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Abstract

In this paper we present an approach for designing fast public key encryption
cryptosystems using random primitives and error permutation. An encryption speed
of such systems allows to use them for �on-the-�y� public key encryption and makes
them useful for real-time communications. A small error size allows to use this ap-
proach for designing digital signature schemes
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1 Introduction

There are lot of approaches for designing asymmetric encryption schemes.
Any of them is based on some NP-hard problem. The most popular and well-
studied NP-hard problems are: discrete logarithm problems [1], hardness of
decoding a general linear code [2], [3], lattice problems [4], [5]. The current
standards of asymmetric cryptography are based on discrete logarithm prob-
lems. Unfortunately, these standards are vulnerable against Shor's algorithm
[6] and a cryptographic community works on post-quantum cryptography.
Promising post-quantum cryptographic schemes are lattice-based, isogeny-
based or code-based.

We focus on a code-based approach and on the underlying problem of
decoding a general linear code. The most known algorithm which is based on
this problem is McElice cryptosystem [2]. It was the �rst such scheme to use
randomization in the encryption process. McElice cryptosystem is a candi-
date for post-quantum cryptography, as it is immune to attacks using Shor's
algorithm. This cryptosystem has an extremely high encryption speed and a
large public key size. Unfortunately, it is not well intended for designing digi-
tal signature schemes that is the major disadvantage of such a cryptosystem.
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Most of other code-based schemes, like Niederreiter one, are appeared to be
vulnerable to various algebraic attacks and structural decoding [7].

In this paper we present an approach for designing fast public key encryp-
tion systems which can be used both for fast encryption and digital signature
check. The approach is based on the complicity of computing decryption ma-
trices from the obfuscated using white-box cryptography techniques [8]-[10]
T-boxes. The obfuscation of a T-box consists of two secret transformations
(which are the part of a secret key): concatenation with a random error vector
and multiplication with a random nonsingular binary matrix. Additionally,
as we can see later, source T-boxes (before obfuscation transformations) are
created using random S-boxes and other random nonsingular binary matrix.
These random S-boxes and binary matrix are another part of a secret key.
To decrypt an encrypted message an adversary must restore binary matrices
(actually, their equivalents up to linear transformations). It is equal to ex-
tracting error vectors from the T-boxes. In other words, an adversary must
decode an unknown linear code.

2 Terminology and Notation

Let GF (2) be a Galois Field of order 2, a · b be a product of two elements
over GF (2) , a+ b be a sum of two elements over GF (2). Let 4|n. We denote
an n-bit vector as α(n) and a square n× n matrix as Mn×n. We also denote
as a(n) + b(n) a bitwise modulo-2 addition of two n-bit vectors a(n) and b(n).

Let M × α be a product of square binary matrix Mn×n and n-bit vector
α(n) over GF (2):

M × α =


m0

0 m1
0 · · · mn−1

0

m0
1 m1

1 · · · mn−1
1

...
... . . . ...

m0
n−1 m1

n−1 · · · mn−1
n−1

×


α0

α1
...

αn−1

 =

=


m0

0 · α0 + · · ·+mn−1
0 · αn−1

m0
1 · α0 + · · ·+mn−1

1 · αn−1
...

m0
n−1 · α0 + · · ·+mn−1

n−1 · αn−1


(1)

In (1) mj
i - element of binary matrix Mn×n at the row i and column j,

αi - i-th element (bit) of vector α(n).
Let t|n and n

t = u. Then we can split a matrix Mn×n to the u2 square

submatrices W t×t, a vector α(n) to the u t-bit subvectors β
(t)
0 , β

(t)
1 , ..., β

(t)
u−1
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and write (1) as follows:

M × α =


W 0

0 W 1
0 · · · W u−1

0

W 0
1 W 1

1 · · · W u−1
1

...
... . . . ...

W 0
u−1 W 1

u−1 · · · W u−1
u−1

×


β
(t)
0

β
(t)
1
...

β
(t)
u−1

 =

=


W 0

0 × β
(t)
0 + · · ·+W u−1

0 × β
(t)
u−1

W 0
1 × β

(t)
0 + · · ·+W n−1

1 × β
(t)
u−1

...

W 0
u−1 × β

(t)
0 + · · ·+W u−1

u−1 × β
(t)
u−1


(2)

Let s(x) : x(t) → z(t) be a bijective nonlinear transformation (S-box)

where t is a bit size of the vectors x and z. By replacing β
(t)
0 , β

(t)
1 , ..., β

(t)
u−1

with s0(x0), s1(x1), ..., su−1(xu−1) in (2) we get the following:

F (x0, x1, ..., xu−1) =


W 0

0 W 1
0 · · · W u−1

0

W 0
1 W 1

1 · · · W u−1
1

...
... . . . ...

