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Abstract

Over the past five years, a significant line of research has investigated the blockchain con-
sensus problem in the general permissionless setting, where protocol nodes can leave and join
dynamically. The work of Garay et al. (Eurocrypt 2015) and Pass et al. (Eurocrypt 2017)
showed the security properties of consistency and liveness for Nakamoto’s seminal proof-of-work
protocol. However, consistency and liveness do not provide any guarantees on the relationship
between the order in which transactions arrive into the network and the finalized order in the
ledger, making protocols prone to transaction order-manipulation attacks. As a solution, a
recent paper by Kelkar et al. (Crypto 2020) introduced a third useful property for consensus
protocols: transaction-order-fairness. Their model was limited to the classical (permissioned)
setting, where the set of protocol nodes is fixed a priori, and does not fit well for permissionless
environments where order-manipulation attacks have been most prominent.

In this work, we initiate the investigation of order-fairness in the permissionless setting
and provide two protocols that realize it. Our protocols work in a synchronous network and
use an underlying longest-chain blockchain. As an added contribution, we show that any fair
ordering protocol achieves a powerful zero-block confirmation property, through which honest
transactions can be securely confirmed even before they are included in any block.
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1 Introduction

The state machine replication, or blockchain consensus1 abstraction pertains to protocols where a
set of players seek to agree on an ever-growing, linearly-ordered log of transactions. Historically,
in the classical or permissioned setting, where the set of players is known a priori, security was
characterized in terms of two properties: consistency and liveness. Consistency ensures that all
nodes have the same view of the log, while liveness ensures that new transactions input to the
system get added to the log soon. Modern permissionless protocols, operating for example on
proofs-of-work [32], have been shown to realize the same consistency and liveness properties, but
in a new setting, where the set of players is dynamic and unknown [22, 33].

Unfortunately, neither consistency nor liveness, enforces any guarantees on the relationship
between the order in which transactions arrive into the network and the final transaction ordering
in the log. In existing blockchain protocols, both permissioned and permissionless, an adversary can
significantly influence the final transaction ordering. This problem is exacerbated in permissionless
protocols, which have significant latency between the time at which a transaction is first seen and
the time at which it gets confirmed (eg., the confirmation latency of Bitcoin is in the order of hours).
During this window, an adversary can manipulate the transaction order as well as introduce new
competing transactions ahead of the older honest transaction into the log, thus front-running it. For
example, in blockchains like Bitcoin and Ethereum, an adversarial miner has complete control over
the inclusion and ordering of transactions in the block that it mines. The lack of a fair transaction
ordering property is especially problematic for decentralized financial systems where transaction
ordering is highly relevant and can impact the profitability of a transaction. In particular, severe
real world consequences of order-manipulation attacks have been shown by Daian et al. [15] and
Eskandari et al. [17].

As a solution, recent work by Kelkar, Zhang, Goldfeder, and Juels [26] (henceforth KZGJ)
proposed a new consensus property, called order-fairness. Informally, if a transaction tx1 was
received before another one tx2 by a large fraction of the nodes in the network, order-fairness
dictates that tx1 be sequenced in the output log first. KZGJ was the first to formalize a fair
transaction ordering property for the consensus abstraction and provide protocols to realize it
in both synchronous and asynchronous network models. However, KZGJ only considered the
permissioned setting. Consequently, the protocols do not directly apply to the attacks from [15,
17], which were exclusively on permissionless blockchains.

Importance of fair transaction ordering. Decentralized finance, or DeFi, has become mas-
sively popular on permissionless blockchains in the last few years. As of January 2021, Ethereum
houses more than 20 billion USD [1] of locked capital in DeFi smart contracts. Popular DeFi ex-
changes like Uniswap V2, Compound Finance, and Curve each routinely handle 100 to 200 million
USD in transaction volume every day [2].

Transaction ordering is crucially important for DeFi applications, as the execution order can
determine the validity and profitability of a transaction. In many scenarios, when a transaction is
executed is far more important than whether it was executed at all. Execution in an unfavorable
order can render a transaction useless to a user. In the context of decentralized exchanges, which
allow users to trade between different cryptocurrencies, the execution order of a transaction can
also influence the exchange price the user gets.

1We use the terms state machine replication and consensus interchangeably.
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The ease of ordering manipulation in permissionless protocols can cause high instability in
DeFi applications. Indeed, as Daian et al. [15] found, dozens of bots sat waiting on the Ethereum
network to profit by adversarially manipulating the execution order of ordinary user transactions.
During the initial coin offerings (ICOs) of the Status.im and BZRX tokens, adversaries were able
to manipulate transaction ordering to get a better price to buy the tokens [3, 17].

This is not unlike the impact of high-frequency-trading on Wall Street [29], before regulations by
agencies like SEC and FINRA, helped curtail adversarial manipulation of execution ordering [17].
Since many blockchain DeFi applications lack strong regulatory bodies, requiring order-fairness
from underlying consensus protocols can prevent attacks on transaction ordering.

1.1 Our Contributions and Technical Overview

The main contribution of our paper is to construct fair ordering protocols in the permissionless
setting. Towards this end, we introduce the first formalization of a fair transaction ordering property
in the permissionless setting by generalizing order-fairness from KZGJ. We then analyze the
permissioned Aequitas fair ordering protocol from KZGJ to extract out its key technical pieces to
be used in our protocols. We show two different constructions that modify any longest-chain based
protocol and endow it with the order-fairness property. We characterize the adversarial threshold
below which the new protocols achieve order-fairness. Along the way, we uncover insights related
to social choice and voting theory that may be of independent interest. Finally, we also show that
order-fairness is also useful in reducing the transaction confirmation latency. Specifically, we show
that any protocol that satisfies order-fairness also achieves the coveted zero-block confirmation
property, where honest transactions can be confirmed locally even before a single block with that
transaction has been mined. We briefly elaborate on each of these technical contributions below.

Defining order-fairness in the permissionless setting. We start with the order-fairness
property from KZGJ. In the permissioned setting, where the n system nodes were fixed, order-
fairness was defined in terms of being received by a large fraction (parameterized by γ) of nodes.
For the permissionless setting however, since new nodes may join the network, it does not make
sense to consider a fraction of all nodes that ever existed in the system. Furthermore, it is not
relevant to consider the transaction input ordering of a node that spawned much later either.
Instead, to determine the ordering of a transaction, we will look at the system at the time when
the transaction was initially propagated through the network. Intuitively, we introduce the notion
of receive-order-fairness (resp. block-order-fairness) in the permissionless setting as the property
that tx will be ordered before (resp. no later than) tx′ if the initial propagation of tx through the
network was earlier than tx′. Following KZGJ, we assume that time is discretized into rounds and
transactions that arrive in the same round receive the same timestamp. Thus, the duration of a
round defines the coarseness at which we define fair ordering. For example, setting the network
delay to ∆ = 1 corresponds to looking at fair ordering at the same resolution as network latency.
We formally define order-fairness in Definition 2.3.

We note that permissionless order-fairness is not particularly interesting for completely dynamic
adversaries. For instance, such an adversary can quickly corrupt and kill all the nodes that were
online during the initial propagation of a transaction, before they have a chance to mine any blocks.
Any new honest nodes that spawn later will not retain the transaction ordering received by earlier
nodes. Therefore, we will restrict our adversaries to be (τ,R)-respawning, i.e., in any R round
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period, at most τ fraction of nodes can be killed (and respawned). Note that we still allow the
adversary to corrupt nodes instantly.

We also modify the network formalism from KZGJ. KZGJ considered two distinct networks, an
external network for communication between users and system nodes, and an internal network for
communication amongst system nodes. While this is not strictly necessary, it prevents an adversar-
ial node that receives a user transaction first, from inserting its own transaction and propagating
that through the network earlier (see Section 2.1 for details). The distinction between the external
and internal network is less realistic in the permissionless setting where nodes use a gossip-style
communication channel, and therefore, we model only a single network. We discuss our modeling
choices in depth in Section 2.

We consider a few other possible definitions for fair ordering (Section 2.3). We choose to extend
the definition from KZGJ since it is stronger than other notions and better suited for dealing with
order-manipulation attacks. Furthermore, receive-order-fairness generalizes the validity condition
of the related Byzantine agreement problem (see KZGJ), providing a useful theoretical motivation.

Distilling the Aequitas protocol (from KZGJ) and its connections to voting theory.
The Aequitas protocol was constructed by KZGJ for realizing order-fairness in the permissioned
setting. At a high level, Aequitas builds a (directed) graph whose vertices contain transactions and
edges represent ordering dependencies. A transaction tx can be removed from the graph and output
to the final log, when it is in a source vertex, i.e., its ordering does not depend other transactions
in the graph. In this paper, we extract out the key techniques from the Aequitas protocol so
that they can be adapted for our permissionless protocols through a “player replaceability” lemma
(Lemma 3.8), which helps handle nodes dynamically joining and leaving. This lemma will effectively
allow us to reduce the permissionless order-fairness problem to its permissioned analogue by creating
virtual nodes. Along the way, we find fundamental connections to social choice and voting theory.
The problem of choosing the winner of an election (or more generally, a ranking of candidates)
based on voter preferences is closely related to the problem of order-fairness. Intuitively, ordering
one transaction before another is analogous to preferring one candidate over another. A simple
connection in this direction was observed by KZGJ, but we expand on this connection further in
Section 3. Specifically, to suit our purpose, we formulate a streaming fair order problem where new
transactions (candidates in the voting context) can be added in a continuous fashion. We show
how an algorithm that solves this problem can be used to build a fair ordering protocol in the
permissionless setting.

Permissionless protocols for order-fairness. Starting from the pioneering idea in [32],
longest-chain based protocols have been constructued for many different permissionless settings:
proof-of-work [22, 33], proof-of-stake [14, 16, 27] and proof-of-space [38]. We provide two different
constructions that modify any longest-chain based protocol and endow it with the order-fairness
property. While our constructions are generic to any longest-chain protocol, we describe them
in the context of proof-of-work (PoW) for concreteness. Both our constructions follow the same
basic outline. First, through PoW mining, nodes mine blocks, and from the blockchain, one can
deduce k distinct transaction-order lists, represented by L = [List1, . . . , Listk]. We refer to these
lists as different “semantic chains” since transactions in the same list are logically or semantically
connected even though they may directly follow a different PoW block. All transactions will be
mined k times, once in each semantic chain. Effectively, L will represent the transaction orderings
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of k virtual “nodes” in a permissioned setting. This allows any node to use the distilled version of
the Aequitas protocol (with the player-replaceability property), which we denote by Aequitas(·), to
extract the final fair ordering. For both these protocolos, we characterize the adversarial threshold
below which they achieve order-fairness in the PoW setting. Since our proofs are built on basic
chain-quality and growth properties of the underlying blockchain, the proofs can be extended to the
other permissionless settings such as proof-of-stake and proof-of-space as well. We briefly describe
our constructions below.

• (Single-Chain protocol Πmod: Section 5) Our first protocol uses a single PoW Nakamoto
chain. Here, the k semantic chains will arise from the chain modulo k. Specifically, blocks at
indices that are congruent modulo k will become part of the same semantic or modular chain.
This allows any node to construct the k lists from the public blockchain and run Aequitas(·)
to retrieve the final fair ordering. Assuming (τ,R)-respawning adversaries that corrupt at
most β fraction of nodes, for a sufficiently large R, we show that Πmod satisfies order-fairness
when β+τ < 1

3 . We comment that using an underlying mining-fair chain like Fruitchains [34]
instead, we can tolerate β + τ < 1

2 .

• (Multi-Chain protocol Πmulti: Section 6) Our second protocol, Πmulti, has a more paral-
lel design for the semantic chains, with the k PoW chains being mined simultaneously. It
achieves lower latency than our single-chain protocol, and more importantly, it presents a
method to combine multiple ledgers in a fair way. For this protocol, we use the k-for-1 PoW
mining technique modified from [7, 22, 34] to determine which chain a block gets mined
into. Once again, we can now run Aequitas(·) to retrieve the final fair ordering. Assuming
(τ,R)-respawning adversaries that corrupt at most β fraction nodes, we show security when

β + τ < 7−
√

17
16 ≈ 0.1798. The proof establishes a novel cross-chain-quality property using

techniques from the queuing theory literature and may be of independent interest to the
consensus community.

To show order-fairness, we first define dependency-soundness (Property 4.1) as the property that
a majority of the semantic chains in L contain tx before tx′ whenever tx is received before tx′ by a
large fraction of the network. We show in Lemma 3.8 that any protocol that satisfies this property
will achieve order-fairness. Finally, we will show that both of our protocols are dependency-sound.
For our constructions, it turns out to be sufficient to show that a majority of blocks that contain
a given transaction (across the semantic chains) are honestly mined. Our protocols will satisfy
liveness when the network delay parameter is ∆ = 1. For this, we show in Lemma 4.3, that when
∆ = 1, cycles in the dependency graph can only extend for a small (constant) number of rounds.
This allows transactions to be delivered without needing to wait for an arbitrarily large amount of
time. Abstractly, the condition of ∆ = 1 will mean that the granularity to which we can achieve
fair ordering (with liveness) is exactly the granularity in which transactions can be input.

After the above reductions take effect, the rest of security proofs for Πmod are reasonably
straightforward and rely on properties of the underlying Nakamoto PoW chain proved in [33]. The
analysis for Πmulti is somewhat complicated, primarily due to possibility of adversarial transactions
and block withholding, and the difference in the lengths of different semantic chains. Here, we
utilize the cross-chain-quality property for which we make novel use of queuing theory techniques.
We defer the complete details for this to Appendix A. We see this work as laying the foundation
for the study of order-fairness in the permissionless setting.
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Order-Fairness implies zero-block confirmation. Our single-chain protocol provides order-
fairness, but it comes at the cost of increased latency. While the multi-chain protocol reduces
this latency, it still requires a latency at least similar to Bitcoin (which increases linearly with the
security parameter [22]). We show a surprising result here that while the order-finalization latency
may be larger, for both protocols, and in fact, for any fair-ordering protocol, any honest transaction
can be finalized much faster, within two-times the network latency. We note that while there is a
large body of work trying to improve the confirmation latency of permissionless systems [7, 20, 30,
41], none of them are able to achieve fast confirmation at this time-scale, since all of them require
mining at least a certain number of blocks at a much slower rate than network latency.

To formalize this, we define a useful soft-ordering property: if a transaction tx is received at a
honest node more than 2∆ time before tx′, then tx is guaranteed to be ordered before tx′ in the
finalized ledger. We show that this property is satisfied by our protocols, and more broadly by any
protocol with receive-order-fairness (see Section 7). Soft-ordering is a very powerful property that
lets a node confidently predict something about the finalized ledger purely using local observations.
Suppose an honest node sees tx in round r and does not see a conflicting transaction within 2∆ in
its arrival queue, it can be assured that tx will be ordered ahead of any conflicting transaction in the
finalized ledger. Consequently, a node can confirm a transaction without even seeing a single mined
block that contains the transaction. We call this zero-block-confirmation or soft-confirmation. We
note that a transaction issued by a honest client will not have a conflicting transaction at all, and
thus any other honest node will be able to soft-confirm the transaction within 2∆ rounds.

