message c0, then the protocol

simply retrieves the new epoch state from G.pendCom; otherwise,

it proceeds as follows.

First, the protocol unframes the message, i.e., verifies the signa-

ture and checks that it belongs to the correct group and epoch (cf.

*unframe-commit in Fig. 27). Next, it verifies whether ®p matches

the committed proposals in c0. If so, it applies them using *apply-
props.

If id is not removed, the protocol derives a new epoch secret.

It decrypts the ciphertext using *apply-rekey (it also applies the

committer’s new key package) and computes the epoch secret using

*derive-keys. Finally, it verifies the confirmation tag in c0 and

derives a new interim transcript hash.

Differences from TreeKEM. There are two differences. First is input

message. Chained CmPKE allows the sever to sanitize commit

messages by delivering to each group member the strict amount

of data they need. Namely, the server only sends (c0, ĉid) to the

party id, and hence, party id only receives the ciphertext it needs

to update its protocol state. This reduces the party’s download cost

and the server’s bandwidth.

Second is the *apply-rekey function. To obtain comSecret,Chained
CmPKE simply decrypts the ciphertext. In contrast, TreeKEM de-

crypts the ciphertext, which contains the secret on the least com-

mon ancestor of the committer and the recipient, and then runs the

‘path update’ operation to recover comSecret (i.e., root secret).
(5) Join. Upon receiving an input (𝑤0,𝑤), the protocol initializes a
new group state and copies the public group information from𝑤0.

Then it checks the validity of the confirmation hash and interim

transcript hash by recomputing these hashes from the received

information. It also verifies the signature and the validity of the

member list and each group member’s key package. If the informa-

tion is valid, the protocol decrypts the joiner secret. To this end, it

fetches all its key package and decryption key pairs from FKS and
determines the one that has been used for the welcome message by

checking the hash of the key package.

Finally, it derives the epoch secrets from the joiner secret and

verifies the confirmation tag.

Differences from TreeKEM. As for the commit message, new mem-

ber receives the sanitized message (𝑤0,𝑤id). Chained CmPKE sim-

ply decrypts the ciphertext and derives the epoch secret from the

decrypted joinerSecret. In contrast, in TreeKEM, the welcome mes-

sage contains the secret on the least common ancestor of the com-

mitter and the recipient. The receiver then runs the ‘path update’

operation in order to derive the decryption keys of its parents. This

process does not appear in Chained CmPKE.
Chained CmPKE checks the validity of the confirmation hash in

the welcome message by using confTransHash-w.o-‘idc’ and id𝑐 .
This allows the recipient of the welcome message to verify that id𝑐
has computed the confirmation hash.

(6) Key. Upon input (Key), the protocol outputs the application
secret of the current epoch and deletes it form the local state.

Differences from TreeKEM.This key protocol is the same as TreeKEM.
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Input (Create, svk)
1 : req G = ⊥ ∧ id = idcreator

2 : G.groupid←$ {0, 1}𝜅 ;G.joinerSecret←$ {0, 1}𝜅

3 : G.epoch← 0

4 : G.member[∗] ← ⊥;G.memberHash← ⊥
5 : G.confTransHash-w.o-‘idc’← ⊥
6 : G.confTransHash← ⊥
7 : G.certSvks[∗] ← ∅
8 : G.pendUpd[∗] ← ⊥;G.pendCom[∗] ← ⊥
9 : G.id← id

10 : try ssk← *fetch-ssk-if-nec(G, svk)
11 : (kp, dk) ← genKp(id, svk, ssk)
12 : G ← *assign-kp(G, id, kp)
13 : G.ssk← ssk

14 : G.member[id] .dk← dk

15 : G.memberHash← *derive-member-hash(G)
16 : (G, confKey) ← *derive-epoch-keys(G,G.joinerSecret)
17 : confTag← *gen-conf-tag(G, confKey)
18 : G ← *set-interim-trans-hash(G, confTag)

Input (Propose, ‘upd’-svk)
1 : req G ≠ ⊥
2 : try ssk← *fetch-ssk-if-nec(G, svk)
3 : (kp, dk) ← genKp(id, svk, ssk)
4 : P ← (‘upd’, kp)
5 : p← *frame-prop(G, P)
6 : G.pendUpd[p] ← (ssk, dk)
7 : return p

Input (Propose, ‘add’-id𝑡 )
1 : req G ≠ ⊥ ∧ id𝑡 ∉ G.memberIDs()
2 : Send (get-kp, id𝑡 ) to FKS and receive kp𝑡
3 : req kp𝑡 ≠ ⊥
4 : try G ← *validate-kp(G, kp𝑡 , id𝑡 )
5 : P ← (‘add’, kp𝑡 )
6 : p← *frame-prop(G, P)
7 : return p

Input (Propose, ‘rem’-id𝑡 )
1 : req G ≠ ⊥ ∧ id𝑡 ∈ G.memberIDs()
2 : P ← (‘rem’, id𝑡 )
3 : p← *frame-prop(G, P)
4 : return p

Input (Commit, ®p, svk)
1 : req G ≠ ⊥
2 : G′ ← *init-epoch(G)
3 : try (G′, upd, rem, add) ← *apply-props(G,G′, ®p)
4 : req (∗, ‘rem’-id) ∉ rem ∧ (id, ∗) ∉ upd

5 : addedMem← { id𝑡 | (∗, ‘add’-id𝑡 -∗) ∈ 𝑎𝑑𝑑 } // Recipients of the welcome message

6 : receivers← G′.memberIDs() \ addedMem // Recipients of the new commit secret

7 : try (G′, comSecret, kp, T, ®ct = (ĉtid)id∈receivers) ← *rekey(G′, receivers, id, svk)

8 : G′ ← *set-member-hash(G′)
9 : propIDs← ()
10 : foreach p ∈ ®p do propIDs ++← H(p)
11 : 𝐶0 ← (propIDs, kp, T)
12 : sig← *sign-commit(G,𝐶0)
13 : G′ ← *set-conf-trans-hash(G,G′, id,𝐶0, sig)
14 : (G′, confKey, joinerSecret) ← *derive-keys(G,G′, comSecret)
15 : confTag← *gen-conf-tag(G′, confKey)
16 : c0 ← *frame-commit(G,𝐶0, sig, confTag)
17 : G′ ← *set-interim-trans-hash(G′, confTag)

18 : ®c ← ∅

19 : foreach id ∈ G.memberIDs() do

20 : if id ∈ receivers then ®c +← ĉid = (id, ĉtid)

21 : else ®c +← ĉid = (id,⊥)
22 : if add ≠ () then

23 : (G′, 𝑤0, ®𝑤) ← *welcome-msg(G′, addedMem, joinerSecret, confTag)

24 : else

25 : 𝑤0 ← ⊥; ®𝑤 ← ∅
26 : G.pendCom[c0 ] ← (G′, ®p, upd, rem, add)
27 : return (c0, ®c, 𝑤0, ®𝑤)

Input Key

1 : req G ≠ ⊥
2 : k← G.appSecret

3 : G.appSecret← ⊥
4 : return k

Figure 20: Main protocol: Create, Propose, and Commit. The major changes from [13] are highlighted in yellow .
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Input (Process, c0, ĉ, ®p)
1 : req G ≠ ⊥
2 : (id𝑐 ,𝐶0, sig, confTag) ← *unframe-commit(G, c0)
3 : if id𝑐 = id then

4 : parse (G′, ®p′, upd, rem, add) ← G.pendCom[c0 ]
5 : req ®p = ®p′

6 : return (id𝑐 , upd ∥rem∥add)
7 : parse (propIDs, kp𝑐 , T) ← 𝐶0

8 : parse (id′, ĉtid′ ) ← ĉ

9 : req id = id′

10 : for 𝑖 ∈ 1, . . . ,
��®p�� do

11 : req H(®p [𝑖 ]) = propIDs[𝑖 ]
12 : G′ ← *init-epoch(G)
13 : try (G′, upd, rem, add) ← *apply-props(G,G′, ®p)
14 : req (∗, id𝑐 ) ∉ rem ∧ (id𝑐 , ∗) ∉ upd

15 : if (∗, ‘rem’-id) ∈ rem then

16 : G′ ← ⊥
17 : else

18 : G′ ← *set-conf-trans-hash(G,G′, id𝑐 ,𝐶0, sig)

19 : (G′, comSecret) ← *apply-rekey(G′, id𝑐 , kp𝑐 , T, ĉtid)

20 : G′ ← *set-member-hash(G′)

21 : (G′, confKey, joinerSecret) ← *derive-keys(G,G′, comSecret)
22 : req *vrf-conf-tag(G′, confKey, confTag)
23 : G′ ← *set-interim-trans-hash(G′, confTag)
24 : return (id𝑐 , upd ∥rem∥add)

Input (Join,𝑤0,𝑤)
1 : req G = ⊥
2 : parse (groupInfo, T, sig) ← 𝑤0

3 : parse (id′, kphash, ĉtid′ ) ← 𝑤

4 : req id = id′

5 : try (G, confTag, id𝑐 ) ← *initialize-group(𝐺, id, groupInfo)

6 : req G.confTransHash = H(G.confTransHash-w.o-‘idc’, id𝑐 )

7 : req G.interimTransHash = H(G.confTransHash, confTag)

8 : req SIG.Verify(G.member[id𝑐 ] .svk, sig, (groupInfo, ct0))

9 : try G ← *vrf-group-state(G)

10 : svk← G.member[id] .svk
11 : try G.ssk← *fetch-ssk-if-nec(G, svk)
12 : Send get-dks to FKS and receive kbs

13 : joinerSecret← ⊥
14 : foreach (kp, dk) ∈ kbs do
15 : if H(kp) = kphash then

16 : req G.member[id] .kp() = kp

17 : G.member[id] .dk← dk

18 : joinerSecret← CmDec(dk, T, ĉtid)
19 : req joinerSecret ≠ ⊥
20 : (G, confKey) ← *derive-epoch-keys(G, joinerSecret)
21 : req *vrf-conf-tag(G, confKey, confTag)
22 : return (id𝑐 ,G.memberIDsvks())

Figure 21: Main protocol: Process and Join. The major changes from [13] are highlighted in yellow . The orange highlights
components that are missing from prior works, which we believe is required to satisfy the UC functionality. Please see the
proof for more detail.

*fetch-ssk-if-nec(G, svk)
1 : if G.member[G.id] .svk ≠ svk then

2 : Send (get-ssk, svk) to FAS and receive ssk

3 : else

4 : ssk← G.ssk

5 : return ssk

*validate-kp(G, kp, id)
1 : parse (id′, ek, svk, sig) ← kp

2 : req id = id′

3 : if svk ∉ G.certSvks[id] then
4 : Send (verify-cert, id′, svk) to FAS

and receive succ

5 : req succ

6 : G.certSvks[id] +← svk

7 : req SIG.Verify(ppSIG, svk, sig, (id, ek, svk))
8 : return G

*assign-kp(G, kp)
1 : parse (id, ek, svk, sig) ← kp

2 : G.member[id] .ek← ek

3 : G.member[id] .svk← svk

4 : G.member[id] .sig← sig

5 : return G

Figure 22: Helper functions: key material related.
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*init-epoch(G)
1 : G′ ← G.clone()
2 : G′.epoch← G.epoch + 1

3 : G′.pendUpd[∗] ← ⊥;G′.pendCom[∗] ← ⊥
4 : return G′

*rekey(G′, receivers, id, svk)
1 : try ssk← *fetch-ssk-if-nec(G′, svk)
2 : (kp, dk) ← genKp(id, svk, ssk)
3 : G′ ← *assign-kp(G′, kp)
4 : G′.ssk← ssk;G′.member[id] .dk← dk

5 : comSecret←$ {0, 1}𝜅

6 :
®ek← (G.member[id′] .ek)id′∈receivers
// receivers is non-empty because it always contains the committer

7 : (T, ®ct = (ĉtid′ )id′∈receivers) ← CmEnc(ppCmPKE,
®ek, comSecret)

8 : return (G′, comSecret, kp, T, ®ct)

*apply-rekey(G′, id𝑐 , kp𝑐 , T, ct)
1 : dk← G′.member[G′.id] .dk
2 : comSecret← CmDec(dk, T, ct)
3 : try G′ ← *validate-kp(G′, kp𝑐 , id𝑐 )
4 : G′ ← *assign-kp(G′, kp𝑐 )
5 : return (G′, comSecret)

*welcome-msg(G′, addedMem, joinerSecret, confTag)
1 :

®ek← (G′.member[id𝑡 ] .ek)id𝑡 ∈addedMem do

2 : (T, ®ct = (ĉtid𝑡 )id𝑡 ∈addedMem) ← CmEnc(ppCmPKE,
®ek, joinerSecret)

3 : groupInfo← (G′.groupid,G′.epoch,
4 : G′.memberPublicInfo(),G′.memberHash,

5 : G′.confTransHash-w.o-‘idc’ ,G′.confTransHash,

6 : G′.interimTransHash, confTag,G′.id)
7 : sig← SIG.Sign(ppSIG,G′.ssk, (groupInfo, T))
8 : 𝑤0 ← (groupInfo, T, sig)
9 : ®𝑤 ← ∅
10 : foreach id𝑡 ∈ addedMem do

11 : kphash𝑡 ← H(G′.member[id𝑡 ] .kp())
12 : ®𝑤 +← 𝑤id𝑡 = (id𝑡 , kphash𝑡 , ĉtid𝑡 )
13 : return (G′, 𝑤0, ®𝑤)

*vrf-group-state(G)
1 : req G.memberHash = *derive-member-hash(G)
2 : mem← G.memberIDs()
3 : foreach id ∈ mem do

4 : kp← G.member[id] .kp()
5 : try G ← *validate-kp(G, kp, id)
6 : return G

*apply-props(G,G′, ®p)
1 : upd, rem, add ← ()
2 : foreach p ∈ ®p do

3 : try (id𝑠 , P) ← *unframe-prop(G, p)
4 : parse (type, val) ← P

5 : if type = ‘upd’ then

6 : req id𝑠 ∈ G.memberIDs()
7 : req (id𝑠 , ∗) ∉ upd ∧ rem = () ∧ add = ()
8 : try G′ ← *validate-kp(G′, val, id𝑠 )
9 : G′ ← *assign-kp(G′, val)
10 : if id𝑠 = G.id then

11 : parse (ssk, dk) ← G.pendUpd[p]
12 : G′.ssk← ssk

13 : G′.member[G.id] .dk← dk

14 : svk← G′.member[id𝑠 ] .svk
15 : upd ++← (id𝑠 , ‘upd’-svk)
16 : elseif type = ‘rem’ then

17 : parse id𝑡 ← val

18 : req id𝑡 ≠ id𝑠 ∧ id𝑡 ∈ G′.memberIDs()
19 : req (id𝑡 , ∗) ∉ upd ∧ add = ()
20 : G′.member[id𝑡 ] ← ⊥
21 : rem ++← (id𝑠 , ‘rem’-id𝑡 )
22 : elseif type = ‘add’ then

23 : parse (id𝑡 , ∗, svk𝑡 , ∗, ∗) ← val

24 : req id𝑡 ∉ G′.memberIDs()
25 : try G′ ← *validate-kp(G′, val, id𝑡 )
26 : G′ ← *assign-kp(G′, val)
27 : add ++← (id𝑠 , ‘add’-id𝑡 -svk𝑡 )
28 : else

29 : return ⊥
30 : return (G′, upd, rem, add)

*initialize-group(𝐺, id, groupInfo)
1 : parse (groupid, epoch,member,memberHash, confTransHash-w.o-‘idc’ ,

confTransHash, interimTransHash, confTag, id𝑐 ) ← groupInfo

2 : (G.groupid,G.epoch,G.member,G.memberHash,

G.confTransHash-w.o-‘idc’ ,G.confTransHash,G.interimTransHash)
← (groupid, epoch,member,memberHash,

confTransHash-w.o-‘idc’ , confTransHash, interimTransHash)
3 : G.certSvks[∗] ← ∅
4 : G.pendUpd[∗] ← ⊥;G.pendCom[∗] ← ⊥
5 : G.id← id

6 : return (G, confTag, id𝑐 )

Figure 23: Helper functions: Commit, Process and Join. The major changes from [13] are highlighted in yellow . The orange
highlights components that are missing from prior works, which we believe is required to satisfy the UC functionality. Please
see the proof for more detail.
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*gen-conf-tag(G, confKey)
1 : return MAC.TagGen(confKey,G.confTransHash)

*vrf-conf-tag(G, confKey, confTag)
1 : return MAC.TagVerify(confKey, confTag,G.confTransHash)

Figure 24: Helper function: Confirmation tag.

*set-member-hash(G)
1 : G.memberHash← *derive-member-hash(G)
2 : return G

*derive-member-hash(G)
1 : KP← () ;mem← G.memberIDs() // mem is sorted by dictionary order

2 : foreach id ∈ mem do

3 : KP ++← G.member[id] .kp()
4 : return H(KP)

*set-conf-trans-hash(G,G′, id𝑐 ,𝐶0, sig)
1 : comCont← (G.groupid,G.epoch, ‘commit’,𝐶0, sig)

2 : G′.confTransHash-w.o-‘idc’← H(G.interimTransHash, comCont)

3 : G′.confTransHash← H(G′.confTransHash-w.o-‘idc’, id𝑐 )

4 : return G′

*set-interim-trans-hash(G′, confTag)
1 : G′.interimTransHash← H(G′.confTransHash, confTag)
2 : return G′

Figure 25: Helper function: Member hash and Tran-
script hash. The major changes from [13] are highlighted
in yellow . The orange highlights components that are
missing from prior works, which we believe is required to
satisfy the UC functionality. Please see the proof for more
detail.

*derive-keys(G,G′, comSecret)
1 : 𝑠 ← HKDF.Extract(G.initSecret, comSecret)
2 : joinerSecret← HKDF.Expand(𝑠, ‘joi’)
3 : (G′, confKey) ← *derive-epoch-keys(G′, joinerSecret)
4 : return (G′, confKey, joinerSecret)

*derive-epoch-keys(G′, joinerSecret)
1 : confKey← HKDF.Expand(joinerSecret,G′.groupCont() ∥‘conf’)
2 : G′.appSecret← HKDF.Expand(joinerSecret,G′.groupCont() ∥‘app’)
3 : G′.membKey← HKDF.Expand(joinerSecret,G′.groupCont() ∥‘memb’)
4 : G′.initSecret← HKDF.Expand(joinerSecret,G′.groupCont() ∥‘init’)
5 : return (G′, confKey)

Figure 26: Helper function: Key scheduling.

*frame-prop(G, P)
1 : propCont← (G.groupCont(),G.id, ‘proposal’, P)
2 : sig← SIG.Sign(ppSIG,G.ssk, propCont)
3 : membTag← MAC.TagGen(G.membKey, (propCont, sig))
4 : return (G.groupid,G.epoch,G.id, ‘proposal’, P, sig,membTag)

*unframe-prop(G, p)
1 : parse (groupid, epoch, id𝑠 , contType, P, sig,membTag) ← p

2 : req contType = ‘proposal’ ∧ groupid = G.groupid

∧ epoch = G.epoch

3 : propCont← (G.groupCont(), id𝑠 , ‘proposal’, P)
4 : req G.member[id𝑠 ] ≠ ⊥

∧ SIG.Verify(ppSIG,G.member[id𝑠 ] .svk, sig, propCont)
∧MAC.TagVerify(G.membKey,membTag, (propCont, sig))

5 : return (id𝑠 , P)

*sign-commit(G,𝐶0)
1 : comCont← (G.groupCont(),G.id, ‘commit’,𝐶0)
2 : sig← SIG.Sign(ppSIG,G.ssk, comCont)
3 : return sig

*frame-commit(G,𝐶0, sig, confTag)
1 : return (G.groupid,G.epoch,G.id, ‘commit’,𝐶0, sig, confTag)

*unframe-commit(G, c0)
1 : parse (groupid, epoch, id𝑐 , contType,𝐶0, sig, confTag) ← c0

2 : req contType = ‘commit’ ∧ groupid = G.groupid

∧ epoch = G.epoch

3 : comCont← (G.groupCont-wInterim(), id𝑐 , ‘commit’,𝐶0)
4 : svk𝑐 ← G.member[id𝑐 ] .svk
5 : req G.member[id𝑐 ] ≠ ⊥

∧ SIG.Verify(ppSIG, svk𝑐 , sig, comCont)
6 : return (id𝑐 ,𝐶0, sig, confTag)

Figure 27: Helper function: Frame and unframe packets.
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E SECURITY OF CHAINED CMPKE
In this section we provide the full security proof of our proposed

protocol Chained CmPKE in App. D. We first explain the safe
predicate used within the ideal functionality FCGKA to exclude

trivial attacks. The full security proof is provided subsequently.

E.1 Safety Predicates
Whether security is guaranteed in a given node (i.e, epoch) is de-

termined via an explicit safe predicate on the node and the state

of the history graph. This is the same approach taken by prior

works [12, 13]. Here, in addition to the secrecy of the keys, the func-

tionality also implicitly formalizes authenticity by appropriately

disallowing injections.

The safety predicate, depicted in Fig. 28, is defined using recur-

sive deducing rules know(c, id) and know(c, ‘epoch’).
know(c, id): It indicates that the adversary knows id’s key ma-

terials (e.g., decryption key) at epoch c. It consists of four
conditions. Conditions (a) or (b) is true if id’s key materials

at epoch c are known to the adversary because they are ex-

posed at c (Condition (a)) or injected by the adversary at c
(Condition (b)). Conditions (c) and (d) reflect the fact that id’s
key materials will not change unless id commits, updates, is

added, or is removed. If c does not change id’s key materials,

know(c, id) implies know(Node[c] .par, id) (Condition (c)).

If a child c′ does not change id’s key materials, know(c, id)
implies know(c′, id) (Condition (d)).

know(c, ‘epoch’): It indicates that the adversary knows the epoch

secrets (e.g., confirmation key) except for the application

secret at epoch c. The adversary knows the epoch secrets if

it corrupts a party at c, or if it computes them from the cor-

rupted information. The latter is formalized by the *can-traverse
predicate, which consists of three conditions. First three con-

ditions of *can-traverse reflect the fact that the epoch se-

crets (or the joiner secret to bemore precise) can be computed

from welcome messages: Condition (a) is true if a committer

processes an injecting add proposals at c; Condition (b) is

true if the adversary corrupts the decryption key in the key

package used at c; and Condition (c) reflects the fact that the

joiner secret is leaked if its ciphertext is generated with bad

randomness. The last Condition (d) reflects the fact that the

epoch secrets are derived from the initial secret at c’s parent
node and the commit secret.

The safe predicate indicates that whether the adversary knows

the application secret at epoch c. Since the application secret is

leaked via a corruption query only if HasKey[id] = true (i.e., a

party did not output the application secret via Key query), safe
checks whether (∗, true) ∈ Node[c] .exp. On the other hand, the

other epoch secrets are always leaked when a party at c is corrupted.
Thus, know(c, ‘epoch’) simply checks Node[c] .exp ≠ ∅.

The sig-inj-allowed and mac-inj-allowed predicates concern

the authenticity of the signature and MAC, respectively. Since MAC

keys (i.e., membership key and confirmation key) are a part of the

epoch secrets, mac-inj-allowed is implied by know(c, ‘epoch’).
These two predicates are used in auth-invariant (see Fig. 19).

Condition (a) and (b) of auth-invariant reflect the fact that in-

jecting commit or proposal messages needs both a signing key of

the sender and the MAC key. Condition (c) of auth-invariant,
which was previously missing in [13], reflects the fact that injecting

welcome messages needs a signing key of the sender. Condition

(c) was implicitly handled by the simulator within the security

proof in [13], but we believe explicitly including this condition

makes the intuition of disallowing injection more clear in the ideal

functionality.

E.2 Security Statement
We restate our main theorem Thm. 4.1 that establishes the security

of Chained CmPKE. We provide an overview of the proof before

diving into the formal proof. Below, if we assume the CmPKE to

be only IND-CCA secure, then it satisfies adaptive security with

an exponential security loss, while if we assume the CmPKE to be

IND-CCA secure with adaptive corruption, then it satisfies adaptive

security with only a polynomial security loss.

Theorem E.1. Assuming that CmPKE is IND-CCA secure (resp.
with adaptive corruption) and SIG is sEUF-CMA secure, the Chained
CmPKE protocol selectively (resp. adaptively) securely realizes the
ideal functionality FCGKA, where FCGKA uses the safety predicate
from Fig. 28, in the (FAS, FKS,GRO)-hybrid model, where calls to the
hash function H, HKDF, andMAC are replaced by a call to the global
random oracle GRO.

Remark 1 (Modeling HKDF and MAC as Random Oracle).

Our proof relies on a variant of the generalized selective decryption

(GSD) security as in the prior works [9, 12, 13], and it requires that
HKDF.Expand and HKDF.Extract are modeled as a random oracle.
More precisely, the reduction is expected to be able to extract a valid
MAC secret key from the signature. To this end, we also model MAC
as a random oracle to incorporate the MAC function into the GSD
security.11 We consider that the MAC tag is the hash value of the
MAC key k and the message m, that is, tag := RO(k,m) where RO is
a random oracle.

Proof Overview. The high level structure of the proof is sim-

ilar to [12, 13] who considered the UC security of TreeKEM. The

main difference is due to the new safe predicate we introduce

in order to differentiate between two types of injection attacks:

one using signature schemes (see sig-inj-allowed in Fig. 19) and

the other using MAC (see mac-inj-allowed in Fig. 19). Previously,

these two types of injection attacks were handled within one hybrid

but we differentiate them in hope to make the proof more clear.

Below, we provide an overview of the six hybrids we consider to

establish security. We first consider the real world, denoted as Hy-

brid 1, where the environmentZ is interacting with the real parties

and the adversary A. (To be more precise,Z is interacting with a

simulator that internally runs all the real parties and adversary as

in the real world).

In Hybrid 2, we swap the ideal authentication and key service

(FAS, FKS) to their “ideal world” variant (F IW

AS
, F IW

KS
), which pro-

vides all the secret keys (i.e., secret keys of the signature scheme

and CmPKE scheme) to the simulator. Since these functionalities

11
Previous work [13] assumes the standard EUF-CMA security ofMAC, but did not

provide a concrete proof. It seems it would be difficult to prove UC security by only

assuming the standard EUF-CMA security ofMAC.

37



Knowledge of party’s secrets.

know(c, id) ⇐⇒
(a) (id, ∗) ∈ Node[c] .exp∨
(b) *secrets-injected(c, id)∨
(c) (Node[c] .par ≠ ⊥ ∧ ¬*secrets-replaced(c, id) ∧ know(Node[c] .par, id))∨
(d) ∃c′ : (Node[c′] .par = c ∧ ¬*secrets-replaced(c′, id) ∧ know(c′, id))
*secrets-injected(c, id) ⇐⇒
(a) (Node[c] .orig = id ∧ Node[c] .stat ≠ ‘good’)∨
(b) ∃p ∈ Node[c] .pro :

(Prop[p] .act = ‘upd’- ∗ ∧Prop[p] .orig = id ∧ Prop[p] .stat ≠ ‘good’)∨
(c) ∃p ∈ Node[c] .pro : (Prop[p] .act = ‘add’-id-svk ∧ svk ∈ Exposed)
*secrets-replaced(c, id) ⇐⇒
Node[c] .orig = id∨
∃p ∈ Node[c] .pro : Prop[p] .act ∈ { ‘add’-id-∗, ‘rem’-id } ∨
∃p ∈ Node[c] .pro : (Prop[p] .act = ‘upd’- ∗ ∧Prop[p] .orig = id)

Knowledge of epoch secrets.

know(c, ‘epoch’) ⇐⇒ Node[c] .exp ≠ ∅ ∨ *can-traverse(c)
*can-traverse(c) ⇐⇒
(a) ∃p ∈ Node[c] .pro : (Prop[p] .act = ‘add’-id-svk ∧ svk ∈ Exposed)∨
(b) *reused-welcome-key-leaks(𝑐)∨
(c) Node[c] .stat = ‘bad’ ∧ ∃p ∈ Node[c] .pro : Prop[p] .act = ‘add’- ∗ ∨
(d) (c = root∗ ∨ know(Node[c] .par, ‘epoch’))∧
∃(id, ∗) ∈ Node[c] .mem : know(c, id)

*reused-welcome-key-leaks(𝑐) ⇐⇒
∃id, p ∈ Node[c] .pro : Prop[p] .act = ‘add’-id- ∗ ∧
∃c𝑑 : c𝑑 is a descendant of c ∧ (id, ∗) ∈ Node[c𝑑 ] .exp∧
no node cℎ exists on c–c𝑑 path s.t. *secrets-replaced(cℎ, id) = true

Safe and can-inject.

safe(𝑐) ⇐⇒ ¬ ((∗, true) ∈ Node[c] .exp ∨ *can-traverse(c))
sig-inj-allowed(c, id) ⇐⇒ Node[c] .mem[id] ∈ Exposed
mac-inj-allowed(c) ⇐⇒ know(c, ‘epoch’)

Figure 28: The safety predicate for the Chained CmPKE.

are not accessible fromZ, one can think of these functions as being

simulated by S. In particular, this modification is only conceptual.

In Hybrid 3, we plug in a variant of the ideal functionality FCGKA
in betweenZ and the simulator, where the secrets are always set

by the simulator and injections are always allowed (i.e., whether

auth-invariant hold is never checked). This modification con-

cerns the consistency between the protocol states of each user id
and the history graph generated by the ideal functionality FCGKA.
For instance, if id1 and id2 are assigned to the same node in the

history graph, that is Ptr[id1] = Ptr[id2], then we want their views

in the real protocol to be identical, e.g., they agree on the same

group member and group secret. Moreover, this hybrid establishes

the correctness of the protocol.

In Hybrid 4, wemodify the sig-inj-allowed predicate to be those
used by the actual ideal functionality FCGKA. This establishes that
an adversary cannot inject a malicious message that amounts to

breaking the security of the signature scheme.

In Hybrid 5, we modify the mac-inj-allowed predicate to be

consistent with those used by the actual ideal functionality FCGKA.
This establishes that an adversary cannot inject a malicious message

without knowing the MAC keys. As in most previous proofs [9,

12, 13], we rely on a variant of the generalized selective decryption
(GSD) security, which we formally introduce as the Chained CmPKE
conforming GSD security in App. F. At a high level, the GSD security

extracts the essence of the secrecy guarantee of the group secret

and simplifies the proof. In this part, we first prove that ifZ can

distinguish between Hybrids 4 and 5, then it can be used to break

the Chained CmPKE conforming GSD security. We then show in

App. F that no efficient adversary can break the Chained CmPKE
conforming GSD security assuming the security of CmPKE, which
proves that Hybrids 4 and 5 remain the same in the view ofZ. We

note that the variant of GSD security we introduce in this work

is much more tailored to the CGKA setting than those previously

considered and allows for a much simpler proof.

In Hybrid 6, we use the original safe predicate to be those used

by the actual ideal functionality FCGKA. This establishes that the
application secret looks random as long as safe is true for the epoch.
We prove that ifZ can distinguish between Hybrids 5 and 6, then it

can be used to break the Chained CmPKE conforming GSD security

of CmPKE. At this point, the functionality that sits betweenZ and

the simulator is exactly FCGKA, thus we complete the proof. □

Proof. We nowprovide amore formal proof of the above overview.

Below, we use a sequence of hybrids explained above. We gradually

modify the behavior of the simulator and denote the simulator in

Hybrid 𝑖 as S𝑖 . The first (resp. last) hybrid provides the environ-

ment Z the view of the real (resp. ideal) world. Below, when we

say “the simulator aborts”, we mean that the simulator terminates

the simulation and does not respond to further queries made by

the environmentZ.

Hybrid 1. This is the real world, wherewemake a syntactic change.

We consider a simulator S1 that interacts with a dummy

functionality F
dummy

and (FAS, FKS). Fdummy
sits between

the environmentZ and S1, and simply routs all messages

without any modification. S1 internally runs the real-world

parties and adversary A by routing all messages sent from

F
dummy

, which corresponds to those fromZ.

Hybrid 2. This change concerns the authentication and key ser-

vice. In this world, (FAS, FKS) is replaced with (F IW

AS
, F IW

KS
).