W 0
u−1 W 1

u−1 · · · W u−1
u−1

×


s0(x0)
s1(x1)

...
su−1(xu−1)

 =

=


W 0

0 × s0(x0) + · · ·+W u−1
0 × su−1(xu−1)

W 0
1 × s0(x0) + · · ·+W n−1

1 × su−1(xu−1)
...

W 0
u−1 × s0(x0) + · · ·+W u−1

u−1 × su−1(xu−1)


(3)

From the right side of (3) follows:

F (x0, x1, ..., xu−1) =


W 0

0 × s0(x0)
W 0

1 × s0(x0)
...

W 0
u−1 × s0(x0))

+ · · ·

· · ·+


W u−1

0 × su−1(xu−1)
W u−1

1 × su−1(xu−1)
...

W u−1
u−1 × su−1(xu−1))

 =

= T0(x0) + · · ·+ Tu−1(xu−1)

(4)

The functions Ti(xi) : x
(t)
i → λ

(n)
i in (4) are called T-boxes. Every T-box

is a lookup table function. We can combine the T-boxes as follows:

F (x0, x1, ..., xu−1) = T c
0 (x0, x1) + · · ·+ T c

u
2−1(xu−1, xu−1) (5)
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In (5)

T c
i (xk, xl) =


W k

0 × sk(xk) + · · ·+W l
0 × sl(xl)

W k
1 × sk(xk) + · · ·+W l

1 × sl(xl)
...

W k
u−1 × sk(xk)) + · · ·+W l

u−1 × sl(xl)

 (6)

3 Private and public keys

At the �rst step we generate a set S = {s0, s1, · · · , su−1}, si(x) : x(t) →
z(t) of u t-bit s-boxes in the random way using, for example, Chaos theory
[11] - [13]. After that we (randomly) generate a nonsingular binary matrix
Mn×n, n = u · t. Then we select error size es and randomly generate a non-
singular binary matrix Hh×h , where h = n + es. A tuple {S,M,H} is a
private key.

Having a private key we generate a set of combined T-boxes (5). After
that we construct a lookup function T ex

i (α(t), β(t)) : {α(t), β(t)} → z(h=n+es)

from T c
i (α

(t), β(t)) by expanding the result of every T c
i (α

(t), β(t)) by es bits.
Then we �ll es high bits of the result of every T ex

i (α(t), β(t)) with generated
using PRNG es-bit values erri,α,β = erri(α

(t), β(t)) (Figure 1). These values
must satisfy the following conditions:

∀i
∑

α(t),β(t)

erri,α,β = 0 (7)

erri1,α1,β1
= erri2,α2,β2

=⇒ i1 = i2, α1 = α2, β1 = β2 (8)

After that mix the bits of the result of every T ex
i (α(t), β(t)) in the following

way (Figure 2):

Tmix
i (α(t), β(t)) = Hh×h × T ex

i (α(t), β(t)) (9)

The set of mixed T-box-es {Tmix
i , i ∈ [0, u2 − 1]} (which are determined

as lookup tables) is a public key.
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Figure 1. Expanding of the result of a T-box by error vector

Figure 2. Mixing bits of the result of a T-box

4 Encryption with a public key

Let x(n) = {x(t)0 , x
(t)
1 , · · · , x

(t)
u−1} be an n-bit source message. We encrypt

it in the following way:

c = Encr(x) = Tmix
0 (x

(t)
0 , x

(t)
1 ) + · · ·+ Tmix

u
2−1(x

(t)
u−2, x

(t)
u−1), (10)

where c is a h-bit encrypted message.
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5 Decryption with a private key

As we mentioned above, a tuple {S,M,H} is a private key. At the
�rst step we calculate inverse matrices H ′h×h,M ′n×n : H ′h×h × Hh×h =
Ih×h,M ′n×n ×Mn×n = In×n (Ih×h, In×n are identity matrices) and inverse
S-box-es S ′ = {s′0, s′1, · · · , s′u−1} : s′i(si(x)) = x = si(s

′
i(x)). After that we

multiply an input h-bit ciphertext c with H ′h×h:

dmx(h) = Demix(c(h)) = H ′h×h × c(h) (11)

High es bits of dmx (Figure 3) contain a summary error:

err = err0(x
(t)
0 , x

(t)
1 ) + · · ·+ Tu

2−1(x
(t)
u−2, x

(t)
u−1) (12)