To see why this is useful, consider the following scenario: Alice wishes to buy a coffee from
Carol’s Coffee, using a cryptocurrency BasicToken (BT), which uses an underlying Nakamoto-style
PoW blockchain. Alice pays 5 BT for her coffee and leaves the coffee shop. However, for Alice’s
transaction (tx) to be confirmed by the network, it could take several PoW blocks to make sure
the transaction is buried sufficiently deep in the chain. This could be in the order of hours, which
makes BT based payment systems untenable for practical transactions. If BT were instead run
with an underlying blockchain that satisfies order-fairness, then Carol could watch the network for
a small period 2∆ to ensure that no conflicting transaction was submitted to the network, and
soft-confirm the transaction locally. The soft-ordering property lets Carol be locally convinced that
tx will be valid in the final ordered ledger, even though tx has not yet been mined, and long before
the finalized order of tx is established in the network.

Zero-block confirmation has been a topic of interest from the early days of Bitcoin, and touted as
an important step towards the practicality of Bitcoin for day-to-day purchases. Practictioners use
many ad-hoc techniques [25], based on listening to the network for a small period of time to ensure
there was no conflicting double-spend transaction, and gossiping any conflicting transaction to the
network. However, since Bitcoin does not guarantee fair-ordering, it is possible for a transaction
to be issued much later and still be ordered ahead. A simple method is for a malicious user to
issue a second double-spend transaction that gets mined through an adversarial miner. In practice,
this can be done by using a higher transaction fee. More long range attacks are also possible
through selfish mining [18]. A fair ordering protocol ensures that such a behavior is not possible,
and guarantees that the soft-confirmation is indeed provably secure.

Paper Organization. The rest of the paper is organized as follows. We discuss some related
work in Section 1.2. We define our formal model and other preliminaries in Section 2. In Section 3,
we distill the Aequitas protocol from KZGJ, and connect it to work in voting theory. Section 4
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provides an overview of our fair ordering protocols as well as useful theorems that help modularize
our proofs. We construct our single-chain protocol in Section 5 and our multi-chain protocol in
Section 6. Some of the proofs for our multi-chain protocol are computationally intricate and we
defer them to Appendix A.

1.2 Related Work

We describe related works in this section. The state machine replication, or consensus abstraction
has been studied in literature for several decades but almost no prior permissioned protocols, and
no permissionless protocols consider any notion of fairness in transaction ordering. For a more
comprehensive comparison to prior permissioned broadcast and consensus protocols, we refer the
reader to the related works section in KZGJ.

Fair ordering protocols. Very little research has been done on fair ordering consensus protocols.
Hashgraph [8] provided an informal description of a first-in-first-out (FiFo) transaction ordering
property. KZGJ [26] formally defined (receive)-order-fairness (resp. (block)-order-fairness) as the
property of ordering tx1 before (resp. no later than) tx2 globally if a large fraction of nodes
(parameterized by γ) received tx1 before tx2 in their local ordering. Concurrently to KZGJ, works
by Kursawe [28], and Zhang et al. [42] gave an alternative definition for ordering fairness (called
timed relative fairness in [28] and fair-linearizability in [42]) where tx1 is ordered before tx2 if all
honest nodes have seen tx1 before any honest node has seen tx2. Note that this is strictly weaker
than the receive-order-fairness property from KZGJ and in Section 2.3, we argue why it is not
enough to prevent natural order-manipulation attacks. Still, work on fair ordering protocols so far,
has been restricted only to the permissioned setting, despite most motivating attacks taking place
in the permissionless setting. To the best of our knowledge, our work is the first to construct fair
ordering protocols in the permissionless setting.

Alternate ordering techniques. An extensive line of research ([22, 33, 34] among others) in the
past few years has considered the consensus problem in the permissionless setting. By design, most
permissionless protocols achieve censorship resistance, which ensures that any transaction submit-
ted by an honest user will eventually be confirmed by the network. Despite this, no guarantees are
provided on how the transaction is eventually ordered.

Some techniques like [9, 31] attempt to prevent adversarial manipulation of the transaction
ordering by finalizing the ordering before revealing the transaction contents, or choosing a random
ordering among the transactions in the current pool. Even in such a protocol, an adversary can
introduce new transactions to the network such that with a high probability, one of them will get
sequenced before an honest transaction even though the honest one was received earlier [3]. This
is problematic if the adversary can use user transaction metadata to construct its own transaction,
or if the adversarial transaction does not need to depend on the contents of any honest user’s
transaction (e.g., the adversary wants to be the first one through the door to get the best price in
an auction). Therefore, a random ordering protocol is not sufficient to prevent order-manipulation
attacks. We elaborate on this observation in Section 2.3.

Other unrelated uses of fairness. The term fairness has been used previously in literature
for properties unrelated to ours. In permissionless consensus literature, one common use case is
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for PoW block mining; it requires that an honest node’s rewards be proportional to its relative
computational power, which restricts adversarial selfish mining [18]. This notion of fairness was
first defined by Pass and Shi [34] and achieved by their Fruitchains protocol. We will call this
property mining-fairness to distinguish it from our notion of order-fairness.

Latency reduction methods. Reducing the confirmation latency of longest-chain protocols
has been the subject of intensive recent research [7, 20, 30, 41]. Two particularly relevant works,
Prism [7] and Ledger-Combiner [20], also use multiple parallel chains to achieve faster confirmation.
They can confirm honest transactions within a constant multiple of the network latency ∆, much
faster than Bitcoin, where the latency is a multiple of the security parameter. However, in both
methods, the constants are large and become worse as the adversarial power increases. Other
methods [30, 37] offer low latency only under optimistic conditions, and fall back to standard Bitcoin
latency when there are any adversarial actions. In comparison, our soft-confirmation method can
confirm honest transactions in 2∆ time independent of the tolerable adversary ratio or whether
there is an active attack. Conceptually, our soft-confirmation method can confirm transactions that
are yet to get into any block, which is impossible with the other methods. Surprisingly, Ledger-
Combiner, which was specifically designed to get low latency when combining transactions from
multiple ledgers is slower than the soft-confirmation our constructions achieve as a byproduct.

2 Model and Preliminaries

We describe the general framework for protocol execution in this section. Much of our formalism
is adapted from an extensive line of research on consensus in the permissionless setting [22, 33, 34,
36, 37]. We also use some of the formalism related to order-fairness from KZGJ [26]. Lifting the
network and order-fairness formalism from KZGJ to the permissionless setting brings out several
subtleties which we detail in Sections 2.1 and 2.3.

General Execution Model. To model protocol execution, we adopt the widely used Interactive
Turing Machine (ITM) approach from the Universal Composability framework [10]. Each node
is represented as an ITM and a special environment machine Z is used to direct the protocol’s
execution. We assume the existence of an underlying global clock that allows us to model protocol
execution in rounds2. Specifically, at the start of each round, each node receives inputs from Z
in the form of a set of transactions txs; at the end of every round, nodes may deliver3 outputs
to Z. For ease of modeling, for honest nodes, the final ledger will be taken as the result of a
transformation function linearize(·) (defined as part of the specific protocol) on the outputs to Z
rather than the outputs themselves. That is, for an honest node i in any round t, the final ledger is
the result of linearize on i’s output to Z in round t. This will extract the relevant information from
the outputs in the form of a linearly ordered ledger. New transactions from users are modeled as
being input by Z to avoid explicitly having to model clients.

Corruptions. At any point, Z can spawn new nodes, either as corrupt or honest. Honest nodes
execute the protocol faithfully while corrupt nodes are controlled by an adversary A, and can

2In this paper, we will use the terms time and rounds interchangeably.
3In this paper, we will use the terms deliver and output interchangeably.
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deviate arbitrarily. At any point, Z can send a corrupt signal to a node (perhaps as requested by
A), after which A gets control of the node’s execution. At any point, Z can also send a kill signal
to an already corrupt node, which removes it from the protocol execution. Note that only corrupt
nodes are killed and that A knows the internal state of a node right before it is killed. Corrupt
nodes can also be uncorrupted by Z and this is treated the same way as first killing the node and
then spawning a new node.

We observe that if the adversary is able to corrupt and kill nodes at will, it can cause the net-
work to “forget” the transaction input orderings received by earlier honest nodes. While this was
not important for prior work, where the final transaction ordering was not considered, this is criti-
cally detrimental for any fair ordering protocol. Therefore, we will assume a (mildly)-respawning-
adversary that limits the node churn. Informally, a (τ,R)-respawning4 adversary can kill at most
τ fraction nodes within any period of R rounds. This corresponds to the notion that A cannot
quickly corrupt and kill many nodes. We will distinguish between the respawning parameter and
the adversarial corruption parameter (see Definition 2.1).

Notational conventions. We use κ to denote the security parameter. For a protocol Π,
EXECΠ(A,Z, κ) represents the random variable for all possible execution traces of Π w.r.t. ad-
versary A and environment Z. The possible executions arise from any randomness used by
honest nodes, adversarially controlled nodes, and the environment. Any view in the support of
EXECΠ(A,Z, κ) is a fully specified instance (including inputs, outputs, random coins etc.) of an
execution trace. We use view←$ EXECΠ(A,Z, κ) to denote randomly sampling an execution. |view|
denotes the number of rounds in view. A function negl(·) is negligible if for every polynomial p(·),
there exists a constant κ0 ∈ N, such that negl(κ) ≤ 1

p(κ) for all κ ≥ κ0.

2.1 Communication Networks

Before we introduce our network formalism, we look at the formalism in KZGJ to better argue for
the modeling choices we make for the permissionless setting.

A deep look into the networks in KZGJ. Standard formalism for consensus protocols models
a single communication network amongst consensus nodes. Informally, network synchrony here
implies that any message sent by an honest node reaches its intended recipient(s) within some
known fixed amount of time (or rounds) ∆. Usually transactions from clients are assumed to
originate either from a consensus node or input by the environment Z.

The order-fairness formalism from KZGJ, however, models two separate networks: an external
network (which models the communication channel between system users and protocol nodes), and
the internal network (which models the communication network amongst protocol nodes and is
the standard one considered in literature). Furthermore, the model assumes that transactions are
sent by clients to all nodes (modeled as inputs given by Z), and that the adversary only controls
network delivery for the internal network. Synchrony in the external network is defined as the
property that any transaction input to one node (by Z) is input to all other modes within some

4This is distinguished from an R-mild adversary in [35] where the adversary takes R rounds to corrupt a node.
While the security properties of [35] crucially relied on the adversary not gaining control of nodes instantly, we can
tolerate the adversary corrupting a node instantly, as long as it can’t kill too many nodes quickly.
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known time ∆ext. In practice, this is the assumption that a client’s connection to any particular
node is not much slower than its connection to others.

Such a modeling was crucial for their purpose because each consensus node needed to have an
unmolested view of its transaction input ordering. For example, the first node that receives a client
transaction should not be able to adversarially insert its own transaction and quickly gossip it to
other nodes in an attempt to get it sequenced first. This is a form of “front-running” as described
in [15]. The assumption that the adversary does not control the external network takes care of
this problem. However, this puts the onus on the client to send its transaction to all nodes instead
of just a few. While this is a perfectly reasonable assumption in a permissioned network where
the nodes are known, it is difficult to justify it in a permissionless network, where nodes change
over time and transactions usually propagate through a gossip-style network. Here, arguably there
is no way to get around nodes inserting their own transactions during the gossip. Nevertheless,
we emphasize that this still retains the notion that a transaction that is seen by a majority of
the network first, should be sequenced first. We note that the permissioned formalism in KZGJ
could very well have modeled a single network, but the additional modeling of the external network
allowed an honest node’s input ordering to be completely independent of the adversary. In practice,
in a permissionless network, clients should send their transactions to as many nodes as they can so
that most nodes receive them in an order not influenced by the adversary.

Another upshot of modeling two separate networks in KZGJ was that a transaction claimed by
an adversarial node would not be considered by an honest node unless the transaction was received
from the environment i.e., an honest client. This works well since now, an adversary cannot influence
the global state by creating bogus transactions. Unfortunately, in a permissionless Proof-of-Work
protocol, transactions can also be gossiped by mining a block that contains it and propagating the
block through the network. It is difficult to determine the final ordering simply based on the local
input orderings of all the nodes from clients (like was done in KZGJ) since participating nodes may
constantly change in a permissionless system. On the other hand, if transaction input orderings
are based on the ordering in the ledger, it could potentially enable an adversarial transaction (that
was not input to any honest node), to be sequenced earlier simply by being placed earlier in the
ledger. To get around this, informally, we force the environment to deliver transactions included
in the ledger to all nodes as input which handles transaction discovery through a gossip-network,
and allows us to talk meaningfully about transaction ordering.

All of this ends up blurring the distinction between the internal and external network from
KZGJ, leading us to model a single communication network.

Network Formalism. We model a single communication network that in spirit melds the ex-
ternal and internal network from KZGJ. We assume a synchronous model of communication, such
that messages sent are delivered within a (known) bounded number of rounds ∆. The adversary
A can delay and reorder messages (subject to the bound ∆) but cannot drop messages. We define
the synchrony assumption below.

• (∆-(bounded)-delay) We say that (A,Z) respects ∆-delay if the following conditions hold for
all view in the support of EXECΠ(A,Z, κ):

- (Input Synchrony) If an honest node receives tx as input from Z in round r, then in any
round r′ ≥ r + ∆, any honest node that is in the system in round r′ will have already
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received tx as input from Z. This includes any node that may have spawned in round
r′.

- (Ledger Synchrony) If an honest node outputs tx to Z in round r (recall that this is not
the same as being ordered in the final ledger), then in any round r′ ≥ r+ ∆, any honest
node that is in the system in round r′ will have already received tx as input from Z.
This includes any node that may have spawned in round r′.

- (Broadcast Synchrony) If an honest node sends a message in round r, then in any round
r′ ≥ r + ∆, any honest recipient node will have received the message by round r + ∆.
This includes any node that may have spawned in round r′.

- Z provides the delay bound ∆ to all nodes when they are spawned.

Since we model a single network, we consider the same synchrony bound for all properties.
Although, it is possible to model different synchrony parameters, in practice, it is unlikely that
they will be significantly different.

Remark (Input Synchrony and DoS). Similar to the external synchrony assumption in KZGJ, our
input synchrony assumption assumes that all transactions are gossiped through the network. In a
permissionless network, this can lead to a possible denial-of-service (DoS) attack where an adversary
floods the network with bogus double-spend transactions (e.g., transactions that spend the same
tokens). This is mitigated in the Bitcoin network, by not gossiping any double-spend transactions.
Unfortunately, this can cause our zero-block confirmation property to be invalidated. Instead, we
will show that gossiping a single double-spend transaction is sufficient to retain our zero-block
confirmation property. In other words, the adversary cannot cause a DoS attack by attempting
to flood the network. We elaborate on this further in Section 7. We also note further that the
proposal in [25] to prevent fast double-spends (although as mentioned earlier, it cannot guarantee
that later double-spends are not sequenced earlier due to adversarial miners) involves gossiping
all double-spends through the entire network, for which the authors argue that the performance
penalty incurred by the network would not be significant.

2.2 Abstract Blockchain Protocols and Formalism

We recall the definition of the permissionless or open setting next, taken from [37], and add to it
our respawning parameters.

Definition 2.1 ((n, β,∆, τ, R)-permissionless environments). We say that (A,Z) respects
(n, β,∆, τ, R)-permissionless execution w.r.t. a protocol Π if (A,Z) respects ∆-bounded-delay,
and for every κ ∈ N and view in the support of EXECΠ(A,Z, κ), the following conditions hold:

• In each round, there are exactly n nodes online in the system, of which at most βn are corrupt.

• Within any period of R rounds, at most τn notes are killed. We call such an adversary
(τ,R)-respawning.