Since these functions are not accessible by Z, this modi-

fication is undetectable from Z. Hence, the view of Z in

Hybrid 1 and Hybrid 2 are identical.
12

12
Since (FAS, FKS) are local functions, we can instead simply assume that the simulator

simulates these functionalities rather than replacing them. We use (FIW
AS
, FIW

KS
) to be

consistent with the presentation provided in [13].
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Hybrid 3. This change concerns consistency guarantees. We re-

place F
dummy

with a variant of FCGKA, denoted as FCGKA,3,
where safe (resp. sig-inj-allowed and mac-inj-allowed)
always returns false (resp. true). In other words, all appli-

cation secrets are set by the simulator and injections are

always allowed. The simulator S3 sets all messages and keys

according to the protocol.

Hybrid 4. This change concerns the security of the signature scheme.

We furthermodifyFCGKA,3 to use the original sig-inj-allowed
predicate, denoted as FCGKA,4. FCGKA,4 halts if a message is

injected even if the sender’s signing key is not exposed. The

simulator S4 is identical to S3.

Hybrid 5. This change concerns the security of the MAC. We fur-

ther modify FCGKA,4 to use the original mac-inj-allowed
predicate, denoted as FCGKA,5. FCGKA,5 halts if a proposal or
commit message is injected even if the corresponding MAC

key is not exposed. The simulator S5 is identical to S4.

Hybrid 6. This change concerns the confidentiality of application

secrets. We further modify FCGKA,5 where it uses the origi-

nal safe predicate, denoted as FCGKA,6. The simulator S6 is

identical to S5 except that it sets only those application se-

crets for which safe is false. This functionality corresponds

to the ideal functionality FCGKA.
We show indistinguishability of Hybrids 2 to 6 in Lems. E.2, E.15,

E.19 and E.29. This completes the proof of the main theorem. □

E.3 From Hybrid 2 to 3: Lem. E.2
To show Lem. E.2, we first consider additional hybrids (Hybrids 2-1

to 2-7) in between Hybrids 2 and 3 and show that each adjacent

hybrids are indistinguishable. The most technically involved proof

is showing the indistinguishability of Hybrids 2-4 and 2-5. All other

hybrids are simply provided to make the proof between Hybrids

2-4 and 2-5 readable by taking care of subtleties such as decryption

error, collisions in random oracles, and so on. Namely, for those

interested readers, we believe it would be informative to check the

proof between Hybrids 2-4 and 2-5 (Lem. E.5) before checking the

other hybrids.

E.3.1 Intermediate Hybrids. Here, we first provide the additional
hybrids.

Hybrid 2-0 := Hybrid 2. This is identical to Hybrid 2.

Hybrid 2-1. [No collision in RO] This change concerns the col-

lision resistance of the random oracle. Recall that all queries

regarding the hash function H is simulated using the (global)

random oracle. In this hybrid, we consider a simulator S2-1

that aborts when a collision ever occurs in the random oracle.

SinceZ only makes at most polynomially many queries, this

makes negligible change to the view ofZ. Hence, the view

ofZ in Hybrid 2-0 and Hybrid 2-1 are negligibly different.

Hybrid 2-2. [Unique confTag/membTag in 𝐿prop/𝐿com/𝐿wel ] This

concerns the uniqueness ofmembTag included in a proposal

message and the uniqueness of confTag included in com-

mit and welcome messages. We consider a simulator S2-2

defined exactly as S2-1 except that it maintains three lists

𝐿prop, 𝐿com, and 𝐿wel all initially set to ∅ and performs the

following additional checks.

Checks regarding 𝐿prop . Let G be the protocol state of party

id before being invoked by S2-2. There are three checks

S2-2 performs. First, when S2-2 invokes party id on input

(Propose, act), if id outputs a proposal message p, then S2-2

extracts membTag included in p (which is guaranteed to

exist) and checks if there exists an entry (p′,membKey,
membTag) ∈ 𝐿prop such that (p′,membKey) ≠ (p,G.membKey).
If so S2-2 aborts. Otherwise it updates the list 𝐿prop +← (p,
G.membKey,membTag). Second, when S2-2 invokes party

id on input (Commit, ®p, svk), if id outputs non-⊥, then S2-2

extracts membTag included in each p ∈ ®p (which is guar-

anteed to exist) and performs the same procedure above

for each p. Finally, when S2-2 invokes party id on input

(Propose, c0, ĉ, ®p), if id outputs non-⊥, then S2-2 extracts

membTag included in each p ∈ ®p (which is guaranteed to

exist) and performs the same procedure above for each p.
Checks regarding 𝐿com . Let G be the protocol state of party

id after being invoked byS2-2. There are two checksS2-2 per-

forms. First, when S2-2 invokes party id on input (Commit, ®p,
svk), if id outputs (c0, ®c,𝑤0, ®𝑤), then S2-2 extracts confTag
included in c0 (which is guaranteed to exist). Moreover, let

G′ = G.pendCom[c0]. Then, S2-2 checks if there exists an

entry (c′
0
, confKey, confTransHash, confTag) ∈ 𝐿com where

we have (c′
0
, confKey, confTransHash) ≠ (c0,G′.confKey,

G′.confTransHash). If so S2-2 aborts, and otherwise it up-

dates the list 𝐿com +← (c0,G′.confKey,G′.confTransHash,
confTag). Second, whenS2-2 invokes party id on input (Propose,
c0, ĉ, ®p), if id outputs non-⊥, then S2-2 extracts confTag in-
cluded in c0 (which is guaranteed to exist) and checks if there

exists an entry (c′
0
, confKey, confTransHash, confTag) ∈ 𝐿com

where (c′
0
, confKey, confTransHash) ≠ (c0,G.confKey,G.

confTransHash). If soS2-2 aborts. Otherwise it updates𝐿com +←
(c0,G.confKey,G.confTransHash, confTag).
Checks regarding 𝐿wel . Let G be the protocol state of party

id after being invoked byS2-2. There are two checksS2-2 per-

forms. First, when S2-2 invokes party id on input (Commit, ®p,
svk), if id outputs (c0, ®c,𝑤0, ®𝑤), thenS2-2 parses𝑤0 as (groupInfo,
T, sig) and extracts confTag included in groupInfo (which

is guaranteed to exist). Moreover, let G′ = G.pendCom[c0].
It then checks if there exists an entry (groupInfo, confKey,
confTransHash, confTag) ∈ 𝐿wel where (groupInfo′, confKey,
confTransHash) ≠ (groupInfo,G′.confKey,G′.confTransHash).
If so S2-2 aborts and otherwise it updates the list 𝐿wel +←
(groupInfo,G′.confKey,G′.confTransHash, confTag). Second,
when S2-2 invokes party id on input (Join,𝑤0,𝑤), if id out-

puts non-⊥, thenS2-2 parses𝑤0 as (groupInfo, T, sig) and ex-
tracts confTag included in groupInfo and checks if there ex-

ists an entry (groupInfo, confKey, confTransHash, confTag) ∈
𝐿wel where (groupInfo′, confKey, confTransHash) ≠ (groupInfo,
G.confKey,G.confTransHash). If so S2-2 aborts. Otherwise

it updates𝐿wel +← (groupInfo,G.confKey,G.confTransHash,
confTag).
Checks regarding 𝐿com and 𝐿wel . Every time S2-2 updates

𝐿com or𝐿wel, it checks if there exists (c0, confKey, confTransHash,
confTag) ∈ 𝐿com and (groupInfo, confKey′, confTransHash′,
confTag′) ∈ 𝐿wel such that confTag = confTag′ but (id𝑐 , confKey,
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confTransHash) ≠ (id′𝑐 , confKey′, confTransHash′), where
id𝑐 and id′𝑐 are the (purported) user identity included in c0

and groupInfo, respectively. If so, S2-2 aborts.

We show in Lem. E.3 that Hybrid 2-1 and Hybrid 2-2 are

indistinguishable toZ assuming collision resistance ofMAC.
Hybrid 2-3. [Unique c0 with good randomness] This concerns

the uniqueness of a commit message with good random-

ness. Assume party id outputs (c0, ®c,𝑤0,𝑤) (where possibly
(𝑤0,𝑤) = (⊥,⊥)) on input (Commit, ®p, svk), whereRandCor[id] =
‘good’. Let G′ = G.pendCom[c0] and G be the protocol state

after being invoked by S2-2. We consider a simulator S2-3

that aborts if the same (c0,G′.confKey,G′.confTransHash)
is already included in 𝐿com. Recall that in the previous hy-

brid, we did not abort in case the same entry was found. S2-3

is otherwise defined identically to S2-2.

Now, in case RandCor[id] = ‘good’, due to the ciphertext-

spreadness ofCmPKE (see Def. B.1), c0 has high min-entropy.

Therefore, the probability of c0 already being in 𝐿com is neg-

ligibly small. Hence, Hybrid 2-2 and Hybrid 2-3 are indistin-

guishable toZ.

Hybrid 2-4. [Consistency of no-join] This concerns the consis-

tency of confTag included in commit and welcome messages.

Assume party id outputs (c0, ®c,⊥,⊥) on input (Commit, ®p, svk).
That is, there are no newly added members to the group. If

any party id′ ever correctly processes (Join,𝑤0,𝑤) (i.e., id′
outputs (id𝑐 ,mem)) and 𝑤0 includes the same confTag as

the one included in c0, then S2-4 aborts. Otherwise, S2-4 is

identical to the previous simulator. Informally, this implies

that confTag implicitly commits to the information of the

group members and if confTag was generated as a result of

no new additions, then confTag cannot be used as a welcome

message. We show in Lem. E.4 that Hybrid 2-3 and Hybrid

2-4 are indistinguishable toZ assuming collision resistance

ofMAC.
Hybrid 2-5. [Adding consistency checks] This change concerns

consistency guarantees. We replace F
dummy

with a variant of

FCGKA, denoted asFCGKA,2-5, where safe (resp. sig-inj-allowed
andmac-inj-allowed) always returns false (resp. true), and
the correctness conditions *succeed-com, *succeed-proc,
and *succeed-wel always output false. In other words, all

application secrets are set by the simulator, injections are

always allowed, and the protocol does not need to satisfy cor-

rectness. However, the simulator S2-5 does set all messages

and keys according to the protocol. We show in Lem. E.5

that Hybrid 2-4 and Hybrid 2-5 are identical.

Hybrid 2-6. [No correctness error] This change concerns the

correctness of the signature scheme and encryption scheme.

We replace FCGKA,2-5 with FCGKA,2-5, where the only dif-

ference is that the correctness conditions *succeed-com,
*succeed-proc, and *succeed-wel defined as those in the

ideal functionality FCGKA. At a high level, these correct-

ness conditions guarantee that if the real protocol is run as

expected, then there should be no correctness error. More-

over, this should hold true even if bad randomness is used.
13

13
Unlike classical schemes (e.g., ElGamal encryption), there are correctness errors in

post-quantum schemes such as those based on lattices. Looking ahead, we argue that

no adversary can find a bad randomness that leads to a correctness error by requiring

We show in Lem. E.14 that Hybrid 2-5 and Hybrid 2-6 are

identical.

Hybrid 2-7 := Hybrid 3. [Removing abort conditions] This is

identical to Hybrid 3. The only difference between Hybrid

2-6 is that the simulator S2-7 = S3 no longer aborts the

simulation. Specifically, we remove all the abort condition

checked by the simulator that was introduced from moving

to Hybrid 2-0 to 2-5. Using the same arguments to move

through Hybrid 2-0 to Hybrid 2-5, Hybrid 2-6 and Hybrid

2-7 remains indistinguishable.

E.3.2 From Hybrid 2 to 3: Proof of main Lem. E.2. The following is

the main lemma of this section which proves indistinguishability

between Hybrid 2 and 3. The proof is a direct consequence of the

argument made in App. E.3.1 and the subsequent Lems. E.3 to E.5.

Lemma E.2. Hybrid 2 and Hybrid 3 are indistinguishable assuming
the collision resistance ofMAC, the correctness of CmPKE and SIG,
and the ciphertext-spreadness of CmPKE.

E.3.3 From Hybrid 2-1 to 2-2: Proof of Lem. E.3.

Lemma E.3. Hybrid 2-1 and Hybrid 2-2 are indistinguishable as-
sumingMAC is collision resistant.

Proof. We first consider the case S2-2 aborts while checking

the list 𝐿prop. S2-2 checks the list during either a propose, commit,

or process query. Assume S2-2 was invoking party id on a propose

query. By correctness of the propose protocol, if id outputs p =

(groupid, epoch, id, ‘proposal’, P, sig,membTag), then we have the

following

• G.groupid = groupid;
• G.epoch = epoch;
• G.groupCont() = (G.groupid,G.epoch,

G.memberHash,G.confTransHash);
• membTag = MAC.TagGen(G.membKey,

(G.groupCont(), id, ‘proposal’, 𝑃, sig)),
where recall G is the protocol state of id. Notice that the entire

description of p is included as a message ofmembTag. Then if there

exists (p′,membKey′) ≠ (p,G.membKey) then it can be used to

break collision resistance of MAC. The proof for the other cases
where S2-2 was invoking party id on a commit or process query is

identical to the above. Therefore, assuming collision resistance of

MAC, the abort condition regarding 𝐿prop cannot occur.

We next consider the case S2-2 aborts while checking the list

𝐿com. S2-2 checks the list during either a commit or process query.

Assume S2-2 was invoking party id on a commit query. By correct-

ness of the commit protocol, if id outputs c0 = (groupid, epoch,
id𝑐 , ‘commit’,𝐶0 = (propIDs, kp, T), sig, confTag), then we have

the following

• G′.groupid = G.groupid = groupid;
• G′.epoch = G.epoch + 1 = epoch + 1;

• G′.confTransHash-w.o-‘idc’ = H(G.interimTransHash,
(G.groupid, epoch, ‘commit’,𝐶0, sig));

• G′.confTransHash = H(G′.confTransHash-w.o-‘idc’, id𝑐 );

the underlying cryptographic primitives to expand the randomness through a hash

function model as a random oracle. Concretely, the adversary can only control the

random seed, which is then expanded via a hash function (or more precisely a PRG)

modeled as a random oracle.
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• G′.groupCont() = (G′.groupid,G′.epoch,
G′.memberHash,G′.confTransHash);

• G′.confKey = H(G′.joinerSecret,G′.groupCont(), ‘conf’);
• confTag = MAC.TagGen(G′.confKey,G′.confTransHash);

where recall G′ is the pending protocol state of id included in

G.pendCom[c0]. Due to the modification we made in Hybrid 2-

1 [No collision in RO], c0 is the unique commitment that leads to

G′.confKey. Namely, for any (c′
0
, confKey, confTransHash, confTag) ∈

𝐿com, we have confKey ≠ G′.confKey if c′
0
≠ c0. Then, regardless

of c′
0
≠ c0 or c′

0
= c0, we would have (confKey, confTransHash) ≠

(G′.confKey,G′.confTransHash). Hence, the abort condition in

𝐿com does not occur. The proof for the other case where S2-2 was

invoking party id on a process query is identical to the above, where
the only difference is that G′ is the updated protocol state of id
rather then the pending protocol state. Therefore, assuming colli-

sion resistance ofMAC, the abort condition regarding 𝐿com cannot

occur.

We next consider the case S2-2 aborts while checking the list

𝐿wel. S2-2 checks the list during either a commit or join query.

Assume S2-2 was invoking party id on a commit query. Then, by

correctness of the commit protocol, if id outputs𝑤0 = (groupInfo =

(groupid, epoch,memberPublicInfo,memberHash, confTransHash
-w.o.-‘id𝑐 ’, confTransHash, interimTransHash, confTag, id𝑐 ), T, sig)
then we have the above listed relations considered during 𝐿com.

Notice due to themodificationwemade inHybrid 2-1 [No collision in
RO], (groupid, epoch,memberHash, confTransHash-w.o-‘idc’, id𝑐 )
is the unique pair that leads to a valid memberPublicInfo and

interimTransHash14, where recallmemberHash is set via the helper
function *derive-member-hash (see Fig. 25). This in particular

implies for any (groupInfo′, confKey, confTransHash, confTag) ∈
𝐿wel, we have confKey ≠ G′.confKey if groupInfo′ ≠ groupInfo.
Then, regardless of groupInfo′ ≠ groupInfo or groupInfo′ = groupInfo,
we have (confKey, confTransHash) ≠ (G′.confKey,G′.confTransHash).
Hence, the abort condition in 𝐿wel does not occur. The proof for

the other case where S2-2 was invoking party id on a join query is

identical to the above. Therefore, assuming collision resistance of

MAC, the abort condition regarding 𝐿wel cannot occur.

We finally consider the case S2-2 aborts while checking both of

the lists 𝐿com and 𝐿wel. It is clear that we cannot have confTag =

confTag′while (confKey, confTransHash) ≠ (confKey′, confTrans
Hash′) since this can be directly used to break collision resistance

of MAC. However, recall confTransHash is created by hashing

confTransHash-w.o-‘idc’ and id𝑐 . Therefore, due to the modifica-

tion we made in Hybrid 2-1 [No collision in RO], id𝑐 and id′𝑐 must be

the same as well. This establishes (id𝑐 , confKey, confTransHash)
= (id′𝑐 , confKey′, confTransHash′).

This completes the proof. □

E.3.4 From Hybrid 2-3 to 2-4: Proof of Lem. E.4.

Lemma E.4. Hybrid 2-3 and Hybrid 2-4 are indistinguishable as-
sumingMAC is collision resistant.

Proof. Let Gid and G′id′ be the protocol states of id and id′ after
they execute the commit and join query, respectively. Moreover, let

G′id be the pending protocol state stored in Gid .pendCom[c0]. Then,
14
Here, we explicitly rely on the new confTransHash-w.o-‘idc’ satisfying

confTransHash = H(confTransHash-w.o-‘idc’, id𝑐 ) .

by the correctness of the protocol, since the commit c0 created by id
does not include new parties, we must have G′id .memberIDsvks() ≠
G′id′ .memberIDsvks(). Then, due to the modification we made in

Hybrid 2-1 [No collision in RO] and taking into consideration of how
confKey is generated, we must have G′id .confKey ≠ G′id′ .confKey.
However, this cannot happen since otherwise S2-4 can break colli-

sion resistance ofMAC by outputting (G′id .confKey,G
′
id .confTransHash,

G′id′ .confKey,G
′
id′ .confTransHash, confTag).

This completes the proof. □

E.3.5 From Hybrid 2-4 to 2-5: Proof of Lem. E.5. This is the techni-
cally most involved lemma which checks the consistency between

the real protocol and the ideal protocol. The proof consists of three

parts: we first formally define the behavior of simulator S2-5 in

Hybrid 2-5 (see Part 1); we then provide supporting propositions

that establish consistencies between the protocol states and the

history graph (see Part 2); finally, using the supporting propositions,
we analyze the simulation provided by S2-5 provides an identical

view toZ as in Hybrid 2-4 (see Part 3).

Part 1. Description of the Simulator S2-5.Throughout the hybrid,S2-5

creates the same history graph created within FCGKA,2-5. That is, it
initializes Ptr[∗], Node[∗], Prop[∗], and so on and maintains the

same view as FCGKA,2-5. Moreover, throughout this hybrid, we aug-

ment the protocol state G of party id to also maintain the values

presented in Tab. 9. Although these values are deleted once the

protocol state is updated in the real protocol, e.g., after processing

a process query, we can keep these without loss of generality as

they are never provided to the environment Z or the adversary

A. In particular, they will simply be helpful objects to discuss the

consistency of the simulation.

The description of S2-5 consists of how it answers each queries

made by the ideal functionality FCGKA,2-5. Here, note that any

queries made byZ to S2-5 will be simply relayed to the internally

simulated A. Moreover, S2-5 aborts the simulation whenever any

of the checks we included in Hybrids 2-1 to 2-5 are triggered.

(1) Create query from idcreator. This concerns the case whenZ
queries (Create, svk) to FCGKA,2-5. If FCGKA,2-5 outputs (Create,
idcreator, svk) to S2-5, S2-5 simply runs the simulated party idcreator
on input (Create, svk).
(2) Propose query from id. This concerns the case whenZ queries

(Propose, act) for some act ∈ { ‘upd’-svk, ‘add’-id𝑡 , ‘rem’-id𝑡 } to
FCGKA,2-5. If Ptr[id] ≠ ⊥, thenFCGKA,2-5 outputs (Propose, id, act)
toS2-5.S2-5 then runs the simulated party id on input (Propose, act),
where it asks A to provide the randomness to run party id if

RandCor[id] = ‘bad’ and act = ‘upd’-svk. Here, recall random-

ness is only used to generate a new key package (kp, dk).15 If party
id returns ⊥, then S2-5 returns (ack := false,⊥,⊥) to FCGKA,2-5.
Otherwise, if id returns p, then S2-5 returns (ack := true, p, svk𝑡 ),
where a long-term key svk𝑡 ≠ ⊥ is extracted from p only when

act = ‘add’-id𝑡 .

(3) Commit query from id. This concerns the case when Z
queries (Commit, ®p, svk) toFCGKA,2-5. IfPtr[id] ≠ ⊥, thenFCGKA,2-5
15
As in prior works, note that A is only allowed to control the output of party id via

randomness corruption. This is to capture post-compromise security in a meaningful

way. We impose the same restriction when id is invoked on a commit query. See

[12, 13] for more details.
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outputs (Commit, id, ®p, svk) to S2-5. S2-5 then runs the simulated

party id on input (Commit, ®p, svk), where it asks A to provide

the randomness to run party id if RandCor[id] = ‘bad’. If party
id returns ⊥, then S2-5 returns (ack := false,⊥,⊥,⊥,⊥,⊥) to
FCGKA,2-5. Otherwise, if party id returns (c0, ®c,𝑤0, ®𝑤), then it checks
if Node[c0] = ⊥, 𝑤0 ≠ ⊥, and if there exists some rt ′ ∈ N
and 𝑤 ′

0
such that Wel[𝑤 ′

0
] = rootrt′ and 𝑤 ′

0
includes the same

confTag as 𝑤0. If so, S2-5 chooses any such (𝑤 ′
0
, rt ′) and returns

(ack := true, rt := rt ′, c0, ®c,𝑤0, ®𝑤) to FCGKA,2-5. As we show in

Proposition E.6 below, such for any such pair, the value of rt ′ is
unique. Otherwise, if either Node[c0] ≠ ⊥; or 𝑤0 = ⊥; or there
does not exist 𝑤 ′

0
such that Wel[𝑤 ′

0
] = rootrt′ for some rt ′ ∈ N

and𝑤 ′
0
includes the same confTag as𝑤0, then S2-5 returns (ack :=

true, rt := ⊥, c0, ®c,𝑤0, ®𝑤) to FCGKA,2-5. Finally, when FCGKA,2-5
queries (Propose, p) to S2-5 during the *fill-prop check, S2-5

extracts the unique orig = id and act included in p (which are guar-

anteed to exist when commit succeeds in the real protocol) and

returns them to FCGKA,2-5.

(4) Process query from id. This concerns the case whenZ queries

(Process, c0, ĉ, ®p) to FCGKA,2-5. If Ptr[id] ≠ ⊥, then FCGKA,2-5 out-

puts (Process, id, c0, ĉ, ®p) toS2-5.S2-5 then (deterministically) runs

the simulated party id on input (Process, c0, ĉ, ®p). If party id returns
⊥, then S2-5 returns (ack := false,⊥,⊥,⊥) to FCGKA,2-5. Other-
wise, if party id returns (id𝑐 , upd∥rem∥add), then S2-5 checks if

Node[c0] = ⊥ and if there exists𝑤0 that includes the same confTag
as c0 such that Wel[𝑤0] = rootrt′ for some rt ′ ∈ N. If so, S2-5

chooses any such (𝑤0, rt ′) and returns (ack := true, rt := rt ′,⊥,⊥)
to FCGKA,2-5. As we show in Proposition E.6 below, such for any

such pair, the value of rt ′ is unique. If Node[c0] = ⊥ and no

such𝑤0 exists, then S2-5 retrieves the associating long-term public

key svk𝑐 of id𝑐 (which is guaranteed to exist when process suc-

ceeds in the real protocol) and returns (ack := true,⊥, orig′ :=

id𝑐 , svk′ := svk𝑐 ). Finally, if Node[c0] ≠ ⊥, then S2-5 simply re-

turns (ack := true,⊥,⊥,⊥). *fill-prop queries from FCGKA,2-5
to S2-5 are answered exactly as in commit queries described above.

(5) Join query from id. This concerns the case whenZ queries

(Join,𝑤0,𝑤) to FCGKA,2-5. If Ptr[id] = ⊥, then FCGKA,2-5 outputs

(Join, id,𝑤0,𝑤) toS2-5.S2-5 then (deterministically) runs the simu-

lated party id on input (Join,𝑤0,𝑤). If party id returns⊥, thenS2-5

returns (ack := false,⊥,⊥,⊥) to FCGKA,2-5. Otherwise, if party id
returns (id𝑐 ,mem), wheremem is a list of (id, svk)-tuples, thenS2-5

checks ifWel[𝑤0] ≠ ⊥. If so, S2-5 returns (ack := true,⊥,⊥,⊥) to
FCGKA,2-5. Otherwise, it checks if there exists a non-root c0 such

that Node[c0] ≠ ⊥ and c0 includes the same confTag as the one

included in 𝑤0. Due to the modification we made in Hybrid 2-

2 [Unique confTag in 𝐿com] and by how S2-5 simulates the commit

and process query (see above (4) and (5)), such c0 is unique if it exists.

Now, if such c0 exists, thenS2-5 returns (ack := true, c′
0

:= c0,⊥,⊥).
Otherwise, if no such c0 exists, then S2-5 further checks if there

exists𝑤 ′
0
such thatWel[𝑤 ′

0
] ≠ ⊥ that includes the same confTag as

the one included in𝑤0. If so, S2-5 chooses any such𝑤 ′
0
and returns

(ack := true, c′
0

:= Wel[𝑤 ′
0
],⊥,⊥). As we show in Proposition E.6

below, the value ofWel[𝑤 ′
0
] (which can either be a non-root or a de-

tached root) is the same for all such𝑤 ′
0
. Finally, if no such c0 or𝑤

′
0
ex-

ist, then S2-5 returns (ack := true,⊥, orig′ := id𝑐 ,mem′ := mem).

This corresponds to the caseWel[𝑤0] is initialized by rootrt for a
new rt ∈ N.
(6) Key query from id. This concerns the case when Z queries

Key to FCGKA,2-5. If Ptr[id] = c0 ≠ ⊥, HasKey[id] = true, and
Node[Ptr[id]] .key = ⊥, then FCGKA,2-5 outputs (Key, id) to S2-5.

(Recall that safe is always set to false in this hybrid.) IfHasKey[id] =
true, S2-5 must have invoked party id on input either a valid

(c0, ĉ, ®p) corresponding to a process query or (𝑤0,𝑤) corresponding
to a join query. In either case, the simulated party id is guaranteed

to have computed a valid appSecret which is stored in its protocol

state G (i.e., G.appSecret). Thus, S2-5 returns key := G.appSecret
to FCGKA,2-5.

With the simulator S2-5 formally defined, we are now ready to

prove the following lemma.

Lemma E.5. Hybrid 2-4 and Hybrid 2-5 are identical.

Proof. Part 2. Supporting Propositions.Directly proving that the
simulation provided by S2-5 creates an identical view to Z as in

the previous hybrid is quite complex and possibly unreadable. To

this end, we provide several supporting propositions that check the

consistency within and between the history graph and protocol

states maintained by S2-5 (and the ideal functionality FCGKA,2-5).
The interested readers may first skim through Part 3 to check how

the supporting propositions are used. Looking ahead, we are able

to prove that cons-invariant in Fig. 19 as a simple corollary of

the propositions we prove in Part 2.
Part 2-1. Basic checks within/between history graphs and protocol
states. The following shows that informally, if two𝑤0 and𝑤 ′

0
share

the same confTag, then their corresponding nodes Wel[𝑤0] and
Wel[𝑤 ′

0
] must be assigned to the same non-root or a detached root.

This shows that the confTag included in the welcome message

𝑤0 commits the added users to be in the same group state (or

equivalently to the same node in the history graph). Roughly, if this

does not hold, then the environment can distinguish between the

previous hybrid by causing an inconsistency in the history graph

between parties that should belong to the same node Node[c0].

Proposition E.6 (Uniqeness of confTag in welcome mes-

sage). If two distinct𝑤0 and𝑤 ′
0
that include the same confTag sat-

isfyWel[𝑤0] ≠ ⊥ andWel[𝑤 ′
0
] ≠ ⊥, then we must haveWel[𝑤0] =

Wel[𝑤 ′
0
].

Proof. Let us prove by contradiction. Assume we have two

distinct𝑤0 and𝑤 ′
0
that include the same confTag but either of the

following four cases hold:

(1) (Wel[𝑤0],Wel[𝑤 ′
0
]) = (rootrt , rootrt′) for some distinct rt

and rt ′ ∈ N;
(2) (Wel[𝑤0],Wel[𝑤 ′

0
]) = (c0, rootrt′) for some rt ′ ∈ N and

non-root c0;

(3) (Wel[𝑤0],Wel[𝑤 ′
0
]) = (rootrt , c′

0
) for some rt ∈ N and non-

root c′
0
;

(4) (Wel[𝑤0],Wel[𝑤 ′
0
]) = (c0, c′

0
) for some distinct non-roots

c0 and c′
0
.

Note that by construction Wel[𝑤0] or Wel[𝑤 ′
0
] is never attached

to the main root root0 so we can safely discard this case. Below

we assume Wel[𝑤 ′
0
] is set before Wel[𝑤0] and further assume that
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all other 𝑤 ′′
0

with the same confTag as 𝑤 ′
0
satisfies Wel[𝑤 ′

0
] =

Wel[𝑤 ′′
0
] and are set after Wel[𝑤 ′

0
] is set. Namely, we assume with-

out loss of generality that Wel[𝑤 ′
0
] is the first to be created and𝑤0

to be the first welcome message that forms the contradiction.

Case (1) and (2): Wel[𝑤 ′
0
] = rootrt′ . ObserveWel[𝑤 ′

0
] is only set to

a detached root rootrt′ during a join query. Moreover, by how S2-5

simulates the join query, at the point when Wel[𝑤 ′
0
] is set, there

does not exist a non-root c0 such thatNode[c0] ≠ ⊥ and c0 includes

the same confTag as𝑤 ′
0
. Belowwe consider the timing thatWel[𝑤0]

is set, which can be either during a commit or a join query.

Let us consider the former case. NoticeWel[𝑤0] cannot be set to
a detached root during a commit query due to the *attach function
in the ideal commit protocol. Hence, since Case (1) cannot occur,
we only consider Case (2), that is,Wel[𝑤0] = c0. We have two cases,

Node[c0] = ⊥ or not right beforeWel[𝑤0] = c0 is set. In the former

case, due to how S2-5 simulates the commit query, Wel[𝑤0] and
Wel[𝑤 ′

0
] are assigned to the same node c0. Hence, Case (2) cannot

occur. In the latter case, if Node[c0] was already set, then due to

the modification we made in Hybrid 2-2 [Unique confTag in 𝐿com],
Node[c0] must have been set during a process query. However, due

to *attach function in the ideal process protocol, if this happends,

thenWel[𝑤 ′
0
] will be reattached to c0. Hence, Case (2) cannot occur

either. Summarizing so far,Wel[𝑤0] cannot be set during a commit

query.

Let us consider the latter case. We first consider Case (1), where
Wel[𝑤0] is set to rootrt . By observing how S2-5 simulates the join

query and by our assumption, Wel[𝑤0] must be set to Wel[𝑤 ′
0
].

Hence,Case (1) cannot occur. Next, considerCase (2), whereWel[𝑤0]
is set to c0. By how S2-5 simulates the join query, c0 must contain

the same confTag as𝑤 ′
0
and satisfyNode[c0] ≠ ⊥. However, consid-

ering that Node[c0] is set only during a commit or a process query,

it is clear that *attach function in the ideal commit or process pro-

tocols assigns Wel[𝑤 ′
0
] to c0, thus contradicting Wel[𝑤 ′

0
] = rootrt′ .

Hence, Case (2) cannot occur either.