• Z provides all nodes the parameters n, β,∆, τ, R upon spawning.
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Remark. (Variable n) While we model a fixed n in each round similar to most blockchain papers, we
note that our model can easily be extended to handle a varying n, using complementary techniques
that are well understood in literature [11, 21]. This involves adjusting the mining difficulty target
and using a heaviest (i.e., total amount of work) chain rule rather than the usual longest chain rule.

Next, we briefly recall the formalism for abstract blockchain protocols. An abstract blockchain
chain is an ordered sequence of blocks where chain[i] is a vector of transactions contained in chain
at index i. We assume familiarity with the (by now) standard requirements for blockchain protocols,
and refer the reader to [22, 33, 37] for more details. Our proofs will require these properties from
previous well-studied constructions only in a black-box way.

Notation. For a given chain and non-negative integers d and d′, we use chain[d] to denote the dth

block of chain (indexed from 0), chain[: d] to denote the first d blocks, and chain[d : d′] to denote
the sequence of blocks from chain[d] to chain[d′], both inclusive. We also use chain[−d] (d 6= 0) to
denote the dth block from the rear and chain[: −d] to denote chain except for the last d blocks.

Definition 2.2 (Abstract Blockchain Requirements). The requirements below need to be satisfied,
except with negligible probability, over a random choice of view in the support of EXECΠ(A,Z, κ).

• (T -Common-Prefix) If chainr and chaint are two honest chains (possibly from the same node)
in rounds r and t respectively, and r ≤ t, then chainr[: −T ] � chaint. This will allow us to
confirm all except the last T blocks in chain.

• ((T, g0, g1)-Chain-Growth) Let chainr and chaint be two honest chains (possibly from the same
node) in rounds r and t respectively such that r ≤ t.

• (Consistent length) If t ≥ r + ∆,
∣∣chaint

∣∣ ≥ |chainr|.
• (Chain growth lowerbound) If g0 · (t− r) ≥ T , then

∣∣chaint
∣∣− |chainr| ≥ bg0 · (t− r)c.

• (Chain growth upperbound) If g1 · (t− r) ≥ T , then
∣∣chaint

∣∣− |chainr| ≤ dg1 · (t− r)e.

• ((T, µ)-Chain-Quality) If chain is an honest chain, then for any T consecutive blocks in chain,
at least µT blocks were mined by honest nodes.

Protocols that satisfy the blockchain abstraction will directly satisfy the state machine replication
properties of consistency and liveness (see [33, 37]). We use the following definition for liveness.

• ((Twarmup, Tconfirm)-liveness) If an honest node is input m by Z in round r ≥ Twarmup, then
in any round r′ ≥ r + Tconfirm, for any honest node in round r′ that outputs X to Z, m is
contained in linearize(X ). When there is no warmup time, we simply write Tconfirm-liveness.

We introduce useful formalism for Nakomoto’s PoW protocol next.

Random Oracle. We assume that all nodes have access to a random function H : {0, 1}∗ →
{0, 1}κ. This is provided by two oracles, H(x) which outputs H(x) and H.ver(x, y) which outputs
1 if H(x) = y and 0 otherwise. In any round, all parties can make q queries to H and any number
of queries to H.ver. An adversary A controlling p parties is allowed to make pq sequential oracle
queries. Note that Z cannot access H, but can instruct A to make queries. This abstraction
follows [22, 33], and captures the intuition that finding a proof-of-work solution is difficult, while
checking the validity of a solution is inexpensive.
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Blocks. We define a block B as a tuple (parent, ref, m, η, h) = (h−1, h
′, m, η, h), where parent

denotes a pointer to a parent block, ref denotes a pointer to a reference block (an arbitrary
previous block), m denotes the record in the block (eg., a vector of transactions), η denotes the
proof-of-work nonce, and h denotes the hash of the current block.

The reference block is an important modeling choice since it allows B to logically follow a
different block than its preceding parent block. Notably, this allows the validity condition for a
block to also be defined in terms of the reference block, and possibly separately from the parent
block. We note that in many cases (eg., the Bitcoin backbone protocols), ref = parent. In such
protocols, we can condense the size of the block by dropping any unnecessary values or replacing
them with a hash digest to allow for verification.

We will parameterize our protocols by a hardness function p(·) that defines Dp = p(κ) · 2κ such
that Prη[H(parent, ref, m, η) < Dp] = p(κ) for all (parent, ref, m). Now, we define a valid block B

as a tuple (h−1, h
′, m, η, h) where H(h−1, h

′, m, η) = h and h < Dp.

Security of Nakamoto’s protocol [33]. Consider Nakamoto’s protocol Πnak(p) with hardness
parameter p(·). Let α be the probability that some honest nodes mines a block in one round and
let ν be the expected number of adversarial blocks mined in one round. Different quantities are
considered for honest and adversarial nodes since any honest chain can grow by at most one block
in any round while an adversary, who can query the H sequentially can append more than one
block. Then, α = 1 − (1− p(κ))(1−β)qn and ν = βqnp(κ) [33]5. Define α′ = α

1+α∆ . Define a
Nakamoto-compliance predicate, denoted by Γpnak(n, β,∆) = 1 if for all κ, there is some λ > 1 such
that α(1 − 2(∆ + 1)α) ≥ λν. Then, in any environment that satisfies the Nakamoto-compliance
predicate, or equivalently, for a sufficiently small hardness parameter, any T0 = ω(log κ), and any
constant ε > 0, Πnak(p) satisfies T0-consistency; (T0, g0, g1)-chain-growth where g0 = (1 − ε)α′,
g1 = (1 + ε)qnp; and (T0, µ) chain quality where µ = 1− (1 + ε) να′ . Note that all these quantities
are functions of κ.

Proof simplifications. To make our proofs cleaner, we will make the following standard simpli-
fications.

• (Simplification 1) (Mining is much slower than block propagation.)

When the hardness parameter is sufficiently small, (e.g., when pq is small compared to 1/n),
we have α ≈ q(1−β)np. Therefore, by the union bound, the probability that no honest block
is mined in ∆ rounds is at most (∆)α. If this is small, then with overwhelming probability,
no other honest blocks are mined in the time it takes for an honestly mined block to be
propagated to other nodes. This is reasonable since network propagation in Bitcoin is a
few seconds, while a new block is mined roughly once every 10 minutes. For sufficiently
small hardness parameter p(·), Pass et al. [33] showed that this happens with overwhelming
probability in their proofs. We note that some prior works (eg., Prism [7]) also directly make
a similar assumption.

• (Simplification 2) When the hardness parameter is sufficiently small, ν
α′ is well approximated

by β
1−β , and therefore µ = 1 − (1 + ε) να′ is well approximated by 1 − (1 + ε) β

1−β . Then,

5We consider q queries to H per round for each node whereas [33] considers a single query.
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for any β < 1
3 , there will exist some ε0 such that Πnak satisfies chain quality with µ > 1

2 .
Specifically, for any ε > 0 and β = 1/3 − ε, let 0 < ε0 < 1 − 2+3ε

2−ε . Then, Πnak satisfies

(T0, µ0)-chain quality where T0 = ω(log κ) and µ0 >
1
2 . In other words, in any T0 consecutive

blocks, the majority of blocks are mined by honest miners. In our proofs, we will directly use
majority-chain-quality when β < 1

3 .

2.3 Order-Fairness

Background on order-fairness. An extensive number of transaction reordering and front-
running attacks [3, 15, 17], have been observed recently on real-world blockchains; in particular,
in the context of Decentralized Apps (or DApps) on Ethereum. While some prior protocols have
attempted to provide partial fixes for ordering attacks, KZGJ initiated the first formal study for
fairness of transaction ordering in the permissioned setting. Informally, KZGJ defines γ-receive-
order-fairness (resp. γ-block-order-fairness) as the following property: If γ fraction of nodes receive
as input a transaction tx before another one tx′, then tx should be included before (resp. no later
than) tx′ in the final ordering. We emphasize (as shown in KZGJ) that receive-order-fairness is
a strictly stronger ordering property than previously considered notions like censorship resistance,
random leader election, threshold encryption etc.

While KZGJ studied fair transaction ordering in the permissioned setting, since almost all of
the aforementioned real-world attacks are on permissionless systems, it is important to extend the
order-fairness definition to the permissionless setting. We will do exactly that in this section.
Before proceeding with our formalism, we briefly mention two alternate candidate definitions for
fair ordering, that are weaker than receive-order-fairness (and perhaps easier to achieve), but cannot
prevent order-manipulation through front-running.

• (Timed relative fairness [28] or fair-linearizability6 [42] from works concurrent to KZGJ) If
all honest nodes receive tx before any honest node receives tx′, then tx will be ordered before
tx′. In other words, if the latest honest receive time for tx is before the earliest honest receive
time for tx′, then tx should be ordered earlier.

Note that this is strictly weaker than receive-order-fairness. Indeed, if the antecedent of
fair-linearizability is satisfied, then so is the antecedent of receive-order-fairness. The primary
goal of the fair-linearizability property was to add an ordering property to existing consensus
protocols, and indeed, we find that this is not sufficient to handle our motivation of front-
running attacks. This is because it enforces no guarantees on transactions whose receive times
are globally interleaved. An adversarial transaction that attempts to front-run an honest user
transaction, will end up getting interleaved with the user transaction in its receive times.
Consequently, for most practical attack vectors, the antecedent of fair-linearizability will be
false, making the definition vacuous and not particularly useful. We also note that this
definition lacks a parameterization by γ, compared to the order-fairness definition.

We do show however, that this property is sufficient for zero-block confirmation.

• (Median-Fairness) If the median receive time for tx is smaller than the median receive time
for tx′, then tx should be ordered before tx′.

6Fair-linearizability allows the outcome where only tx′ is ordered and tx never is, effectively allowing some form
of censorship. It is possible to prevent this but comes at the cost of increased latency.

15



KZGJ considered this definition, but showed that it deviated from the intuition of “first-in
first-out” ordering since a single adversarial node could flip the median, thereby resulting in
an unfair ordering.

Random ordering vs Fair ordering. It is important to distinguish a protocol that chooses a
random ordering from a protocol that chooses a fair ordering. A random ordering protocol chooses
a random ordering of transactions in the current pool, in an attempt to avoid any adversarial
manipulation. On the other hand, a fair ordering protocol will guarantee that transactions which
arrive earlier will be sequenced earlier by the network (instead of in a random order). Note that in
a random ordering protocol, there is still a 50% chance that an adversarial transaction gets ordered
before an honest one even if the honest one was propagated earlier. In addition, the adversary
can flood the network with many transactions to exponentially increase the probability that at
least one is ordered before the honest transaction. We highlight that even if the adversary has no
control over the ordering of transactions in the pool, it is able to implicitly influence the ordering
by introducing its own adversarial transactions.

Some protocols [6, 9, 31] make the use of threshold encryption, or a commit-and-reveal scheme,
to order transactions before their content is revealed in order to choose a random ordering. In prac-
tice, this might still not prevent censorship and reordering based on transaction metadata (user
identifier, client IP address etc). Furthermore, it may not prevent front-running based on infor-
mation received through side channels. Still, even if these problems were mitigated, we maintain
that random ordering is not the same as fair ordering. We also note that our techniques can easily
integrate with commit-and-reveal methods where the final random ordering is replaced with the
fair ordering based on transaction receive times.

Choosing an order-fairness definition in the permissionless setting. Consider two trans-
actions tx and tx′. First, we note that in the permissionless setting, nodes that are spawned far
later (eg., after tx and tx′ are output), will receive tx and tx′ in the same round (see the input
synchrony definition). Consequently, we cannot näıvely use the same order-fairness definition from
the permissioned setting, since the antecedent will never be satisfied making the definition vacuous.
Instead, we only consider the first time that the n nodes in the system receive either transaction,
corresponding to the initial propagation of the transactions.

Let S be the set of these nodes. We say that a node has received tx before tx′ if it has either (1)
received tx but not tx′ or (2) received both transactions and received tx in an earlier round than
tx′. Now, if a large fraction (parameterized by γ) of nodes in S have received tx before tx′, then
intuitively, tx should be preferred over tx′. For receive-order-fairness (resp. block-order-fairness),
this means that the final log should not contain tx′ unless it contains tx before (resp. in the same
block). Henceforth, for brevity, when we say that the final log contains tx before tx′, we also
include the scenario where the log only contains tx. Permissionless order-fairness is formalized in
Definition 2.3.

Definition 2.3 (γ-receive-order-fairness (resp. γ-block-order-fairness)). For a given view in the
support of EXECΠ(A,Z, κ), we define γ-receive-order-fairness (resp. γ-block-order-fairness) as fol-
lows: For two transactions tx and tx′, let r be the first round such that at least n nodes alive in
round r, have received either tx or tx′. Now, if γ fraction of those nodes have received tx before
tx′ as input, then for any round t ≥ r, and any node i that is honest in round t and outputs X , the
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final linearly ordered log, linearize(X ), either (1) contains neither transaction; (2) contains only tx;
or (3) contains tx before (resp. no later than) tx′.

We say that a protocol satisfies order-fairness if it satisfies the above, except with negligible
probability over a random choice of view.

3 Distilling the Aequitas approach

We distill the key structure of the Aequitas protocol, as described in KZGJ, that provides order-
fairness in the permissioned setting. We generalize their techniques to be useful in the permissionless
setting we consider. Along the way, we uncover some helpful insights and connections to voting
systems that may be of independent interest.

First, we briefly describe the key techniques employed by the Aequitas protocol. While the
protocol works for both synchronous and asynchronous settings, we will only consider the com-
pletely synchronous setting where both the internal and external network are synchronous. In
the permissioned setting, consider a system with n nodes, of which, at most f may be corrupt
(controlled by A). The protocol is parameterized by an order-fairness parameter 1

2 < γ ≤ 1 that
dictates what constitutes a fair ordering. In the synchronous setting, for parameter γ, the Aequitas
protocol requires n > 2f

2γ−1 . At the start of a round, each node receives transactions as input from
Z. For a node i, let TxInputOrderi denote the ordered list of transactions as received by i. The
first stage of the Aequitas protocols uses broadcast primitives (specifically FIFO (first-in-first-out)
broadcast [24]) to let all nodes know the order of transactions as received by other nodes. While
adversarial nodes can choose to broadcast any order as though they received it, FIFO-broadcast
along with an intermediate agreement stage ensures that all nodes still have a consistent view of
this ordering. The final stage of the Aequitas protocol, dubbed the “finalization stage”, requires no
further communication and uses the input orderings of all the nodes to locally compute the final
output transaction ordering. Each transaction goes through the following three stages before being
delivered as part of the final ledger.

1. (Broadcast) In this stage, nodes broadcast their input transaction ordering as received from
the environment Z.

2. (Agreement) In this stage, nodes agree on whose input orderings to use to order the given
transaction. This is done to ensure that adversarial nodes cannot cause nodes to use a different
set of orderings by broadcasting late. In the synchronous setting, this also guarantees that
the input orderings of all honest nodes are considered.

3. (Finalization) In this stage, all nodes are now equipped with all the input orderings. At this
point, nodes compute the final fair ordering locally.