Case (3). Observe Wel[𝑤0] is only set to a detached root rootrt
during a join query. Due to how S2-5 simulates the join query

and considering that Wel[𝑤0] is not set to a non-root, we must

have Wel[𝑤0] = Wel[𝑤 ′
0
]. However, this is a contradiction. Hence,

Case (3) cannot occur.

Case (4). Due to how S2-5 simulates the commit, process, and join

queries and by the definition of the *attach function in the ideal

commit or process protocols, the confTag included in𝑤0, c0,𝑤
′
0
, c′

0

are identical, where we also use the fact that 𝑤0 and 𝑤 ′
0
include

the same confTag. Moreover, due to the modification we made in

Hybrid 2-2 [Unique confTag in 𝐿com], we must have c0 = c′
0
if they

include the same confTag (and if S2-5 does not abort). However,

this is a contradiction. Hence, Case (4) cannot occur.
This completes the proof. □

Remark 2 (Differentwelcome messages for the same group).

Ideally, we might want a commit message c0 to be uniquely bound to
a single welcome message𝑤0 (i.e., if Wel[𝑤0] ≠ ⊥, then no other𝑤 ′

0

with the same confTag satisfiesWel[𝑤 ′
0
] ≠ ⊥). However, due to the

following concrete attack, Proposition E.6 is the best we can hope for.
Namely, users can be added to the same group by different welcome
messages. However, Proposition E.6 does guarantee that any different

welcome messages provide a consistent view of the group to the invited
users (i.e., Wel[𝑤0] = Wel[𝑤 ′

0
]).

(1) The adversaryA corrupts party id to obtain all secret informa-
tion and state. It then runs id “in the head” using randomness
rand it generated to obtain (c′

0
,𝑤 ′

0
).

(2) A modifies the signature sig′ attached to𝑤 ′
0
and creates an-

other valid signature sig′ on the same message, and creates a
modified but valid welcome message𝑤 ′

0
. (Note that unforge-

ability does not say anything when the secret signing key ssk
is leaked).

(3) A queries (Join,𝑤0, ∗) on some valid party id′. This sets
Wel[𝑤0] = rootrt for some rt ∈ N.

(4) A queries (Process, c′
0
, ∗) on some valid party id′′. This sets

attachesWel[𝑤0] to c′
0
. That is, we now have Node[c′

0
] ≠ ⊥

andWel[𝑤0] = c′
0
.

(5) Finally, A queries party id by setting RandCor[id] = ‘bad’
and using randomness rand. Since Node[c′

0
] ≠ ⊥,Wel[𝑤 ′

0
] is

newly created and set to c′
0
. Namely, we now have Wel[𝑤 ′

0
] =

c′
0
.

Next, we provide a proposition that informally states that if

some party id used 𝑤0 to join a group and Wel[𝑤0] is assigned
to a detached root, then a Node[c0] with the same confTag as

𝑤0 cannot yet exist in the history graph. In other words, if such

Node[c0] exists, then any 𝑤0 with the same confTag should be

assigned to c0, i.e.,Wel[𝑤0] = c0.

Proposition E.7 (Consistency of confTag in commit and

welcome messages). If Wel[𝑤0] = rootrt for some rt ∈ N, then
any non-root c0 such that Node[c0] ≠ ⊥ does not include the same
confTag as𝑤0.

Proof. The statement can be equally stated as, if Node[c0] ≠ ⊥,
then any 𝑤0 such that Wel[𝑤0] = rootrt for some rt ∈ N does

not include the same confTag as c0. Observe that the only place

Node[c0] for a non-root c0 is set is either during a commit or

process query. We provide the proof considering these two cases

individually.

First, assume Node[c0] for a non-root c0 is set during a commit

query. This means that some party id was invoked by S2-5 and

output some (c0, ®c,𝑤 ′
0
, ®𝑤 ′). There are two cases to consider:𝑤 ′

0
= ⊥

or𝑤 ′
0
≠ ⊥. In the former case, due to the modification we made in

Hybrid 2-5 [Consistency of no-join], there cannot exist any𝑤0 that

includes the same confTag as c0 butWel[𝑤0] ≠ ⊥. Therefore, the
statement holds as desired. In the latter case, we consider two more

cases: Wel[𝑤0] = rootrt was set before or after S2-5 invoked party

id. IfWel[𝑤0] = rootrt was set before S2-5 invoked party id, then
due to how S2-5 simulates the commit query, anyWel[𝑤0] attached
to a detached root must have been reattached to c0 via the *attach
function in the ideal commit protocol. Namely, there will not exist a

Wel[𝑤0] that is attached to a detached root so the statement holds

as desired. On the other hand,Wel[𝑤0] cannot be set to a detached
root after S2-5 invoked party id either. This is because due to how

S2-5 simulates the join query (which is the only placeWel[𝑤0] can
potentially be set to a detached root), if𝑤0 and c0 include the same

confTag, thenWel[𝑤0] is attached to c0. Therefore, the statement

holds in case Node[c0] is set during a commit query.
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Next, assume Node[c0] for a non-root c0 is set during a process

query. This means that some party id was invoked by S2-5 on input

(Process, c0, ĉ, ®p). Again, we consider two cases:Wel[𝑤0] = rootrt
was set before or after S2-5 invoked party id. If Wel[𝑤0] = rootrt
was already set before S2-5 invoked party id, then due to how S2-5

simulates the process query, anyWel[𝑤0] attached to a detached

root must have been reattached to c0 via the *attach function in

the ideal process protocol. Hence, the statement holds as desired.

The other case whenWel[𝑤0] was not set to a detached root before
S2-5 invoked party id is also identical to the above case. Therefore,

the statement holds in case Node[c0] is set during a process query

as well.

This concludes the proof. □

The following provides some useful equivalence relationships

between the protocol states and nodes maintained by the history

graph. Most of the relations are a simple consequence of the correct-

ness of the real protocol and we provide them mainly for reference.

Note that some relationships are not included in the following

since we either do not require them or because we need to prove

them. Specifically, Case C is missing many desirable consistency

relation checks such as Node[c0] .orig = id𝑐 and Node[c0] .mem =

G.memberIDsvks(). These relations are not simple consequence of

the real protocol and will be handled separately below.

Fact 1 (Existence of id in history graph). Let G ≠ ⊥ and
Gprev (possibly ⊥) be the current and previous protocol states16 of
party id that is internally simulated by S2-5, respectively. Then, if
Ptr[id] = c0, then one of the following three cases hold:

Case A: [c0 is the main root root0]
• id = idcreator;
• Gprev = ⊥;
• Node[root0] .orig = idcreator;
• Node[root0] .par = ⊥;
• Node[root0] .pro = ⊥;
• Node[root0] .mem = G.memberIDsvks()
• G.epoch = 0;
• G.confTransHash-w.o-‘idc’ = ⊥;
• G.confTransHash = ⊥;
• G.groupCont() = (G.groupid,G.epoch,

G.memberHash,G.confTransHash);
• G.confKey = H(G.joinerSecret,G.groupCont(), ‘conf’);
• G.membKey = H(G.joinerSecret,G.groupCont(), ‘memb’);
• G.appSecret = H(G.joinerSecret,G.groupCont(), ‘app’);
• G.interimTransHash = H(G.confTransHash, confTag).

Case B: [c0 is a detached root (i.e., c0 = rootrt for some rt ∈ N)]
There exists a𝑤0 of the form ((groupid, epoch,memberPublicInfo,
memberHash, confTransHash-w.o-‘idc’, confTransHash,
interimTransHash, confTag, id𝑐 ), T, sig) such that
• Wel[𝑤0] = rootrt ;
• Gprev = ⊥;
• Node[rootrt ] .orig = id𝑐 ;
• Node[rootrt ] .par = ⊥;

16
We assume the state is incremented (i.e., move from Gprev

to G) when processing

either a commitment or a welcome message. Therefore, even though the state is

updated after a commit in a strict sense, we view them as the same “current” state for

simplicity.

• Node[rootrt ] .pro = ⊥;
• Node[rootrt ] .mem = G.memberIDsvks();
• G.groupid = groupid;
• G.epoch = epoch;
• G.memberPublicInfo() = memberPublicInfo;
• G.memberHash = *derive-member-hash(G);
• G.memberHash = memberHash;
• G.confTransHash-w.o-‘idc’ = confTransHash-w.o-‘idc’;
• G.confTransHash = confTransHash;
• G.confTransHash = H(G.confTransHash-w.o-‘idc’, id𝑐 );
• G.interimTransHash = interimTransHash;
• G.groupCont() = (G.groupid,G.epoch,

G.memberHash,G.confTransHash);
• G.confKey = H(G.joinerSecret,G.groupCont(), ‘conf’);
• G.membKey = H(G.joinerSecret,G.groupCont(), ‘memb’);
• G.appSecret = H(G.joinerSecret,G.groupCont(), ‘app’);
• confTag = MAC.TagGen(G.confKey,G.confTransHash);
• G.confTag = confTag;
• G.interimTransHash = H(G.confTransHash, confTag).

Moreover, all such 𝑤0 agrees on every entry expect for (T, sig). In
particular, all such𝑤0 includes the same confTag.

Case C: [c0 is a non-root (i.e., c0 = (groupid, epoch, id𝑐 , ‘commit’,𝐶0 =

(propIDs, kp, T), sig, confTag))]
• for all p ∈ ®p = Node[c0] .pro, p is of the form (groupid, epoch, id𝑠 ,
‘proposal’, P, sig′,membTag) and satisfies
– G.groupid = groupid;
– Gprev .epoch = epoch;
– membTag = MAC.TagGen(Gprev .membKey,

(Gprev .groupCont(), id𝑠 , ‘proposal’, 𝑃, sig′));
– G.membTags = (membTag)membTag included in 𝑝 ∈ ®p ;
– propIDs = (H(p))p∈®p .
• G.groupid = Gprev .groupid;
• G.epoch = Gprev .epoch + 1 = epoch + 1;
• G.memberHash = *derive-member-hash(G);
• G.confTransHash-w.o-‘idc’ = H(Gprev .interimTransHash,

(groupid, epoch, ‘commit’,𝐶0, sig));
• G.confTransHash = H(G.confTransHash-w.o-‘idc’, id𝑐 );
• G.joinerSecret = H(Gprev .initSecret,G.comSecret);
• G.groupCont() = (G.groupid,G.epoch,

G.memberHash,G.confTransHash);
• G.confKey = H(G.joinerSecret,G.groupCont(), ‘conf’);
• G.membKey = H(G.joinerSecret,G.groupCont(), ‘memb’);
• G.appSecret = H(G.joinerSecret,G.groupCont(), ‘app’);
• confTag = MAC.TagGen(G.confKey,G.confTransHash);
• G.confTag = confTag;
• G.interimTransHash = H(G.confTransHash, confTag).

Proof. All the relations in Case A and Case C are a consequence

of the correctness of the real protocol. For the latter case, observe

that Node[c0] .pro is only set during a commit or a process query.

All the relations in Case B that do not concern Node[∗] is also a

consequence of the correctness of the real protocol.

We check the remaining conditions for Case B. First, observe that
the only place Node[rootrt ] for some rt ∈ N is set is during a join

query when S2-5 returns (ack := true,⊥, orig′ := id𝑐 ,mem′ :=

mem) to FCGKA,2-5. Here, id𝑐 is those included in 𝑤0. Then by
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the *create-root function in the ideal join protocol, we have

Node[rootrt ] = id𝑐 as desired. Moreover, observing that every

entry expect for (T, sig) in the welcome message 𝑤0 is used to

derive interimTransHash, the uniqueness of the remaining entries

are guaranteed due to the modification we made in Hybrid 2-1 [No
collision in RO]. □

The following is the main proposition of Part 2-1. It shows that
two parties are assigned to the same node in the history graph if

and only if they agree on the same group secrets. This allows us to

relate the consistency of history graph and protocol states.

Proposition E.8 (Consistency of protocol secrets and his-

tory graph). Let id and id′ be two parties such that Ptr[id] ≠ ⊥
and Ptr[id′] ≠ ⊥, and let Gid and Gid′ be their protocol states. Here,
id and id′ may be the same party from different epochs. Then, we have
Ptr[id] = Ptr[id′] if and only if either one of the following conditions
hold:
• Gid .confKey = Gid′ .confKey;
• Gid .membKey = Gid′ .membKey;
• Gid .appSecret = Gid′ .appSecret.

Proof. Let us first show the “if” direction of the statement. We

only show the case Gid .confKey = Gid′ .confKey as the other cases

can be proven identically. The proof heavily relies on the equality

relations provided in Fact 1. First, since we can assume there is no

collision in the hash function H due to the modification we made

in Hybrid 2-1 [No collision in RO], we have Gid .confTransHash =

Gid′ .confTransHash (which are included in groupCont()). Then,
this implies that Gid .confTag = Gid′ .confTag. In case Ptr[id] and
Ptr[id′] are both non-roots, then this implies that Ptr[id] and
Ptr[id′] both include the same confTag. Hence, by the modification

we made in Hybrid 2-2 [Unique confTag in 𝐿com and 𝐿wel], we have
Ptr[id] = Ptr[id′].

Now, let us consider the case Ptr[id] = rootrt for some rt ∈ N.
Then, since Ptr[id] is assigned to a detached root only during a

join query, there must exist𝑤0 such that Wel[𝑤0] = rootrt , where
𝑤0 includes Gid .confTag by the correctness of the protocol. Due

to Proposition E.7, there does not exist a non-root c0 such that

Node[c0] ≠ ⊥ but c0 includes Gid .confTag = Gid′ .confTag. This
implies that we must have Ptr[id′] = rootrt′ for some rt ′ ∈ N.
Then, by Proposition E.6, we have rt = rt ′ since there cannot exist
two𝑤0 and𝑤 ′

0
such thatWel[𝑤0] = rootrt ,Wel[𝑤 ′

0
] = rootrt′ , and

rt ≠ rt ′ that include the same confTag. Therefore, we also have

Ptr[id] = Ptr[id′] when they are assigned to detached roots.

It remains to show the “only if” direction of the statement. Again,

we only show the case Gid .confKey = Gid′ .confKey as the other

cases can be proven identically. Assume Ptr[id] = Ptr[id′]. In case

Ptr[id] = root0, then id = id′ = idcreator. Therefore, the statement

holds trivially. The case Ptr[id] = c0 for some non-root c0 holds as

a direct consequence of Fact 1. Finally, in case Ptr[id] = rootrt for
some rt ∈ N, then by Fact 1, any𝑤0 that satisfy the relations provide

in Case B produce the same confTag. Then due to the modification

we made in Hybrid 2-2 [Unique confTag in 𝐿wel], we must have

Gid .confKey = Gid′ .confKey. The case Ptr[id] = c0 for some non-

root c0 can be checked similarly to the case Ptr[id] = rootrt .
This completes the proof. □

Remark 3 (Implication of Ptr[id] = Ptr[id′]). Proposition E.8
only focuses on the group secrets since we wanted an “if and only if”
statement. However, if we only cared about the “only if” direction,
there is much more we can deduce from Ptr[id] = Ptr[id′]. Namely,
following the “only if” direction of the proof of Proposition E.8 and the
proof of Lem. E.3 to move from Hybrid 2-1 to 2-2, we can conclude that
if two parties id and id′ satisfy Ptr[id] = Ptr[id′], then they agree
on the same view of the group such as Gid .groupid = G.id′ .groupid
and Gid .memberIDsvks() = Gid′ .memberIDsvks() as expected. We
use this implication in Proposition E.11.

Part 2-2. Consistency of proposal messages. The following proposi-

tion establishes that if a party outputs or receives a proposal p
that already exists in the history graph (i.e., Prop[p] ≠ ⊥), then it

satisfies all the intuitive consistency checks.

Proposition E.9 (Consistency of existing proposal node).

Assume party id such thatPtr[id] ≠ ⊥ outputs p on input (Propose, act)
from S2-5, where p is of the form (groupid, epoch, id, ‘proposal’,
P, sig,membTag). Then, if Prop[p] ≠ ⊥, we have the following (af-
ter S2-5 receives an output from id but before it provides input to
FCGKA,2-5):
• Prop[p] .par = Ptr[id];
• Prop[p] .orig = id;
• Prop[p] .act = ‘upd’-svk if P = (‘upd’, kp); Prop[p] .act =

‘add’-id𝑡 -svk𝑡 if P = (‘add’, kp𝑡 ); or Prop[p] .act = ‘rem’-id𝑡
if P = (‘rem’, id𝑡 ), where svk and svk𝑡 are included in kp and
kp𝑡 , respectively.

Additionally, consider the following two cases:
• id outputs (c0, ®c,𝑤0, ®𝑤) on input (Commit, ®p, svk) from S2-5;
or
• id outputs (id𝑐 , upd∥rem∥add) on input (Process, c0, ĉ, ®p)
from S2-5.

For these two cases, we have the following (after S2-5 receives an
output from id but before it provides input to FCGKA,2-5):
• for all p ∈ ®p, p is of the form (groupid, epoch, id𝑠 , ‘proposal’,
P, sig,membTag) and we have the following if Prop[p] ≠ ⊥:
– Prop[p] .par = Ptr[id];
– Prop[p] .orig = id𝑠 ;
– Prop[p] .act = ‘upd’-svk if P = (‘upd’, kp); Prop[p] .act =
‘add’-id𝑡 -svk𝑡 if P = (‘add’, kp𝑡 ); or Prop[p] .act = ‘rem’
-id𝑡 if P = (‘rem’, id𝑡 ), where svk and svk𝑡 are included in
kp and kp𝑡 , respectively.

Proof. We first consider the former case where id executes a

propose protocol. Let Gid be the protocol state of id. There are

two places where Prop[p] can be set. One is during a propose

query and the other is during *fill-prop which is invoked dur-

ing a commit or process query. Assume Prop[p] is set during

a propose query. Then, there exists some party id′ that was in-
voked by S2-5 for a propose query that output p. Since p includes

id, we have id′ = id and the condition regarding Prop[p] .act
holds by the correctness of the real propose protocol. Moreover,

due to modification we made in Hybrid 2-2 [Unique membTag
in 𝐿prop], the protocol state G′id of id when it outputs p the first

time must satisfy Gid .membKey = G′id .membKey. Then due to

Proposition E.8, we have Prop[p] .par = Ptr[id] as desired. On the
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other hand, assume Prop[p] is set during *fill-prop which is

invoked during a commit or process query. Let the party being

invoked be id′. By how S2-5 responds to *fill-prop it is clear

that Prop[p] .orig = id and the condition regarding Prop[p] .act
hold. Moreover, due to modification we made in Hybrid 2-2 [Unique
membTag in 𝐿prop], the protocol state Gid′ of party id

′
that accepts

p must satisfy Gid .membKey = Gid′ .membKey. Then due to Propo-

sition E.8, we have Ptr[id] = Ptr[id′]. Therefore, by the definition

of *create-prop run within *fill-prop, we have Prop[p] .par =
Ptr[id] as desired.

The latter cases where id executes either a commit of process

query consist of the exact same argument as above. Therefore, this

completes the proof. □

Part 2-3. Consistency of commit messages. This is the final and most

important part of the basic consistency checks. Unlike proposal

messages, consistency of commit messages is proven by induction.

Informally, this is because to conclude the current commit node is

consistent, we must rely on the fact that the previous commit node

is also consistent. We first show that if the current commit node id
is assigned to agree with the group member as those included in

the protocol state (i.e., G.memberIDsvks() = Node[c0] .mem), then

the next commit node and the updated protocol state agrees on the

group member of the next epoch.

Proposition E.10 (Consistency of commit and process proto-

col). Assume party id and c′
0
such that Ptr[id] = c′

0
andNode[c′

0
] ≠

⊥. Let G be id’s protocol state and assumewe have G.memberIDsvks() =
Node[c′

0
] .mem. Consider the following two cases:

• id outputs (c0, ®c,𝑤0, ®𝑤) on input (Commit, ®p, svk) from S2-5;
or
• id outputs (id𝑐 , upd∥rem∥add) on input (Process, c0, ĉ, ®p)
from S2-5.

After receiving the output from id, S2-5 continues the simula-
tion by providing input to FCGKA,2-5. If the ideal commit or process
protocols terminate without halting or outputting ⊥, then we have
G′.memberIDsvks() = Node[c0] .mem in both cases, where G′ is
the new group state included in G.pendCom[c0] in case of a commit
query or the updated group state in case of a process query.

Proof. Let us first consider the case id is invoked on a com-

mit query. Condition on the ideal functionality not halting or

outputting ⊥, we are guaranteed that the function *members on

line 6 of the ideal commit protocol terminates as expected. In

particular, since *members runs syntactically the same procedure

as *apply-props on line 3 of the real commit protocol, we have

G′.memberIDsvks() = mem ifG.memberIDsvks() = Node[c′
0
] .mem,

wheremem is the outputs of *members. Now, ifNode[c0] is created
via *create-child (i.e., Node[c0] = ⊥ ∧ rt = ⊥ ), then we have

Node[c0] .mem = mem as desired. Otherwise, if *consistent-com
and *attach do not halt nor output ⊥, we have Node[c0] .mem =

mem as desired in case Node[c0] ≠ ⊥ or Node[c0] = ⊥ ∧ rt ≠ ⊥.
This completes the proof in case of a commit query.

Let us now consider the case id is invoked on a process query.

Following the same argument as above, in case Node[c0] is cre-
ated via *create-child (i.e., Node[c0] = ⊥ ∧ rt = ⊥ ), we have

Node[c0] .mem = mem as desired conditioned on the ideal function-

ality not halting or outputting ⊥. Otherwise, if *valid-successor

and *attach do not halt nor output ⊥, we have Node[c0] .mem =

mem as desired in case Node[c0] ≠ ⊥ or Node[c0] = ⊥ ∧ rt ≠ ⊥.
This completes the proof in case of a join query. □

We next show that if a party id is assigned to some commit node

in the history graph, then the group member stored on that commit

node should be consistent with the members stored in the protocol

state. The proof is by induction where the base case is guaranteed

by Fact 1 and we use the previous Proposition E.10 to move up

the epoch. Specifically, any party is first assigned to a root in the

beginning (Case A or B in Fact 1), and in this case, the commit node

and protocol state are guaranteed to store the same group members.

Proposition E.11 (Consistency of current commit node).

Assume party id and a non-root c0 of the form (groupid, epoch, id𝑐 ,
‘commit’,𝐶0 = (propIDs, kp, T), sig, confTag) such that Ptr[id] = c0

and Node[c0] ≠ ⊥. Let G be the protocol state of id. Then we have
the following:

• Node[c0] .orig = id𝑐 ;
• Node[c0] .mem = G.memberIDsvks().

Proof. We first prove the relationNode[c0] .orig = id𝑐 . Observe
Node[c0] is set either during a commit or a process query. Below, we

only consider the case Node[c0] is set during a commit query since

the case for a process query is almost identical. There are further

two cases to consider: Node[c0] was initially ⊥ and S2-5 outputs

rt = ⊥ or Node[c0] was initially ⊥ and S2-5 outputs rt ∈ N. In the

former case, due to the *create-child function in the ideal commit

protocol, we have Node[c0] .orig = id𝑐 as desired. In the latter case,

there exists a detached root rootrt and a welcome message𝑤0 that

includes the same confTag as c0 such thatWel[𝑤0] = rootrt . First,
by how S2-5 simulates the join query, we have Node[rootrt ] .orig =

id′𝑐 , where id
′
𝑐 is included in groupInfo of the welcome message𝑤0.

Next, due to the *attach function in the ideal commit protocol,

we have Node[c0] .orig = Node[rootrt ] .orig = id′𝑐 . Finally, due to
Hybrid 2-2 [Unique confTag in 𝐿com and 𝐿wel], we have id′𝑐 = id𝑐 .
Therefore, if Node[c0] is set during a commit query, then we have

Node[c0] .orig = id𝑐 as desired.
So farwe established the first part of the statement:Node[c0] .orig =

id𝑐 . It remains to prove the second part of the statement: Node[c0] .
mem = G.memberIDsvks(). Below, we prove by contradiction. As-

sume we have Ptr[id] = c0 and Node[c0] ≠ ⊥ for a non-root c0

but Node[c0] .mem ≠ G.memberIDsvks(). Observe that Ptr[id] is
assigned to a new value only during a process or a join query;

Ptr[id] remains the same during a process or a commit query. Let

us consider the latter case where Ptr[id] = c0 is assigned dur-

ing join query, that is, id is invoked by S2-5 on input (𝑤0,𝑤).
We show that this case boils down to checking the former case.

Since c0 is a non-detached root by the assumption in the state-

ment and by how S2-5 simulates the join query, Node[c0] ≠ ⊥
and c0 includes the same confTag as 𝑤0. Since Node[c0] is set

only during a commit or a process query, this implies that there

is some party id′ that outputs (resp. inputs) c0 during a commit

(resp. process) query. In case id′ is invoked on a process query, then

Ptr[id′] = c0 due to the ideal process function. Then, due to Rem. 3,

if G.memberIDsvks() = G′.memberIDsvks(), where G and G′ are
the protocol states of id and id′, respectively. Specifically, it suffices
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to check that Node[c0] .mem ≠ G′.memberIDsvks() cannot hap-
pen during a process query. The case id′ is invoked on a commit

query is handled in the same way.

It remains to consider the former case where Ptr[id] = c0 is

assigned during process query. Then, taking the contrapositive

of Proposition E.10, since Node[c0] .mem ≠ G.memberIDsvks(),
we must have Node[c′

0
] .mem ≠ G′.memberIDsvks(). We can itera-

tively apply this argument till we reach a point that Ptr[id] = rootrt
for some rt ∈ { 0 }∪N. This is because any party is initially assigned
to either a root or non-root via the join query (or to root0 by default
if id = idcreator), and in case we arrive at a non-root, then by the

above argument, we can focus on the commit or process query that

generated the non-root and repeat the same argument till we reach a

root. Finally, if G′′ is the protocol state of id when Ptr[id] = rootrt ,
then we have Node[rootrt ] .mem ≠ G′′.memberIDsvks(). How-
ever, by Fact 1, wemust haveNode[rootrt ] .mem = G′′.memberIDsvks().
Therefore, this is a contradiction. This establishes the second part

of the statement.

This completes the proof. □

Finally, the following proposition is an analog of Proposition E.9

regarding the consistency check of existing proposal nodes. Specif-

ically, the following establishes that if a party outputs or receives a

commit c0 that already exists in the history graph (i.e., Node[c0] ≠
⊥), then it satisfies intuitive consistency checks.

Proposition E.12 (Consistency of existing commit node).

Let party id satisfy Ptr[id] ≠ ⊥ and consider the following two cases:
• id outputs (c0, ®c,𝑤0, ®𝑤) on input (Commit, ®p, svk) from S2-5;
or
• id outputs (id𝑐 , upd∥rem∥add) on input (Process, c0, ĉ, ®p)
from S2-5.

Let G′ be either the protocol state included in G.pendCom[c0] of id
after executing a commit protocol or the updated protocol state of
id after executing the process protocol Then, we have the following
(after S2-5 receives an output from id but before it provides input to
FCGKA,2-5):
• if Node[c0] ≠ ⊥, then
– Node[c0] .orig = id (resp. id𝑐 ) if id executed a commit (resp.
process) protocol;

– Node[c0] .par = Ptr[id];
– Node[c0] .pro = ®p;
– Node[c0] .mem = G′.memberIDsvks().
• if c0 is attached to a detached root rootrt (i.e., eitherNode[c0] =
⊥ and S2-5 outputs (ack := true, rt ≠ ⊥, c0, ®c,𝑤0, ®𝑤) if id ex-
ecuted a commit protocol; or Node[c0] = ⊥ and S2-5 outputs
(ack := true, rt ≠ ⊥,⊥,⊥) if id executed a process protocol),
then
– Node[rootrt ] .orig = id (resp. id𝑐 ) if id executed a commit
(resp. process) protocol;

– Node[rootrt ] .par = ⊥;
– Node[rootrt ] .pro = ⊥;
– Node[rootrt ] .mem = G′.memberIDsvks().

Proof. We first prove the simpler second casewhereNode[c0] =
⊥ and c0 is assigned to a detached root. Notice that Node[rootrt ]
is only created during a join query. Let𝑤 ′

0
be the associating wel-

come message that is used to createNode[rootrt ] and assume party

id′ was invoked by this join query. Let Gid′ be the protocol state

after id′ processes the welcome message. Then, by Case (B) of
Fact 1, we have Node[rootrt ] .orig = id′𝑐 and Node[rootrt ] .mem =

Gid′ .memberIDsvks(), where id′𝑐 is those included in 𝑤 ′
0
. By how

S2-5 simulates the commit and process queries, if idwas invoked on
a commit or a process query, then c0 includes the same confTag as

𝑤 ′
0
. Then, due to the modification we made in Hybrid 2-2 [Unique

confTag in 𝐿com and 𝐿wel], we have G′.confKey = Gid′ .confKey
and G′.confTransHash = Gid′ .confTransHash. Then, by Fact 1 and
due to the modification we made in Hybrid 2-1 [No collision in RO],
we also have G′.memberHash = Gid′ .memberHash and id = id′𝑐
(resp. id𝑐 = id′𝑐 ) if id is invoked on a commit (resp. process) query.

Finally, by the definition of *derive-member-hash (see Fig. 25),

we have G′.memberIDsvks() = Gid′ .memberIDsvks(). Since we

have Node[rootrt ] .par = Node[rootrt ] .pro = ⊥ by definition, this

concludes the proof for the second case where c0 is assigned to a

detached root.

It remains to prove the first case where Node[c0] ≠ ⊥. There are
four cases where Node[c0] can be created when c0 is a non-root.

(1) Some party id′ output (c0, ®c′
0
,𝑤 ′

0
, ®𝑤 ′

0
) on input (Commit, ®p′, svk′)

fromS2-5 and there does not exist any𝑤0 such thatWel[𝑤0] =
rootrt′ for any rt ′ ∈ N that includes the same confTag as c0

(before S2-5 provides input to FCGKA,2-5);
(2) Some party id′ output (c0, ®c′

0
,𝑤 ′

0
, ®𝑤 ′

0
) on input (Commit, ®p′, svk′)

from S2-5 and there exists a𝑤0 such that Wel[𝑤0] = rootrt′
for some rt ′ ∈ N that includes the same confTag as c0 (before

S2-5 provides input to FCGKA,2-5);
(3) Some party id′ output (id′𝑐 , upd ′∥rem′∥add ′) on input (Process,

c0, ĉ′, ®p′) fromS2-5 and there does not exist any𝑤0 such that

Wel[𝑤0] = rootrt′ for any rt ′ ∈ N that includes the same

confTag as c0 (before S2-5 provides input to FCGKA,2-5);
(4) Some party id′ output (id′𝑐 , upd ′∥rem′∥add ′) on input (Process,

c0, ĉ′, ®p′) fromS2-5 and there exists a𝑤0 such thatWel[𝑤0] =
rootrt′ for some rt ′ ∈ N that includes the same confTag as
c0 (before S2-5 provides input to FCGKA,2-5).

Since the proof for the latter two cases are almost identical to the

former two cases we only prove Cases (1) and (2).

For both cases, let G′id′ be the pending protocol state included in

Gid′ .pendCom[c0] of the protocol state Gid′ of id
′
after executing

the commit query. Then, by the correctness of the ideal commit

protocol, we have Node[c0] .orig = id′, Node[c0] .par = Ptr[id′],
Node[c0] .pro = ®p′, and Node[c0] .mem = Gid′ .memberIDsvks(),
where the last condition holds due to Proposition E.10. Note that

we have Node[c0] .par and Node[c0] .pro in Case (2) due to the

*consistent-com and *attach functions in the ideal commit pro-

tocol.

Now, since id′ and id output the same c0, and c0 includes id,
we have id = id′. Hence, Node[c0] .orig = id. Moreover, by the

modification in Hybrid 2-2 [Unique confTag in 𝐿com], we have

(G′id′ .confKey,G
′
id′ .confTransHash) = (G

′.confKey,G′.confTransHash).
Then, by Proposition E.8, since both confKey are the same we have

Ptr[id] = Ptr[id′]. Hence, Node[c0] .par = Ptr[id]. Also, due to the
modification we made in Hybrid 2-1 [No collision in RO] and by

the definition of *derive-member-hash (see Fig. 25), we also have
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®p′ = ®p and G′.memberIDsvks() = G′id′ .memberIDsvks(). There-
fore,Node[c0] .pro = ®p andNode[c0] .mem = Gid .memberIDsvks().
This completes the proof for Cases (1) and (2).