Essentially, this means that we can abstract out the broadcast and agreement primitives and
assume that the nodes start with the transaction input orderings of all nodes; of which f orderings
may be adversarial chosen. The “finalization” step now takes these as input to locally compute the
final output ordering. Since f of the orderings could be adversarial, for any two transactions tx and
tx′, the finalization for a protocol with order-fairness parameter γ, must output tx before (no later
than in the case of block-order-fairness) tx′ even when tx is ordered before tx′ in γn− f orderings.
The upshot of this observation is it allows us to distill the computation of the fair ordering from
the consensus part, and modify it to suit our purpose.
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3.1 The Finalization Problem

Before we formally define the finalization problem, we introduce some notation. For our finalization
problem parameterized by Υ = (n, f, γ), we will consider as input, n ordered lists List1 to Listn where
an entry in a list is a set of messages. While the inputs to the finalization problem are independent
of any underlying consensus problem, in the permissioned setting, intuitively, these lists describe
the order in which messages were input to a particular node. We use Listi[r] to denote the the set
of messages received by node i in round r (if i is honest). Lists corresponding to adversarial nodes,
can of course deviate arbitrarily from their true input ordering. For messages m and m′, we use
the notation m ≺i m′ if m is ordered before m′ in Listi. The goal now, is to output a list OutputList
of transactions that are ordered in a “fair” manner. We say that Υ = (n, f, γ) is admissible if
γ > 1

2 and n > 2f
2γ−1 . We define a problem instance by Λ = (Υ,L) where Υ = (Υ.n,Υ.f,Υ.γ) and

L = [List1, . . . , Listn] indexed by 1 to n.

Definition 3.1 (Valid Message). We say that a message m is valid w.r.t. Λ = (Υ,L) if it is present
in at least Υ.n−Υ.f lists in L.

Definition 3.2 (γ-Global Preference). Given Λ = (Υ,L), for two messages m and m′, we say that
m is globally preferred over m′, denoted by m′ CΛ m, if there are at least (Υ.γ)(Υ.n)− Υ.f input
lists Listj in L such that m ≺j m′. We will write m′ Cm when Λ is clear from context.

We also define a Condorcet cycle for non-transitivity in the global preference, which can arise from
the Condorcet paradox. See Section 3.1.1 for more details.

Definition 3.3 (Condorcet Cycle). Given Λ = (Υ,L), we say that (m1,m2, . . . ,ml) is an l-length
Condorcet cycle in L if m1 CΛ ml and mi+1 CΛ mi for all i ∈ {1, . . . , l}.

We now define the basic static finalization problem. This is intended as a warm-up to understand
the finalization problem better and serves as a strawman example for classic techniques from social
choice theory.

Problem 3.4. (Strong (resp. Weak) Static Fair-Order Finalization) Consider an admissible Λ =
(Υ,L) as input. Output a list OutputList containing all valid messages in L such that m is ordered
before (resp. no later than) m′ in OutputList if m is globally preferred over m′ w.r.t. Λ, or
equivalently, m′ CΛ m.

3.1.1 Connections to voting theory

It is easy to draw parallels between the Static Fair-Order Finalization problem (Problem 3.4)
and majority voting systems, in which voters rank a set of candidates. In such a voting system,
a candidate A is preferred over a candidate B if a majority of voters prefer A over B. The
goal of a voting protocol now is to find the winning candidate(s), or more generally rank all
candidates according to voter preferences. For our purpose, we are essentially replacing candidates
with transactions and voters with consensus nodes. We note that Problem 3.4 also generalizes
the condition when one transaction is preferred over another. Instead of a simple majority, we
parameterize preference using a order-fairness parameter γ (see Definition 3.2). We also allow
some of the “voting preferences” to be adversarial, which is not something usually considered in
voting theory.
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Static Finalization Algorithm StaticFinalize
Input: Λ = (Υ,L) where Υ = (n, f, γ) is admissible and L = [List1, . . . , Listn].
Notation: Let V be the set of valid messages in the input lists.
Algorithm Description.

1. Construct an empty graph G = (V,E), where V denotes the set of vertices, and E denotes
the set of edges. For all m ∈ V, add a vertex labeled m to G.

2. For all m,m′ ∈ V, if m′ CΛ m, then add the edge (m,m′) to G.
3. Let Gcon be the condensation graph of G. Output the topological sorting of Gcon.

Figure 1: Static Finalization Algorithm

Condorcet cycles and Smith sets. One standard choice for selecting the winner(s) in a ma-
jority voting election is the Smith criterion [40]. The Smith set is the smallest possible set of
candidates that are preferred over other candidates not in the set. When a Condorcet winner exists
(i.e., there are no Condorcet cycles), it is always the sole member of the Smith set. By a Con-
dorcet cycle, we mean a sequence of candidates (or messages), where the global preference relation
is non-transitive. Such cycles can exist even when individual orderings are transitive due to the
Condorcet paradox [12, 26].

Definition 3.5 ((Majority) Smith Set). The Smith set is the smallest set S that satisfies the
condition that for all x ∈ S and y /∈ S, x is preferred over y in a majority of orderings.

The Smith set can be computed using standard graph based algorithms. By representing global
preferences as directed edges in a graph (e.g., x → y if x is globally preferred over y), computing
the Smith set is now equivalent to finding the strongly connected component with no incoming
edges from outside of the component. The Smith set is therefore, sometimes referred to as the “top
cycle.” It can be found by using variations of the Floyd-Warshall algorithm or Tarjan’s algorithm
(see [13] for common graph algorithms). Similarly, all candidates can be ranked by topologically
sorting the strongly connected components.

We note that it is not particularly difficult to compute the fair ordering in the static finalization
problem. Indeed, the same techniques for computing the Smith set can be used to find the fair
ordering for transactions. We detail the algorithm in Figure 1. When no Condorcet cycles exist in
L, this protocol solves the strong static finalization problem; otherwise, it solves the weak variant.

3.1.2 Streaming finalization.

The primary difference that separates the Aequitas finalization protocol from prior work in voting
theory is that the list of preferences is not fully determined at the start of the protocol. In the
consensus setting, the protocol is ongoing as new transactions are continuously input to nodes7.
Clearly nodes should not have to wait for all transactions to be input to decide on the fair ordering.
Here, as noted by KZGJ, future transactions can cause changes in the condensation graph. Simi-
larly, current transactions may not have been seen sufficiently many times so far. This means that
current transactions might need to wait for future ones in order to be output in a fair order. The

7This is analogous to a growing list of potential candidates in an election, which is not particularly relevant for
voting theory.
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key technical challenge is to identify when transactions can be delivered without compromising on
their fair ordering. We formalize this as the streaming finalization problem (Problem 3.6).

For lists List and List′, we use List 4 List′ to denote that List is a prefix of List′. For L =
[List1, . . . , Listk] and L′ = [List′1, . . . , List′k], we also use the notation L 4 L′ to denote that Listj 4
List′j for all j.

Problem 3.6. (Streaming Fair-Order Finalization) Consider an admissible Υ = (n, f, γ). At each
timestep r, consider as input Lr = [Listr1, . . . , Listrn] such that Lr1 4 Lr2 whenever r1 ≤ r2. At
timestep r, output a list OutputListr such that:

• (Prefix-Consistency) OutputListr1 4 OutputListr2 whenever r1 ≤ r2.

• (Strong (resp. Weak) Fairness of ordering) For all (m,m′) such that m′ CΛ m, where Λ =
(Υ,Lr), if OutputListr contains m or m′, then m is ordered before (resp. no later than) m′.

We say that an algorithm F (·) solves the streaming finalization problem for an admissible Υ if for
any valid input sequence L1,L2, . . . , for every timestep r, F (Lr) satisfies prefix-consistency and
fairness of ordering. Note that if L 4 L′, then m′ C(Υ,L) m implies m′ C(Υ,L′) m since for any
Listj ∈ L where m ≺ m′, the corresponding List′j ∈ L′ will also have m ≺ m′. In other words, the
fairness of ordering condition will not contradict the prefix-consistency condition.

Remark. Note that liveness is not included in Problem 3.6 (analogous to how delivering no transac-
tions still satisfies“consistency” in the consensus abstraction). Liveness will be a separate property
for our protocols.

3.1.3 Connecting back to order-fairness

Given the n input orderings from the protocol nodes, the Aequitas finalization stage first builds a
dependency graph of transactions where edges correspond to global preferences and computes its
condensation graph. From the condensation graph, the transactions in a vertex v are delivered in
one of two ways:

1. v is a source vertex and for all other vertices v′, there is a path from v to v′

2. v is a source vertex and for any other vertex v′ without a path from v, there is a common
descendant of v and v′ and either v has more descendants or v, v′ have the same number of
descendants but v is preferred in a previously agreed upon ordering relation (e.g., alphabetical
ordering).

KZGJ showed that whenever m is globally preferred to m′, the output of the Aequitas finalization
will order m no later than m′ in the general case, and m strictly before m′ when in a setting where
there are no Condorcet cycles. In turn, this implies that the finalization stage in the Aequitas
protocol solves the streaming finalization problem where the input lists for honest nodes are the
actual ordering of inputs from Z. Note that we can abstract out the underlying protocol nodes
and run the Aequitas finalization only on the lists. In general, given Υ = (n, f, γ) and L =
[List1, . . . , Listk], we will use GraphΥ(L) to denote the dependency graph and AequitasΥ(L) to denote
the resultant outputs of applying the finalization step of the Aequitas protocol on the lists in L.
We write Graph(L) and Aequitas(L) when Υ is clear from context.
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Fact 3.7. For an admissible Υ, AequitasΥ(·) solves the weak streaming fair-order finalization prob-
lem.

Proof. First, from the self-consistency of the Aequitas protocol, we can infer that if L 4 L′, then
AequitasΥ(L) 4 AequitasΥ(L′). Furthermore, AequitasΥ(·) satisfies the weak fairness of ordering
property since the Aequitas protocol from KZGJ satisfies block-order-fairness in the permissioned
setting.

3.1.4 Player Replaceability

So far, the input lists we used for Aequitas(L) were the actual transaction input orderings (for honest
nodes) in a permissioned protocol. The key idea we use to move to the permissionless setting is
to enable nodes to “continue” the orderings of other nodes in the system. In particular, we will
fix a number of input lists, say k, at the start of the protocol. All nodes now extend the existing
transaction orderings in these k lists. This can be done through any permissionless consensus
technique (e.g., proof-of-work, proof-of-stake etc). The k lists can be thought of as the input
orderings of k “virtual” nodes in a permissioned network. The Aequitas finalization protocol will
now be run on the k lists to determine the final output ordering. To allow for a seamless reduction
of the permissionless problem to a permissioned one, we use the following player replaceability
lemma. Intuitively, this lemma will directly let us conclude order-fairness for our permissionless
protocols, by proving order-fairness for the permissioned transformation with k virtual parties. For
our protocols, the Aequitas finalization will guarantee the order-fairness in the virtual party setting.

Lemma 3.8 (Player Replaceability). Consider an (A,Z) that satisfies (n, β,∆, ·, ·)-permissionless
execution, an order-fairness parameter γ, an admissible Υ = (k, kβ′, γ) for some 0 ≤ β′ ≤ 1.
Suppose that Π is a protocol as follows: For any node N that is honest in round r, N outputs
LrN = [Listr1, . . . , Listrk] to Z that satisfies the following:

• If N is also honest in round r − 1, then Lr−1
N 4 LrN .

• For any pair of transactions (tx, tx′) that satisfies the antecedent of the (permissionless) γ-
order-fairness definition (Definition 2.3), if either tx or tx′ is present in all k lists in LrN ,
then tx will be γ-globally preferred to tx′ w.r.t. Λ = (Υ,LrN ).

Note that we will have either transaction present in all (rather than k − βk) lists, as honest
nodes will also have the ability to append transactions to all k lists (e.g., through PoW mining).

Suppose further that an algorithm F (·) satisfies the streaming strong (resp. weak) fair-order final-
ization problem for Υ such that the linearize function of Π is defined to be F (LrN ). Then, Π satisfies
γ-receive-order-fairness (resp. γ-block-order-fairness) w.r.t. (A,Z).

Proof. The proof is straightforward. For any pair (tx, tx′) that satisfies the antecedent of the
(permissionless) γ-order-fairness definition, we are given that Π is such that tx will be γ-globally
preferred to tx′ in the k lists that represent the virtual parties. Now, since F (·) satisfies the strong
(resp. weak) fairness of ordering property, the final output ledger of an honest node in the given
round, will contain tx before (resp. no later than) tx′.

Intuitively, given a protocol Π that satisfies the specified properties (i.e., it provides a transformation
to k virtual parties), the upshot of this lemma is that now, we can run F (·) = Aequitas(·) on the
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k lists to determine the final fair output ordering. The only remaining part now is to actually
construct such a permissionless protocol Π. We will show two constructions in this paper: Πmod

(Section 5), where a single PoW chain will be modularized into k chains, each representing one
virtual party, and Πmulti (Section 6) where k PoW chains will be mined simultaneously.

Remark on Liveness. The Aequitas protocol from KZGJ achieves (conventional) liveness when
no cycles can exist in the dependency graph or if the cycles cannot extend for across some bounded
time interval. One such setting is when the external network (in the permissioned setting) has
∆ext = 1. When reducing the problem in the permissionless setting to running Aequitas(·) on the
k lists, we emphasize that this no longer corresponds to requiring ∆ = 1 in our permissionless
setting. Instead, this is the assumption that the sequence number of any given transaction in all k
lists differs by at most 1. In our protocols, this turns out to be false due to potential adversarial
influence on all k input lists. Fortunately, when ∆ = 1 (in the permissionless environment), we can
still show that any cycle that exists in the dependency graph of the k lists cannot extend for too
long (Lemma 4.3). This will allow our protocols to achieve conventional liveness (see Section 4 for
details).

4 Fair Ordering Protocols

We will provide two fair ordering protocols, Πmod (Section 5) and Πmulti (Section 6) that each satisfy
consistency, liveness, and block-order-fairness. Πmod uses a single PoW Nakamoto chain. The
Πmulti protocol uses multiple parallel chains instead with each chain serving to vote on transaction
orderings.

4.1 Overview of Proof Techniques

Consistency. The consistency argument for our protocols will directly follow from the consistency
of the underlying Nakamoto blockchain.

Order-Fairness. We start by defining a soundness property that will be sufficient to achieve
order-fairness. Informally, there should be an edge from tx to tx′ in the dependency graph of any
honest node, whenever (tx, tx′) satisfies the antecedent of the order-fairness definition.

Property 4.1 (Soundness of Dependencies). Consider (n, β,∆, τ, R) and an order-fairness pa-
rameter γ. We say that Π is γ-dependency-sound if for any (A,Z) that satisfies (n, β,∆, τ, R)-
permissionless execution, the following property holds: If (tx, tx′) satisfies the antecedent of the
γ-order-fairness definition, then for any round r, and any honest node N in round r, if N outputs
L where tx′ is in all lists in L, then tx′ CΛ tx holds where Λ = (Υ = (|L| , d |L|2 e − 1, 1),L).

We show that our protocols satisfy Property 4.1. It is not difficult to see how this will imply
order-fairness through the player replaceability lemma (Lemma 3.8). Consider a protocol Π that
is γ-dependency sound, and a transaction pair (tx, tx′) that satisfies the antecedent of the γ-order-
fairness definition. This means that if an honest node outputs L where tx′ is contains in all lists, the
dependency graph of L will contain the edge tx → tx′. Now, since the function linearize(·) (which
decides the final agreed upon ledger) is defined to be the output of Aequitas on L, and Aequitas(·)
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satisfies the streaming finalization problem (i.e., it will output tx no later than tx′), this allows us
to directly use the player-replaceability lemma (Lemma 3.8) to conclude block-order-fairness.