This concludes the proof. □

Combining the propositions in Part 2, we obtain the following

corollary.

Corollary E.13 (Invariant cons-invariant). cons-invariant
in Fig. 19 always outputs true (condition on S2-5 not aborting).

Proof. The first two conditions (a) and (b) hold due to Fact 1

and Propositions E.9, E.11 and E.12. Moreover, Condition (c) holds

due to the modification we made in Hybrid 2-2 [Unique confTag
in 𝐿com] and the fact that attaching detached roots to an existing

non-root can not cause a cycle in the history graph. □

Part 3. Analysis of the simulation. We are finally ready to analyze

that S2-5 provides the same view toZ as in the previous Hybrid 2-

4. Below, we only focus on the case S2-5 receives a non-⊥ from

the simulated parties. Otherwise, S2-5 can perfectly simulate the

previous hybrid by simply setting ack = false.

(1) Analysis of Create. It is clear that FCGKA,2-5 outputs ⊥ to Z if

and only ifS2-4 returned⊥ toZ (or to FCGKA,2-5 to bemore precise)

in Hybrid 2-4. Therefore, the view ofZ remains identical in both

hybrids.

(2) Analysis of Proposal. If party id returns p to S2-5, we need to

check that FCGKA,2-5 also returns p toZ as in the previous hybrid.

We only focus on act = ‘upd’-svk since the other cases are just a sim-

plification of this check. We first check that the *valid-svk check

made by FCGKA,2-5 on line 4 of (Process, act) in Fig. 15 succeeds.

For id to have output p, we need *fetch-ssk-if-nec(G, svk) =
ssk ≠ ⊥ in the real protocol (see Fig. 22).Within *fetch-ssk-if-nec
(G, svk), ifG.member[G.id] .svk ≠ svk, thenwemust have SSK[id, svk] ≠
⊥ due to the check made by FAS. This implies that FAS run within

*valid-svk in FCGKA,2-5 outputs true on input (has-ssk, id, svk),
and hence, *valid-svk(id, svk) also outputs true. On the other

hand, since we have Node[c0] .mem = G.memberIDsvks() due
to Proposition E.11, if G.member[G.id] .svk = svk, then we have

Node[Ptr[id]] .mem[id] = svk. Therefore, *valid-svk(id, svk) also
outputs true in this case as well. Therefore, *valid-svk(id, svk)
outputs true if id did not return ⊥ in the real protocol.

Finally, due to Proposition E.9, the assert condition checked

within *consistent-prop on line 9 of (Propose, act) is not trig-
gered when Prop[p] ≠ ⊥. Therefore, if party id returns p to S2-5,

then FCGKA,2-5 also returns p toZ as specified.

(3) Analysis of Commit. Assume Ptr[id] = c′
0
and let G ≠ ⊥ be the

protocol state of the simulated party id before it executes the com-

mit. The check made by *valid-svk is the same check we covered

in the analysis of proposal (see above (2)). We therefore first check

the assert condition on line 7 is never triggered. To do so, we

first establish that the set mem output by *members is identical

to G′.memberIDs (but possibly ordered differently), where G′ is
the protocol state generated on line 3 in the real commit protocol.

This consists of three checks. First, by Proposition E.11 we have

Node[c′
0
] .mem = G.memberIDsvks(). Therefore, if commit suc-

ceeds in the real protocol, then we have (id, ∗) ∈ Node[c′
0
] .mem.

Next, due to how S2-5 answers to *fill-prop and by Proposi-

tion E.9, we have Prop[p] ≠ ⊥ and Prop[p] .par = c′
0
for all p ∈ ®p

and the contents of Prop[p] (i.e., Prop[p] .orig and Prop[p] .act) are
consistent with p. Combining the three checks, we are guaran-

teed that *members outputs mem is identical to those created in

*apply-props in the real protocol. Therefore, this establishes that

the assert condition mem ≠ ⊥ and (id, svk) ∈ mem are satisfied.

To finish the remaining analysis, we consider three cases:Node[c0] =
⊥ ∧ rt = ⊥, Node[c0] = ⊥ ∧ rt ∈ N, and Node[c0] ≠ ⊥. Here, re-
call that the assert condition cons-invariant∧ auth-invariant
in line 21 of commit is never triggered as they are always set to true.
This follows from the fact that sig-inj-allowed andmac-inj-allowed
are always set to true in this hybrid and cons-invariant is always
set to true due to Corollary E.13.

[Case 1:Node[c0] = ⊥ and rt = ⊥] It suffices to show thatWel[𝑤0] =
⊥ when𝑤0 ≠ ⊥ (see line 11 in ideal commit protocol). Let us prove

by contradiction and assume Wel[𝑤0] ≠ ⊥. First, by how S2-5 sim-

ulates the commit query (see (3) of Part 1), there does not exist𝑤 ′
0

such thatWel[𝑤 ′
0
] = rootrt′ for some rt ′ ∈ N and𝑤 ′

0
includes the

same confTag as𝑤0. This means,Wel[𝑤0] = c′′
0
for some non-root

c′′
0
≠ c0 such that Node[c′′

0
] ≠ ⊥. SinceWel[𝑤0] is assigned a non-

root value only during a commit query, we must have that some

id′ (possibly id) was invoked by S2-5 and output c′′
0
and 𝑤0. Due

to correctness of the protocol, c′′
0
and 𝑤0 must include the same

confTag. Similarly, c0 and𝑤0 must also include the same confTag.
However, due to the modification we made in Hybrid 2-2 [Unique
confTag in 𝐿com], the simulator S2-5 aborts the simulation as in

the prior hybrid. Therefore, S2-5 provides the same view toZ as

in the prior hybrid.

[Case 2: Node[c0] = ⊥ and rt ≠ ⊥] It suffices to verify that the

checks run within *consistent-com are satisfied andWel[𝑤0] ∈
{ ⊥, c0 } when 𝑤0 ≠ ⊥ (see line 11 in ideal commit protocol).

Let us consider the former check. Due to Proposition E.12, the

only check within *consistent-com that we need to verify is

whether we have RandCor[id] = ‘bad’. Here, note that the con-
dition Node[c0] .mem = mem is satisfied since we established

mem = G′.memberIDsvks() above. Now, due to the modification

we made in Hybrid 2-4 [Unique c0 with good randomness] , un-
less S2-5 runs party id on the same randomness, we must have

Node[c0] = ⊥ since every c0 output by the parties include a unique

confTag. Hence, we must have RandCor[id] = ‘bad’ as desired and
all the checks run within *consistent-com are satisfied. Finally,

it is clear that *attach on line 17 of the commit procedure assigns

c0 toWel[𝑤0]. Therefore, the latter check onWel[𝑤0] = c0 is also

satisfied.

[Case 3: Node[c0] ≠ ⊥] It suffices to verify that the checks run

within *consistent-com are satisfied and Wel[𝑤0] ∈ { ⊥, c0 }
when 𝑤0 ≠ ⊥ (see line 11 in ideal commit protocol). Since the

check regarding *consistent-com is identical to the above Case
2, we only consider the latter check. Assume for the sake of con-

tradiction thatWel[𝑤0] = c′′
0
≠ c0 for c′′

0
≠ ⊥ and Node[c′′

0
] ≠ ⊥.

Observe the only situation the value of Wel[𝑤0] is set is either
during a commit query or a join query. We first consider the case

Wel[𝑤0] is set during a commit query. If this case occurs, then

this implies that some id′ output (c′′
0
,𝑤0) as otherwise the assert

condition regarding Wel[𝑤0] in the commit procedure is triggered.
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Due to the correctness of the real protocol, all c0, c′′
0
, and𝑤0 include

the same confTag. However, due to the modification we made in

Hybrid 2-2 [Unique confTag in 𝐿com], we must have c′′
0
= c0 or oth-

erwise the simulator S2-5 aborts the simulation as in the previous

hybrid. Hence, we haveWel[𝑤0] = c0 as desired.

Let us consider the other case whereWel[𝑤0] is set during a join
query, which implies that some id′ output c′′

0
. We have two cases

to consider: c′′
0
is a non-root or a detached root. If c′′

0
is a non-root,

then due to how S2-5 simulates the join query (see (5) of Part 1),
this implies that c′′

0
includes the same confTag as the one included

in𝑤0 and we have Node[c′′
0
] ≠ ⊥ when answering the join query.

Recall that when c′′
0
is a non-root, Node[c′′

0
] is set only during a

commit or process query. Then, due to the modification we made in

Hybrid 2-2 [Unique confTag in 𝐿com], since c′′
0
and c0 include the

same confTag, we must have c′′
0
= c0 as desired or otherwise the

simulator S2-5 aborts the simulation as in the previous hybrid. On

the other hand, if c′′
0
is a detached root, then *attach on line 17 of

the commit procedure assigns c0 toWel[𝑤0].
Collecting all the checks, we have eitherWel[𝑤0] = ⊥ orWel[𝑤0] =

c0 as desired. Therefore, S2-5 provides the same view to Z as in

the prior hybrid.

(4) Analysis of Process. Let G ≠ ⊥ be the protocol state of the sim-

ulated party id after it executes the process protocol. Moreover,

assume id outputs (id𝑐 , upd∥rem∥add) on input (Process, c0, ĉ, ®p).
There are three cases that can occur while S2-5 answers the process

query (see (4) of Part 1): Case 1: Node[c0] = ⊥ and rt = ⊥; Case 2:
Node[c0] = ⊥ and rt ≠ ⊥; and Case 3: Node[c0] ≠ ⊥. We analyze

each cases separately.

[Case 1: Node[c0] = ⊥ and rt = ⊥] Following the same argument

we made for analyzing the commit query (see (3) above), *members
on line 6 of the ideal process protocol outputs (mem, propSem),
where mem is identical to those created in *apply-props in the

real protocol and propSem is identical to upd∥rem∥add output by

id. This implies that the assert conditions on line 7 and line 20 of

the ideal process protocol are never triggered. Finally, in Case 1,
S2-5 sets orig′ = id𝑐 , where id𝑐 is those output by id, so we conclude
that *output-proc(c0) outputs (id𝑐 , propSem) as in the previous

hybrid.

[Case 2: Node[c0] = ⊥ and rt ≠ ⊥] Identically to Case 1, *members
on line 6 of the ideal process protocol outputs (mem, propSem),
where mem is identical to those created in *apply-props in the

real protocol and propSem is identical to upd∥rem∥add output by

id. Moreover, by Proposition E.12, we haveNode[rootrt ] .orig = id𝑐 ,
Node[rootrt ] .par = ⊥,Node[rootrt ] .pro = ⊥, andNode[rootrt ] .mem =

G.memberIDsvks(). Therefore, the checkwithin the *valid-successor
and *attach functions on line 15 and line 16, respectively, all passes.
Hence, *output-proc(c0) outputs (id𝑐 , propSem) as in the previ-

ous hybrid.

[Case 3: Node[c0] ≠ ⊥] This is almost identical to Case 2. The only
difference is that by Proposition E.12, we have Node[c0] .orig = id𝑐 ,
Node[c0] .par = Ptr[id], Node[c0] .pro = ®p, and Node[c0] .mem =

G.memberIDsvks(). Observe the checkwithin the *valid-successor
function on line 15 all passes. Hence, *output-proc(c0) outputs
(id𝑐 , propSem) as in the previous hybrid.

(5) Analysis of Join. Let G ≠ ⊥ be the protocol state of the simu-

lated party id after it executes the join protocol. Assume id outputs

(id𝑐 ,G.memberIDsvks()) on input (Join,𝑤0,𝑤). There are four

cases that can occur while S2-5 answers the join query (see (5)
of Part 1): Case 1: Wel[𝑤0] ≠ ⊥; Case 2: Wel[𝑤0] = ⊥ but there

exists a unique c0 including the same confTag as 𝑤0 satisfying

Node[c0] ≠ ⊥; Case 3:Wel[𝑤0] = ⊥ and no such c0 exists but there

exists a (possibly non-unique) 𝑤 ′
0
including the same confTag as

𝑤0 satisfying Wel[𝑤0] ≠ ⊥; and Case 4: Wel[𝑤0] = ⊥ and no such

c0 or𝑤 ′
0
exist. We analyze each cases separately.

[Case 1:] In case Wel[𝑤0] = c0 already exists, it suffices to consider

the case it was initially set. Namely, it suffices to check that S2-5

simulates the previous hybrid in the below Cases 2, 3, and 4.

[Case 2:] Node[c0] can be set only during a commit or process

query. Due to Propositions E.11 and E.12 and correctness of the real

protocol, we have (id, ∗) ∈ Node[c0] .mem. Therefore, the assert
condition on line 12 if the ideal join protocol is never triggered.

Moreover, due to the same reason, the output of the ideal join

protocol (Node[c0] .orig,Node[c0] .mem) is identical to those from

the previous hybrid (i.e., those output by id).

[Case 3:] Since𝑤 ′
0
includes the same confTag as𝑤0, we haveWel[𝑤0]

is assigned to Wel[𝑤 ′
0
] due to Proposition E.6. Note that there may

exist many𝑤 ′
0
but all Wel[𝑤 ′

0
] are identical, so this is well-defined.

Moreover, since there is no c0 that includes the same confTag as𝑤0

and 𝑤 ′
0
, we must have Wel[𝑤 ′

0
] = rootrt for some rt ∈ N. Hence,

it suffices to check that S2-5 simulates the previous hybrid in case

Wel[𝑤 ′
0
] was initially set to rootrt , which we provide in the final

Cases 4.

[Case 4:] SinceS2-5 sets orig′ := id𝑐 andmem′ := G.memberIDsvks(),
it is clear that the assert condition on line 12 of the ideal join proto-

col is not triggered. Moreover, since the ideal join protocol outputs

(Node[c0] .orig = orig′,Node[c0] .mem = mem′), S2-5 simulates

the previous hybrid perfectly.

(6) Analysis of Key Query. Due to Proposition E.8, every id and id′

such that Ptr[id] = Ptr[id] contain the same appSecret. Therefore,
S2-5 provides an identical view toZ of the previous hybrid. □

E.3.6 From Hybrid 2-5 to 2-6: Proof of Lem. E.14.

Lemma E.14. Hybrid 2-5 and Hybrid 2-6 are indistinguishable
assumingCmPKE and SIG are correct with overwhelming probability.

Proof. The only different between the previous hybrid occurs

when id outputs ⊥ when invoked on a commit, process, or join

query byS2-5 but *succeed-com, *succeed-proc, or *succeed-wel
output true, respectively. Notice the ideal succeed-∗ functionali-
ties only care for commit and proposal messages that are not adver-

sarially generated (i.e., Node[c0] .stat ≠ ‘adv’ and Prop[p] .stat ≠
‘adv’). Therefore, as long as CmPKE and SIG are do not produce ci-

phertexts or signatures that do not correctly decrypt or verify, then

the statement holds. Here, note that this must hold even the cipher-

texts and signatures are created with maliciously generated random-

ness since the ideal functionality allows for RandCor[id] = ‘bad’.
However, since we use the global random oracle to expand the

randomness, no adversary can find an input that maps to a bad ran-

domness assumingCmPKE and SIG are correct with overwhelming
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probability (on honestly generated randomness). This completes

the proof. □

E.4 From Hybrid 3 to 4: Lem. E.15
Hybrid 4 concerns the authenticity of the signature scheme. The

functionality FCGKA,4 halts if the sig-inj-allowed predicate re-

turns false, i.e., Z succeeds to forge a signature without know-

ing signing key. To prove Lem. E.15 (i.e., the probability FCGKA,4
halts is negligible), we show that, if Z can inject a message for

which sig-inj-allowed predicate returns false, it can be used to

break the sEUF-CMA security of SIG. In other words, if SIG is

sEUF-CMA secure, the simulator receives only messages which the

sig-inj-allowed predicate returns true. Thus, FCGKA,4 never halts,

and we conclude that Hybrid 3 and Hybrid 4 are indistinguishable.

We below provide a formal proof of the above overview.

Lemma E.15. Hybrid 3 and Hybrid 4 are indistinguishable assum-
ing SIG is sEUF-CMA secure.

Proof. To showLem. E.15, we consider the following sub-hybrids

between Hybrid 3 and Hybrid 4.

Hybrid 3-0 := Hybrid 3. This is identical to Hybrid 3. We use the

functionality FCGKA,3 and the simulator S3-0 := S3. In this

hybrid, the sig-inj-allowed predicate always returns true.

Hybrid 3-1. This concerns injection of commit messages. The sim-

ulator S3-1 is defined exactly as S3-0 except that it aborts

if the following condition holds (the simulator checks the

condition whenever it updates the history graph).

Condition (A): There exists a non-root node c0 such that

Node[c0] .stat = ‘adv’ andNode[c𝑝 ] .mem[id𝑐 ] ∉ Exposed,
where c𝑝 := Node[c0] .par is the parent of c0 and id𝑐 :=

Node[c0] .orig is the committer of c0.

Condition (A) relates to Condition (a) of auth-invariant: If
a non-root node c0 satisfying Condition (A) exists, Condition

(a) of auth-invariant returns false. We show in Lem. E.16

that Hybrid 3-0 and Hybrid 3-1 are indistinguishable.

Hybrid 3-2. This concerns injection of proposal messages. The

simulator S3-2 is defined exactly as S3-1 except that it aborts

if the following condition holds (the simulator checks the

condition whenever it updates the history graph).

Condition (B): There exists a proposal node p such that

Prop[p] .stat = ‘adv’ and Node[c𝑝 ] .mem[id𝑠 ] ∉ Exposed,
where c𝑝 := Prop[p] .par is the parent commit node of p
and id𝑠 := Prop[p] .orig is the sender of p.

Condition (B) relates to Condition (b) of auth-invariant:
If a node p satisfying Condition (B) exists, Condition (b) of

auth-invariant returns false. We show in Lem. E.17 that

Hybrid 3-1 and Hybrid 3-2 are indistinguishable.

Hybrid 3-3. This concerns injection of welcome messages. The

simulator S3-3 is defined exactly as S3-2 except that it aborts

if the following condition holds (the simulator checks the

condition whnever it updates the history graph).

Condition (C): There exists a detached root rootrt such
that Node[rootrt ] .mem[id𝑐 ] ∉ Exposed, where id𝑐 :=

Node[rootrt ] .orig is the committer of the corresponding

welcome message.

Condition (C) relates to Condition (c) of auth-invariant: If
a root node rootrt satisfying Condition (C) exists, Condition

(c) of auth-invariant returns false. We show in Lem. E.18

that Hybrid 3-2 and Hybrid 3-3 are indistinguishable.

Hybrid 3-4 := Hybrid 4. This is identical to Hybrid 4. We replace

the functionality FCGKA,3 with FCGKA,4, that is, we use the
original sig-inj-allowed predicate. The simulator S3-4 is de-

fined exactly asS3-3 except that it no longer abort. SinceS3-3

aborts if and only if FCGKA,4 halts, Hybrid 3-3 and Hybrid

3-4 are identical.

From Lems. E.16 to E.18 provided below, Hybrid 3-0 and Hybrid

3-3 are indistinguishable. Moreover, Hybrid 3-3 and Hybrid 3-4 are

identical. Therefore, we conclude that Hybrid 3 and Hybrid 4 are

indistinguishable. □

E.4.1 From Hybrid 3-0 to 3-1: Proof of Lem. E.16.

Lemma E.16. Hybrid 3-0 and Hybrid 3-1 are indistinguishable
assuming SIG is sEUF-CMA secure.

Proof. The only difference between S3-0 and S3-1 is that S3-1

aborts if Condition (A) holds. We show that, ifZ can distinguish

the two hybrids, then there exists an adversary B that breaks the

sEUF-CMA security of SIG. We first explain the description of B
and how B extracts a valid signature forgery using Z; we then

show the validity of the forged signature; and finally evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S3-1 except for signature gen-

eration. Observer that honest signing keys are generated through

register-svk queries to F IW

AS
. Let svk∗ be the challenge signing

key received from the sEUF-CMA game. At the beginning of the

game, B chooses an index 𝑖 ∈ [𝑄] at random, where𝑄 is the largest

total number of register-svk queries fromZ. B embeds the chal-

lenge key svk∗ in the 𝑖-th register-svk query (if the 𝑖-th signature
key is generated with bad randomness, B aborts). For the other

register-svk queries, B generates signature keys as in the pre-

vious hybrid. We assume svk∗ is embedded in id∗’s signature key.
Whenever id∗ creates key packages, proposals, or commit/welcome

messages using svk∗, B uses the signing oracle to generate sig-

natures. If id∗ is corrupted or it generates a signature using bad

randomness while it holds svk∗, B aborts.

B extracts a forgery as follows: Whenever B creates a node c0, B
checks whether c0 satisfies Condition (A). If a node c0 satisfies the

condition,B retrieves the signature sig and the signedmessage𝑚 :=

comCont from c0. If the sender of c0 is id∗, and the corresponding

signature key is svk∗, B submits (𝑚, sig) to the challenger. Note

that (𝑚, sig) is a valid message-signature pair because the node is

created only if (𝑚, sig) is valid.
We argue (𝑚, sig) is a valid forgery. Since c0 satisfies Condition

(A) and c0 is sent from id∗ using svk∗, the following holds:

Fact (1): Node[c0] .stat = ‘adv’;
Fact (2): Node[c0] .orig = id𝑐 = id∗;
Fact (3): Node[c𝑝 ] .mem[id𝑐 ] = svk∗, where c𝑝 := Node[c0] .par;

and

Fact (4): Node[c𝑝 ] .mem[id𝑐 ] ∉ Exposed.
Fact (1) implies (𝑚, sig) has not been generated by B. Therefore,
the sign oracle has not output (𝑚, sig). Facts (2)-(4) imply svk∗ has
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not been exposed. Therefore, (𝑚, sig) is a valid forgery on svk∗, and
B wins the sEUF-CMA game.

We finally evaluate the success probability of B. The probability
that B correctly guesses the signature key used to forge is 1/𝑄 .
Therefore, ifZ distinguishes the two hybrids with non-negligible

probability 𝜖 , B wins the game with probability at least 𝜖/𝑄 , which
is also non-negligible. This contradicts the assumption that SIG is

sEUF-CMA secure. Therefore, 𝜖 must be negligible, andwe conclude

that Hybrid 3-0 and Hybrid 3-1 are indistinguishable toZ. □

E.4.2 From Hybrid 3-1 to 3-2: Proof of Lem. E.17.

Lemma E.17. Hybrid 3-1 and Hybrid 3-2 are indistinguishable
assuming SIG is sEUF-CMA secure.

Proof. The only difference between S3-1 and S3-2 is S3-2 aborts

if Condition (B) holds. We show that, if Z can distinguish the

two hybrids, then there exists an adversary B that breaks the

sEUF-CMA security of SIG. We first explain the description of

B and how B extracts a valid signature forgery usingZ; we then

show the validity of the forged signature; and finally evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as shown in Lem. E.16, and ex-

tracts the forgery as follows: Whenever B creates a node p, B
checks whether p satisfies Condition (B). If some node p satisfies

the condition, B retrieves the signature sig and the signed message

𝑚 := propCont from p. If the sender of p is id∗ and the correspond-

ing signature key is svk∗, B submits (𝑚, sig) as the forgery.
We argue (𝑚, sig) is a valid forgery. Since p satisfies Condition

(B) and p is sent from id∗ with svk∗, the following holds:

Fact (1): Prop[p] .stat = ‘adv’;
Fact (2): Prop[p] .orig = id𝑐 = id∗;
Fact (3): Node[c𝑝 ] .mem[id𝑐 ] = svk∗, where c𝑝 := Node[c0] .par;

and

Fact (4): Node[c𝑝 ] .mem[id𝑐 ] ∉ Exposed.

Note that c𝑝 := Prop[p] .par is the parent of p. Fact (1) implies

(𝑚, sig) has not been generated by B. Therefore, the sign oracle

has not output (𝑚, sig). Facts (2)-(4) implies svk∗ has not been

exposed. Therefore, (𝑚, sig) is a valid forgery on svk∗, and B wins

the sEUF-CMA game.

We evaluate the success probability of B. The probability that B
correctly guesses the signature key used to forge is 1/𝑄 . Therefore,
ifZ distinguishes the two hybrids with non-negligible probability

𝜖 , B wins the game with probability at least 𝜖/𝑄 , which is also non-

negligible. This contradicts the assumption that SIG is sEUF-CMA
secure. Therefore, 𝜖 must be negligible, and we conclude that Hy-

brid 3-1 and Hybrid 3-2 are indistinguishable toZ. □

E.4.3 From Hybrid 3-2 to 3-3: Proof of Lem. E.18.

Lemma E.18. Hybrid 3-2 and Hybrid 3-3 are indistinguishable
assuming SIG is sEUF-CMA secure.

Proof. The only difference betweenS3-2 andS3-3) isS3-3 aborts

if Condition (C) holds. We show that, if Z can distinguish the

two hybrids, then there exists an adversary B that breaks the

sEUF-CMA security of SIG. We first explain the description of

B and how B extracts a valid signature forgery usingZ; we then

show the validity of the forged signature; and finally evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as shown in Lem. E.16, and ex-

tracts the forgery as follows: Whenever B creates a node rootrt , B
checks whether rootrt satisfies Condition (C). If some node rootrt
satisfies the condition, B retrieves the signature sig and the signed

message𝑚 := (groupInfo, T) from𝑤0. If the sender of𝑤0 is id∗ and
the corresponding signature key is svk∗, B submits (𝑚, sig) as the
forgery.

We argue (𝑚, sig) is a valid forgery. Since rootrt satisfies Condi-
tion (C) and𝑤0 is valid on (id∗, svk∗), the following facts hold:
Fact (1): Node[rootrt ] .stat = ‘adv’;
Fact (2): Node[rootrt ] .orig = id𝑐 = id∗;
Fact (3): Node[rootrt ] .mem[id𝑐 ] = svk∗; and
Fact (4): Node[rootrt ] .mem[id𝑐 ] ∉ Exposed.

Fact (1) implies (𝑚, sig) has not been generated by B. Therefore,
the sign oracle has not output (𝑚, sig). Facts (2)-(4) implies svk∗

has not been exposed. Therefore, (𝑚, sig) is a valid forgery on svk∗,
and B wins the sEUF-CMA game.

We evaluate the success probability of B. The probability that B
correctly guesses the signature key used to forge is 1/𝑄 . Therefore,
ifZ distinguishes the two hybrids with non-negligible probability

𝜖 , B wins the game with probability at least 𝜖/𝑄 , which is also non-

negligible. This contradicts the assumption that SIG is sEUF-CMA
secure. Therefore, 𝜖 must be negligible, and we conclude that Hy-

brid 3-2 and Hybrid 3-3 are indistinguishable toZ. □

E.5 From Hybrid 4 to 5: Lem. E.19
Hybrid 5 concerns the authenticity of MAC. The functionality

FCGKA,5 halts if themac-inj-allowed predicate returns false, i.e.,

Z succeeds to forge a MAC tag without knowing the MAC key. To

show Lem. E.19 (i.e., the probability FCGKA,5 halts is negligible),

we show that, ifZ can distinguish the two hybrids, we can break

the Chained CmPKE conforming GSD security of CmPKE. To this

end, we consider that the simulator creates the GSD graph based

on epoch secrets and MAC tags. The GSD graph represents the

relationship of epoch secrets and MAC tags, and indicates which

MAC key is exposed (Note that to discuss which MAC key is ex-

posed, we will uses the sEUF-CMA security of SIG.). We show that,

ifZ injects a message for which the mac-inj-allowed predicate

returns false, it can be used to break the Chained CmPKE conform-

ing GSD security. In other words, if CmPKE is Chained CmPKE
conforming GSD secure, the simulator receives only messages for

which themac-inj-allowed predicate returns true. Thus, FCGKA,5
never halts, and we conclude that Hybrid 4 and Hybrid 5 are in-

distinguishable. We below provide a formal proof of the above

overview.

Lemma E.19. Hybrid 4 and Hybrid 5 are indistinguishable as-
suming SIG is sEUF-CMA secure and CmPKE is Chained CmPKE
conforming GSD secure.

Proof. To prove the lemma, we consider the following sub-

hybrids between Hybrids 4 and 5:

Hybrid 4-0 := Hybrid 4. This is identical to Hybrid 4. We use

the functionality FCGKA,4 and the simulator S4-0 := S4. In
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this hybrid, the mac-inj-allowed predicate always returns

true.
17

Hybrid 4-1. This concerns injection of key packages. The simula-

tor S4-1 is defined exactly as S4-0 except that it aborts if the

following condition holds.

Condition (KP): There exists a proposal node p such that

Prop[p] .act = ‘add’-id𝑡 -svk𝑡 , svk𝑡 ∉ Exposed andDK[id𝑡 , kp𝑡 ] =
⊥, where kp𝑡 is the key package in p.

We show in Lem. E.20 that Hybrid 4-0 and Hybrid 4-1 are

indistinguishable assuming SIG is sEUF-CMA secure. In the

following hybrids, if a valid key package is injected, the

corresponding signing key is always exposed. We will use

this fact to discuss which secret is exposed in the GSD graph.

Hybrid 4-2. We modify the simulator S4-1 so that it creates the

GSD graph based on CmPKE keys, epoch secrets and MAC

tags. Roughly speaking, the GSD graph represents the rela-

tionship of CmPKE keys, epoch secrets and MAC tags, and it

indicates which secret is exposed. The simulator S4-2 inter-

nally runs two simulators SGSD and S′
4-2

: SGSD simulates

the GSD oracles and creates the GSD graph as shown in

Fig. 29; S′
4-2

simulates the interaction for the environment

Z, the functionality, and the adversaryA by using the GSD

oracles provided bySGSD. In addition,S′4-2 always rejects in-
jected commit/proposal messages if the corresponding MAC

key is not exposed, and aborts if a commit node is attached

to a detached root although the corresponding initial secret

is not exposed.
18

So as not to interrupt the proof, we for-

mally explain how SGSD and S′
4-2

are defined. We show in

Lem. E.21 that Hybrid 4-1 and Hybrid 4-2 are indistinguish-

able assuming CmPKE is Chained CmPKE conforming GSD

secure.

Hybrid 4-3. We undo the changes made between Hybrid 4-0 and

Hybrid 4-2. That is, the simulator S4-3 no longer aborts the

simulation. Using the same arguments to move through Hy-

brid 4-0 to Hybrid 4-2, Hybrid 4-2 and Hybrid 4-3 remain

indistinguishable.

Hybrid 4-4 := Hybrid 5. This is identical to Hybrid 5. We replace

the functionality FCGKA,4 with FCGKA,5, that is, we use the
originalmac-inj-allowed predicate. The simulator S4-4 is

defined exactly as S4-3. We show in Lem. E.28 that Hybrid

4-3 and Hybrid 4-4 are identical.

From Lems. E.20, E.21 and E.28 provided below, Hybrid 4-0 and

Hybrid 4-4 are indistinguishable. Therefore, we conclude that Hy-

brid 4 and Hybrid 5 are indistinguishable.

□

E.5.1 From Hybrid 4-0 to 4-1: Proof of Lem. E.20.

Lemma E.20. Hybrid 4-0 and Hybrid 4-1 are indistinguishable
assuming SIG is sEUF-CMA secure.

Proof. The only difference between S4-0 and S4-1 is S4-1 aborts

Condition (KP) holds.We show that, ifZ can distinguish the two hy-

brids, then there exists an adversary B that breaks the sEUF-CMA

17
Since the sig-inj-allowed predicate always returns true (cf. Lem. E.15), the truth

value of auth-invariant and the truth value of mac-inj-allowed are the same.

18
We define S′

4-2
so that it never creates history graph nodes for which

mac-inj-allowed returns false.

security of SIG. We first explain the description of B and how B ex-

tracts a valid signature forgery usingZ; we then show the validity

of the forged signature; and finally evaluate B’s advantage.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S4-1 except for the signature

generation. Let svk∗ be the challenge signature key provided by the
sEUF-CMA game. Observer that honest signing keys are generated

on register-svk queries to F IW

AS
. We assumeZ issues at most 𝑄

register-svk queries. At the beginning of the game, B chooses an

index 𝑖 ∈ [𝑄] at random, and embeds the challenge key svk∗ in the 𝑖-
th register-svk query (if the 𝑖-th signature key is generated with

bad randomness, B aborts). For other register-svk queries, B
generates signature keys following the description of F IW

AS
. Assume

svk∗ is embedded in id∗’s signing key. Whenever id∗ creates key
packages, proposals, or commit/welcome messages using svk∗, B
uses the signing oracle to generate signatures. If id∗ is corrupted or
it generates a signature using bad randomness while it holds svk∗,
B aborts.

B extracts the forgery as follows: Whenever B creates a node p,
B checks whether p satisfies Condition (KP). If a node p satisfies the
condition,B retrieves the signature sig and the signedmessage𝑚 :=

(id, ek, svk) from p. If (id, svk) = (id∗, svk∗), B submits (𝑚, sig) as
the forgery. (Note that the proposal node is created only if (𝑚, sig)
is valid.)

We argue (𝑚, sig) is a valid forgery. Since p satisfies Condition

(KP) and p contains the key package on (id∗, svk∗), the following
facts hold:

Fact (1): Prop[p] .act = ‘add’-id∗-svk∗;
Fact (2): DK[id∗, kp∗] = ⊥, where kp∗ is the key package in p; and
Fact (3): svk∗ ∉ Exposed.

Fact (1) implies the adversary outputs the valid signature on svk∗

because history graph nodes are created when messages are valid.

Fact (2) implies (𝑚, sig) has not been generated by Key Service via

register-kp query; Specifically the sign oracle has not outputs

(𝑚, sig). Fact (3) implies svk∗ has not been exposed when B obtains

(𝑚, sig). Therefore, (𝑚, sig) is a valid forgery on svk∗, and B wins

the game.

We evaluate the success probability of B. The probability that B
correctly guesses the signature key used to forge is 1/𝑄 . IfZ can

distinguish the hybrids with probability 𝜖 , B wins the game within

probability 𝜖/𝑄 . If 𝜖 is non-negligible, B wins sEUF-CMA game

with non-negligible probability. This contradicts the assumption

that SIG is sEUF-CMA secure. Therefore, 𝜖 must be negligible, and

Hybrid 4-0 and Hybrid 4-1 are indistinguishable toZ. □

E.5.2 Proof of Lem. E.21: From Hybrid 4-1 to 4-2. The proof consists
of two parts: We first explain how simulator S4-2 simulates Hybrid

4-2 while creating the GSD graph based on secrets and MAC tags.

(see Part 1); we then show S4-2 provides an indistinguishable view

toZ (see Part 2).

Part 1: Description of the Simulator S4-2. We consider that S4-2 in-

ternally runs two simulators SGSD and S′
4-2

: SGSD simulates the

GSD oracles and creates the GSD graph following the procedures

shown in Fig. 29, and S′
4-2

simulates the interaction for the environ-

mentZ, the functionality, and the adversary A by using the GSD

oracles provided by SGSD. Looking ahead, we use the GSD game
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to show the several hybrids remain indistinguishable. We allow

the reduction to simulate S4-2 by running S′
4-2

on its own while

using the challenger provided by the GSD game as a replacement

of SGSD.
S′

4-2
creates the GSD graph based on secrets (CmPKE decryp-

tion keys and epoch secrets) and MAC tags created by simulated

parties. S′
4-2

keeps a counter ctr (it is initialized with 1), denoting

the smallest unused GSD node. Whenever deriving a new encryp-

tion key, epoch secret, or MAC tag, S′
4-2

assigns a GSD node to

the secret/tag. For example, when S′
4-2

generates a random secret,

it sends an unused GSD node to the GSD oracle and the oracle

chooses the value. When S′
4-2

uses a specific value as the secret,

it assigns the value to an unused GSD node by using Set-Secret
oracle. When S′

4-2
computes an epoch secret or MAC tag using

random oracle, it calls Join-Hash/Hash oracle to assign the derived

secret/tag to an unused GSD node. Throughout the proof, we de-

note the secret (decryption keys and epoch secrets) by (s, u), the
pair of the secret s and the assigned GSD node u. When the node is

assigned to the secret, if S′
4-2

knows the secret s ≠ ⊥, the secret is
set to (s, u), otherwise set to (⊥, u). The value of each secret will

be updated adaptively during the simulation: As soon as S′
4-2

cor-

rupts some GSD node 𝑣 (i.e., query Corr(u)), for each node u such

that gsd-exp(u) becomes true, S′
4-2

computes the secret su from

previously obtained ciphertexts and corrupted secrets, and replaces

all occurrence of (⊥, u) with (su, u). Hence, if gsd-exp(u) = true,
then S′

4-2
knows the secret s assigned to the node u. The special

case is the encryption key is generated byA (this case occurs when

an injected add/update proposal or commit message is received). In

this case, since S′
4-2

does not know the corresponding decryption

key, it sets the decryption key to (⊥,⊥).
S′

4-2
maintains the following lists for the simulation:

• 𝐿
‘memb’: It contains tuple (u‘memb’,𝑚,membTag)where u

‘memb’
is a GSD node assigned to the membership key,𝑚 is a MACed

message under the key u
‘memb’ and membTag is a corre-

sponding a membership tag generated by SGSD.
• 𝐿

‘epoch’: It contains tuple (upar-init, comSecret, joinerSecret,
confTransHash, confTag) where upar-init is a GSD node as-

signed to the parent initial secret, comSecret is a commit

secret, joinerSecret is a joiner secret, confTransHash is a

confirmation hash and confTag is a confirmation tag (i.e.,

epoch secrets and MAC tag of each epoch).

• 𝐿‘enc’: It contains tuple ((s, u), uid, (T, ctuid )) where (s, u) is
a encrypted secret (comSecret or joinerSecret), uid is a GSD

node assigned to the encryption key of party id and (T, ctuid )
is a corresponding CmPKE ciphertext.

The first two lists are used when S′
4-2

needs to recompute the same

epoch secrets or MAC tags. In particular, due to the modification

we made in Hybrid 2-2, confTag is unique for each joinerSecret
and confTransHash (and joinerSecret is unique for each initSecret
and comSecret (cf. Hybrid 2-1)). The third 𝐿‘enc’ is used to check

whether the received ciphertext can be sent to CmDec oracle.

Now we explain how S′
4-2

simulates the protocol using the GSD

oracles. Other procedures not described are identical to the previous

hybrid. Note that to make the proof of Proposition E.27 easier to

read, oracle calls corresponding to the corruption of a GSD node

are highlighted with red underline.

Key package creation for id.When S′
4-2

creates a key package,

it generates a CmPKE’s encryption key for the key package with

the help of the GSD oracle.

• If RandCor[id] = ‘good’, S′
4-2

generates a CmPKE key pair

as (ek, dk) := (*get-ek(uctr), (⊥, uctr)) (and ctr is incre-

mented as ctr← ctr + 1). Here, ek← *get-ek(u) denotes
that S′

4-2
obtains the encryption key ek on a node u by call-

ing the oracle CmEnc({ u } , 0) (the special node 0 is only used

here). S′
4-2

creates a key package based on the encryption

key.

• Else, key packages are generated as in the previous hybrid.

After generating the key package, S′
4-2

assigns the seed s of
the CmPKE key to an unused GSD node uid := uctr (ctr is
incremented) by querying Set-Full-Secret(s, uid). It sets
dk := (dkid, uid).

Simulation of idcreator on input (Create, svk).S′
4-2

creates a new

group following the protocol, except for the initialization of epoch

secrets and the confirmation tag. (The initial key package is created

following the procedure in Key package creation for id above.)

S′
4-2

generates the initial epoch secrets as follows: S′
4-2

first

prepares new GSD nodes u
‘joi’, u‘conf’, u‘app’, u‘memb’, and u

‘init’
(their values are set to uctr, uctr+1, . . . , uctr+4 and ctr is incremented

as ctr← ctr + 5).

• If RandCor[idcreator] = ‘good’, S′
4-2

queries Hash(u
‘joi’, ulbl,

(G.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’,
‘init’}.19 It sets G.joinerSecret := (⊥, u

‘joi’), G.confKey :=

(⊥, u
‘conf’),G.appSecret := (⊥, u

‘app’),G.membKey := (⊥, u
‘memb’),

G.initSecret := (⊥, u
‘init’). Note that the value assigned to

u
‘joi’ is set to random during the first call of Hash.

• Else, S′
4-2

generates the joiner secret s
‘joi’ using the ran-

domness provided from A, and computes slbl := RO(s
‘joi’,

(G.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’,
‘init’}. Then, S′

4-2
assigns the epoch secrets to GSD ora-

cles: It queries Set-Secret(u
‘joi’, s‘joi’) and Hash(u

‘joi’, ulbl,

(G.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’,
‘init’}.S′

4-2
setsG.joinerSecret := (s

‘joi’, u‘joi’),G.confKey :=

(s
‘conf’, u‘conf’),G.appSecret := (s

‘app’, u‘app’),G.membKey :=

(s
‘memb’, u‘memb’), G.initSecret := (s

‘init’, u‘init’).
S′

4-2
generates the confirmation tag as follows:

• If RandCor[idcreator] = ‘good’, S′
4-2

prepares a new GSD

node uctag := uctr (and sets ctr← ctr + 1). Then, it queries

Hash(u
‘conf’, uctag,G.confTransHash) andG.confTag := Corr(uctag).

(See Rem. 1.)

• Else,S′
4-2

computesG.confTag := RO(s
‘conf’,G.confTransHash)

as in the previous hybrid.

Finally,S′
4-2

stores𝐿
‘epoch’ +← (⊥, (⊥,⊥),G.joinerSecret,G.confTransHash,

G.confTag).
Simulation of id on input (Propose, act). S′

4-2
generates a pro-

posal message p as in the previous hybrid, except for the generation

of key packages and membership tags.

WhenS′
4-2

generates an update proposal, it creates a key package

following the procedure in Key package creation for id above. Then,

19G.groupCont() returns the group information defined in Tab. 8. It is determined

before the party computes the epoch secret.
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S′
4-2

keeps the generated decryption key dk for p (dk will be used

when S′
4-2

receives p in the commit or process protocol).

S′
4-2

generates the membership tag as follows, by using the mem-

bership key G.membKey = (s
‘memb’, u‘memb’) at epoch Ptr[id].

• If gsd-exp(u
‘memb’) = true (i.e., s

‘memb’ ≠ ⊥)20, S′4-2 com-

putes membTag := RO(s
‘memb’, (propCont, sig)) as in the

previous hybrid.

• Else if (u
‘memb’, (propCont, sig),membTag) ∈ 𝐿

‘memb’ ex-

ists for some membTag, it is used as the membership tag.

Note that this case occurs when the same p is generated

multiple times.

• Else, S′
4-2

prepares a new GSD node umtag := uctr (and sets

ctr← ctr+1) and queries Hash(u
‘memb’, umtag, (propCont, sig))

and membTag := Corr(umtag). S′
4-2

stores 𝐿
‘memb’ +←

(u
‘memb’, (propCont, sig),membTag).

Simulation of id on input (Commit, ®p, svk). S′
4-2

generates a com-

mit message as in the previous hybrid, except for the differences

shown below:

In *unframe-prop, S′
4-2

verifies the membership tag membTag
in p as follows, by using themembership keyG.membKey = (s

‘memb’,

u
‘memb’) at epoch Ptr[id]:
• If gsd-exp(u

‘memb’) = true (i.e., s
‘memb’ ≠ ⊥), S′4-2 com-

putesmembTag′ = RO(s
‘memb’, (propCont, sig)) and checks

whether membTag = membTag′ holds.
• Else if (u

‘memb’, (propCont, sig),membTag′) ∈ 𝐿
‘memb’ ex-

ists for some membTag′, S′
4-2

checks whether membTag =

membTag′ holds.
• Else, S′

4-2
outputs ⊥. We call this event Einj-p and in Propo-

sition E.22 we will prove that the simulator in the previous

hybrid also outputs ⊥ when Einj-p occurs. Thus, it does not

alter the view ofZ
In *apply-props, S′

4-2
updates the membership list as follows:

• If p is an update proposal sent from id𝑠 ≠ id, S′
4-2

stores the

decryption key corresponding to p to G′.member[id𝑠 ] .dk.
Namely, if p has been generated byS′

4-2
, it knows the decryp-

tion key. Otherwise (i.e., S′
4-2

does not know the decryption

key), S′
4-2

sets G′.member[id𝑠 ] .dk := (⊥,⊥).
• If p is an add proposal that contains id𝑡 and kp𝑡 , S′4-2 copies

the decryption key stored inDK[id𝑡 , kp𝑡 ] toG′.member[id𝑡 ] .
dk. If kp𝑡 is not registered to Key ServiceF IW

KS
(i.e.,DK[id𝑡 , kp𝑡 ] =

⊥), S′
4-2

sets G′.member[id𝑡 ] .dk := (⊥,⊥).
After the execution of *apply-props, S′

4-2
obtains the new mem-

bership list and the decryption key of each member. In other words,

for all members id, G.member[id] .dk is of the form (∗, uid) or
(⊥,⊥), where ∗ is either ⊥ or 𝑠id ≠ ⊥.

S′
4-2

runs *rekey as follows: It first creates a key package fol-

lowing the procedure in Key package creation for id above. Then

S′
4-2

generates a new commit secret:

• If RandCor[id] = ‘good’, S′
4-2

first prepares a GSD node

ucom := uctr (and sets ctr ← ctr + 1) and generates a ran-

dom commit secret as follows. Let G′.member be the new

20
Recall that if gsd-exp(u) = true for the node u, then S′

4-2
knows the secret s ≠ ⊥

assigned to u. This is because if gsd-exp(u) = true , S′
4-2

can compute the secret s
from the known information (e.g., previously generated ciphertexts).

membership list and receivers be the set of the identity of

the existing parties.

– If G′.member[id] .dk ≠ (⊥,⊥) for all id ∈ receivers, each
G′.member[id] .dk is of the form (∗, uid). S′4-2 composes

the set 𝑆receivers := { uid }id∈receivers and queries CmEnc(𝑆receivers,
ucom) to compute the ciphertext (T, ®ct = (ctu)u∈𝑆receivers ).
Note that the commit secret is chosen at random by the

CmEnc oracle.
∗ If gsd-exp(uid) = true for some uid ∈ 𝑆receivers, S′4-2
decrypts (T, ctuid ) using the secret sid of uid, and obtains
scom. Then, S′

4-2
sets G′.comSecret := (scom, ucom) and

stores 𝐿‘enc’ +← ((scom, ucom), uid, (T, ctuid )) for each
uid ∈ 𝑆receivers.
∗ Else, S′

4-2
sets G′.comSecret := (⊥, ucom) and stores

𝐿‘enc’ +← ((⊥, ucom), uid, (T, ctuid )) for each uid ∈ 𝑆receivers.
– Else (i.e.,G′.member[id] .dk = (⊥,⊥) for some id ∈ receivers),
S′

4-2
generates and encrypts the commit secret scom as in

the previous hybrid. Then,S′
4-2

queries Set-Secret(ucom, scom)
and sets G′.comSecret := (scom, ucom).

• If RandCor[id] = ‘bad’, S′
4-2

generates and encrypts the

commit secret scom as in the previous hybrid. In this case,

S′
4-2

may have generated or received the same commit mes-

sage. Thus,S′
4-2

checks if the same commit message has been

generated or received earlier, and if not, it assigns a GSD

node to the commit secret scom. This check is done when

S′
4-2

derives the epoch secret in *derive-keys function (see

below).

To compute the epoch secrets and confirmation tag, S′
4-2

runs

*derive-keys and *gen-conf-tag as follows: Let (spar-init, upar-init)
be the initial secret at epoch (spar-init can be ⊥). Note that G′.
groupCont() (including the confirmation hash G′.confTransHash)
for the new epoch is computed before running *derive-keys func-
tion.

• If RandCor[id] = ‘good’, S′
4-2

prepares new GSD nodes

u
‘joi’, u‘conf’, u‘app’, u‘memb’, and u

‘init’ (their values are set

to uctr, uctr+1, . . . , uctr+4 and ctr is incremented as ctr ←
ctr+5) and queries Join-Hash(upar-init, ucom, u‘joi’, ‘joi’) and
Hash(u

‘joi’, ulbl, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’,
‘app’, ‘memb’, ‘init’}.
– If gsd-exp(upar-init) = false ∨ gsd-exp(ucom) = false,
S′

4-2
setsG′.joinerSecret := (⊥, u

‘joi’),G′.confKey := (⊥, u
‘conf’),

G′.appSecret := (⊥, u
‘app’), G′.membKey := (⊥, u

‘memb’)
and G′.initSecret := (⊥, u

‘init’). Then, S′4-2 prepares a new
GSD node uctag := uctr (and sets ctr← ctr+1), and queries

Hash(u
‘conf’, uctag,G

′.confTransHash) andG′.confTag :=

Corr(uctag).
– Else, (i.e., gsd-exp(upar-init) = true ∧ gsd-exp(ucom) =
true), S′

4-2
knows both spar-init and scom. It computes

s
‘joi’ := RO(spar-init, scom, ‘joi’) and slbl := RO(s

‘joi’, (G′.
groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’,
‘init’}, and setsG′.joinerSecret := (s

‘joi’, u‘joi’),G′.confKey :=

(s
‘conf’, u‘conf’),G′.appSecret := (s

‘app’, u‘app’),G′.membKey :=

(s
‘memb’, u‘memb’) and G′.initSecret := (s

‘init’, u‘init’). S′4-2
generates the confirmation tag asG′.confTag := RO(s

‘conf’,G
′.

confTransHash).
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Finally, S′
4-2

stores 𝐿
‘epoch’ +← (upar-init, G′.comSecret,

G′.joinerSecret, G′.confTransHash, G′.confTag).
• If RandCor[id] = ‘bad’, S′

4-2
knows scom ≠ ⊥. S′

4-2
does as

follows.

– If (upar-init, (scom, ∗), ∗,G′.confTransHash, confTag′) ∈
𝐿
‘epoch’ exists for some unique confTag′,21 S′

4-2
uses confTag′

as the confirmation tag. Note that this case occurs if some

party has derived the same epoch secrets in the commit

or process protocol.

– Else, S′
4-2

prepares new GSD nodes ucom, u‘joi’, u‘conf’,
u
‘app’, u‘memb’, and u‘init’ (their values are set to uctr, uctr+1,
. . ., uctr+5 and ctr is incremented as ctr ← ctr + 6) and

queries Set-Secret(ucom, scom), Join-Hash(upar-init, ucom,
u
‘joi’, ‘joi’) and Hash(u

‘joi’, ulbl, (G′.groupCont(), lbl)) for
each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}.
∗ If gsd-exp(upar-init) = false,S′

4-2
prepares a new node

uctag := uctr (and sets ctr ← ctr + 1) and computes

the confirmation tag by querying Hash(u
‘conf’, uctag,

G′.confTransHash) andG′.confTag := Corr(uctag). Then
it checks the following.

· If (⊥, (⊥,⊥), ∗,G′.confTransHash, confTag′) ∈ 𝐿
‘epoch’

exists for some confTag′ such that G′.confTag =

confTag′, S′
4-2

aborts. We call this event Abortattach,
and in Proposition E.26 we will prove that the proba-

bility the simulator aborts due to this event is negli-

gible.
22

· Else, the simulator S′
4-2

sets G′.comSecret := (scom,
ucom), G′.joinerSecret := (⊥, u

‘joi’), G′.confKey :=

(⊥, u
‘conf’),G′.appSecret := (⊥, u

‘app’),G′.membKey :=

(⊥, u
‘memb’) and G′.initSecret := (⊥, u

‘init’). Finally,
S′

4-2
stores𝐿

‘epoch’ +← (upar-init,G′.comSecret,G′.joinerSecret,
G′.confTransHash, G′.confTag).

∗ If gsd-exp(upar-init) = true (i.e., S′
4-2

knows spar-init ≠
⊥), thenS′

4-2
computes the joiner secret s

‘joi’ := RO(spar-init,
scom, ‘joi’) and the epoch secrets slbl := RO(s

‘joi’, (G′.groupCont(),
lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. S′

4-2

sets G′.comSecret := (scom, ucom), G′.joinerSecret :=

(s
‘joi’, u‘joi’),G′.confKey := (s

‘conf’, u‘conf’),G′.appSecret :=

(s
‘app’, u‘app’), G′.membKey := (s

‘memb’, u‘memb’) and
G′.initSecret := (s

‘init’, u‘init’). It also computes the con-

firmation tagG′.confTag := RO(s
‘conf’,G

′.confTransHash).
Finally, S′

4-2
stores 𝐿

‘epoch’ +← (upar-init, G′.comSecret,
G′.joinerSecret, G′.confTransHash, G′.confTag).

If a new member exists, S′
4-2

runs *welcome-msg following the

protocol description except that S′
4-2

encrypts the joiner secret

G′.joinerSecret as follows:

• IfRandCor[id] = ‘good’,S′
4-2

does as follows. LetG′.member
be the new membership list and addedMem be the set of

new party’s identity.

21
Due to the argument we made in Hybrid 2-2, confTag is unique for each initSecret,

comSecret and confTransHash.
22Abortattach occurs if the created commit node by the commit protocol is attached

to an existing detached root even if the corresponding initial secret is not leaked. If

such node is created, the mac-inj-allowed predicate returns false. Namely, we prove

in Proposition E.26 that the probability of such node is created is negligible.

– If G′.member[id] .dk ≠ (⊥,⊥) for all id ∈ addedMem,

each G′.member[id] .dk is of the form (∗, uid). S′4-2 com-

poses the set 𝑆addedMem := { uid }id∈addedMem, and queries

CmEnc(𝑆addedMem, u‘joi’) to compute the ciphertext (T, ®ct =
(ctu)u∈𝑆addedMem ).
∗ If gsd-exp(uid) = true for some uid ∈ 𝑆addedMem, it

decrypts (T, ctuid ) using the secret sid of uid, and obtains
s
‘joi’. S′4-2 stores 𝐿‘enc’ +← ((s‘joi’, u‘joi’), uid, (T, ctuid ))
for each uid ∈ 𝑆addedMem. Then, S′4-2 computes slbl :=

RO(s
‘joi’, (G′.groupCont(), lbl)) for each lbl ∈ {‘conf’,

‘app’, ‘memb’, ‘init’} and updates the epoch secrets as

G′.joinerSecret := (s
‘joi’, u‘joi’), G′.confKey := (s

‘conf’,

u
‘conf’),G′.appSecret := (s

‘app’, u‘app’),G′.membKey :=

(s
‘memb’, u‘memb’) and G′.initSecret := (s

‘init’, u‘init’).
(𝐿
‘epoch’ is also updated accordingly.)

∗ Else,S′
4-2

stores𝐿‘enc’ +← (G′.joinerSecret, uid, (T, ctuid ))
for each uid ∈ 𝑆addedMem.

– Else (i.e.,G′.member[id] .dk = (⊥,⊥) for some id ∈ addedMem),

S′
4-2

queries s
‘joi’ := Corr(u

‘joi’) and encrypts s
‘joi’ as in

the previous hybrid. Then, S′
4-2

computes slbl := RO(s
‘joi’,

(G′.groupCont(), lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’,
‘init’} and updates the epoch secrets as G′.joinerSecret :=

(s
‘joi’, u‘joi’),G′.confKey := (s

‘conf’, u‘conf’),G′.appSecret :=

(s
‘app’, u‘app’),G′.membKey := (s

‘memb’, u‘memb’) andG′.initSecret :=

(s
‘init’, u‘init’). (𝐿‘epoch’ is also updated accordingly.)

• If RandCor[id] = ‘bad’,S′
4-2

queries s
‘joi’ := Corr(u

‘joi’) and
encrypts s

‘joi’ as in the previous hybrid. Then, S′
4-2

com-

putes slbl := RO(s
‘joi’, (G′.groupCont(), lbl)) for each lbl ∈

{‘conf’, ‘app’, ‘memb’, ‘init’} and updates the epoch secrets

as G′.joinerSecret := (s
‘joi’, u‘joi’), G′.confKey := (s

‘conf’,

u
‘conf’),G′.appSecret := (s

‘app’, u‘app’),G′.membKey := (s
‘memb’,

u
‘memb’) and G′.initSecret := (s

‘init’, u‘init’). (𝐿‘epoch’ is also
updated accordingly.)

Simulation of id on input (Process, c0, ĉ, ®p). S′
4-2

simulates the

process protocol as in the previous hybrid, except for the differences

shown below:

Firstly, S′
4-2

simulates *unframe-prop and *apply-props iden-

tically to when simulating the Commit protocol. After the execution
of *apply-props, S′

4-2
obtains the new membership list and the

decryption key of each party. In other words, for all members id,
G.member[id] .dk is of the form (∗, uid) or (⊥,⊥).

During execution of *apply-rekey,S′
4-2

decrypts the ciphertext

ct = (T, ĉt) in (c0, ĉ) as follows, by using id’s current decryption
key (sid, uid) = G.member[id] .dk23. Let (∗, upar-init) be the initial
secret at epoch Ptr[id] and let confTag be the confirmation tag in

c0. Note that the confirmation hash G′.confTransHash for the new

epoch is computed before running *apply-rekey function.

Case (1): If sid ≠ ⊥, S′
4-2

simply decrypts ct by itself to obtain the

commit secret scom.

23uid is always non-⊥ because id uses the decryption key generated by itself: When it

joins the group, it fetches the CmPKE key registered by itself (cf. get-dks queries to

FKS (line 12 in the join protocol)); When it updates its state, it replaces the old CmPKE
key with a new CmPKE key generated by itself which stored in pendUpd (cf. line 11

in *apply-props function) or pendCom array (cf. line 4 in the process protocol).
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Case (2): Else, if (∗, uid, ct) ∉ 𝐿‘enc’ (i.e., ct can be sent to CmDec
oracle), S′

4-2
sends (uid, ct) to CmDec oracle to obtain the

commit secret scom.
Case (3): Else, if ((s′, u′), uid, ct) ∈ 𝐿‘enc’ for some (s′ ≠ ⊥, u′),

s′ is used as the commit secret scom (i.e., scom := s′). S′
4-2

retrieves such scom.
Case (4)24: Else, if ((⊥, u′), uid, ct) ∈ 𝐿‘enc’ and (upar-init, (⊥, u′), ∗,

G′.confTransHash, confTag′) ∈ 𝐿
‘epoch’ exist for some u′

and confTag′, then S′
4-2

skips running *derive-keys, and
verifies the confirmation tag confTag in c0 by checking

confTag = confTag′.
Case (5)25: Else, if ((⊥, u′), uid, ct) ∈ 𝐿‘enc’ for some u′, S′

4-2
out-

puts⊥. We call this event Einj-c-1. In Proposition E.23, we will
prove that the simulator in the previous hybrid also outputs

⊥ when Einj-c-1 occurs. Thus,Z’s view is indistinguishable.

It remains to explain what S′
4-2

does with the commit secret scom
for Cases (1)-(3). The simulator finishes by funning *derive-keys
and *vrf-conf-tag as follows.

• If (upar-init, (scom, ∗), ∗,G′.confTransHash, confTag′) ∈ 𝐿‘epoch’
exists for some confTag′, S′

4-2
verifies the confirmation tag

by checking confTag = confTag′ and skips *derive-keys
and *vrf-conf-tag. Note that this case occurs if S′

4-2
de-

rived the epoch secret corresponding to the received commit

message c0.

• Else if gsd-exp(upar-init) = false, S′
4-2

outputs ⊥. We call

this event Einj-c-2. In Proposition E.24 below, we will prove

that the simulator in the previous hybrid also outputs ⊥
when Einj-c-2 occurs, i.e.,Z’s view is not changed.

• Else (i.e., gsd-exp(upar-init) = true),S′
4-2

knows both spar-init
and scom. It computes the joiner secret s

‘joi’ := RO(spar-init,
scom, ‘joi’) and the epoch secrets slbl := RO(s

‘joi’, (G′.groupCont(),
lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. Then, S′

4-2

recomputes the confirmation tag confTag′ := RO(s
‘conf’,

G′.confTransHash) and checkswhether confTag = confTag′

holds. If true, S′
4-2

prepares new GSD nodes ucom, u‘joi’,
u
‘conf’, u‘app’, u‘memb’, and u

‘init’ (their values are set to uctr,
uctr+1, . . . , uctr+5 and ctr is incremented as ctr ← ctr + 6)

and queries Set-Secret(ucom, scom), Join-Hash(upar-init,
ucom, u‘joi’, ‘joi’) and Hash(u

‘joi’, ulbl, (G′.groupCont(), lbl))
for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}.S′

4-2
setsG′.comSecret :=

(scom, ucom), G′.joinerSecret := (s
‘joi’, u‘joi’), G′.confKey :=

(s
‘conf’, u‘conf’),G′.appSecret := (s

‘app’, u‘app’),G′.membKey :=

(s
‘memb’, u‘memb’) andG′.initSecret := (s

‘init’, u‘init’). Finally,
S′

4-2
stores𝐿

‘epoch’ +← (upar-init,G′.comSecret,G′.joinerSecret,
G′.confTransHash, confTag).

Simulation of id on input (Join,𝑤0,𝑤). S′
4-2

simulates the join

protocol as in the previous hybrid, except for the differences shown

below:

When initializing the groupmembership list, for each encryption

key in G.member, if S′
4-2

knows the corresponding decryption key,

24
This case occurs if the received commit message is generated by the commit protocol

with good randomness, and the encrypted commit secret has not been leaked.

25
This case occurs when the ciphertext was generated by CmEnc oracle, but the simu-

lator did not derive the corresponding epoch secret. Put differently, this occurs when

Z generates a malicious welcome message using an honestly generated ciphertext.

S′
4-2

copies it to G.member. Otherwise, the decryption key is set to

(⊥,⊥).
S′

4-2
decrypts the ciphertext ct = (T, ĉt) in (𝑤0,𝑤) using id’s

decryption key (sid, uid) = G.member[id] .dk26 as follows. Let

G.confTransHash be the confirmation hash and confTag be the

confirmation tag included in𝑤0.

Case (1): If sid ≠ ⊥, S′
4-2

simply decrypts ct by itself to obtain the

joiner secret s
‘joi’.

Case (2): Else, if (∗, uid, ct) ∉ 𝐿‘enc’ (i.e., ct can be sent to CmDec
oracle), S′

4-2
sends (uid, ct) to obtain the joiner secret s

‘joi’.

Case (3): Else, if ((s′, u′), uid, ct) ∈ 𝐿‘enc’ for some (s′ ≠ ⊥, u′), s′
is used as the joiner secret s

‘joi’ (i.e., s‘joi’ := s′).S′
4-2

retrieves

such s
‘joi’.

Case (4)27: Else, if ((⊥, u′), uid, ct) ∈ 𝐿‘enc’ and (∗, ∗, (⊥, u′),G.confTransHash,
confTag′) ∈ 𝐿

‘epoch’ exist for some u′ and confTag′, then
S′

4-2
skips the derivation of the epoch secrets, and verifies

the confirmation tag confTag in𝑤0 by checking confTag =

confTag′.
Case (5)28: If ((⊥, u′), uid, ct) ∈ 𝐿‘enc’ for some u′, S′

4-2
outputs ⊥.

We call this event Einj-w. In Proposition E.25, we will prove

that the simulator in the previous hybrid also outputs ⊥
when Einj-w occurs, i.e.,Z’s view is indistinguishable.

It remains to explain what S′
4-2

does with the commit secret s
‘joi’

for Cases (1)-(3). The simulator verifies confTag in𝑤0 as follows.

• If (∗, ∗, (s
‘joi’, ∗),G.confTransHash, confTag′) ∈ 𝐿‘epoch’ ex-

ists for some confTag′, S′
4-2

verifies the confirmation tag by

checking confTag = confTag′.
• Else, S′

4-2
computes slbl := RO(s

‘joi’, (G.groupCont(), lbl))
for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}, and verifies the

confirmation tag by checking confTag = RO(s
‘conf’,G.confTransHash).