Remark (Receive-Order-Fairness). KZGJ provided a synchronous permissioned protocol that
achieves receive-order-fairness when the synchrony parameter in the external network (between
clients and nodes) was ∆ext = 1. This is in part because an adversary can no longer claim to have
received transactions too far apart from honest users (otherwise they would be easily detected),
thereby resulting in no Condorcet cycles. For our purpose, since the adversary’s orderings become
intermingled with the honest ones through the PoW mining, attempting to realize receive-order-
fairness would require rewinding PoW chains which might lead to other complications.

Although the impossibility result for receive-order-fairness from KZGJ when ∆ext > 1 (and the
adversary is allowed to corrupt at least one party) carries over to the permissionless setting, we
leave it an upon problem to resolve whether receive-order-fairness is achievable in the permissionless
setting when ∆ = 1.

Remark (Zero-Block-Confirmation when ∆ = 1). Although our protocols achieve block-order-
fairness (and not receive-order-fairness), when ∆ = 1, as we show in Lemma 4.3, for a transaction
tx that is first received in round r, any Condorcet cycle will extend only till r+ 1. This means that
any transaction that first arrives after this will be ordered strictly after tx in the final ledger. This
will also allow us to achieve liveness, as well as zero-block-confirmation (see Section 7).

Liveness. To show liveness, we will show the following faithfulness property for our protocols.
Informally, a protocol is dependency-faithful if some honest node has received tx before tx′ whenever
an edge from tx to tx′ exists in the dependency graph of an honest node. Now, if a protocol is
dependency-faithful, then when ∆ = 1, we show that if transactions tx and tx′ are in the same
Condorcet cycle, then they cannot have been received far apart. In other words, a transaction does
not have to wait for an arbitrary length of time to ensure that it does not get combined with a later
transaction in the same strongly connected component of the dependency graph. Consequently,
this will enable transactions to be delivered in a bounded length of time satisfying liveness. Note
that the specific liveness bound will be dependent on the actual protocol.

Property 4.2 (Faithfulness of Dependencies). Consider (n, β,∆, τ, R). We say that Π is
dependency-faithful if for any (A,Z) that satisfies (n, β,∆, τ, R)-permissionless execution, the fol-
lowing property holds: For any round r, and any honest node N in round r, if N outputs L with
tx′ CΛ tx where Λ = (Υ = (|L| , d |L|2 e − 1, 1),L), then there is at least one honest node that has
received tx before tx′ as input from Z. In other words, if an edge tx → tx′ exists in GraphΛ(L),
then there is some honest node that received tx before tx′ as input.

We show in Lemma 4.3 that when ∆ = 1, for any protocol that is dependency-faithful, transactions
(even adversarial ones) cannot be in the same Condorcet cycle if they are received far apart. This
will prevent transactions for “waiting” too long in the dependency graph, and allow us to conclude
liveness.

Lemma 4.3. Consider (n, β,∆ = 1, τ, R) and suppose that a protocol Π is dependency-faithful
(Property 4.2). Suppose that some honest node in round r outputs L where tx and tx′ are in the
same Condorcet cycle. Let r, r′ be the first round that some honest node has received tx and tx′

respectively. Then r = r′.
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Proof. Let (tx1, tx2, . . . , txl) be a Condorcet cycle in L and suppose that tx and tx′ are in this cycle.
Let round rfirst be the first round that any one of {tx1, . . . , txl} was received by an honest node.
We can assume txl was first received by an honest node at round rfirst without loss of generality
by rotating the tuple cyclically. This means that any honest node that spawned no later than
rfirst + 1, received txl either in round rfirst or rfirst + 1, and any honest node that spawned in round
r′ > rfirst + 1 received txl in round r′.

Now, suppose that txl−1 was first received by an honest node at round rl−1 and suppose for
the sake of contradiction that rl−1 ≥ rfirst + 1. This means that any honest node that spawned no
later than rl−1 had already received txl (i.e., either txl before txl−1 or txl and txl−1 in the same
round) and any node that spawned after received both tx and tx′ at the same time. However, since
we have txl C txl−1, this contradicts the dependency-faithfulness of Π since there needs to be some
honest node that received tx before tx′. Furthermore, since no transaction in {tx1, . . . , txl} was
received before rfirst, this means that txl−1 was first received by an honest node in round rfirst.

Continuing in the same fashion, the same argument shows that any transaction in {tx1, . . . , txl},
including tx and tx′, was first received by an honest node in round rfirst.

Note that also applies to the case where some of the transactions are adversarial (i.e. first seen
by the network as part of a block rather than transaction gossip). Recall that the ledger synchrony
assumption of our network ensures that transactions are provided as input to all honest nodes if
some honest node outputs them to the environment.

Corollary 4.3.1 (Informal). Consider a protocol Π that is dependency-faithful (Property 4.2) and
suppose that Aequitas(·) is used as the linearize(·) function. If ∆ = 1, then Π will satisfy liveness
(for some parameter).

Proof (Sketch). This is a direct consequence of the previous lemma. Since Condorcet cycles do not
extend for long (i.e., transactions cannot be blocked waiting for other transactions arriving much
later), Aequitas(·) will be able to deliver transactions from the dependency graph “quickly”. The
exact liveness parameter will of course, depend on the specific protocol.

5 Modulo-T Longest Chain Protocol

We start with a basic order-fair protocol Πκ,T
mod that uses a single PoW-style longest chain, where

κ is the security parameter, and T is the modular parameter. While Πmod mines only a single
PoW chain, blocks in the same index modulo T will be considered to be semantically or logically
connected. For example, blocks at indices 1, T + 1, 2T + 1, and so on will be part of the same
“modular chain.”

Protocol description. In Πκ,T
mod, honest nodes mine a single PoW chain. For a given chain,

the block chain[d] is considered to logically follow the block chain[d − T ], despite its PoW hash
following the block chain[d − 1]. This divides the single PoW chain into T modular chains. Any
transaction will be included once in each modular chain. Abstractly, the T modular chains will
define T separate transaction orderings which will be used as input for the Aequitas(·) algorithm
to retrieve the final transaction ordering.

For a given chain, let Td be the set of transactions that were first seen in block chain[d]. Now,
if chain[d] was honestly mined, then the first honestly mined block after chain[d] in each modular
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Πκ,T
mod(p)

Initialize: chain = genesis; TxPool = ∅

Upon receiving a valid chain′ such that
∣∣chain′

∣∣ > |chain|:
• Set chain := chain′ and output any newly seen transactions to Z.

In round r, upon receiving txs from Z:
• For each tx in txs, add (tx, r) to TxPool.
• Set h−1 to be the reference of chain[−1] and h′ to be the reference of chain[−T ] if |chain| >
T otherwise set h′ to be the reference of chain[0]. Suppose that chain[−1] belongs to
modular chain d.

• Let txincludes be the transactions in TxPool that are not any block in modular chain
(d+ 1 mod T ), ordered by increasing round number.

• For i = 1 to q:
– Pick a random nonce η and let h = H(h−1, h

′, txincludes, η).
– If h < Dp, then set chain := chain ‖ (h−1, h

′, txincludes, η, h), broadcast chain and
break.

• Let L = [List1, . . . , ListT ] = modularize(chain[: −T ], T )
• Output L to Z. The final linearly ordered log output is taken as linearize(L).

linearize(L)
• Output Aequitas(L).

Figure 2: Protocol Πκ,T
mod

chain should contain these transactions. In other words, all honest nodes can reject blocks in the
range chain[d + 1, d + T − 1] that do not contain all transactions in Td. Consequently, in a valid
chain, the record m in any block chain[d] should be such that

⋃d−1
i=d−T+1 Ti ⊆ m.

Figure 2 contains a detailed description of Πmod.

Valid chain. A chain is valid iff (1) chain[0] = genesis = (0, 0,⊥, 0, H(0, 0,⊥, 0)) is the genesis
block; (2) chain[d].h−1 = chain[d − 1].h for all d ∈ {1, · · · , |chain|}; (3) chain[d].h′ = genesis.h for
d ∈ {1, . . . , T} and chain[d− T ].h for all d ∈ {T + 1, · · · , |chain|}; and (4)

⋃d−1
i=d−T+1 Ti ⊆ chain[d].m

for d ∈ {1, · · · , |chain|}.

Modular chains. For a given valid chain, we say that two blocks chain[b] and chain[b′] where
b, b′ are positive integers are in the same modulo-T chain if b ≡ b′ mod T . The genesis block,
chain[0] is assumed to be included in all modular chains. We use modularize(chain, T ) to denote the
operation of splitting chain into modulo-T chains. Specifically, the output of modularize(chain, T ) is
L = [List1, . . . , ListT ] such that Listj includes transactions in all blocks chain[b] where b ≡ j mod T
in a (partial) ordering determined by increasing block number. We will use ref = h′ to point to
the previous block in the same modular chain.

Dynamic corruption. As mentioned earlier, our protocols do not support a fully adaptive ad-
versary. Instead, we restrict our adversary to be (τ,R)-respawning where at most τn nodes can
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be killed within any R round period. For the protocol Πκ,T
mod, we will choose R such that, except

with negligible probability, R is larger than the time it takes for a transaction tx to be confirmed
in all modular chains. It suffices to chose R larger than the time to mine 5T

2 blocks (T blocks that
contain tx, T blocks for confirmation plus T/2 possible adversarial blocks before the first time tx
is mined).

Consider an (A,Z) that is (n, β,∆, τ, R)-permissionless where β + τ < 1
3 . For a given pair

(tx, tx′) of transactions, suppose that round r is the first round that the n nodes online in round r
have received either tx or tx′ and let N(tx,tx′) be the set of those nodes. Note that at most βn of
those are corrupt and the rest (at least n− βn) are honest. Now, suppose that γ fraction of nodes
have received tx before tx′. This means that at least γn − βn honest nodes (at round r) received
tx before tx′. Of these, at least γn− βn− τn will be honest at the time at least one of tx and tx′

has been mined into all modular chains, since we restrict the respawning of our adversaries. We
will show that if γ − (β + τ) > 2

3 , then more than half of the blocks that mine tx or tx′ first in a
modular chain (i.e. the blocks that decide on the ordering between tx and tx′) will be mined by an
honest node that received tx before tx′ from the environment. This will directly imply that Πκ,T

mod

is dependency-sound allowing us to conclude order-fairness.

Compliant parameters. We define a compliance predicate for Πmod(p) as
Γpmod(n, β,∆, γ, T, τ, R) = 1 if n,∆, T,R are polynomials in κ; the parameters β, γ, τ are
constants such that γ − (β + τ) > 2

3 ; and for all κ, Γpnak(n, β,∆) = 1, Πnak(p) satisfies T -
common-prefix and (T, µ > 1

2)-chain-quality, R ≥ 5T+2
2g0

where g0 is such that Πnak(p) also satisfies
(T, g0, ·)-chain-growth.

5.1 Security Proofs

We first note that consistency of Πκ,T
mod comes for free from the consistency property of Nakamoto’s

blockchain since we use a single PoW chain. To prove order-fairness, we will prove that Πmod

is dependency-sound (Property 4.1). In other words, tx is globally preferred to tx′ in the lists L
whenever (tx, tx′) satisfies the antecedent of the order-fairness definition. This allows us to conclude
order-fairness using the player replacability lemma (Lemma 3.8). For liveness (when ∆ = 1), we
will show that Πmod is dependency-faithful (Property 4.2).

We start by showing that Πmod is dependency-sound in the following lemma.

Lemma 5.1. Consider parameters that satisfy Γpmod(n, β,∆, γ, T, τ, R) = 1. Then, Πκ,T
mod(p) is

γ-dependency-sound for (n, β,∆, τ, R) environments.

Proof. Consider any (A,Z) that satisfies (n, β,∆, τ, R)-permissionless execution. Consider a pair of
transactions (tx, tx′) that satisfies the antecedent of the order-fairness definition. For a given chain,
suppose that chain[d] is the first block that contains either tx or tx′ and that |chain| ≥ d+ 2T − 1.
Note that all blocks in chain[d, d+ T − 1], and consequently all modular chains, will include either
tx or tx′. Now, since γ − (β + τ) > 2

3 and A is (τ,R)-respawning, there are more than 2n
3 nodes

that received tx before tx′ and are honest until all modular chains contain either tx or tx′ (i.e. until
chain[d+T−1] has been confirmed). Let H be the set of these nodes. Now, from the chain-quality of
Πnak(p), in the range chain[d, d+T−1], more than T

2 of these blocks are mined by the nodes in H. In
other words, more than half of the blocks in chain[d, d+T −1] will contain tx before tx′. Since these
blocks have been confirmed in chain, more than half of the lists in L = modularize(chain[: −T ], T )
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will contain tx before tx′. Since Υ = (T, dT2 e − 1, 1) is admissible, tx is globally preferred to tx′

w.r.t. (Υ,L), i.e. tx′ C(Υ,L) tx.
We conclude that Πκ,T

mod is dependency-sound.

Theorem 5.2 (Order-Fairness of Πmod). Consider parameters that satisfy
Γpmod(n, β,∆, γ, T, τ, R) = 1. Then, Πκ,T

mod(p) satisfies γ-block-order-fairness.

Proof. This is a straightforward combination of Fact 3.7, Lemma 3.8, and Lemma 5.1. Note that
for the simplest case of γ = 1, we require β + τ < 1/3.

Next, we show that Πmod is dependency-faithful in the following lemma.

Lemma 5.3. Consider parameters that satisfy Γpmod(n, β,∆, γ, T, τ, R) = 1. Then, Πκ,T
mod(p) is

dependency-faithful for (n, β,∆, τ, R) environments.

Proof. Consider any (A,Z) that satisfies (n, β,∆, τ, R)-permissionless execution. Suppose that a
node N is honest in round r, holds chain, and outputs L = modularize(chain[: −T ], T ) to Z. Note
that L only contains the confirmed part of each modular chain. Let Υ = (T, dT2 e − 1, 1) and
Λ = (Υ,L). Suppose that tx′ CΛ tx, and let chain[d] be the first block that contains either tx or
tx′. Then, the range chain[d, d + T − 1] will determine the ordering between tx and tx′ in each of
the T modular chains. Since tx′ CΛ tx, more than T

2 of these blocks order tx before tx′. But, since
β < 1

3 (from γ − (β + τ) > 2
3), the chain-quality property of Πnak(p) implies that less than half of

the blocks in the range chain[d, d+ T − 1] are mined by an adversary. This means that there is at
least 1 block that contained tx before tx′ which was mined by an honest node. Therefore, some
honest node received tx before tx′ from Z.
We conclude that Πκ,T

mod is dependency-faithful.

Theorem 5.4 (Liveness of Πmod). Consider parameters that satisfy Γpmod(n, β,∆ = 1, γ, T, τ, R) =

1, and suppose that Πnak(p) satisfies (T, g0, g1)-chain-growth. Then Πκ,T
mod(p) satisfies (5T+2)/(2g0)-

liveness.

Proof. Consider any transaction tx that is first input in round r. By the time more than 5T
2 blocks

are mined, all semantic chains will contain tx in the confirmed part of the chain as well as any
transactions that are in the same cycle as tx. Furthermore, any transaction that is first received by
an honest node at r+2 will be a descendant of tx (as well as any other tranasction without an edge
to/from tx) in the dependency graph of an honest node. Note that such a transaction will also be
in the confirmed part of the chain. Consequently, by this time Aequitas(·) will have delivered tx.

Now, we note that for a round r′ such that r′ − r ≥ 5T+2
2g0

, we have g0(r′ − r) ≥ 5T
2 + 1,

which implies that tx will be output by round r′ by all honest nodes. Consequently, Πmod satisfies
5T+2
2g0

-liveness.