If the tag is valid, S′
4-2

prepares new GSD nodes u
‘joi’, u‘conf’,

u
‘app’, u‘memb’, and u‘init’ (their values are set to uctr, uctr+1, . . . ,

uctr+4 and ctr is incremented as ctr← ctr + 5) and queries

Set-Secret(u
‘joi’, s‘joi’) and Hash(u‘joi’, ulbl, (G.groupCont(),

lbl)) for each lbl ∈ {‘conf’, ‘app’, ‘memb’, ‘init’}. Then, S′
4-2

sets G.joinerSecret := (s
‘joi’, u‘joi’), G.confKey := (s

‘conf’,

u
‘conf’),G.appSecret := (s

‘app’, u‘app’),G.membKey := (s
‘memb’,

u
‘memb’) andG.initSecret := (s

‘init’, u‘init’). Finally,S′4-2 stores
𝐿
‘epoch’ +← (⊥, (⊥,⊥), G.joinerSecret, G.confTransHash,

confTag).

Simulation of id on input Key. LetG.appSecret be the application
secret at epoch Ptr[id]. If it is of the from (s

‘app’ ≠ ⊥, u‘app’), S′4-2
returns s

‘app’. Else, S′4-2 queries s‘app’ := Corr(u
‘app’) and returns

s
‘app’; Then S′4-2 replaces (⊥, u

‘app’) with (s‘app’, u‘app’)
Corruption query for id. id’s state at epoch Ptr[id] contains the
following secrets:

• The decryption key stored inG.member[id] .dk andG.pendUpd
array;

26uid is always non-⊥ because when a party id joins the group, id uses the decryption

key generated by itself (cf. get-dks queries to FKS (line 12 in the join protocol)).

27
This case occurs if the receivedwelcomemessage is generated by the commit protocol

with good randomness, and the encrypted joiner secret has not been leaked.

28
This case occurs when the ciphertext was generated by CmEnc oracle, but the simu-

lator did not derive the corresponding epoch secret. Put differently, it occurs when Z
generates a malicious commit message using an honestly generated ciphertext.
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• The decryption keys of the key packages registered to Key

Service. They are stored in DK[id, ∗]; and
• The current epoch secrets confKey, membKey, appSecret,
and initSecret. Note that id holds appSecret only if Key query
has not been queried to Ptr[id].
• The epoch secrets stored in G.pendCom array;

For each of the above secrets, if the secret is of the form (⊥, u), S′
4-2

queries s := Corr(u) and replaces (⊥, u) with (s, u). Then, for each
node 𝑣 such that gsd-exp(𝑣) becomes true due to the corruption,

S′
4-2

computes the secret s𝑣 from previously obtained ciphertexts

and corrupted secrets, and replaces all occurrence of (⊥, 𝑣) with
(s𝑣, 𝑣). Finally,S′

4-2
returns id’s secrets listed above to the adversary

A.

Part 2: Proof of Indistinguishability of the Two Hybrid.Wenext prove

indistinguishability between Hybrid 4-1 and Hybrid 4-2.

Lemma E.21. Hybrid 4-1 and Hybrid 4-2 are indistinguishable
assuming CmPKE is Chained CmPKE conforming GSD secure.

Proof. The difference from the previous hybrid is that the sim-

ulator S′
4-2

always outputs ⊥ when events Einj-p, Einj-c-1, Einj-c-2,
and Einj-w occur, and it aborts when event Abortattach occurs. In

the following, we show that, ifZ can distinguish the two hybrids

(i.e., S′
4-2

provides a different view to Z when the events occur),

then there exists an adversary B that can win the Chained CmPKE
conforming GSD game.

We first show thatZ’s view is not changed when Einj-p occurs. In
other words,Z cannot inject a proposal message without knowing

the membership key.

Proposition E.22. Z’s view when Einj-p occurs is indistinguish-
able between the two hybrids if CmPKE is Chained CmPKE conform-
ing GSD secure.

Proof. The difference from the previous hybrid is that S′
4-2

out-

puts⊥when event Einj-p occurs. We show that, ifZ can distinguish

the two hybrids, then there exists an adversary B that can win the

Chained CmPKE conforming GSD game. We first explain the de-

scription of B and how B embeds the GSD challenge. We then

show the validity of the GSD challenge, and finally evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S′
4-2

, except that B interacts

with its GSD challenger instead of SGSD. We assume B receives

at most N distinct proposal messages as input to the commit and

process protocol. At the beginning of the game, B chooses 𝑖 ∈ [N ]
at random, and hopes that the 𝑖-th proposal message triggers Einj-p,
and the simulator in the previous hybrid outputs non-⊥ when it

receives the message. (B succeeds to guess with probability 1/N .)

When B receives the 𝑖-th proposal message p, B embeds the GSD

challenge and determines the challenge bit as follows. We assume p
is processed by id without loss of generality, and let u

‘memb’ be the

GSD node assigned to the membership key at epoch Ptr[id]. Also,
let membTag be the membership tag in p.

(1) B prepares a new GSD node umtag := uctr and queries

Hash(u
‘memb’, umtag, (propCont, sig)), where (propCont, sig)

is taken from p.
(2) B queries membTag′ := Chall(umtag)

(3) If membTag = membTag′, B submits 0 to the GSD chal-

lenger; otherwise submits 1.

Note that B can send (propCont, sig) to Hash oracle (that is, B
has not queries (propCont, sig) to Hash oracle before) because

(u
‘memb’, (propCont, sig), ∗) ∉ 𝐿‘memb’ when Einj-p occurs. IfB suc-

ceeds the guess, membTag in p is valid, i.e., it satisfies membTag =

RO(s
‘memb’, (propCont, sig)) for the membership key s

‘memb’ as-

signed to u
‘memb’. Moreover,B assignsRO(s

‘memb’, (propCont, sig))
to umtag. Thus, if the challenge oracle returns the real value (i.e., the

challenge bit is 0), membTag = membTag′ holds with probability

1; otherwise with negligible probability. Therefore, B can output

the correct challenge bit with overwhelming probability.

We then check the validity of the GSD challenge. Observe that

the GSD graph is acyclic and umtag is a sink node. In addition, by

the structure of the GSD graph, we have

gsd-exp(umtag) =
(
umtag ∈ Corr

)
∨ gsd-exp(u

‘memb’)
= false.

This is because umtag is not sent to Corr or Set-Secret oracle, and
gsd-exp(u

‘memb’) = false when Einj-p occurs. Hence, umtag is a

valid challenge node, and B wins the GSD game.

We finally evaluate the advantage of B. B wins the GSD game if

Z distinguishes the hybrids and B succeeds to guess the proposal

message. If Z distinguish the two hybrids with non-negligible

probability 𝜖 , B wins the game with probability 𝜖/Q, which is also

non-negligible. This contradicts the assumption that CmPKE is

Chained CmPKE conforming GSD secure. Therefore, 𝜖 must be

negligible, and we conclude that Z’s view when Einj-p occurs is

indistinguishable between Hybrid 4-1 and Hybrid 4-2. □

We then prove thatZ’s view is not changed when Einj-c-1 occurs.
In other words,Z cannot inject a commit messagewithout knowing

the encrypted commit secret.

Proposition E.23. Z’s view when Einj-c-1 occurs is indistinguish-
able between the two hybrids if CmPKE is Chained CmPKE conform-
ing GSD secure.

Proof. The difference from the previous hybrid is that S′
4-2

outputs ⊥ when event Einj-c-1 occurs. We show that, ifZ can dis-

tinguish the two hybrids, then there exists an adversary B that can

win the Chained CmPKE conforming GSD game. We first explain

the description of B and how B embeds the GSD challenge. We

then show the validity of the GSD challenge, and finally evaluate

B’s advantage.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S′
4-2

, except that B interacts

with its GSD challenger instead of SGSD. We assume B receives

at most Q distinct commit messages as input to the process proto-

col. At the beginning of the game, B chooses 𝑖 ∈ [Q] at random,

and hopes that the 𝑖-th commit message triggers Einj-c-1, and the

simulator in the previous hybrid outputs non-⊥ when it receives

the message. (B succeeds to guess with probability 1/Q.) When B
receives the 𝑖-th commit message c0, B embeds the GSD challenge

and determines the challenge bit as follows. We assume c0 is pro-

cessed by id without loss of generality and let upar-init be the GSD
node assigned to the initial secret at epoch Ptr[id]. Let confTag be

the confirmation tag in c0. In addition, when Einj-c-1 occurs, there
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exists a node u′ such that ((⊥, u′), uid, ct) ∈ 𝐿‘enc’, where uid is the

GSD node corresponding to id’s current CmPKE key and ct is the
ciphertext in c0

(1) B prepares new GSD nodes u
‘joi’ and u

‘conf’ (their values

are set to uctr and uctr+1, and ctr is incremented as ctr ←
ctr + 2) and queries Join-Hash(upar-init, u′, u‘joi’, ‘joi’) and
Hash(u

‘joi’, u‘conf’, (G′.groupCont(), ‘conf’)).
(2) B prepares a newGSDnode uctag := uctr and queries Hash(u‘conf’,

uctag,G′.confTransHash).
(3) B queries confTag′ := Chall(uctag).
(4) If confTag = confTag′, B submits 0 to the GSD challenger;

otherwise submits 1.

Note thatB can issue the above queries to oracles Hash and Join-Hash
because the inputs are new GSD nodes. Note also that the confirma-

tion key derived from the current initial secret and c0 is correctly

computed to u
‘conf’ because the commit secret encrypted in ct is as-

signed to u′. IfB succeeds the guess, confTag in c0 is valid, i.e., it sat-

isfies confTag = RO(s
‘conf’,G

′.confTransHash) for the confirma-

tion key s
‘conf’ assigned to u

‘conf’. Moreover, B assigns RO(s
‘conf’,

G′.confTransHash) to uctag. Thus, if the challenge oracle returns
the real value (i.e., the challenge bit is 0), confTag = confTag′ holds
with probability 1; otherwise with negligible probability. There-

fore, B can output the correct challenge bit with overwhelming

probability.

We check the validity of the GSD challenge. Observe that the

GSD graph is acyclic and uctag is a sink node. In addition, by the

structure of the GSD graph, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u

‘conf’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨ gsd-exp(u

‘joi’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨
(
u
‘joi’ ∈ Corr

)
∨

(gsd-exp(upar-init) ∧ gsd-exp(u′))
= false.

This is because uctag, u‘conf’, and u
‘joi’ are not sent to Corr or

Set-Secret oracle, and gsd-exp(u′) = false when Einj-c-1 oc-

curs. Hence, uctag is a valid challenge node, and B wins the GSD

game.

We finally evaluate the advantage ofB.B can win the GSD game

ifZ distinguishes the hybrids and B succeeds to guess the message.

IfZ distinguish the two hybrids with non-negligible probability 𝜖 ,

B wins the game with probability 𝜖/Q, which is also non-negligible.
This contradicts the assumption that CmPKE is Chained CmPKE
conforming GSD secure. Therefore, 𝜖 must be negligible, and we

conclude that Z’s view when Einj-c-1 occurs is indistinguishable
between Hybrid 4-1 and Hybrid 4-2. □

We also prove that thatZ’s view is not changed when Einj-c-2
occurs. In other words,Z cannot inject a commit message without

knowing the initial secret of the parent node.

Proposition E.24. Z’s view when Einj-c-2 occurs is indistinguish-
able between the two hybrids if CmPKE is Chained CmPKE conform-
ing GSD secure.

Proof. The difference from the previous hybrid is that S′
4-2

outputs ⊥ when event Einj-c-2 occurs. We show that, ifZ can dis-

tinguish the two hybrids, then there exists an adversary B that can

win the Chained CmPKE conforming GSD game. We first explain

the description of B and how B embeds the GSD challenge. We

then show the validity of the GSD challenge, and finally evaluate

B’s advantage.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S′
4-2

, except that B interacts

with its GSD challenger instead of SGSD. We assume B receives

at most Q distinct commit messages as input to the process proto-

col. At the beginning of the game, B chooses 𝑖 ∈ [Q] at random,

and hopes that the 𝑖-th commit message triggers Einj-c-2, and the

simulator in the previous hybrid outputs non-⊥ when it receives

the message. (B succeeds to guess with probability 1/Q.) When B
receives the 𝑖-th commit message c0, B embeds the GSD challenge

and determines the challenge bit as follows. We assume c0 is pro-

cessed by id without loss of generality and let upar-init be the GSD
node assigned to the initial secret at epoch Ptr[id]. Let confTag
be the confirmation tag in c0. Note that when Einj-c-2 occurs, B
succeeds to decrypt the commit secret scom.

(1) B prepares new GSD nodes ucom, u‘joi’ and u
‘conf’ (their val-

ues are set to uctr, uctr+1 and uctr+2. ctr is incremented as

ctr← ctr+3) and queries Set-Secret(ucom, scom), Join-Hash(
upar-init, ucom, u‘joi’, ‘joi’) and Hash(u‘joi’, u‘conf’, (G′.groupCont(),
‘conf’)).

(2) B prepares a newGSDnode uctag := uctr and queries Hash(u‘conf’,
uctag,G′.confTransHash).

(3) B queries confTag′ := Chall(uctag).
(4) If confTag = confTag′, B submits 0 to the GSD challenger;

otherwise submits 1.

Note that B can issue above queries because B prepares new GSD

nodes. Note also that the confirmation key derived from the current

initial secret and c0 is correctly computed to u
‘conf’. If B succeeds to

guess, confTag in c0 is valid, i.e., it satisfies confTag = RO(s
‘conf’,

G′.confTransHash) for the confirmation key s
‘conf’ assigned to

u
‘conf’. Moreover,B assigns RO(s

‘conf’,G
′.confTransHash) to uctag.

Thus, if the challenge oracle returns the real value (i.e., the challenge

bit is 0), confTag = confTag′ holds with probability 1; otherwise

with negligible probability. Therefore, B can output the correct

challenge bit with overwhelming probability.

We check the validity of the GSD challenge. Observe that the

GSD graph is acyclic and uctag is a sink node. In addition, by the

structure of the GSD graph, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u

‘conf’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨ gsd-exp(u

‘joi’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨
(
u
‘joi’ ∈ Corr

)
∨

(gsd-exp(upar-init) ∧ gsd-exp(ucom))
= false.

This is because uctag, u‘conf’, u‘joi’ are not sent to Corr or Set-Secret
oracle, and gsd-exp(upar-init) = false when Einj-c occurs. Hence,
uctag is a valid challenge node, and B wins the GSD game.

We finally evaluate the advantage ofB.B can win the GSD game

ifZ distinguishes the hybrids and B succeeds to guess the message.

IfZ distinguish the two hybrids with non-negligible probability 𝜖 ,

B wins the game with probability 𝜖/Q, which is also non-negligible.
This contradicts the assumption that CmPKE is Chained CmPKE
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conforming GSD secure. Therefore, 𝜖 must be negligible, and we

conclude that Z’s view when Einj-c-2 occurs is indistinguishable
between Hybrid 4-1 and Hybrid 4-2. □

We then prove that Z’s view is not changed when Einj-w oc-

curs. In other words,Z cannot inject a welcome message without

knowing the encrypted joiner secret.

Proposition E.25. Z’s view when Einj-w occurs is indistinguish-
able between the two hybrids if CmPKE is Chained CmPKE conform-
ing GSD secure.

Proof. The difference from the previous hybrid is that S′
4-2

out-

puts⊥when event Einj-w occurs. We show that, ifZ can distinguish

the two hybrids, then there exists an adversary B that can win the

Chained CmPKE conforming GSD game. We first explain the de-

scription of B and how B embeds the GSD challenge. We then

show the validity of the GSD challenge, and finally evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S′
4-2

, except that B interacts

with its GSD challenger instead of SGSD. We assume B receives at

most N distinct welcome messages as input to the join protocol. At

the beginning of the game,B chooses 𝑖 ∈ [N ] at random, and hopes

that the 𝑖-th welcome message triggers Einj-w, and the simulator in

the previous hybrid outputs non-⊥ when it receives the message

(i.e., the message is valid). (B succeeds to guess with probability

1/N .) When B receives the 𝑖-th welcome message 𝑤0, B embeds

the GSD challenge and determines the challenge bit as follows. We

assume 𝑤0 is processed by id without loss of generality and let

confTag be the confirmation tag in 𝑤0. In addition, when Einj-w
occurs, there exists a node u′ such that ((⊥, u′), uid, ct) ∈ 𝐿‘enc’,
where uid is the GSD node corresponding to id’s current CmPKE
key and ct is the ciphertext in𝑤0

(1) B prepares new GSD nodes u
‘conf’ := uctr (ctr is incre-

mented) and queries Hash(u′, u
‘conf’, (G.groupCont(), ‘conf’).

(2) B prepares a newGSDnode uctag := uctr and queries Hash(u‘conf’,
uctag,G′.confTransHash).

(3) B queries confTag′ := Chall(uctag).
(4) If confTag = confTag′, B submits 0; otherwise submits 1.

Note that B can issue above queries because B prepares new GSD

nodes. Note also that the confirmation key derived from𝑤0 is cor-

rectly computed to u
‘conf’ because the joiner secret encrypted in ct is

assigned to u′. If B succeeds the guess, confTag in𝑤0 is valid, i.e., it

satisfies confTag = RO(s
‘conf’,G.confTransHash) for the confirma-

tion key s
‘conf’ assigned to u

‘conf’. Moreover, B assigns RO(s
‘conf’,

G.confTransHash) to uctag. Thus, if the challenge oracle returns
the real value (i.e., the challenge bit is 0), confTag = confTag′ holds
with probability 1; otherwise with negligible probability. There-

fore, B can output the correct challenge bit with overwhelming

probability.

We check the validity of the GSD challenge. Observe that the

GSD graph is acyclic and uctag is a sink node. In addition, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u

‘conf’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨ gsd-exp(u′)

= false.

This is because uctag and u‘conf’ are not sent to Corr or Set-Secret
oracle, and gsd-exp(u′) = false when Einj-w occurs. Hence, uctag
is a valid challenge node, and B wins the GSD game.

We finally evaluate the advantage of B. B can win the GSD

game ifZ distinguishes the hybrids and B succeeds the guess. If

Z distinguish the two hybrids with non-negligible probability 𝜖 , B
wins the game with probability 𝜖/Q, which is also non-negligible.

This contradicts the assumption that CmPKE is Chained CmPKE
conforming GSD secure. Therefore, 𝜖 must be negligible, and we

conclude that Z’s view when Einj-w occurs is indistinguishable

between Hybrid 4-1 and Hybrid 4-2. □

We finally prove that the probability the simulator aborts due to

Abortattach is negligible.

Proposition E.26. The probability Abortattach occurs is negligible
if CmPKE is Chained CmPKE conforming GSD secure.

Proof. The difference from the previous hybrid is S′
4-2

aborts

when event Abortattach occurs. We show that, ifZ can distinguish

the two hybrids, then there exists an adversary B that can win

the Chained CmPKE conforming GSD game. We first explain the

description of B and how B embeds the GSD challenge. We then

show the validity of the GSD challenge, and finally evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S′
4-2

, except that B interacts

with its GSD challenger instead of SGSD. We assumeZ generates

at most Q commit message by invoking the commit protocol. At

the beginning of the game, B chooses 𝑖 ∈ [Q] at random, and

hopes that Abortattach occurs while B generates the 𝑖-th commit

message. (B succeeds to guess such message with probability 1/Q.)
When B generates the 𝑖-th commit message c0, B embeds the GSD

challenge and determines the challenge bit as follows. We assume

c0 is generated by id without loss of generality. Let upar-init be the
GSD node assigned to the initial secret at epoch Ptr[id] and let

ucom be the GSD node assigned to the commit secret. Note that the

confirmation hash G′.confTransHash of new epoch is computed

before deriving epoch secret.

(1) B prepares new GSD nodes u
‘joi’ and u

‘conf’ (their values

are set to uctr and uctr+1. ctr is incremented.) and queries

Join-Hash(upar-init, ucom, u‘joi’, ‘joi’) and Hash(u‘joi’, u‘conf’,
(G′.groupCont(), ‘conf’)).

(2) B prepares a newGSDnode uctag := uctr and queries Hash(u‘conf’,
uctag,G′.confTransHash).

(3) B queries confTag := Chall(uctag) instead of Corr(uctag).
(4) If (⊥, (⊥,⊥), ∗, G′.confTransHash, confTag′) ∈ 𝐿

‘epoch’ ex-

ists for some confTag′ such that confTag = confTag′, B
submits 0 to the GSD challenger; otherwise submits 1.

Note thatB can issue the above queries to oracles Hash and Join-Hash
because the inputs are new GSD nodes. Note also that the confirma-

tion key derived from the current initial secret and ucom is correctly

computed to u
‘conf’. B assigns RO(s

‘conf’,G
′.confTransHash) to

uctag. If Abortattach occurs, B has obtained confTag′ (stored in

𝐿
‘epoch’) that satisfies confTag

′ = RO(s
‘conf’,G

′.confTransHash).
Thus, if the challenge oracle returns the real value (i.e., the challenge

bit is 0), confTag = confTag′ holds with probability 1; otherwise
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with negligible probability. Therefore, B can output the correct

challenge bit with overwhelming probability.

We check the validity of the GSD challenge. Observe that GSD

graph is acyclic and uctag is a sink node. In addition, by the structure
of the GSD graph, we have

gsd-exp(uctag) =
(
uctag ∈ Corr

)
∨ gsd-exp(u

‘conf’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨ gsd-exp(u

‘joi’)
=
(
uctag ∈ Corr

)
∨
(
u
‘conf’ ∈ Corr

)
∨
(
u
‘joi’ ∈ Corr

)
∨

(gsd-exp(upar-init) ∧ gsd-exp(ucom))
= false.

This is because uctag, u‘conf’, u‘joi’ are not sent to Corr or Set-Secret
oracle, and gsd-exp(upar-init) = false when Abortattach occurs.

Hence, uctag is a valid challenge node, and B wins the GSD game.

We finally evaluate the advantage of B. B can win the GSD

game ifZ distinguishes the hybrids and B succeeds the guess. If

Z distinguish the two hybrids with non-negligible probability 𝜖 , B
wins the game with probability 𝜖/Q, which is also non-negligible.

However, This contradicts the assumption that CmPKE is Chained
CmPKE conforming GSD secure. Therefore, 𝜖 must be negligible,

andwe conclude that the probabilityAbortattach occurs is negligible,
i.e., the two hybrids are indistinguishable forZ. □

From the above propositions, we conclude that Hybrid 4-1 and

Hybrid 4-2 are indistinguishable forZ. □

E.5.3 From Hybrid 4-3 to 4-4: Proof of Lem. E.28. Before proving
Lem. E.28, we provide the key proposition that establishes the

relationship between the safety predicate (safe and know shown

in Fig. 28) and the gsd-exp predicate. It will be used in the proof

of Lems. E.28 and E.30.

Proposition E.27. Let u‘app’, u‘memb’, u‘conf’, u‘init’ be the GSD
node assigned to each epoch secret at epoch c0. The following state-
ments hold.
• If know(c0, ‘epoch’) = false, then gsd-exp(u) = false for
u ∈ { u‘memb’, u‘conf’, u‘init’ }.
• If safe(c0) = true, then gsd-exp(u‘app’) = false.

Proof. We show the contraposition of the statements. That is,

we prove

• If gsd-exp(u) = true for u ∈ { u
‘memb’, u‘conf’, u‘init’ }, then

know(c0, ‘epoch’) = true, and
• If gsd-exp(u

‘app’) = true, then safe(c0) = false.

Recalling the definition of gsd-exp and the GSD graph created by

S′
4-2

, for each û ∈ { u
‘memb’, u‘conf’, u‘init’, u‘app’ }, we have

gsd-exp(û)
⇐⇒

(
û ∈ Corr

)
∨ gsd-exp(u

‘joi’)
⇐⇒

(
û ∈ Corr

)
∨
(
u
‘joi’ ∈ Corr

)
∨ gsd-exp(uid,‘joi’)

∨
(
gsd-exp(ucom) ∧ gsd-exp(upar-init)

)
⇐⇒

(
û ∈ Corr

)
∨
(
u
‘joi’ ∈ Corr

)
∨
(
uid,‘joi’ ∈ Corr

)
∨
(
((ucom ∈ Corr) ∨ gsd-exp(uid,‘com’)) ∧ gsd-exp(upar-init)

)
⇐⇒ û ∈ Corr· · · Case (A)
∨
(
u
‘joi’ ∈ Corr

)
∨
(
uid,‘joi’ ∈ Corr

)
· · · Case (B)

∨
(
(ucom ∈ Corr) ∨ (uid,‘com’ ∈ Corr)

)
∧ gsd-exp(upar-init), · · · Case (C)

where u
‘joi’ (resp. ucom) is the GSD node assigned to the joiner (resp.

commit) secret at epoch c0, uid,‘joi’ (resp. uid,‘com’) is the GSD node

assigned to an encryption key used to encrypt u
‘joi’ (resp. ucom)

at c0, and upar-init is the GSD node assigned to the initial secret at

the parent node of c0. Note that Case (C) is evaluated when c0 is a

non-root node because otherwise the GSD graph starts from u
‘joi’.

In the following, we analyze Case (A), Case (B), and Case (C) in

order.

[Case (A):
(
û ∈ Corr

)
= true]. û ∈ Corr becomes true when S′

4-2

queries Corr(û). (Note that S′
4-2

never queries Set-Secret(û, ∗).)
By the description of S′

4-2
, it queries Corr(û) if (1) a party at c0

is corrupted via Corruption query; or (2) the committer of c0 is

corrupted via Corruption query while it is at the parent node of

c0 (this corresponds to the fact that the committer stores pending

commits in pendCom array).

Case (A-1): It immediately implies know(c0, ‘epoch’) = true be-
cause Node[c0] .exp ≠ ∅ becomes true when a party at c0 is

corrupted. In particular, if the party is corrupted before Key
query is issued to the epoch c0, (∗, true) ∈ Node[c0] .exp
becomes true. This implies safe(c0) = false.

Case (A-2): When the committer is corrupted while it is at the par-

ent node of c0, the status of the node c0 is set to ‘bad’ (cf.
*update-stat-after-exp). This impliesknow(c0, ‘epoch’) =
true and safe(c0) = false due to Condition (a) of *secrets-injected.

[Case (B):
(
u‘joi’ ∈ Corr

)
∨
(
uid,‘joi’ ∈ Corr

)
= true]. First, u

‘joi’ ∈
Corr becomes truewhenS′

4-2
queries Corr(u

‘joi’) or Set-Secret(u‘joi’, ∗).
Recalling the description of S′

4-2
, it issues Corr(u

‘joi’) if (1) in
the commit protocol, a new member is added with a malicious

key package generated by A; or (2) in the commit protocol, the

committer encrypts the joiner secret at c0 using bad randomness.

Case (B-1): When the adversary succeeds to inject a malicious key

package, the signing key used to generate the key pack-

age must be exposed due to the modification we made in

Hybrid 4-1. Thus, due to Condition (a) of *can-traverse,
*can-traverse(c0) = true.

Case (B-2): If the committer encrypts the joiner secret,Node[c0] .pro
contains at least one add proposal. In addition, the status of

c0 is set to ‘bad’ because the committer uses bad randomness.

Thus, due to Condition (c) of *can-traverse, *can-traverse(c0) =
true.

It issues Set-Secret(u
‘joi’, ∗) if (3) in the create protocol, the group

creator initializes the group using bad randomness; or (4) in the

join protocol, a party joins a group that S′
4-2

has not created (i.e.,

the party assigns to a detached root).

Case (B-3): When the group creator initialize c0 (= root0) using bad
randomness, the status of c0 is set to ‘bad’. Thus, due to Con-
dition (a) of *secrets-injected, know(c0, idcreator) = true.
Since c0 is a root node, due to Condition (d) of *can-traverse,
we have *can-traverse(c0) = true.

Case (B-4): When a party joins a group that the adversary cre-

ates, the party is assigned to a detached root, and its status

is ‘adv’. Thus, due to Condition (a) of *secrets-injected,
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know(c0, id𝑐 ) = true, where id𝑐 is the sender of the wel-
come message. Moreover, c0 is a root node. Thus, due to

Condition (d) of *can-traverse, *can-traverse(c0) = true.

Next, uid,‘joi’ ∈ Corr becomes truewhenS′
4-2

queries Corr(uid,‘joi’)
or Set-Full-Secret(uid,‘joi’, ∗). Recalling the description of S′

4-2
,

it issues Corr(uid,‘joi’) if (5) the adversary corrupts the new mem-

ber id𝑡 before it joins a group; or (6) the encryption key of a new

member id𝑡 used to encrypt the joiner secret at c0 is corrupted after

epoch c0.

Case (B-5): When the adversary corrupts a member id𝑡 before id𝑡
joins a group, the signing key used to generate the key pack-

age is marked as exposed (cf. (exposed, id𝑡 ) query to F IW

KS
).

Thus, due to Condition (a) of *can-traverse, *can-traverse(c0) =
true.

Case (B-6): This case happens if a party id𝑡 holds the same en-

cryption key at both c0 and c′
0
, where c′

0
is a descendant

node of c0, and id𝑡 is corrupted at c′
0
. Since id𝑡 is corrupted

at c′
0
, (id𝑡 , ∗) ∈ Node[c′

0
] .exp becomes true, and we have

know(c′
0
, id𝑡 ) = true. In addition, since id𝑡 holds the same

encryption key at both c0 and c′
0
, id𝑡 did not perform any

actions that replace id𝑡 ’s encryption key between c0 and

c′
0
. Thus, ¬*secrets-replaced(c′′

0
, id𝑡 ) = true for each c′′

0

on c0–c′
0
. Therefore, due to Condition (b) of *can-traverse,

*can-traverse(c0) = true (cf. *reused-welcome-key-leaks).

It issues Set-Full-Secret(uid,‘joi’, ∗) if (7) the key package in the

add proposal is generated using bad randomness.

Case (B-7): When the key package for add proposals is generated

using bad randomness, F IW

KS
marks that the signing key is ex-

posed (cf. register-kp query with bad randomness). Thus,

due to Condition (a) of *can-traverse, *can-traverse(c0) =
true.

In all cases, if Case (B) is true, then *can-traverse(c0) = true;
It implies know(c0, ‘epoch’) = true and safe(c0) = false.

[Case (C):
(
(ucom ∈ Corr)∨(uid,‘com’ ∈ Corr)

)
∧gsd-exp(upar-init) =

true]. We below show that ucom ∈ Corr ∨ uid,‘com’ ∈ Corr (i.e.,
gsd-exp(ucom) = true) implies know(c0, id) = true for some

id ∈ Node[c0] .mem. By applying Proposition E.27 to the parent

node of c0 (i.e.,Node[c0] .par), we can show that gsd-exp(upar-init) =
true implies know(Node[c0] .par, ‘epoch’) = true. As a result,

due to Condition (d) of *can-traverse, if Case (C) is true, then

*can-traverse(c0) = true, which implies know(c0, ‘epoch’) =

true and safe(c0) = false.
First, ucom ∈ Corr becomes truewhenS′

4-2
queries Set-Secret(ucom, ∗).29

Recalling the description of S′
4-2

, it issues Set-Secret(ucom, ∗) if
(1) in the commit protocol, a malicious encryption key generated

by A is used to encrypt the commit secret at c0; (2) in the commit

protocol, the committer generates c0 using bad randomness; or

(3) in the process protocol, a party processes an injected commit

message.

Case (C-1): This case occurs if the committer of c0 has applied (I)

an injected update proposal that contains a malicious en-

cryption key or (II) an add proposal that contains a malicious

29
By definition, S′

4-2
never queries Corr(ucom) .

key package generated by A at a previous epoch, and the

committer uses the same encryption key to generate c0.

Case (C-1-I): Assume the committer has applied the injected

update proposal sent from id at the node c′
0
, which is an

ancestor of c0 (including the case c′
0
= c0). When the adver-

sary succeeds to inject an update proposal that contains

the encryption key generated by the adversary, the corre-

sponding proposal node has the states ‘adv’. Hence, due to
Condition (b) of *secrets-injected, we haveknow(c′

0
, id) =

true. In addition, if id uses the same encryption key at

both c′
0
and c0, id did not perform any actions that replace

id’s encryption key between c′
0
and c0. Thus,¬*secrets-replaced(

c′′
0
, id) is true for each c′′

0
on c′

0
–c0 path. Therefore, Con-

dition (c) of know(c0, id) returns true.
Case (C-1-II): Assume the committer has applied the add

proposal from id at the node c′
0
, which is an ancestor of

c0. When the adversary succeeds to inject a key package

that contains malicious encryption key, the signing key

used to generate the key package must be exposed due to

the modification we made in Hybrid 4-1 (or Hybrid 5-1).