Remark. We can handle minority corruption by using Fruitchains [34] as the underlying consensus
protocol. Fruitchains achieves optimal mining-fairness, which means that for any β < 1

2 , and a
sufficiently long period T , it has (T, µ0 >

1
2)-chain-quality. Consequently, by using Fruitchains, our

construction can tolerate β + τ < 1
2 corruption and still achieve order-fairness (for γ = 1).

Our construction can also be layered on top of other longest-chain protocols that satisfy the
chain-quality property (e.g., Proof-of-Stake protocols like [27]).
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6 Multi-Chain Protocol

In this section, we introduce the protocol Πκ,g
multi (where g is the parallelization parameter), that

uses multiple parallel Nakamoto chains. Intuitively, in Πκ,g
multi, honest nodes will mine g PoW chains

in parallel, with each of the parallel chains serving as an ordering for transactions. Similar to the
single-chain protocol, Aequitas(·) will now be run on the confirmed parts of each of the g chains
i.e., each chain with the last T blocks cut off, where T = ω(log κ) is the consistency parameter
of the underlying Nakamoto chains. This will allow us to retrieve the fair ordering from the g
chains. Figure 3 contains a complete description of our protocol. We will restrict the order-fairness
parameter to only γ = 1, and our network delay parameter to ∆ = 1. Following [35], we will also
use p = Θ(1/n) to make the per round mining rate f = pqn, be Θ(1) in κ.

g-for-1 PoW mining. To mine blocks, we use a g-for-1 mining technique, similar to the one
from [7], which generalizes the 2-for-1 trick from [22, 34]. Abstractly, nodes will simultaneously
mine transactions on all g chains, and the chain to which the block gets appended to will depend
on the hash value.

For this, we will slightly abuse the notation for blocks from Section 4. Specifically, a block will
be a tuple (h−1,h

′,m, η, h) where h−1 will be a list of parent blocks on all g chains, h′ will be a list
of reference blocks on all g chains, and m is the list of transactions to be (potentially) appended
to each chain. This is called a superblock in [7] but for simplicity, we use the same formalism of
a block. For our purpose, we will have h−1 = h′. We will use a random oracle H that outputs
gκ bits (instead of κ). For hardness parameter p(κ), define Dp = p(κ) · 2κ. For a block with hash
h = H(h−1,h

′,m, η), we will say that it is “mined into chain i”, if h(i) < Dp where h(i) is the
substring of h in range (i−1)κ to iκ−1. Considering different output bits for different chains allows
us to make the mining for each chain independent although it does increase the size of the random
oracle output. A block can be propagated to the rest of the network as part of the chain it gets
mined in. For simplicity, we assume that the entire block is propagated, but note that in practice,
similar to [7, 34], only the data relevant to its chain can be included, along with a commitment to
the other discarded data.

Admissible parameters. We define a compliance predicate Γpmulti(n, β,∆ = 1, γ =
1, τ, R, g,W ) = 1 if n,R,W are polynomials in κ with p = Θ(1/n); β, τ are constants such that

β + τ < 7−
√

17
16 ; and for all κ, Γpnak(n, β,∆) = 1, and there exists T = T (κ) such that Πnak(p)

satisfies T -common-prefix and (T, µ > 1
2)-chain-quality, and R(κ) ≥ 3T+2

2g0
where g0 is such that

Πnak(p) also satisfies (T, g0, ·)-chain-growth. Furthermore, W = Θ(κ) and g = Θ(κ).
We will require R to be longer than the time it takes to mine 3T

2 blocks in each chain. This will
allow for tx to be mined and confirmed in all chains. W denotes the warmup time of our protocol.

6.1 Overview of security proofs

We will prove security for settings when ∆ = 1, and use γ = 1 for our order-fairness parameter.
We define cross-chain-quality as Property 6.1 and provide a sketch of our proof that Πmulti satisfies
it in this section. We defer the full proof to Appendix A.
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Πκ,g
multi(p)

Initialize: C = [chain1, . . . , chaing] = [genesis1, . . . , genesisg]; TxPool = ∅; T = T (κ) which is
ω(log κ)

Upon receiving a valid C′ = [chain1, . . . , chaing]:
• For all indices j, if

∣∣chain′j
∣∣ > |chainj |, then set chainj := chain′j and output any newly

seen transactions to Z.

In round r, upon receiving txs from Z:
• For each tx in txs, add (tx, r) to TxPool.
• For all indices j ∈ {1, . . . , g}:

– Set both hj−1 and h′j to be the reference of chainj [−1].
– Let txincludesj be the transactions in TxPool that are not any block in chain chainj ,

ordered by increasing round number.
• Define h−1 = [h1

−1, . . . , h
g
−1], h′ = [h′1, . . . , h

′
g], and txincludes = [txincludes1, . . . ,

txincludesg].
• For i = 1 to q:

– Pick a random nonce η and let h = H(h−1,h
′, txincludes, η).

– If for some j, h(j) < Dp, then set chainj := chainj ‖ (h−1,h
′, txincludes, η)

– If a nonce solution was found, then broadcast C and break.
• Let L = [List1, . . . , Listg] = extract(C)
• Output L to Z. The final linearly ordered log output is taken as linearize(L).

extract(C = [chain1, . . . , chaing])
• Initialize all Lj to be empty.
• For all index j ∈ {1, . . . , g}, and then for all l < |chainj | − T

– Suppose that chainj [l] = (h−1,h
′, txincludes, η, h). Append txincludesj to Lj .

linearize(L)
• Output Aequitas(L).

Figure 3: Protocol Πκ,g
multi

Cross-chain-quality. Lemma 6.2 shows that for Πmulti to be both dependency-sound and
dependency-faithful, it is sufficient for it to satisfy the following cross-chain-quality property. Con-
sequently, by showing cross-chain-quality, we directly get both 1-block-order-fairness and liveness for
Πmulti. For our choice of W and R, using the same argument as Theorem 5.4 gives us (W (κ), R(κ))-
liveness.

Property 6.1 (Cross-Chain-Quality). For a given view and tx, let Btx be the set of blocks that
contain tx for the first time in the confirmed part (i.e. chainj [: −T ]) of each of the g chains. Then,
more than half of the blocks in Btx were mined by honest nodes.

Lemma 6.2. Consider (n, β,∆ = 1, τ, R), and g, and define Πκ,g
multi(p) as before. Suppose that

for all (A,Z) that support (n, β,∆ = 1, τ, R)-permissionless-execution, Πκ,g
multi(p) satisfies cross-
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chain-quality (except for a negligible number of views), then it is also 1-dependency-sound and
dependency-faithful.

Proof.

1. (Dependency-Soundness) Suppose that Πκ,g
multi(p) satisfies cross-chain quality, and suppose for

contradiction, that it is not dependency sound. Therefore, there is a pair of transactions
(tx1, tx2) that satisfies the antecedent of γ-order-fairness but an honest node outputs L with
tx2 CΛ tx1 where Λ = (Υ,L) and Υ = (g, dg2e − 1, 1).

Now, for each chain, we consider 2 possibilities for the placement of the two transactions:
either tx1 is included before tx2 or tx2 is included before tx1 (The case of both included at
the same place is not relevant for our purpose). Furthermore, there are 4 possibilities for
mining of the blocks containing tx1, tx2: both honest, both adversarial, only tx1 honest, only
tx2 honest. We use the following notation to denote these 8 combinations: (H1, A2) represents
that tx1 was included before tx2 and the block containing tx1 was mined by an honest node
while the block containing tx2 was mined by an adversarial node. Let num(H1, A2) be the
number of chains that have this combination.

Since, tx2 CΛ tx1, more than g
2 should have included tx2 before tx1. Therefore,

num(H2, H1) + num(H2, A1) + num(A2, H1) + num(A2, A1) >
g

2

But since all honest nodes received tx1 before tx2 during the initial propagation, and ∆ = 1,
any honest node that spawns later will receive tx1 as soon as it spawns and therefore cannot
have received tx2 before tx1. This means that, num(H2, H1) and num(H2, A1) will both be
zero since no honest node will include tx2 before tx1. Therefore,

num(A2, H1) + num(A2, A1) >
g

2

But this contradicts cross-chain-quality since the adversary was able to mined tx2 in more
than half of the chains. This completes the proof.

2. (Dependency-Faithfulness) Suppose that Πκ,g
multi(p) satisfies cross-chain quality, and suppose

for contradiction, that it is not dependency-faithful. Therefore, there is an honest node that
outputs L with tx2 CΛ tx1 where Λ = ((g, dg2e − 1, 1),L) but there is no honest node that
received tx1 before tx2.

Now, using the same notation from the dependency-soundness argument, we have

num(H1, H2) + num(H1, A2) + num(A1, H2) + num(A1, A2) >
g

2

Since there is no honest node that received tx1 before tx2 (including nodes that spawn later
since ∆ = 1), both num(H1, H2) + num(H1, A2). Therefore, num(A1, H2)+num(A1, A2) > g

2 ,
which once again will contradict cross-chain-quality for tx1.
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Proving cross-chain-quality. Now, to show that Πmulti satisfies the cross-chain-quality prop-
erty, informally we proceed as follows. First, for a chain i and round r, we construct an event Vi[r]
such that whenever Vi[r] holds, any transaction that is first seen by honest nodes at round r will
be mined into an honest block. Next, we show that for a sufficiently small hardness parameter,
the probability that this event happens, i.e., the transaction is mined into an honest block is more
than 0.5. This means that by setting the number of chains to be large enough, we can now use the
Chernoff bound to conclude that the transaction is contained in honestly mined blocks in more than
half the chains, except with negligible probability. Equivalently, the cross-chain-quality property
will be satisfied, except with negligible probability. Our proof makes novel use of techniques from
the queuing theory literature and may be of independent interest. We point the reader to [19, 23]
for a useful primer on the techniques we use.

To bound the probability for the event Vi[r], we break it into two independent events V 1
i [r] and

V 2
i [r] as follows:

• V 1
i [r] is the event that in round r, there is no private adversarial chain that is longer than

the chain i.

• V 2
i [r] is the event that the first block mined in chain i after round r is honest and the block

persists in the chain forever (except with negligible probability).

At a high level, under the event Vi[r], if a transaction is first seen in round r, then it will be
contained in the first honest block mined after round r in chain i and it will persist. Now, we
use techniques from queuing theory to compute the probabilities for each event. Specifically, we
start by formulating the event V 1

i [r] as a discrete-time Markov chain (DTMC) and show it to be
positive recurrent and irreducible. This allows us to use the ergodic theorem [23] and z-transforms
to compute the probability that the event holds. For V 2

i [r], we first model the event as a one-
dimensional random-walk and then use z-transforms to compute its probability.

We defer the full proof to Appendix A.

Equipped with this, we can directly conclude the following theorem.

Theorem 6.3. Consider parameters satisfying Γpmulti(n, β,∆ = 1, γ, τ, R, g,W ) = 1. Then,
Πκ,g

multi(p) satisfies 1-block-order-fairness, and (W,R)-liveness for (n, β, n,∆ = 1, τ, R) environ-
ments.

Liveness. Suppose that tx is first received by an honest node in round r. Since the chains are
mined in parallel, we can simply consider the time it takes for any one chain. If Πnak(p) satisfies
(T, g0, g1)-chain-growth, then for round r′ such that r′ − r ≥ 3T+2

2g0
, we have g0(r′ − r) ≥ 3T

2 + 1 i.e.

more than 3T
2 blocks are mined in each chain. The same argument from the liveness proof for Πmod

now follows for why Aequitas(·) will deliver tx. Consequently, Πmulti will satisfy 3T+2
2g0

-liveness.

7 Applications

7.1 Zero-Block Confirmation

We now show that a fair ordering protocol can confirm non-conflicting transactions without the need
to mine a single block. As mentioned in Section 1.1, this can be useful for preventing fraudulent
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double-spending attempts. For this, we first show that any fair ordering protocols achieves a soft-
ordering property: If a transaction tx is received at a honest node more than 2∆ time before tx′,
then tx is guaranteed to be ordered before tx′ in the finalized ledger. We define this formally below.

Definition 7.1 (δ-Soft-Ordering). We say that a protocol Π, satisfies δ-soft-confirmation (w.r.t.
(A,Z)) if the following property holds: Suppose that an honest node N receives tx in round r and
tx′ in a round greater than r + δ. Then all honest nodes will output tx before tx′ in the finalized
log.

It is now easy to see that any protocol that satisfies receive-order-fairness also satisfies soft-ordering.

Theorem 7.2. Suppose that Π satisfies γ-receive-order-fairness w.r.t. (A,Z) with network delay
parameter ∆. Then, Π also satisfies (2∆)-soft-ordering.

Proof. The proof is straightforward. Suppose that a node N receives tx in round r. Then all honest
nodes have received tx latest by round r+∆. Since node N received tx′ at round later than r+2∆,
that implies that tx′ was received at all other honest nodes earliest at round r + ∆ + 1.Therefore,
(tx, tx′) is such that all honest nodes received tx before they received tx′, Since Π satisfies receive-
order-fairness, tx will be ordered before tx′ in the final output log by all honest nodes. Consequently,
Π will satisfy (2∆)-soft-ordering. Note that the same proof also works for fair-linearizability (from
Section 2.3).

We now show that a protocol satisfying soft-ordering (for a small δ) can confirm non-conflicting
transactions without the need to mine a single block. Define conflict(tx, tx′) = conflict(tx′, tx) = 1
if tx and tx′ conflict with each other according to some semantic (e.g., spend the same tokens in
a UTXO system). If two conflicting transactions are present in the output chain, only the first
one will be executed by honest nodes to determine the current system state. Suppose that a node
N receives tx in round r and is honest till at least round r + δ. If N does not receive any tx′

such that conflict(tx, tx′) = 1 till round r + δ, then all honest nodes will output tx before any
conflicting tx′, and thus tx will be confirmed in the finalized ledger (due to the δ-soft-ordering
property). This gives rise to a primitive that can be used to soft-confirm transactions. If δ is
small, no blocks containing tx will be mined by this time, yet N will be able to soft-confirm tx,
i.e., we get zero-block confirmation. Finally, we note that a transaction submitted by an honest
node will not have any conflicting transactions at a future time, and thus can be confirmed by any
other honest node within δ time. Thus protocols satisfying fair ordering can achieve confirmation
of honest transactions in 2∆ time.

Remark. Although Πmod and Πmulti satisfy block-order-fairness and not receive-order-fairness, we
note that when ∆ = 1, they will satisfy (2∆)-soft-ordering since any Condorcet cycle cannot extend
past this time. In this time, even if no block containing the transaction tx has been mined, tx can
still be locally confirmed, and consequently, we get zero-block-confirmation. Furthermore, the
probability that a soft-confirmed transaction is not valid in the finalized ledger is the same as the
probability that the protocol does not satisfy order-fairness, which is negligible in κ (and thus can
be made arbitrarily small by increasing the number of chains as g = Θ(κ)).
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Soft-ordering is not a direct artifact of network synchrony. While soft-ordering is an easy
corollary of order-fairness, we emphasize that is not directly a consequence of network synchrony
in a permissionless setting. Even when transactions are gossiped and reach all nodes within a
synchronous ∆ period, a node will not be able to soft confirm within a small delay if the underlying
consensus protocol is not fairly ordered. For instance, suppose that a node N received tx in round
r and a conflicting transaction tx′ in round r + 2∆ + 1, i.e. all nodes receive tx before tx′. Still
N cannot soft-confirm tx, since a miner proposing a block with tx′ first may not be rejected by
the network (since in the view of a honest node who receives tx in round r + ∆ and tx′ in round
r + ∆ + 1, it is plausible that other nodes have received tx′ first.)