Hence, due to Condition (c) of *secrets-injected, we have
know(c′

0
, id) = true. In addition, since id uses the same

encryption key at both c′
0
and c0, id did not perform any

actions that replace id’s encryption key between c′
0
and

c0. Thus, ¬*secrets-replaced(c′′
0
, id) is true for each c′′

0

on c′
0
–c0 path. Therefore, Condition (c) of know(c0, id)

returns true.
Case (C-2): If the committer generates c0 using bad randomness,

the status of c0 is set to ‘bad’. Thus, due to Condition (a) of

*secrets-injected, know(c0, id𝑐 ) = true.
Case (C-3): Due to the modification we made in Hybrid 4-2 (cf.

Einj-c-2), if the node c0 is created by the process protocol,

both gsd-exp(upar-init) = true and gsd-exp(ucom) = true
hold. Moreover, the status of c0 is set to ‘adv’. Thus, due
to Condition (a) of *secrets-injected and Condition (d) of

*can-traverse, know(c0, ‘epoch’) = true and safe(c0) =
false always hols in this case.

Next, uid,‘com’ ∈ Corr becomes true ifS′
4-2

queries Corr(uid,‘com’)
or Set-Full-Secret(uid,‘com’, ∗). S′4-2 issues Corr(uid,‘com’) if (4)
a party id is corrupted via Corruption query while it holes the

encryption key uid,‘com’; or (5) id issues an update proposal at the

parent node of c0 and id is corrupted before processing the commit

message c0 (this corresponds to the fact that id stores the pending

update proposals including encryption keys in pendUpd array).

Case (C-4): Assume id is corrupted at epoch c′
0
. That is, (id, ∗) ∈

Node[c′
0
] .exp is true. In addition, since party id uses the

same encryption key uid,‘com’ at c0, id does not perform any

actions that replace id’s encryption key between c0 and c′
0
.

Thus, ¬*secrets-replaced(c′′
0
, id) is true for each c′′

0
on c′

0
–

c0 or c0–c′
0
path. Due to Condition (c) or (d) of know(c0, id),

we have know(c0, id) = true.
Case (C-5): If id is corrupted at the parent node of c0, the status of

the corresponding proposal nodes stored in pendUpd array

are set to ‘bad’ (cf. *update-stat-after-exp). Thus, due
to Condition (b) of *secrets-injected, we have know(c0,

id) = true.
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Set-Full-Secret(uid,‘com’, ∗) was queried to uid,‘com’ if (6) the

committer of c0 applied an update proposal from id generated with

bad randomness and uses the same encryption key at c0 or (7) the

committer applied an add proposal from id generated with bad

randomness and uses the same encryption key at c0.

Case (C-6): Assume id issues an update proposal using bad random-

ness and the committer applies it at epoch c′
0
. At the epoch,

S′
4-2

issues Set-Full-Secret(uid,‘com’, ∗) during key pack-

age generation, and due to Condition (b) of *secrets-injected,
know(c′

0
, id) is true. In addition, since party id uses the

encryption key uid,‘com’ at c0, id does not perform any ac-

tions that replace id’s encryption key between c0 and c′
0
.

Thus, ¬*secrets-replaced(c′′
0
, id) is true for each c′′

0
on

c′
0
–c0 path. Due to Condition (d) of know(c0, id), we have

know(c0, id) = true.
Case (C-7): Assume id added a group at epoch c′

0
using an add pro-

posal generated with bad randomness. When the key pack-

agewas generated,S′
4-2

issues Set-Full-Secret(uid,‘com’, ∗),
and due to Condition (c) of *secrets-injected, know(c′

0
, id)

is true. In addition, since party id uses the encryption key

uid,‘com’ at c0, id does not perform any actions that replace

id’s encryption key between c0 and c′
0
. Thus,¬*secrets-replaced

(c′′
0
, id) is true for each c′′

0
on c′

0
–c0 path. Due to Condition

(d) of know(c0, id), we have know(c0, id) = true.

In all cases, know(c0, id) = true for some id ∈ Node[c0] .mem.

Therefore, if gsd-exp(upar-init) = true holds additionally, Case (C)

implies know(c0, ‘epoch’) = true and safe(c0) = false.

From the above discussion, we obtain the following statements.

• If know(c0, ‘epoch’) = false, then gsd-exp(u) = false
for u ∈ { u

‘memb’, u‘conf’, u‘init’ }.
• If safe(c0) = true, then gsd-exp(u

‘app’) = false.

□

Now we ready to prove Lem. E.28.

Lemma E.28. Hybrid 4-3 and Hybrid 4-4 are identical.

Proof. The difference betweenHybrid 4-3 and Hybrid 4-4 is that

in Hybrid 4-4 we use the original auth-invariant predicate and
the functionally FCGKA,4 halts if auth-invariant returns false. We

show that the simulatorS4-4 never creates history graph nodes such

that auth-invariant returns false, that is, FCGKA,4 never halts.

We consider Condition (a) and Condition (b) of auth-invariant
in order.

Condition (a) of auth-invariant. We first show that, for all non-

root node c0 in the history graph created byS4-4, ifNode[c0] .stat =
‘adv’, thenmac-inj-allowed(c𝑝 ) = true, where c𝑝 := Node[c0] .par
(non-root implies c𝑝 ≠ ⊥). By the definition of the functionality, a

non-root commit node c0 with status ‘adv’ is created when (1) an

existing detached root is attached to a commit node generated by

the commit protocol using bad randomness; or (2) the commit node

is created by the process protocol. On the other hand, (1)S4-4 aborts

when an existing detached root will be attached to a commit node

generated using bad randomness if gsd-exp(upar-init) = false (cf.

Abortattach); and (2) S4-4 always rejects the injected commit mes-

sage c0 in the process protocol if gsd-exp(upar-init) = false (cf.

Einj-c-1). Here, upar-init is the GSD node assigned to the initial secret

at the parent epoch of c0. Thus, commit nodes with status ‘adv’ are
created only if gsd-exp(upar-init) = true. Moreover, due to Propo-

sition E.27, if gsd-exp(upar-init) = true, then know(c𝑝 , ‘epoch’) =
true, i.e., mac-inj-allowed(c𝑝 ) = true. Therefore, commit nodes

with status ‘adv’ are created only if mac-inj-allowed(c𝑝 ) = true.
In other words, there exists no node c0 such that Node[c0] .stat =
‘adv’ andmac-inj-allowed(c𝑝 ) = false in the history graph cre-

ated by S4-4.

Condition (b) of auth-invariant. We next show that, for all pro-

posal node p in the history graph, if Prop[p] .stat = ‘adv’, then
mac-inj-allowed(c𝑝 ) = true, where c𝑝 := Prop[p] .par (by defi-

nition, c𝑝 always non-⊥). By the definition of the functionality, a

proposal node with status ‘adv’ is created if a proposal message

is not generated by the propose protocol. On the other hand, if a

received proposal is not generated by the propose protocol and

gsd-exp(u
‘memb’) = false, the commit and process protocol al-

ways outputs ⊥ (i.e., rejects the message), where u
‘memb’ is the

GSD node assigned to the corresponding membership key at c𝑝 .
In other words, proposal nodes with status ‘adv’ is created only

if gsd-exp(u
‘memb’) = true. Moreover, due to Proposition E.27,

if gsd-exp(u
‘memb’) = true, then know(c𝑝 , ‘epoch’) = true, i.e.,

mac-inj-allowed(c𝑝 ) = true. Therefore, proposal nodes with sta-

tus ‘adv’ are created only ifmac-inj-allowed(c𝑝 ) = true. In other

words, there exists no proposal node p such that Prop[p] .stat =
‘adv’ and mac-inj-allowed(c𝑝 ) = true in the history graph cre-

ated by S4-4.

From the above discussion, S4-4 never creates history graph

nodes such that auth-invariant returns false, i.e., the functional-

ity never halts. Thus, Hybrid 4-3 and Hybrid 4-4 are identical. □

E.6 From Hybrid 5 to 6: Lem. E.29
In Hybrid 6, receiving Key query, the functionality FCGKA returns

a random application secret if safe is true for the queried epoch.

To prove the indistinguishability of the two hybrids, we gradually

replace each application secret with a random value instead of

the real value if safe is true. We show that, if Z can distinguish

whether the application secret is real or random, it can be used to

break the Chained CmPKE conforming GSD security of CmPKE. In
other words, if CmPKE is Chained CmPKE conforming GSD secure,

Hybrid 5 and Hybrid 6 are indistinguishable. We below provide a

formal proof of the above overview.

Lemma E.29. Hybrid 5 and Hybrid 6 are indistinguishable assum-
ing CmPKE is Chained CmPKE conforming GSD secure.

Proof. We assume Z creates at most Q epochs (i.e., commit

nodes). To show Lem. E.29, we consider the following sub-hybrids

between Hybrid 5 and Hybrid 6.

Hybrid 5-0. This is identical to Hybrid 5. We use the functionality

FCGKA,5, and all application secrets are set to the real value

by the simulator S5-0 := S5.

Hybrid 5-𝑖. 𝑖 runs through [Q]. The simulator S5-𝑖 is defined ex-

actly as S
5-(𝑖−1) except that it sets the 𝑖-th application secret

to random if safe is true. Note that we count application

secrets in the order in which Key query is issued. We show

in Lem. E.30 that Hybrid 5-(𝑖 − 1) and Hybrid 5-𝑖 are indis-

tinguishable.
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Hybrid 6. We replace the functionality FCGKA,5 with the original

functionality FCGKA. In this hybrid, all application secrets

such that safe is true are set to random by FCGKA. From
Z’s point of view, Hybrid 5-Q and Hybrid 6 are identical

because the only difference is who sets application secrets

to random.

The indistinguishability between Hybrid 5-0 and Hybrid 5-Q
is derived by applying Lem. E.30 for all 𝑖 ∈ [Q]. Therefore, we
conclude that Hybrid 5 and Hybrid 6 are indistinguishable. □

Lemma E.30. Hybrid 5-(𝑖−1) and Hybrid 5-𝑖 are indistinguishable
assuming CmPKE is Chained CmPKE conforming GSD secure.

Proof. The difference between Hybrid 5-(𝑖 − 1) and Hybrid 5-𝑖

is whether the 𝑖-th application secret is real or random if safe is
true. We show ifZ can distinguish the two hybrids, there exists an

adversary B against the Chained CmPKE conforming GSD game.

We first explain the description of B. We then show the validity of

the GSD challenge, and finally evaluate B’s advantage.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S′
4-2

, except that B interacts

with its GSD challenger instead of SGSD. B embeds the GSD chal-

lenge in the 𝑖-th application secret as follows: Assume Z issues

Key query to id and c0 = Ptr[id] is the 𝑗-th to be queried Key.

• If safe(c0) = true and 𝑗 < 𝑖 , B returns the random value.

• Else if safe(c0) = true and 𝑗 = 𝑖 , B queries s
‘app’ :=

Chall(u
‘app’) and returns the challenge value s

‘app’, where

u
‘app’ is the GSD node corresponding to the application se-

cret of c0.

• Else, B returns the real application secret (if necessary, B
corrupts the corresponding GSD node u

‘app’).

Observe that, if safe(c0) = false for the 𝑖-th application secret, the

challenge is not embedded. In this case, the two hybrids proceeds

exactly the same.

We consider the case B embedded the GSD challenge. We ar-

gue the GSD challenge is valid. Observe that the GSD graph is

acyclic and the challenge node u
‘app’ is a sink node. In addition, due

to Proposition E.27, safe(c0) = true implies gsd-exp(u
‘app’) =

false. Thus, u
‘app’ is a valid challenge node.

We finally analyze B’s advantage. If the challenge oracle returns
the real value,Z’s view is identical to Hybrid 5-(𝑖 − 1); else, i.e., the
challenge oracle returns a random value,Z’s view is identical to

Hybrid 5-𝑖 . Hence, ifZ distinguishes Hybrid 5-(𝑖 − 1) and Hybrid

5-𝑖 with non-negligible probability, B wins the GSD game with

non-negligible probability by using Z’s output. This contradicts

the assumption that CmPKE is Chained CmPKE conforming GSD

secure. Therefore, Hybrid 5-(𝑖 − 1) and Hybrid 5-𝑖 are indistinguish-
able. □

F A VARIANT OF GSD SECURITY TAILORED
TO CHAINED CMPKE

We introduce a variant of the generalized selective decryption (GSD)

security notion for public-key encryption tailored to our Chained
CmPKE security proof, which we coin as a Chained CmPKE con-

forming GSD security. We then show that such variant is secure

in the random oracle model assuming the hardness of the CmPKE.

The formalization of our Chained CmPKE conforming GSD secu-

rity is inspired by [9, 12, 13] but differs in the following way: we

consider a (committing) multi-recipient encryption oracle rather

than a single-recipient oracle; we restrict the hash oracles to not
take as input the secrets used to generate the keys for CmPKE; the
proof is simplified.

30
The restriction on the hash oracle is new to

this work and effectively, this simplifies the proof while still being

sufficient for proving our Chained CmPKE protocol.

In more detail, our Chained CmPKE conforming GSD is defined

in Fig. 29. The game maintains a graph with𝑀-vertices, where each

node 𝑢 stores a seed 𝑠𝑢 initially set to ⊥. If 𝑢 is a source node, then

𝑠𝑢 is further used to generate a key pair (ek𝑢 , dk𝑢 ) for CmPKE (see

*gen-full-key-if-nec). An edge corresponds to dependencies

between seeds, where there are three types of edges. One edge is a

(multi-recipient) encryption edge created by CmEnc: if there is an
edge from a source node𝑢 leading into 𝑣 , then 𝑠𝑣 is encrypted using

ek𝑢 . The second edge is a hash edge created by Hash: if there is an
edge from a non-source node𝑢 leading into 𝑣 , then 𝑠𝑣 is (informally)

the output of a hash function H on input 𝑠𝑢 . The final type of edge

is a join hash edge created by Join-Hash: if there is an edge from

non-source nodes𝑢 and𝑢 ′ leading into 𝑣 , then 𝑠𝑣 is (informally) the

output of a hash function H on input 𝑠𝑢 and 𝑠𝑢′ . See Fig. 1 for what

these edges mean in the context of the CGKA protocol. In Fig. 1,

the solid edge corresponds to encryption edges and the dashed

edges correspond to either hash or join hash edges. Observe that

Hash does not take as input an encryption node (i.e., EncSource)
and CmEnc does not take as input a (non-join) hashed input (i.e.,

𝑠𝑣 = ⊥ or 𝑣 ∈ WelcomeNode). This restriction is sufficient to prove

security of our Chained CmPKE protocol, while also having the

benefit that the GSD security proof will be simplified.

The GSD adversary can adaptively create the edges of the graph

and also adaptively corrupt the nodes to obtain the stored secret

seed. The gsd-exp function determines if the secret seed in node 𝑣

is trivially exposed to the adversary. Specifically, 𝑢 is exposed if it

is corrupted or can be traversed from any corrupted nodes. Then,

the security of GSD states that as long as node 𝑢 does not satisfy

gsd-exp (i.e., does not trivially expose the secret), then the secret

seed 𝑠𝑢 remains hidden.

More formally, we define the security notion as follows.

Definition F.1 (Chained CmPKE Conforming GSD Security). The
security notion is defined by a game illustrated in Fig. 29, where

we say the adversary A wins if the game outputs 1. We say the

CmPKE is Chained CmPKE conforming GSD secure if for all PPT
adversary A, we have |Pr[A wins] − 1/2| ≤ negl(𝜅). We say it is

selectively Chained CmPKE conforming GSD secure ifA is required

to commit to all of its oracle queries at the outset of the game.

The following is the main theorem of this section.

Theorem F.2. A CmPKE is Chained CmPKE conforming GSD
secure if CmPKE is IND-CCA secure with adaptive corruption. Addi-
tionally, it is selectively secure if CmPKE is only IND-CCA secure.

Proof. We only consider the adaptive setting since downgrad-

ing the proof to the selective setting is straightforward. Our proof

is in the non-programmable random oracle model.

30
We also noticed that we would require oracles Set-Secret and Set-Full-Secret

in the security proof.
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Initialization

1 : (V , E) ← ( [M ], ∅)
2 : Corr,Ctxt, EncSource,WelcomeNode← ∅
3 : s𝑢 , ek𝑢 , dk𝑢 ← ⊥ for each 𝑢 ∈ [M ]
4 : 𝑢∗ ← ⊥ // challenge node

5 : 𝑏 ←$ {0, 1}
6 : s∗ ←$ {0, 1}𝜅

7 : pp← CmSetup(1𝜅 )

8 : 𝑏′ ← ACmEnc,CmDec,Corr,Chall,Hash,Join-Hash,Set-Secret (pp)
9 : req (V , E) is acyclic
10 : ∧𝑢∗ is a sink
11 : ∧ gsd-exp(𝑢∗) = 0

12 : if 𝑏 = 𝑏′ then return 1

13 : else return 0

Oracle Chall(𝑢)
1 : req 𝑢∗ = ⊥
2 : 𝑢∗ ← 𝑢

3 : if 𝑏 = 0 then

4 : return s𝑢
5 : else

6 : return s∗

Oracle Corr(𝑢)
1 : req s𝑢 ≠ ⊥
2 : Corr +← 𝑢

3 : if dk𝑢 = ⊥ then

4 : return s𝑢
5 : else

6 : return dk𝑢

Oracle Set-Secret(𝑢, 𝑠)
1 : req s𝑢 = ⊥
2 : s𝑢 ← 𝑠

3 : Corr +← 𝑢

Oracle Set-Full-Secret(𝑢, 𝑠)
1 : req s𝑢 = ⊥
2 : s𝑢 ← 𝑠

3 : (ek𝑢 , dk𝑢 ) ← CmGen(pp;H(s𝑢 ))
4 : Corr +← 𝑢

Oracle CmEnc(𝑆, 𝑣)
1 : req s𝑢 = ⊥ ∨𝑢 ∈ EncSource for all 𝑢 ∈ 𝑆 ⊆ [𝑀 ]
2 : req s𝑣 = ⊥ ∨ 𝑣 ∈ WelcomeNode

3 : *gen-full-key-if-nec(𝑢) for all 𝑢 ∈ 𝑆
4 : *gen-key-if-nec(𝑣)
5 : E +← (𝑢, 𝑣, ‘enc’,⊥) for all 𝑢 ∈ 𝑆

6 : (T, ®ct = (ct𝑢 )𝑢∈𝑆 ) ← CmEnc(pp, (ek𝑢 )𝑢∈𝑆 , s𝑣)

7 : Ctxt +← (𝑆, T, ®ct)
8 : EncSource +← 𝑆

9 : return ( (ek𝑢 )𝑢∈𝑆 , T, ®ct)

Oracle CmDec(𝑢, T, ct)
1 : req 𝑢 ∈ EncSource

2 : foreach (𝑆, T′, ®ct = (ct𝑢′ )𝑢′∈𝑆 ) ∈ Ctxt do
3 : if 𝑢 ∈ 𝑆 ∧ (T, ct) = (T′, ct𝑢 ) then return ⊥
4 : return CmDec(dk𝑢 , T, ct)

Oracle Hash(𝑢, 𝑣, lbl)
1 : req 𝑢 ∉ EncSource ∧ s𝑣 = ⊥
2 : *gen-key-if-nec(𝑢)
3 : req (𝑢, ∗, ‘hash’, lbl) ∉ E

4 : s𝑣 ← H(s𝑢 , lbl)
5 : E +← (𝑢, 𝑣, ‘hash’, lbl)

Oracle Join-Hash(𝑢,𝑢 ′, 𝑣, lbl)
1 : req 𝑢,𝑢′ ∉ EncSource ∧ s𝑣 = ⊥
2 : *gen-key-if-nec(𝑢) ; *gen-key-if-nec(𝑢′)
3 : req ( (𝑢,𝑢′), ∗, ‘join-hash’, lbl) ∉ E

4 : s𝑣 ← H(s𝑢 , s𝑢′ , lbl)
5 : WelcomeNode +← 𝑣

6 : E +← ((𝑢,𝑢′), 𝑣, ‘join-hash’, lbl)

*gen-full-key-if-nec(𝑢)
1 : if (s𝑢 , ek𝑢 , dk𝑢 ) = (⊥,⊥,⊥) then
2 : s𝑢 ← {0, 1}𝜅

3 : (ek𝑢 , dk𝑢 ) ← CmGen(pp;H(𝑠𝑢 ))

*gen-key-if-nec(𝑢)
1 : if s𝑢 = ⊥ then s𝑢 ← {0, 1}𝜅

gsd-exp(𝑣)
1 : return [𝑣 ∈ Corr]
2 : ∨ ∃(𝑢, 𝑣, ∗, ∗) ∈ E : gsd-exp(𝑢)
3 : ∨ ∃( (𝑢,𝑢′), 𝑣, ∗, ∗) ∈ E : gsd-exp(𝑢) ∧ gsd-exp(𝑢′)

Figure 29: A Chained CmPKE conforming GSD game. The adversary A is also assumed to be given oracle access to the random
oracle H.

To aid the proof, we define a helper function SecurePaths in
Fig. 30 which takes as input a node 𝑢 ∈ [𝑀] and a list 𝐿. At the

end of the game, if an adversary A had chosen a valid challenge

node𝑢∗, then SecurePaths(𝑢∗, 𝐿 := ∅) outputs all the “secure paths”
that leads to 𝑢∗. To be more concrete, SecurePaths(𝑢∗, 𝐿 := ∅)
outputs a set of lists 𝐷 = { 𝐿𝑘 }𝑘∈[𝐾 ] , where 𝐾 ≤ 𝑀 − 1 and

each 𝐿𝑘 is either of the form 𝐿𝑘 = (𝑢1 := 𝑢∗, 𝑢2, · · · , 𝑢𝐼𝑘 ) or 𝐿𝑘 =

(𝑢1 := 𝑢∗, 𝑢2, · · · , 𝑢𝐼𝑘−1
, 𝑆) for some integer 𝐼𝑘 , nodes 𝑢𝑖 ∈ [𝑀]

such that gsd-exp(𝑢𝑖 ) = 0, 𝑢𝐼𝑘 is a source node, and a set of nodes

𝑆 ⊂ [𝑀] such that ∀𝑢 ∈ 𝑆 , 𝑢 ∈ EncSource and 𝑢 ∉ Corr (which
in particular implies gsd-exp(𝑢) = 0). Intuitively, 𝐿𝑘 is a path

that consists of uncorrupt nodes (and possibly a set of nodes) that

do not trivially leak the secret 𝑠∗ associated to 𝑢∗. Note that it is
not enough to simply check if a node is uncorrupted; even if 𝑣
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SecurePaths(𝑢, 𝐿)
1 : 𝐿 ++← 𝑢

2 : if ∃𝑣 s.t. (𝑣,𝑢, ‘hash’, ∗) ∈ 𝐸 then // 𝑢 is connected only from a ‘hash’ edge

3 : if gsd-exp(𝑣) = 0 then // Such a 𝑣 is unique if it exists

4 : SecurePaths(𝑣, 𝐿)
5 : elseif 𝑢 is not a source then

6 : (𝑣1, flag1
, 𝑣2, flag2

, 𝑆, flag
3
) ← (⊥,⊥,⊥,⊥, ∅,⊥)

7 : if ∃(𝑣, 𝑣′) s.t. ( (𝑣, 𝑣′),𝑢, ‘join-hash’, ∗) ∈ 𝐸 then

8 : (𝑣1, 𝑣2) ← (𝑣, 𝑣′) // Such (𝑣, 𝑣′) is unique if it exists

9 : if gsd-exp(𝑣1) = 0 then

10 : flag
1
← ⊤

11 : if gsd-exp(𝑣2) = 0 then

12 : flag
2
← ⊤

13 : if ∃𝑣 s.t. (𝑣,𝑢, ‘enc’, ∗) ∈ 𝐸 then

14 : flag
3
← ⊤ // Remains ⊤ if all recipients are uncorrupted

15 : foreach 𝑣 s.t. (𝑣,𝑢, ‘enc’, ∗) ∈ 𝐸 do

16 : 𝑆 +← 𝑣

17 : if gsd-exp(𝑣) = 1 then

18 : flag
3
← ⊥ // 𝑣 is a corrupted (encryption) source

19 : if
(
flag

1
= ⊤ ∨ flag

2
= ⊤

)
∧ flag

3
= ⊤ then

20 : if flag
1
= ⊤ then // 𝑢 is connected from ‘join-hash’ and ‘enc’ edges

21 : SecurePaths(𝑣1, 𝐿)
22 : if flag

2
= ⊤ then

23 : SecurePaths(𝑣2, 𝐿)
24 : 𝐿 ++← 𝑆

25 : return 𝐿

26 : elseif
(
flag

1
= ⊤ ∨ flag

2
= ⊤

)
∧ 𝑆 = ∅

27 : if flag
1
= ⊤ then // 𝑢 is connected only from a ‘join-hash’ edge

28 : SecurePaths(𝑣1, 𝐿)
29 : if flag

2
= ⊤ then

30 : SecurePaths(𝑣2, 𝐿)
31 : elseif 𝑣1 = ⊥ ∧ flag

3
= ⊤ then // 𝑢 is connected only from ‘enc’ edges

32 : 𝐿 ++← 𝑆

33 : return 𝐿

34 : elseif gsd-exp(𝑢) = 0 then // 𝑢 is a non-corrupted source

35 : return 𝐿

Figure 30: Helper function that outputs all the secure paths
leading to the input node 𝑢, where 𝐿 = ∅ by default.

and 𝑣 ′ such that ((𝑣, 𝑣 ′), 𝑢, ‘join-hash’, ∗) ∈ 𝐸 are uncorrupted,

we must also check that all 𝑣 ′′ such that (𝑣 ′′, 𝑢, ‘enc’, ∗) ∈ 𝐸 are

uncorrupted as well, since otherwise, 𝑢’s secret 𝑠𝑢 may trivially

leak.

Stating the above more formally, we obtain the following lemma.

Lemma F.3. The challenge sink𝑢∗ output byA is a valid challenge
(i.e., gsd-exp(𝑢∗) = 0) if and only if SecurePaths(𝑢∗) ≠ ∅.

Proof. The proof simply consists of checking the conditions.

The “only if” part of the proof is trivial since any path that satisfies

gsd-exp(𝑢∗) = 0 is also a path that will be output by SecurePaths.

Therefore, let us focus on the “if” part of the proof. Let us assume

SecurePaths(𝑢∗) → 𝐷 = { 𝐿𝑘 }𝑘∈[𝐾 ] . Consider any 𝐿𝑘 of the form

𝐿𝑘 = (𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘 ). (The case 𝐿𝑘 = (𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘−1
, 𝑆)

follows the same argument). By the definition of SecurePaths, it is
clear that there is an edge between each adjacent nodes 𝑢𝑖 and 𝑢𝑖+1.
Moreover, we have gsd-exp(𝑢𝑖 ) = 0 for every 𝑖 ∈ [𝐼𝑘 ]. This can be

verified by checking the nodes in reverse order; The final output

𝑢𝐼𝑘 is a source node that satisfies gsd-exp(𝑢𝐼𝑘 ) = 0. For 𝑢𝐼𝑘 to

be output, SecurePaths(𝑢𝐼𝑘 , 𝐿′𝑘 = (𝑢𝑖 )𝑖∈[𝐼𝑘−1] ) must have been in-

voked within SecurePaths(𝑢𝐼𝑘−1, 𝐿
′′
𝑘
= (𝑢𝑖 )𝑖∈[𝐼𝑘−2] ). If (𝑢𝐼𝑘 , 𝑢𝐼𝑘−1)

is connected by a ‘hash’ edge, then gsd-exp(𝑢𝐼𝑘−1) = 0 and we

have that 𝑢𝐼𝑘 is the only node connected to 𝑢𝐼𝑘−1. If (𝑢𝐼𝑘 , 𝑢𝐼𝑘−1)
is connected by an ‘enc’ edge or by a ‘join-hash’ edge (i.e., ∃
u such that ((𝑢𝐼𝑘 , 𝑢), 𝑢𝐼𝑘−1, ‘join-hash’, ∗) ∈ 𝐸), then all other

‘enc’ edges leading to 𝑢𝐼𝑘−1 come from uncorrupted nodes. There-

fore, this establishes gsd-exp(𝑢𝐼𝑘−1) = 0. We can repeat this ar-

gument until we reach SecurePaths(𝑢1 = 𝑢∗, 𝐿 := ∅) to establish

gsd-exp(𝑢𝑖 ) = 0 for every 𝑖 ∈ [𝐼𝑘 ]. This completes the lemma. □

Let 𝐷 = { 𝐿𝑘 }𝑘∈[𝐾 ] ← SecurePaths(𝑢∗). There are two cases:

Case 1: ∃𝐿𝑘 = (𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘 ) ∈ 𝐷 such that for all 𝑖 ∈ [𝐼𝑘 ],
there does not exist 𝑣 satisfying (𝑣,𝑢𝑖 , ‘enc’, ∗) ∈ 𝐸.

Case 2: ∀𝐿𝑘 ∈ 𝐷 , either 𝐿𝑘 = (𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘 ) such that there

exists 𝑖 ∈ [𝐼𝑘 ] and 𝑣 satisfying (𝑣,𝑢𝑖 , ‘enc’, ∗) ∈ 𝐸 or 𝐿𝑘 =

(𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘−1, 𝑆).
Note that when𝐿𝑘 = (𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘−1, 𝑆), we have 𝑆 ⊆ EncSource
in Fig. 29; that is, 𝑆 is the set of nodes that were used to encrypt

the secret 𝑠𝑢𝐼𝑘−1
associated to node 𝑢𝐼𝑘−1. The following Lems. F.4

and F.5, each corresponding to Case 1 and Case 2, respectively,

completes the proof of the theorem. Note that although the lemma

assumes either Case 1 or Case 2 always hold, this is without loss of

generality since the reduction can always guess which case we end

up in.

Lemma F.4. If Case 1 occurs, then any adversary A making at
most polynomially many oracle queries has negligible advantage
against the Chained CmPKE conforming GSD security.

Proof. When Case 1 occurs, there are no encryption edges com-

ing into any of the nodes along the path 𝐿𝑘 = (𝑢1 := 𝑢∗, · · · , 𝑢𝐼𝑘 ).
Therefore, since gsd-exp(𝑢𝑖 ) = 0 for all 𝑖 ∈ [𝐼𝑘 ], this means all the

associated secrets (𝑠𝑢𝑖 )𝑖∈[𝐼𝑘 ] are information theoretically hidden

from the adversary A until they are queried to the random oracle.

This can be argued more formally as follow by induction: Since 𝑢𝐼𝑘
is a (non-encryption) source node, 𝑠𝑢𝐼𝑘

is information theoretically

hidden. In case (𝑢𝑖 , 𝑢𝑖+1) is connected by a ‘hash’ edge, then if 𝑠𝑢𝑖
is hidden, so is 𝑠𝑢𝑖+1 in the random oracle model. On the other hand,

in case (𝑢𝑖 , 𝑢𝑖+1) is connected by a ‘join-hash’ edge, then even

if the other node 𝑢 such that ((𝑢𝑖 , 𝑢), 𝑢𝑖+1, ‘join-hash’, ∗) ∈ 𝐸
is corrupted, 𝑠𝑢𝑖+1 is hidden as long as 𝑠𝑢𝑖 is. Finally, since 𝐼𝑘 and

the number of random oracle queries A makes is polynomial, the

probability of A obtaining any information on (𝑠𝑢𝑖 )𝑖∈[𝐼𝑘 ] is negli-
gible. This in particular implies that 𝑠𝑢1

:= 𝑠∗ is uniform random in

the view of A. This concludes the lemma, where we note that the

adaptivity of A is irrelevant. □
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Lemma F.5. If Case 2 occurs, then any PPT adversaryA has negli-
gible advantage against the Chained CmPKE conforming GSD secu-
rity assuming the hardness of the IND-CCA security with adaptive
corruption of CmPKE.

Proof. Let A be an adversary against the Chained CmPKE
conforming GSD security game that triggers Case 2. Consider the

following three games where the first game corresponds to the real

game depicted in Fig. 29 and the last game is where no (possibly

inefficient) adversary has winning advantage. We denote E𝑖 as the
event that A wins in game Game 𝑖 and show that each adjacent

games are indistinguishable, thus establishing the hardness of the

real game.

Game 0 : This is the real game depicted in Fig. 29.

Game 1 : The challenger guesses a random challenge sink𝑢∗ ←$ [𝑀]
and a challenge source 𝑣∗ ←$ [𝑀] conditioned on 𝑢∗ ≠ 𝑣∗. It then
proceeds exactly as in the previous game except that it outputs a

random bit on behalf of A if either 𝑢∗ was not the node A queries

to the challenge oracle or if there does not exist a list 𝐿𝑘 ∈ 𝐷 ←
SecurePaths(𝑢∗) such that either 𝐿𝑘 = (𝑢1 = 𝑢∗, · · · , 𝑢𝐼𝑘 = 𝑣∗) or
𝐿𝑘 = (𝑢1 = 𝑢∗, · · · , 𝑢𝐼𝑘−1, 𝑆), where 𝑣∗ ∈ 𝑆 . Without loss of gener-

ality, we assume there is always an incoming edge to 𝑢∗. Then, by
Lem. F.3, it is clear that Pr[𝐸1] ≥ Pr[𝐸0]/𝑀2

.

Game 2 : This is the same as the previous game except that the

challenger answers to oracle CmEnc differently for those nodes

connected to the challenge source node 𝑣∗. More concretely, when

A queries (𝑆, 𝑣) to oracle CmEnc, the challenger checks whether
the following conditions (denoted as SetRand) hold:

• Is 𝑠𝑣 = ⊥ and 𝑣∗ ∈ 𝑆?
• Is 𝑣 ∈ WelcomeNode and does there exist a set of edges in 𝐸
that connects 𝑣∗ to 𝑣?

If so, the challenger proceeds as in the previous game except that it

samples a random message 𝑟𝑣 and runs CmEnc(pp, (ek𝑢 )𝑢∈𝑆 , 𝑟𝑣)
instead of CmEnc(pp, (ek𝑢 )𝑢∈𝑆 , 𝑠𝑣) on line 6. Otherwise, it is de-

fined exactly as in the previous game. Intuitively, the challenger

modifies all the incoming encryption edges to the secure path 𝐿𝑘
to encrypt random values. Note that due to the way oracles Hash,
Join-Hash, and CmEnc are defined, an input (𝑆, 𝑣) that did not sat-

isfy condition SetRand will remain unsatisfied since such a node 𝑣

cannot be later connected to the secure path 𝐿𝑘 .

Observe that Game 2 now boils down to the argument we made

for Case 1 in Lem. F.4 since all the incoming encryption edges to

the secure path 𝐿𝑘 to encrypt random values. Specifically, there

either exists a list 𝐿𝑘 = (𝑢1 = 𝑢∗, · · · , 𝑢𝐼𝑘 = 𝑣∗) or a list 𝐿𝑘 = (𝑢1 =

𝑢∗, · · · , 𝑢𝐼𝑘−1, 𝑆), where 𝑣∗ ∈ 𝑆 . In the former case, since all the

incoming encryption edges into the nodes in the list 𝐿𝑘 are encrypt-

ing random values, we can simply ignore them. This is the same for

the latter case, where we additionally observe that CmEnc(𝑆,𝑢𝐼𝑘−1)
provides an encryption of a random value. Therefore, following

the same argument made in Case 1, Pr[𝐸2] = negl(𝜅) even for

a possible inefficient A that makes at most polynomially many

queries.

To conclude the lemma, it remains to establish the bound be-

tween Pr[𝐸1] and Pr[𝐸2]. We construct an adversary B against the

IND-CCA security with adaptive corruption game of CmPKE that

internally runsA. Without loss of generality, we assume the “multi-

challenge-ciphertext” variant where B can query polynomially-

many challenge ciphertexts. By a basic hybrid argument, this vari-

ant is secure if the single-challenge version is secure. The descrip-

tion of B follows:

BC(·) (pp, (ek𝑖 )𝑖∈[𝑀 ] ): Whenever B needs to generate a new en-

cryption and decryption key pair (ek𝑢 , dk𝑢 ), it simply uses

an unused ek𝑢 provided by its challenge. When A queries a

corruption oracle on 𝑢, if dk𝑢 is set, then B queries 𝑢 to its

corruption oracle and returns the received dk𝑢 . Otherwise, 𝑠𝑢
is generated on its own so it simply outputs 𝑠𝑢 . When (𝑆, 𝑣)
queried to oracle CmEnc by A satisfies condition SetRand,
then it samples a random message 𝑟𝑣 and queries (𝑠𝑣, 𝑟𝑣) as
its challenge ciphertext. It then uses the provided challenge

ciphertext to simulate CmEnc. Moreover, all oracle queries

to CmDec can be answered by using its decryption oracle. Fi-

nally, whenA makes a random oracle query,B simply relays

this to its own random oracle.
31 B answers all other oracle

queries, i.e., Set-Secret, Set-Full-Secret, Hash, Join-Hash
on its own.

It can be checked that when B receives challenge ciphertexts

for random messages, then the game it simulates is identical to

Game 2. Otherwise, it is identical to Game 1. Therefore, assuming

the hardness of the IND-CCA security with adaptive corruption of

CmPKE, we have |Pr[𝐸1] − Pr[𝐸2] | ≤ negl(𝜅).
Combining all the bounds, we have Pr[𝐸0] = negl(𝜅) as desired.

This completes the lemma. □

□

Remark 4 (Adaptive security from CmPKE with no adap-

tive corruption). In the above proof, if we want to base adaptive
security of the Chained CmPKE conforming GSD security from a
CmPKE that is only IND-CCA secure (i.e., without adaptive corrup-
tion security), then we will incur an exponential reduction loss during
the game transition of Game 1 to Game 2. This is because we need
to guess correctly all the encryption keys that will not get corrupted
from the set [𝑀] in order to simulate the corruption queries. In the
worst case, we will lose a factor of 𝑂 (2𝑀 ).

G CRYPTANALYSIS IN THE mPKE SETTING
In this appendix we describe our cryptanalytic model, how it differs

from a more standard cryptanalytic model for PKEs, and how we

incorporate parts of the cryptanalysis of the schemes for which we

have provided alternative parametrizations in Sec. 5.2. At a high

level, the main difference is the availability in the mPKE setting

of many additional ‘samples’ (see below) to an adversary from the

𝑁 − 1 ciphertexts ĉt𝑖 .
In the PKE setting 𝑁 = 2, whereas we consider up to 𝑁 = 2

16
in

the mPKE setting. The number of extra available samples becomes

considerable when taking 𝑁 = 2
16
. For example, an adversary

attacking Frodo640 has 640+ 8 = 648 samples available for a row of

R in the PKE case. This becomes 640+8· (𝑁 −1) ≈ 2
19

in the𝑁 = 2
16

Bilbo640 case, though these extra samples have different properties

31
To be precise, we assume the IND-CCA security with adaptive corruption game is

defined in the random oracle model. This is without loss of generality.
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to the original 640 in our new parametrization. In particular, they

have much larger error, due to the modulus rounding.

Nonetheless, these extra samples require us to consider two

attacks that are usually absent from concrete security analyses of

lattice PKEs, namely the sample heavy Arora–Ge and BKW style

attacks.

We first describe the number of samples available to an adversary

in more detail, and the error these samples have. We then describe

the three attacks we are considering, following broadly from the

cryptanalysis present in several NIST final round lattice candidates,

but adding Arora–Ge and BKW style attacks. After this, in App. G.2

we describe our cryptanalytic model, which targets NIST Security

Level I. A scheme satisfying this definition of security should have

security comparable to AES-128, both against classical and quantum

adversaries. Finally, we discuss in more depth the following aspects

of our new parametrizations; any subtle algorithmic changes be-

yond the reparametrizations, any ways in which our cryptanalysis

significantly differs from what is present in their respective sub-

mission documents, and where we have opted to incorporate parts

of their individual cryptanalyses. We reference Fig. 5 throughout,

and in particular let 𝑅 = Z[𝑥]/(𝑓 ) and 𝑑 = deg(𝑓 ), noting that we

can recover Bilbo640 by setting 𝑓 (𝑥) = 𝑥 .

G.1 Samples and Attacks
Samples.We talk of two distinct types of sample, a sample for S
or a sample for R. (See Fig. 5). The number of samples given for (a

single column of) S is 𝑑 · 𝑛, and they come from B. Only Bilbo640
has 𝑛 > 1, and these extra columns of S can be accounted for by a

hybrid argument. We can similarly count the samples for R. The
number of samples given for (a single row of) R is 𝑑 · 𝑛 from U
and 𝑑 · 𝑛 −𝐶 from V. Here 𝐶 represents the number of coefficients

dropped, so in particular 𝑑 ·𝑛−𝐶 is 128 for LPRime757 and Ilum512,
and 8 for Bilbo640. Again it is only Bilbo640 for which 𝑚̄ > 1, and

a similar hybrid argument can account for these extra rows of R.
The error for a sample is given by the appropriate choice from

𝐷𝑒 , 𝐷𝑒′ and 𝐷𝑒′′ , for samples from B,U and V respectively, plus any

modulus rounding that may be applied to U or V. Note that for

NTRU LPRime all errors come from rounding, and so there is no

‘extra’ modulus rounding.

We consider up to 𝑁 = 2
16

users and reevaluate the following

attacks; primal lattice, Arora–Ge with Gröbner bases, and Coded

BKW. This value of 𝑁 comes from [76, §2.4], i.e. we have cho-

sen the smallest power of 2 such that 𝑁 ≥ 50000. For all three

of these attacks the standard deviations of the distributions from

which errors and secrets are sampled play an important role, and

we summarize them in Tab. 10. Our scripts to estimate the com-

plexity of these attacks, along with various other tasks, are avail-

able at https://anonymous.4open.science/r/chained-cmpke-2C20/

README.md. These scripts make use of the lwe-estimator,
32

an

automated estimator based on [7], for the Arora–Ge and BKW style

attacks. For the primal lattice attack we make use of the leaky-

LWE-estimator,
33

see the Primal Attack paragraph below. We do

not consider the dual lattice attack for the same reasons as argued

in [77, §5.2.1], that is, the assumptions that make it competitive

32
https://bitbucket.org/malb/lwe-estimator/src/master/.

33
https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3.

with the primal lattice attack in the core-SVP model are not com-

patible with recent advances in lattice sieving, i.e. the dimensions

for free techniques [45], used in the ‘Beyond core-SVP hardness’

model. We use this latter model in our primal lattice attack estima-

tion. We also do not, beyond their inclusion in the NTRU LPRime
estimation script,

34
consider hybrid attacks. In particular, we do

not consider them against either Bilbo640 or Ilum512, as [74, 77] do
not consider them against either FrodoKEM or Kyber. A common

theme throughout will be, though an adversary against mPKEs is
granted a large number of extra samples, these extra samples are

less useful than the majority of samples an adversary against an

ordinary PKE would also receive, namely the 𝑑 · 𝑛 from either B or

U. Indeed, by a serendipitous turn of events our desire to minimize

|ĉt𝑖 | also minimizes the usefulness of these extra ciphertexts from a

cryptanalytic perspective. For example, performing more rounding

on these ciphertexts increases their error, and performing as much

coefficient dropping as possible reduces their number; the hope

being that the potential new avenues for cryptanalysis are nullified

by these facts.

Primal Attack. The primal attack embeds [16, 65] a vector con-

taining the error, and possibly also the secret, of an LWE or NTRU

instance as a unique short vector in a lattice. It then applies lat-

tice reduction to retrieve this vector. The primal attack requires a

small number of samples and can therefore be used against either

S or R. In particular the optimal primal attack requires some linear

multiple 𝑐𝑝 · 𝑑 · 𝑛 of samples, and typically 𝑐𝑝 ∈ [1, 2]. We will

use the methodology espoused in [74, 77] for the primal attack.

This uses the NIST-round3 branch of the leaky-LWE-estimator, an

implementation of [39] which studies the probabilistic behaviour

of the primal attack. In the case of attacking S we have 𝑑 · 𝑛 sam-

ples from B, i.e. 𝑐𝑝 = 1. In the case of attacking R we have 𝑑 · 𝑛
samples from U and numerous samples from the V𝑖 . Due to our

heavy rounding on the V𝑖 , the errors are far larger than those on

U after rounding, see 𝜎r(𝑒′) and 𝜎r(𝑒′′) in Tab. 10 for their respec-

tive standard deviations. To be conservative while using the above

primal attack methodology we use the smaller 𝜎r(𝑒′) for all cipher-
text errors when attacking R. We increase the number of samples

available until the complexity estimate converges, which always

occurs for 𝑐𝑝 < 2, and take the ‘Attack Estimation via simulation

+ probabilistic model’ estimate. If we fix 𝑐𝑝 = 1, that is, use only

the samples from U, then our estimates increase by less than a

factor of two; in short the primal attack makes effectively no use

of the extra samples afforded to it in our setting, even if we artifi-

cially assume they have much narrower errors. Our adaptation of

the NIST-round3 branch outputs both classical and quantum gate

counts using the estimated values for lattice sieves given in [6].

Coded BKW. The BKW style of attacks against LWE originate

from the first subexponential time algorithm against the LPN prob-

lem [28]. They add samples together in such a way that the dimen-

sion of the instance is iteratively decreased, while keeping the error

small enough to solve the final instance, for a practical explana-

tion in the LWE case see [4]. The BKW style attacks are sample

heavy, requiring superpolynomially many samples in 𝑑 · 𝑛. There
are methods [30, §3.3] in the literature used to form new samples

from already known samples, and some experimental evidence on

34
https://ntruprime.cr.yp.to/estimate-20200927.sage.
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small dimensional instances suggesting the increase in the num-

ber of samples required is small when these ‘sample amplification’

techniques are used [56, VI]. We note that these results say that

the number of samples required does not grow too much when

sample amplification techniques are used, not that the complexity

of the attack remains the same. This is discussed more below. In

any case, it is standard not to consider BKW style attacks when

attacking S. In the case of attacking R in an mPKE the picture be-

comes somewhat more mixed. We have 𝑑 · 𝑛 samples from U with

error standard deviation 𝜎r(𝑒′) and (𝑁 − 1) · (𝑑 · 𝑛 − 𝐶) samples

from the V𝑖 with a larger error standard deviation 𝜎r(𝑒′′) . Again,
in the PKE case where 𝑁 = 2, it is standard to assume that this is

not enough samples to perform a BKW style attack. However for

larger 𝑁 this number of samples may be sufficient, and as such a

BKW adversary may use some combination of these samples with

different errors. We therefore report the estimates given by the lwe-

estimator for the cost of the Coded-BKW [53] attack assuming first

that the adversary has access to unlimited samples ‘from U’, and
second that the adversary has access to unlimited samples ‘from

the V𝑖 ’, and assume that the cost for Coded-BKW lies somewhere

between these estimates.

In general there is limited experimental data on the performance

of the numerous BKW variants against LWE, especially on medium

sized instances. Theoretical works focus on parametrizations that

use standard deviationswell abovewhat is seen in practical schemes,

and assume infinitely many fresh samples, although BKW does per-

form favorably to lattice attacks in asymptotic settings [52, 60]. We

also note that there have been some improvements to BKW style

attacks since Coded-BKW. In particular there has been Coded-BKW

with sieving [51], which also allows quantum speedups to be in-

corporated during the sieving subroutine, and a number of other

improvements [30]. The above, and the lack of publicly accessible

estimation scripts for these new approaches, makes it difficult to

precisely cost this attack against the parametrizations we suggest.

We will appeal to the limited simulated and experimental results

of the most recent practical study [30], namely Table 2 and Table

3, respectively. In Table 2 we see the primal attack remaining the

most efficient for all simulated parameters in the low error rate

setting, in particular for 𝛼 = 𝜎/𝑞 = 0.005. If we restrict the primal

attack to using only the samples from U then the highest error rate

of our three parametrizations is 1.18/3329, more than an order of

magnitude smaller. We recall that the primal attack makes effec-

tively no use of samples from the V𝑖 . We also note that the BKW

complexities estimated here assume access to an unlimited amount

of samples. Looking at experimental data, the required number of

samples from [30, Tab. 3] suggests that significant sample amplifi-

cation would be required, e.g. for the (𝑛, 𝛼) = (40, 0.005) case with
40 available samples from U, one is required to combine 6-tuples

of samples as in [30, §3.3] to receive the required 45000000 sam-

ples. When assuming an unbounded number of fresh samples [30,

Tab. 3] reports that attacking these parameters takes 12 minutes.

The same work reports on solving the same instance, but limited to

1600 samples.
35

They therefore only need to take triples of samples

35
This value is 𝑛2

and comes from https://www.latticechallenge.org/lwe_challenge/

challenge.php. It does not represent a lattice scheme.

to receive the required number, and report on some subtle difficul-

ties encountered when creating enough triples of the correct form.

This attack using triples for their sample amplification is reported

to take over 3 hours. This increase in time complexity can be ex-

plained by an increase in the error standard deviation by a factor

of

√
3 due to the sample amplification. We note the experiments

of [56, VI] mentioned earlier lowered the error standard deviation

by this factor before performing sample amplification to examine

the effect on the required number of samples in isolation. In the

more realistic setting of an adversary receiving 𝑑 · 𝑛 samples from

U, and therefore having to perform more sample amplification, we

assume the complexity increase will be greater still.

In conclusion, depending on the relative sizes of 𝜎r(𝑒′) and 𝜎r(𝑒′′)
an adversary will choose to perform a certain amount of sample

amplification on the samples from U, and potentially subsequently

use samples from the V𝑖 . In either case, we expect the estimate we

produce for an adversary given unlimited samples ‘from U’ will
be an underestimate of the complexity of a BKW style attack. In

general, more experimental work is needed to understand the per-

formance of BKW variants in medium sized instances, using limited

numbers of samples. We also note that the practical implications of

sample amplification techniques in the ring setting [82], or whether

the rounding we apply affects the algebraic structure they use, has

not been investigated.

Arora–Ge with Gröbner Bases. The Arora–Ge attack [15] is a

linearization attack that, by knowing the support of the error dis-

tribution, is able to create a linear system such that part of the

solution encodes the secret. It then attempts to solve this linear sys-

tem, in the original work by matrix inversion, and in the work that

followed [5] by using Gröbner bases. The best known Arora–Ge

style attacks require a superlinear number of samples [5] in 𝑑 · 𝑛,
even in the bounded errors case, and therefore can only be used

against R. The complexity of the linear system to be solved is very

sensitive to the support size of the error distributions being consid-

ered, intuitively explaining why our heavily rounded extra samples

do not give us a practical attack. We again use the lwe-estimator,

and are able to take into account the differences between the errors

of ct0 and the ĉt𝑖 . If an adversary uses 𝑀 of its available samples

with error from some distribution 𝐷 , we calculate the expected

number 𝑒 of distinct elements of Supp(𝐷) that are sampled in these

𝑀 samples. We assume the adversary can guess with probability

one which 𝑒 elements of Supp(𝐷) have been sampled, and restrict

the support of the error distribution to have size 𝑒 for this estimate,

making the attack cheaper. We always assume the adversary will

use all the samples from B and U, and then increase the number

of samples used from the V𝑖 , reporting the lowest complexity. For

our parametrizations the most efficient Arora–Ge adversary uses

very few of the samples available from the V𝑖 , in particular never

more than those given in 𝑁 = 3 users case. In the case of Frodo640,
where there is no rounding on the V𝑖 , the most efficient Arora–Ge

attack makes use of all the samples available from 𝑁 = 2
16

users.

While it is still secure against the attack (the estimated complexity

is 2
3193

), it shows the positive effect that rounding the modulus,

and therefore increasing the size of the error support, has against

the Arora–Ge attack. To make this effect more extreme we give

an artificial ‘Kyber like’ parameter set which is Kyber512 except
68
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𝐷𝑠 = 𝐷𝑒 = 𝐵2, 𝐷𝑒′ = 𝐷𝑒′′ = 𝐵1 and somehow the implementer

forgets to include any modulus rounding. We of course stress that

these are not parameters suggested in [74], and even if they were,

they would not have been suggested for themPKE setting. Even so,

these parameters are almost secure under our primal attack estima-

tion methodology, at an estimated 2
133

classical gates. It might be

that hybrid attacks are relevant for these parameters, but assuming

they are in a similar ballpark, then our Arora–Ge estimate, which

suggests a complexity of 2
62
, is far cheaper. Again, it uses all pos-

sible samples from the V𝑖 as they have no modulus rounding, and

shows in theory the necessity of a cryptanalytic model tailored to

the mPKE setting.

G.2 The Cryptanalytic Model
Here we introduce the requirements we make for anmPKE scheme

to be called secure. It is effectively the same model that NIST laid

out in their call for proposals [75] but we take into account sample

heavy attacks, and the impact of having many more samples than

usual, as described above.

Cost of Attacks. We require an mPKE to be parametrized such

that none of the attacks listed above give costs (whether in gate

count, or in the ‘ring operations’ reported by the lwe-estimator) of

less than 2
143

classically, and 2
117

quantumly (where appropriate).

These gate counts are from [75] and [64]. Indeed, for Security

Level I, [75] requires 2
143

classical gates, and, using the updated

values of [64, Tab. 12] requires 2
117

quantum gates. We note the

strange phenomenon that the lower the MAXDEPTH allowed to a

quantum computer, the harder the quantum gate count requirement

becomes to satisfy. This follows from the poor parallelizability of

quantum search, and therefore the more constrained the depth of

a quantum computation, the more it must rely on parallelization,

and the less efficient it becomes. In our case, this means that as the

MAXDEPTH decreases, breaking AES-128 becomes harder, see [64]

for detailed exposition. One could therefore argue that taking a

smaller MAXDEPTH could render our parametrizations insecure

with respect to quantum gate count, however we follow [75] in

setting the minimum considered MAXDEPTH as 2
40
. See the dis-

cussion [77, §5.3] for the potential impact of refinements to the

primal attack on our gate count estimates.

Decryption Failure Rate. We require an mPKE to be such that

the DFR remains below 2
−120

, the largest of a final round lattice

KEM [41, Tab. 1]. The largest DFR of any of our parametrizations

is 2
−125

for Ilum512. We note that for classical PKEs the DFR is

often 0, that is, they exhibit perfect correctness. This is also the case

for NTRU LPRime and our reparametrization thereof. The DFR is

formally defined as the amount the expectation in Def. A.3 differs

from 1. In the lattice PKEs with non zero DFR, a decryption failure

can be used within reaction attacks [42, 54, 57] to learn information

about the secret. Decryption failures also make future decryption

failures easier to trigger [42]. Even successful decryptions can be

used to inform the search for decryption failures [26]. Therefore,

PKEs which are not parametrized to have perfect correctness in-

stead aim to minimize their DFR. The concrete effect of the DFR in

the mKEM setting is described by [66, Thm. 4.1]. We leave as an

open research problem the concrete importance of the DFR in the

CmPKE setting.

Table 10: Standard deviations for the various secret and error
distributions, see Figure 5. The values 𝜎r(𝑒′) and 𝜎r(𝑒′′) denote
the standard deviation of errors after rounding U and V re-
spectively. As LPRime757 uses rounding for all errors, we
report these errors as 𝜎𝑒 , 𝜎𝑒′ , and 𝜎𝑒′′ .

Scheme 𝜎𝑠 𝜎𝑒 𝜎𝑒′ 𝜎𝑒′′ 𝜎r(𝑒′) 𝜎r(𝑒′′)

Bilbo640 2.91 2.91 2.91 2.91 2.91 2364

Ilum512
√︁

3/2
√︁

3/2 1 1 1.18 120

LPRime757
√︁

242/757

√︁
2/3

√︁
2/3 568 𝜎𝑒′ 𝜎𝑒′′

The results of our security estimation are given in Fig. 31. In all

cases it is the primal lattice attack that remains the most efficient.

We do not cost quantum variants of Coded-BKW or Arora–Ge with

Gröbner bases, and leave this as future work. Below we discuss

each of the new parametrizations in turn. In particular we discuss

any subtle algorithmic changes and any differences (beyond the

newly considered attacks) with their original cryptanalyses.We also

mention any elements of their original cryptanalyses that we are

able to incorporate, that are not required to satisfy our cryptanalytic

model for mPKEs.

Ilum512. We make one substantive change in our cryptanalysis

of Ilum512 compared to Kyber512. It comes from the different

amounts of rounding on U and the V𝑖 , which firstly increases the

DFR to 2
−125

. More importantly though, we no longer satisfy the

arguments of [77, §4.4] regarding estimating the primal attack on R
with equal standard deviation for the secret and error distributions.

That is, as we have reduced the amount of rounding on U, we have
𝜎r(𝑒′) < 𝜎𝑠 ≈ 1.22, where the latter standard deviation is of the

distribution used to generate R. Using the reduction of [14] which

allows one to sample the secret of an LWE instance from the same

distribution as the error (and ignoring the samples this costs), we

must therefore assume the elements of R are also drawn from the

distribution with the smaller standard deviation 𝜎r(𝑒′) . This must

be taken into account for all three attacks we consider.

Bilbo640. Other than increasing the amount of bits of randomness

required to sample from 𝐷𝑠 , 𝐷𝑒 , 𝐷𝑒′ , and 𝐷𝑒′′ (see below for an

explanation why) and performing modulus rounding on the V𝑖 , we
make no substantive changes to the algorithms of FrodoKEM to

attain Bilbo640. Nor, other than including Arora–Ge and BKW style

attacks, do we make any changes to our cryptanalysis. We may

however reuse part of the security methodology of FrodoKEM. For

example, we may wish to appeal to [74, Thm. 5.9], which relates the

IND-CPA security of the PKE to the LWE problem, for up to our

𝑁 = 2
16

users. As in [66, Lem. 5.1], modulo notational differences,

we can adapt this to the mPKE setting as follows

AdvIND-CPAmPKE,𝑁 (A) ≤ 𝑁 · 𝑛 · Adv
LWE
𝑛,𝑛 (B1) + 𝑚̄ · AdvLWE

𝑛,𝑛+𝑁𝑚̄ (B2).
(2)

Intuitively we have a hybrid over 𝑁 · 𝑛 columns of S, each having

𝑛 samples, and a hybrid over 𝑚̄ rows of R, each having 𝑛 + 𝑁 · 𝑛
samples. For both S and R the columns and rows, respectively, are

secrets of length 𝑛. Conservatively therefore, in our setting we may

take the larger of the two advantages and multiply by 𝑁𝑛 + 𝑚̄ to

upper bound the advantage against the mPKE . From Fig. 31 we

69



Figure 31: All values are given as log base 2. The columns P-S-c, P-S-q, P-R-c, and P-R-q represent the classical primal attack
against S, the quantum primal attack against S, the classical primal attack against R, and the quantum primal attack against R,
respectively. The columns BKW-U and BKW-V represent the Coded-BKW attack assuming unlimited samples ‘from U’ and
‘from the V𝑖 ’, respectively. The column AG represents the Arora–Ge with Gröbner bases attack.

Scheme P-S-c P-S-q P-R-c P-R-q BKW-U BKW-V AG DFR

Bilbo640 164 154 163 154 224 334 4601 -129

Ilum512 151 143 150 142 157 224 2227 -125

LPRime757 177 166 177 166 184 259 1493 -∞

assume a uniform 𝑡 gate classical adversary has advantage no more

than 2
−163 · 𝑡 against either of the LWE problems, noting that we

have gone from a Core-SVP estimate for this quantity in [74] to

a gate count estimate here. Therefore a 𝑡 gate IND-CPA A has

an advantage of no more than 2
−144 · 𝑡 , and this mPKE is then a

starting point for the constructions of Sec. 3.2. Another facet of

FrodoKEM’s security analysis we may wish to reuse is their Rényi

divergence arugment. The main security theorem of FrodoKEM [74,

Thm. 5.1] regarding the IND-CCA security of the KEM, while not

applicable here, accounts for the Rényi divergence between the

actual sampled distribution 𝜒Frodo and the rounded Gaussian Ψ𝑠 ,
as well as the number of samples drawn from 𝜒Frodo. The number

of samples drawn from 𝜒Frodo is 2𝑛𝑛 + 2𝑚̄𝑛 + 𝑚̄𝑛 = 20554, which

increases to 2𝑚̄𝑛 + 𝑁 · (2𝑛𝑛 + 𝑚̄𝑛) ≤ 675293184 for 𝜒Bilbo640 in the

mPKE setting with 𝑁 ≤ 2
16
. As Thm. 3.6, the respective theorem

for CmPKEs, does not proceed via a search problem, i.e. the OW-
PCA problem of FrodoKEM, similar Rényi divergence arguments

are not made. However, we give here a distribution to show the

plausibility of efficiently sampling sufficiently close distributions in

the CmPKE setting. Using the methods of [61, §5.2] we produce the

following distribution 𝜒Bilbo640, which has a Rényi divergence of

2.144 × 10
−10

from Ψ
2.9
√

2𝜋
36

at order 200. It is symmetric around

0 and described in the following figure as {±𝑥 : 𝑝 (±𝑥) · 232},

• 0 : 587928496

• ±1 : 554318271

• ±2 : 464582536

• ±3 : 346126223

• ±4 : 229230439

• ±5 : 134950272

• ±6 : 70621314

• ±7 : 32851452

• ±8 : 13583937

• ±9 : 4992798

• ±10 : 1631188

• ±11 : 473696

• ±12 : 122271

• ±13 : 28052

• ±14 : 5720

• ±15 : 1037

• ±16 : 167

• ±17 : 24

• ±18 : 3

This means that by using exactly twice as much randomness to

sample an element of 𝜒Bilbo640 we can keep the exp(𝑠 · D𝛼 (𝑃 ∥𝑄))1−1/𝛼

term of [74, Thm. 5.1] below its value in the Frodo640 case, even in

the presence of these extra samples.

LPRime757.We make a small algorithmic change in LPRime757
compared to NTRU LPRime to reduce the size of the V𝑖 and allow

slightly larger weights𝑤 than otherwise. To reduce the size of V
in LPRime757 we must ensure the rounding procedure Top has

codomain {0, . . . , 𝜏 − 1} for 𝜏 < 16. In particular we define Top′

which achieves this for 𝜏 = 4 as follows

Top′(𝐶) = (𝜏1 (𝐶+𝜏0)+215)/216, (𝜏0, 𝜏1, 𝜏2, 𝜏3) = (3011, 33, 1995, 1978).
36
We have the relation 𝑠 = 𝜎

√
2𝜋 for Ψ𝑠 .

We note the that powers of 2 have each increased by one, com-

pared to [21, §3.3]. This allows us a slightly larger weight𝑤 than

otherwise. We do not alter Right. For our cryptanalysis we calcu-
late a ‘per coefficient’ variance for secret polynomials of NTRU
LPRime. The secret polynomials of NTRU LPRime are degree 𝑑

and have exactly 𝑤 non zero coefficients. These 𝑤 positions are

chosen uniformly and the value for each of them is independently

and uniformly sampled from {−1, 1}, i.e. they are fixed weight, but

not fixed sum. Given (𝑤,𝑑) and a fixed coefficient in an NTRU
LPRime secret polynomial, its probability taken over all possible

secret polynomials of being 0 is 1 −𝑤/𝑑 . Similarly, its probability

of being either 1 or −1 is𝑤/2𝑑 . We therefore calculate the variance

using 𝑝 (±1) = 𝑤/2𝑑 and 𝑝 (0) = 1 − 𝑤/𝑑 . We reuse part of the

security methodology of [21]. In particular we choose a weight

𝑤 such that 1/4 ≤ 𝑤/𝑑 ≤ 1/2, and parameters that satisfy both

‘bulletproof’ definitions for Level I security.
37

We also note that, by

the necessary alterations to Eq. (2) in the LPRime757 mPKE case

we can absorb the hybrid loss factor of 𝑁 + 1.

37
https://ntruprime.cr.yp.to/estimate-20200927.sage using run(757, 7879, 242,

’product’).
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