Larger soft-confirm values (small enough to still be zero-block) do not work either. Even if it
is common knowledge for the current nodes in the network that all nodes received tx before tx′,
the rejection of an adversarial miner’s block with tx′ first, will require this additional information.
This means that the determination of whether a chain is valid is no longer only dependent on
the transactions in it. Consequently, when new nodes enter the system, they will not be able to
determine the correct honest chain to mine on.

Preventing DoS attacks. We assume a synchronous gossip-style network where transactions
are gossiped and reach all nodes within a known ∆ period. This may cause concerns of DoS
attacks where an adversary strains the network by creating bogus or double-spend transactions. In
the standard Bitcoin protocol, these transactions are not propagated by the network to avoid DoS
problems. For our zero-block confirmation application, it is enough to only gossip the first instance
of a double-spend for a token. The gossip of a single double-spend is enough for a node to know not
to locally soft-confirm a transaction; other double-spends for the same token need not be gossiped
to the entire network. Consequently, an adversary cannot cause a DoS attack on the network by
creating bogus double-spend transactions. Note that this will not affect honest transactions that
are not double-spent.

7.2 Decentralized Finance

The use of fair ordering protocols can greatly benefit decentralized finance applications. Consider
automated market makers (AMMs) like Uniswap [4], Curve [5], etc., that allow users to exchange
between tokens using an in-built price function to calculate the exchange rate. Here, the token
exchange price that a user gets depends on the time her transaction executes. Using a fair ordering
protocol can guarantee that users receive a fair price for their trades. Furthermore, it will also
prevent miners from inserting their own transactions to take advantage of short-term changes in
token exchange rates.

Order-fairness also grants fairness to applications whose incentives are based on earlier ordering.
For example, in decentralized sealed-bid auctions, bids submitted before the auction close time
cannot be forcefully rejected by a miner claiming to have received them later. Similarly, in an
initial coin offering (ICO) token launch, if the developer wants to provide a cheaper rate for the
first 1000 tokens, it will be able to do so in a fair “first come first serve” manner.
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A Cross-chain-quality proof for Πmulti

We restate the cross-chain-quality property below. We will show that it holds, except for a negligible
number of views.

Property A.1 (Cross-Chain-Quality). For a given view and tx, let Btx be the set of blocks that
contain tx for the first time in the confirmed part (i.e. chainj [: −T ]) of each of the g chains. Then,
more than half of the blocks in Btx were mined by honest nodes.

Notation. Before proceeding with the proof, we start by introducing some useful notation
from [7]. Let f = npq denote the mining rate (as a function of κ) per round for one chain.
Typically, in practice, the hardness parameter p is set as p = Θ( 1

∆qn) which would make f = Θ(1)
in κ since we are using ∆ = 1. This will make our analysis cleaner. Recall that g is the number of
parallel chains and β is the adversarial corruption threshold. We use the following random variables
in our proofs. For a chain i, and round r, we define:

• Xi[r] =

{
0, if no honest node mines a block in round r

1, if at least one honest node mines a block in round r

• Xi[r1, r2] =
∑r2

r=r1
Xi[r].

• Yi[r] =

{
1, if exactly one honest node mines a block in round r

0, otherwise

• Yi[r1, r2] =
∑r2

r=r1
Yi[r].

• Zi[r] is the number of blocks mined by an adversarial node in round r.

• Zi[r1, r2] =
∑r2

r=r1
Zi[r].

• C[: `] is the prefix of the longest chain C until the level `.

• C[`] is the block at level ` of the chain C.

For an event Q, use 1Q to denote the indicator variable for when Q holds. That is, 1Q = 1 when
Q is true and 0 otherwise. We use the notation a+ = max{0, a}.

Following [7], Zi[r] follows a Poisson distribution, while Xi[r] follows a Bernoulli distribution.
Specifically, we have,

• Zi[r] ∼ Poisson(βf)

• Xi[r] ∼ Bernoulli(1− e−(1−β)f )
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A.1 Proof structure.

In order to prove the cross-chain-quality property for Πmulti, abstractly we will construct an event
Vi[r] for each chain i at round r, which will guarantee that any transaction first seen in round r
will be contained in a block mined by an honest node. Now, the probability in an arbitrary chain
i at any round r, that Vi[r] happens (as a function of β and f) is larger than 0.5, then we can set
the number of chains g = Θ(κ), and use the Chernoff bound to argue that the probability that any
transaction is mined in more than half the parallel chains by the adversary is negligible in κ. We
elaborate on the main proof parts below.

Constructing Vi[r]. We start by defining the following random processes for all chains i and
rounds r > 0.

Si[r] = (Si[r − 1] + Zi[r]−Xi[r])+

Li[r, t] = Xi[r, t]− Zi[r, t].

We also set Si[0] = 0. Now, if the adversary never reveals the blocks it mines, Si[r] captures the
difference between the length of longest private adversarial chain i at round r, and the longest
public chain held by honest nodes. The random process Li[r, t] represents the difference between
the number of honest blocks and adversarial blocks mined in chain i from round r to round t.

Now, we define Vi[r] for chain i at round r > 0 as the event that all of the following holds:

1. Si[r − 1] = 0

2. There exists a round t′ > r such that

• Zi[r, t′] = 0. In other words, the adversary was not able to mine a block from round r
to t′.

• Xi[r, t
′ − 1] = 0. In other words, honest nodes were not able to mine any block from r

until t′ − 1.

• Yi[t′] = 1. In other words, exactly one honest node mined a block in round t′.

• Li[r + 1, t] ≥ 1 ∀t > t′. In other words, the number of honest blocks mined in chain i
from round r + 1 until round t is greater than the corresponding number of adversarial
blocks in the same interval, for all t > t′.

We will call the first event V 1
i [r] and the second event V 2

i [r]. We evaluate their probabilities
separately since they are independent.

Honest block when Vi[r] holds. In Section A.2, we show that whenever Vi[r] holds, any trans-
action tx that is first revealed (to honest nodes) at round r, in chain i, would be contained in a
block mined by honest miner. Intuitively, there are two ways a transaction can be propagated:

• Honestly propagated transaction: A transaction that is input to all nodes (honest and adver-
sarial) within ∆ = 1 rounds.
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• Adversarially propagated transaction: A transaction that is created by the adversary and is
first seen by an honest node only through the mining of a PoW block by the adversary. Here,
the adversary knows the transaction earlier than honest nodes and can get a head-start to
mine it into the chains.

Our proof of the result holds regardless of how the transaction is propagated.

Probability of Vi[r]. In Section A.3, we compute the probability, as a function of β and f , that
the event Vi[r] occurs for a given round r. Denote this by φ(β, f). Next, we find the threshold
βthresh such that for β < βthresh, we have φ(β, f) > 0.5. This means that for a transaction first
revealed in round r, the probability for each chain that tx is contained in a block mined by an
honest node is more than 0.5.

Achieving cross-chain-quality. We can now leverage the Chernoff bound to get a lower bound
on the number of chains g, so that the probability that the adversary mined tx into more than
half of the parallel chains (or equivalently, cross-chain-quality is not satisfied) is negligible in the
security parameter. We show this in Section A.4.

A.2 Honest block under Vi[r]

In this section, we will show that Vi[r] guarantees that any transaction (honest or adversarial) first
input to honest nodes at round r will be contained in an honest block in chain i.

For this, we need to show that the following hold, except with negligible probability.

• At round r, the adversary does not have a longer private adversarial chain for chain i than
the longest honest chain (Lemma A.2).

• The first block to be mined in chain i after round r is an honest block and this honest block
persists in the longest chain for all future rounds (Lemma A.3).

Lemma A.2. Consider a round when Si[r] = 0. The adversary cannot posses a longer chain than
the chain held by the honest users at round r.

Proof. The proof proceeds by contradiction. Suppose r was a round with Si[r] = 0 and the
adversary possessed a longer chain Cai . Let the level of the tip of the longest chain held by the
honest users, Chi , at round r be `tip. Let,

• `common = max{` : Cai [: `] = Chi [: `]} be the last common ancestor,

• `′ = max{` ≤ `common such that Chi [`] is honest block} and r′ be the round when it was
mined.

Observe that for each of the blocks in the chain Chi from level `common + 1 to level `tip, there is
a corresponding adversarial block in the adversarial chain Cai . Also, if `′ < `common, then all the
blocks from levels `′ + 1 to `common in the chain Chi are adversarial blocks. Thus, from r′ + 1 to
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round r, the number of adversarial blocks mined is greater than the number of rounds where at
least one honest block was mined. That is,

Zi[r
′ + 1, r] ≥ Xi[r

′ + 1, r] + 1

However, we also have Si[r
′] ≥ 0 = Si[r], and so,

0 ≥ Si[r]− Si[r′]

≥
r∑

s=r′+1

Zi[s]−Xi[s]

= Zi[r
′ + 1, r]−Xi[r

′ + 1, r]

i.e. Zi[r
′ + 1, r] ≤ Xi[r

′ + 1, r] which is a contradiction.

Lemma A.3. Suppose Vi[r] happens at round r. Then, the first block B mined at round t′ > r is
honest and will persist in the longest chain.

Proof. First, observe that since Zi[r, t
′] = 0, we have Si[r − 1] = Si[r] = · · · = Si[t

′] = 0. Now,
by Lemma A.2, the adversary doesn’t possess a longer chain in the rounds r − 1, r, · · · , t′. Also,
Zi[r, t

′] = 0 implies that no new adversarial block was mined in in the rounds r − 1, r, · · · , t′ and
exactly one honest node mines a block in round t′. So, the chain i held by honest users at round t′

is longer than any adversarial chain and thus, contains the block B.
Next, by contradiction, let r∗ > t′ be the earliest time when the honest users hold a chain

that contains a different block at the same level where B was. Thus, at round r∗, there exists an
adversarial chain that is at least as long the honest chain containing the block B. Let round r′ be
as defined in Lemma A.2. Then, reasoning as in Lemma A.2, from round r′ + 1 to round r∗, the
number of adversarial blocks mined is greater than or equal to the number of rounds where at least
one honest block is mined. That is,

Zi[r
′ + 1, r∗] ≥ Xi[r

′ + 1, r∗]

Also, we have

Si[r
′] ≥ 0 = Si[r]

=⇒ Zi[r
′ + 1, r] ≤ Xi[r

′ + 1, r]

This implies that Zi[r + 1, r∗] ≥ Xi[r + 1, r∗]. However, as event Vi[r] occurs at round r, so, we
have

Li[r + 1, r∗] ≥ 1

Xi[r + 1, r∗]− Zi[r + 1, r∗] ≥ 1

Xi[r + 1, r∗] > Zi[r + 1, r∗]

which leads to contradiction.
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A.3 Computation of φ(f, β)

In this section, we compute the probability φ(f, β), of the event Vi[r]. For this, we will prove the
following lemma.

Lemma A.4.

lim
f→0+

φ(f, β) =
(1− 2β)2

1− β
.

We split this computation into two parts. We compute the probability of the event V 1
i [r] in

Section A.3.1, and the probability of V 2
i [r] given V 1

i [r] in Section A.3.2. Finally, we can combine
the two probabilities to compute φ(f, β).

A.3.1 Probability of V 1
i [r]

Recall that V 1
i [r] is the event that Si[r − 1] = 0. To compute the probability of this event, we will

compute the stationary distribution of the discrete time Markov chain {Si[r]}r≥0.

First, for a chain i, and round r, we define the following random variable:

Si[r] = (Si[r − 1] + Zi[r]−Xi[r])+

Si[r] = 0

Observe that due to the memory-less property of both honest and adversarial mining (since mining
is through a random oracle), for all r > 0, we have,

P (Si[r] = s | Si[r − 1] = sr−1, · · · , Si[0] = 0) = P (Si[r] = s | Si[r − 1] = sr−1)

Therefore, the process {Si[r]}r≥0 gives rise to a discrete time Markov chain (DTMC). We now show
that {Si[r]}r≥0 is positive recurrent in the following lemma.

Lemma A.5. If E[Zi[r]] < E[Yi[r]], then, {Si[r]}r≥0 is positive recurrent.

Proof. First, notice from the definition of Si[r] that

(Si[r + 1])2 ≤ (Si[r] + Zi[r + 1]− Yi[r + 1])2

= (Zi[r + 1]− Yi[r + 1])2 + (Si[r])
2 + 2Si[r](Zi[r + 1]− Yi[r + 1])

Now, for each chain i, define a drift function as:

dSi[r] =
1

2
(Si[r + 1])2 − 1

2
(Si[r])

2

Then,

dSi[r] ≤
1

2
(Zi[r + 1]− Yi[r + 1])2 + Si[r] (Zi[r + 1]−Xi[r + 1])

E [dSi[r] | Si[r]] ≤
(

1

2
E
[
(Zi[r + 1]−Xi[r + 1])2 | Si[r]

])
+ (Si[r]E [(Zi[r + 1]−Xi[r + 1]) | Si[r])]
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Recall that Zi[r + 1] ∼ Poisson(βf) and Xi[r + 1] ∼ Bernoulli(1− e−(1−β)f ) and so, Zi[r + 1] and
Xi[r + 1] have bounded second moments. Therefore, the first term in the expression before can
be bounded as 1

2E
[
(Zi[r + 1]−Xi[r + 1])2 | Si[r]

]
≤ B, where B = B(f, β) depends on f and β.

Thus,

E [dSi[r] | Si[r]] ≤ B + Si[r]E [(Zi[r + 1]−Xi[r + 1]) | Si[r]]
= B + Si[r] (E[Zi[r + 1]]− E[Xi[r + 1]])

However, E[Zi[r + 1]]− E[Xi[r + 1]] < −ε, for some ε > 0. Therefore, we have

E [dSi[r] | Si[r]] ≤ B − εSi[r]

To summarize,

• E [dSi[r] | Si[r]] ≤ −ε∗ for some ε∗ > 0, if Si[r] >
B
ε

• E [dSi[r] | Si[r]] ≤ B otherwise.

Thus, by Foster’s Theorem [19], we conclude that {Si[r]}r≥0 is positive recurrent.

Now, {Si[r]}r≥0 is irreducible since it is possible to get from any state to any other state (either
by honest block mining or by adversarial block mining). Furthermore, it is aperiodic since it has
self-loops, and therefore a 1-step transition can retain the earlier state. Therefore the stationary
distribution exists. If π is the stationary distribution of {Si[r]}r≥0, then, by ergodic theorem [23],
we have

lim
r→∞

P (Si[r] = 0) = π0

where π0 denotes the stationary distribution probability at state 0.

We will now calculate the probability of the stationary distribution π0 under a general f . For this,
we will write the transition probability matrix for the DTMC {Si[r]}r≥0. Define p0

X = P (Xi[r] =

0) = e−(1−β)f , p1
X = P (Xi[r] = 1) = 1 − e−(1−β)f , and pkZ = P (Zi[r] = k) = (βf)ke−βf

k! . Then, the
transition probability matrix is given by

p0
Z + p1

Zp
1
X p1

Zp
0
X + p2

Zp
1
X p2

Zp
0
X + p3

Zp
1
X p3

Zp
0
X + p4

Zp
1
X · · ·

p0
Zp

1
X p0

Zp
0
X + p1

Zp
1
X p1

Zp
0
X + p2

Zp
1
X p2

Zp
0
X + p3

Zp
1
X · · ·

0 p0
Zp

1
X p0

Zp
0
X + p1

Zp
1
X p1

Zp
0
X + p2

Zp
1
X · · ·

0 0 p0
Zp

1
X p0

Zp
0
X + p1

Zp
1
X · · ·

0 0 0 p0
Zp

1
X · · ·

0 0 0 0 · · ·

...
...

...
...

. . .


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The important observation is that this matrix is of the form
a b2 b3 · · ·
b0 b1 b2 · · ·
0 b0 b1 · · ·
0 0 b0 · · ·
...

...
...

. . .


with a = b0 + b1. Therefore, we get the following relationship between the stationary probabilities

π0 = aπ0 + b0π1

πj =

j+1∑
k=0

bi+1−kπk (j > 1)

Rearranging the terms of the second equation, we get

(1− b1)πj = b0πj+1 +

j−1∑
k=0

bj+1−kπk

∴ (1− b1)πjz
−j = b0πj+1z

−j +

j−1∑
k=0

bj+1−kπkz
−j

∴ (1− b1)
∑
j≥1

πjz
−j = b0

∑
j≥1

πj+1z
−j +

∑
j≥1

j−1∑
k=0

bj+1−kπkz
−j

Notice that the summation
∑

j≥1

∑j−1
k=0 can be written in terms of

∑
k≥0

∑
j≥k+1. Now, define the

unilateral z-transforms P(z) =
∑

j≥0 πjz
−j and G(z) =

∑
j≥0 bjz

−j . See [23] for a primer on the
z-transform. Then,

(1− b1)(P(z)− π0) = b0z
(
P(z)− π0 −

π1

z

)
+
∑
k≥0

∑
j≥k+1

bj+1−kπkz
−j

= b0z
(
P(z)− π0 −

π1

z

)
+ z

∑
k≥0

πkz
−k

∑
j≥k+1

bj+1−kz
−(j+1−k)

= b0z
(
P(z)− π0 −

π1

z

)
+ zP(z)

(
G(z)− b0 −

b1
z

)
Rearranging, we get

P(z) =
π0(1− b1)− b0z(π0 + π1

z )

1− b0z − zG(z) + b0z

=
π0
z (1− b1)− b0(π0 + π1

z )
1
z − b0 −G(z) + b0
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Notice that the boundary condition is at z = 1, that is, P(1) = 1. Therefore, applying L'Hôpital’s
rule, we get,

lim
z→1

P (z) = lim
z→1

π0(1− b1)− b0π1

1−G′(z)
=
π0(1− b1)− b0π1

1−G′(1)

where G′ is the derivative of G with respect to 1
z . Consequently,

π0(1− b1)− (1− a)π0 = 1−G′(1)

∴ π0 =
1−G′(1)

a− b1

∴ π0 =
1−G′(1)

b0

where in the last step we used the fact that a = b0 + b1. Next, we will evaluate G′(1). We have

G(z) =
∑
j≥0

bjz
−j

G′(z) =
∑
j≥1

jbjz
−(j−1)

where we differentiated G(z) with respect to 1
z . Thus, we have

G′(1) =
∑
j≥1

jbj

=
∑
j≥1

j
[
p
j−1
Z p0

X + p
j
Zp

1
X

]
=
∑
j≥1

j

[
(βf)j−1e−βf

(j − 1)!
e−(1−β)f +

(βf)je−βf

j!

[
1− e−(1−β)f

]]

= e−f
∑
j≥1

j
(βf)j−1

(j − 1)!
+ βfe−βf

[
1− e−(1−β)f

]∑
j≥1

(βf)j−1

(j − 1)!

(a)
= e−f

[
eβf + βfeβf

]
+ βfe−βf

[
1− e−(1−β)f

]
eβf

= βf + e−(1−β)f

where in (a), we used the fact that xex + x =
∑

j≥1 j
xj−1

(j−1)! and ex =
∑

j≥0
xj

j! . Consequently,

π0 =
1− βf − e−(1−β)f

e−βf
[
1− e−(1−β)f

]
Now, for f → 0+, L'Hôpital’s rule can be used to evaluate π0, which gives π0 = 1−2β

1−β . Therefore,

limr→∞ P (Si[r] = 0) = 1−2β
1−β as f → 0+. This means that for sufficiently small f , the probability

will be sufficiently close to 1−2β
1−β . Furthermore, although the stationary distribution is defined as

the round number r → ∞, it will converge exponentially towards the stationary probability (see
[23] for more details). This means that for a given f , at any round r after a warmup time of
Twarmup = Θ(κ), the probability will be close to the stationary probability, and we can replace it
with the stationary probability henceforth to simplify our computation.
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A.3.2 Probability of V 2
i [r]

Next, we compute the probability of the event V 2
i [r]. Recall that V 2

i [r] is the event as follows:

V 2
i [r] =

{
∃t′ > r s.t.

Zi[r,t
′]=0

Xi[r,t
′−1]=0

Yi[t
′]=1

Li[r+1,t]≥1 ∀t>t′

}

First, for a chain i and round k > 0, we define the following random walk:

Di[k] = Di[k − 1] +Xi[k]− Zi[k]

Di[0] = 1

This random walk counts the difference between the number of honest blocks and number of
adversarial blocks mined from round 1 to round k given that the random walk started from the
initial state of Di[0] = 1. Suppose that we start the random walk {Di[k]}k≥0 at round t′. Then,

• Zi[r, t′] = 0, Xi[r, t
′ − 1] = 0 and Yi[t

′] = 1 implies that two honest blocks and no adversarial
blocks were mined from the round r to round t′. Therefore, we set Di[0] = 1.

• For any k > 0, Di[k] = L[r + 1, t′ + k].

Now, V 2
i [r] = {Di[0] = 1, Di[k] ≥ 1 ∀k > 0}, and therefore, we get:

P (V 2
i [r]) = {Di[0] = 1, Di[k] ≥ 1 ∀k > 0}

= P (Di[0] = 1)× P (Di[k] ≥ 1 ∀k > 0 | Di[0] = 1)

First, we compute P (Di[0] = 1) as

P (Di[0] = 1) = P

(∃t′>r such that
Zi[r,t

′]=0
Xi[r,t

′−1]=0
Yi[t
′]=1

)

=

∞∑
m=1

P

(
t′=r+m
Zi[r,t

′]=0
Xi[r,t

′−1]=0
Yi[t
′]=1

)

=

∞∑
m=1

(
e−(1−β)f

)m (
e−βf

)m+1
(1− β)fe−(1−β)f

=
(1− β)fe−2f

1− e−f

Now, we can use L'Hôpital’s rule, to get limf→0+ P (Di[0] = 1) = 1− β.

In order to compute P (Di[k] ≥ 1 ∀k > 0 | Di[0] = 1), we first define

Pu = P (Di[r] ≥ 1 ∀r ≥ 0 | Di[0] = u)

Observe that the boundary conditions are P0 = 0 and P∞ = 1. Now for u ≥ 1,
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Pn = P (Di[r] ≥ 1 ∀r ≥ 0 | Di[0] = u)

=
∞∑

k=−1

P (Xi[1]− Zi[1] = −k,Di[r] ≥ 1 ∀r ≥ 0 | Di[0] = u)

=
∞∑

k=−1

P (Xi[1]− Zi[1] = −k)P (Di[r] ≥ 1 ∀r ≥ 0 | Di[1] = u− k)

=
u−1∑
k=−1

P (Xi[1]− Zi[1] = −k)P (Di[r] ≥ 1 ∀r ≥ 0 | Di[1] = u− k)

=

u−1∑
k=−1

P (Xi[1]− Zi[1] = −k) Pu−k

= aPu+1 + cPu +

u−1∑
k=1

bkPu−k

where a = P (Xi[1]−Zi[1] = 1), c = P (Xi[1]−Zi[1] = 0) and bk = P (Xi[1]−Zi[1] = −k). Therefore,

(1− c)Puz
−u = aPu+1z

−u +
u−1∑
k=1

bkPu−kz
−u

(1− c)
∑
u≥1

Puz
−u = az

∑
u≥1

Pu+1z
−(u+1) +

∑
u≥1

u−1∑
k=1

bkPu−kz
−u

We now define the z-transforms P(z) =
∑

u≥1 Puz
−u and B(z) =

∑
k≥0 bk+1z

−k. We can skip P0

as P0 = 0. Therefore,

(1− c)P(z) = az(P(z)−P1z
−1) +

∑
k≥1

∑
u≥k+1

bkPu−kz
−kz−(u−k)

= a(zP(z)−P1) +
1

z

∑
k≥1

bkz
−(k−1)

∑
u≥k+1

Pu−kz
−(u−k)

= a(zP(z)−P1) +
1

z
B(z)P(z)

∴ P(z) =
aP1z

az2 − (1− c)z + B(z)

Recall that,

• a = P (Xi[1]− Zi[1] = 1) = P (Xi[1] = 1)P (Zi[1] = 0) = (1− e−(1−β)f )e−βf = e−βf − e−f

• c = P (Xi[1]− Zi[1] = 0)
= P (Xi[1] = 0)P (Zi[1] = 0) + P (Xi[1] = 1)P (Zi[1] = 1)
= e−(1−β)fe−βf + (1− e−(1−β)f )βfe−βf

= e−f + βf(e−βf − e−f )
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• bk = P (Xi[r]− Zi[r] = −k)
= P (Xi[r] = 0)P (Zi[r] = k) + P (Xi[r] = 1)P (Zi[r] = k + 1)

= e−(1−β)f (βf)ke−βf

k! + (1− e−(1−β)f ) (βf)k+1e−βf

(k+1)!

= e−f (βf)k

k! + (e−βf − e−f ) (βf)k+1

(k+1)!

Therefore, limf→0+ B(z) = 0. Now, by L'Hôpital’s rule,

lim
f→0+

P(z) =
(1− β)P1z

(1− β)z2 − z + β

=
(1− β)P1

β

[(
1− β
1− 2β

)(
1

z−1 − 1−β
β

)
−
(

β

1− 2β

)(
1

z−1 − 1

)]

=
(1− β)P1

1− 2β

[(
1− β
β

)(
1

z−1 − 1−β
β

)
−
(

1

z−1 − 1

)]
(1)

To determine Pu, we need to perform an inverse z-transform of P(z) as shown below:

Pu =
1

2πj

∮
C

P(z)zu−1dz

where j is the imaginary unit, and C is a counterclockwise closed path encircling the origin and
entirely lying in the region of convergence. Next, we want to determine limf→0+ limn→∞Pu.
However, we have,

lim
f→0+

lim
u→∞

Pu = lim
u→∞

lim
f→0+

Pu

wherein we used Moore-Osgood theorem [39] because:

• limn→∞Pu exists pointwise for each different f 6= 0 because, by definition, 0 ≤ Pu ≤ 1 for
all u ≥ 0

• limf→0+ Pu converges uniformly. This is because,

1. The integral in the inverse z-transform is over a contour C that lies in the region of
convergence and so P(z)zu−1 is dominated by some Lebesgue integral function S(z) in
the sense that | P(z)zu−1 |≤ S(z).

2. Therefore, by the dominated convergence theorem [39] and using equation 1, we can
interchange the limit and the contour integral to obtain

lim
f→0+

Pu = lim
f→0+

1

2πj

∮
C

P(z)zu−1dz =
1

2πj

∮
C

lim
f→0+

P(z)zu−1dz

= P1

(
1− β
1− 2β

)[
1−

(
β

1− β

)u]
.

Further, note that 0 ≤ P1 ≤ 1.

3. Observe that P1

(
1−β
1−2β

) [
1−

(
β

1−β

)u]
uniformly converges to P1

(
1−β
1−2β

)
.
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Recall now, that our boundary condition was P∞ = 1 i.e.

1 = lim
u→∞

Pu = lim
f→0+

lim
u→∞

Pu = P1

(
1− β
1− 2β

)
Finally, we get

P1 =
1− 2β

1− β

i.e., limf→0+ P (Di[k] ≥ 1 ∀k > 0 | Di[0] = 1) = 1−2β
1−β . Now, we can compute P (V 2

i [r]) as,

lim
f→0+

P (V 2
i [r]) =

1− 2β

1− β

(
lim
f→0+

P (Di[0] = 1)

)
=

1− 2β

1− β
(1− β) = (1− 2β)

A.3.3 Final computation of φ(f, β)

Having computed the probabilities of V 1
i [r] and V 2

i [r], we can now complete the computation of
φ(f, β) as,

lim
f→0+

φ(f, β) = lim
f→0+

P (Vi[r]) = lim
f→0+

P (V 1
i [r]) lim

f→0+
P (V 2

i [r])

=
(1− 2β)

1− β
(1− 2β) =

(1− 2β)2

1− β

This completes the proof of Lemma A.4. Now, since we want to bound β such that φ(f, β) > 0.5
(for a sufficiently small f), we get 8β2−7β+1 > 0. Recall that the Nakamoto consensus properties

are not applicable for β > 1
2 . Therefore, we end up with the bound β < 7−

√
17

16 ≈ 0.1798.

For our (τ,R)-respawning adversaries, recall that another τ fraction of nodes can get killed by the

time a transaction is included in all parallel chains, and therefore, we will require β + τ < 7−
√

17
16 .

We also node that this bound may not be tight and that a larger adversarial threshold might still
be acceptable.

A.4 Achieving cross-chain-quality

Equipped with the computation of φ(f, β) = P (Vi[r]) from the previous section, we can proceed
to calculate a bound on the number of chains g. For this, we first declare an event that needs to
happen with negligible probability.

An unlikely event. Consider the following event T for any ε > 0.

T :=

{
∃r ∈ {1, · · · , |view|} :

1

g

g∑
i=1

1Vi[r] <
1

2
− ε

}
The event T implies that if any transaction is revealed to the public in round r, then in at most
1
2 − ε fraction of the chains, an honest block will contain the transaction. In the following lemma,
we show that if φ(f, β) > 1

2 , then for sufficiently large g, P (T ) will be negligible in κ.

47



Lemma A.6. Suppose β and a sufficiently small constant mining rate f are appropriately chosen
such that φ(f, β) > 1

2 . Then, P (T ) ≤ |view| e−Ω(g).

Proof. Using the union bound,

P (T ) = P

(
∃r ∈ {1, · · · , |view|} :

1

g

g∑
i=1

1Vi[r] <
1

2
− ε

)

≤
∑

1≤r≤|view|

P

(
1

g

g∑
i=1

1Vi[r] <
1

2
− ε

)

=
∑

1≤r≤|view|

P

(
g∑
i=1

1(Vi[r])C >

(
1

2
+ ε

)
g

)
(2)

where (Vi[r])
C is the complement of Vi[r]. Note that P (1(Vi[r]C)) = 1−φ(f, β). Since the mining for

all chains is independent, we can consider 1(V1[r])C , · · · ,1(Vg [r])C to be independent of each other.

As 1− φ(f, β) < 1
2 , therefore, for some δ > 0, we can write

(1 + δ)g(1− φ(f, β)) =

(
1

2
+ ε

)
g

δ =

(
1
2 + ε

)
1− φ(f, β)

− 1

Then, using the Chernoff bound on equation 2, we have

P (T ) ≤
∑

1≤r≤|view|

e−
δ2g[1−φ(f,β)]

3

≤
∑

1≤r≤|view|

e−Ω(g)

= |view| e−Ω(g)

Now, note that since |view| is polynomial in κ, setting g = Θ(κ) results in P (T ) being negligible in
κ.
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