Figure 3. "Demix" function

So, we can reduce a size of dmx from h to n by cutting the high es bits.
Now we have an error-free n-bit vector ef (n) (Figure 4):

ef (n) = Reduce(dmx(h)) (13)
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Figure 4. "Reduce" function

After that we multiply M ′n×n with ef (n) and get a n-bit vector z(n) :

z(n) =M ′n×n × ef (n) (14)

We can represent a n-bit vector z(n) as a vector with u t-bit coordinates
z(n) = {z(t)0 , z

(t)
1 , · · · , z

(t)
u−1} . So, to get a source message z(n) we apply inverse

S-box-es in the following way:

x(n) = {x(t)0 , · · · , x
(t)
u−1} = {s′0(z

(t)
0 ), · · · , s′u−1(z

(t)
u−1)} (15)

6 Digital signature scheme

Let us brie�y remind ourselves a typical digital signature algorithm.
Let Hash(m) : m → y(h) be a hash function, Encr(y, private_key) :
y → x(n) be a function that encrypts some input vector with private key,
Decr(x, public_key) : x → y(h) be a function that decrypts some input
vector with public key. To sign a message m Alice calculates its hash func-
tion and then encrypts the result with her private key. When sending a
message to Bob she attaches to it an encrypted with her private key hash:
m∥sgn, sgn = Encr(Hash(m), private_key). After receiving a signed mes-
sage m∥sgn from Alice Bob calculates a hash of m and compares the result
withDecr(sign, public_key), where public_key is a public key of Alice. The
signature is valid if Hash(m) = Decr(sign, public_key).
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In our approach a size of an error vector is es bits and es = h−n. As we
can see, there are 2n solutions of (10) in the space of h-bit vectors. In other
words, every h-bit vector is a solution of (10) with a probability of 1

2es .
So, we can use the following digital signature algorithm:

1. Create a es-bit vector cnt and initialize it with 0.

2. Concatenate a source message src with a counter cnt: m = src∥cnt.

3. Calculate a h-bit hash of m: hsh = Hash(m) : m→ hsh(h).

4. Decrypt hsh with a private key: sgn(n) = Decr(hsh, private_key) :
hsh(h) → sgn(n).

5. Encrypt calculated at the previous step sgn with a public key: dh(n) =
Encr(sgn, public_key) : sgn(n) → dh(h).

6. Compare dh and hsh. If they are not equal, increment cnt and repeat
the steps from 2 to 6.

7. Concatenate m with sgn: ms = m∥sgn.

So, n-bit vector sgn is a signature of a source message src.

7 Parameters

To get a private key from a public one an adversary must �rstly eliminate
errors from the results of T-boxes Tmix

i . Every this result is obfuscated by
the matrix H (which is a part of a private key). We can write (9) as follows:

Tmix
i (α(t), β(t)) = Hh×h × T ex0

i (α(t), β(t)) +Hh×h × exterri(α
(t), β(t)), (16)

where T ex0
i (α(t), β(t)) is the same as T ex

i (α(t), β(t)) , but high es bits of the
result are zero, exterri(α

(t), β(t)) returns a h-bit vector, where low n bits
are zero and high h − n bits are equal to the result of erri(α

(t), β(t)). A
space of h-bit vectors revi,α,β = Hh×h × exterri(α

(t), β(t)) makes it hard to
restore linear relationship between sub-vectors of the results of T-box-es. In
other words, having a set of all of the results of Tmix

i (α(t), β(t)) , it is hard to
build an inverse binary h×h matrix which is necessary to decrypt encrypted
messages and to restore a private key from a public one.

For practical implementation we recommend the following parameters:
n=256 bits, h=272 bits, es=16 bits, t = 4 bits.
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8 An underlying hard problem

Firstly an adversary can brutforce x(n) to get the appropriate ciphertext
c with a complexity about O(2n). For the recommended n this complexity is
O(2256).

Let the result of the every of Tmix
i (α(t), β(t)) be a h-bit binary vector

ζ
(h)
j , j ∈ [0, 2

2·t·u
2 − 1]. An attack to the our approach could be the same as

one to the generic rucksack cryptosystem. Let we have two set of integers
I ⊂ {i : 0 ≤ i ≤ 22·t·u

4 − 1} and J ⊂ {j : 22·t·u
4 ≤ i ≤ 22·t·u

2 − 1}. Then we

can compute and make a list of the values AI =
∑
i∈I

ζi and BJ = c−
∑
j∈J

ζj.

These lists include a pair of sets I0 and J0 satisfying AI0 = BJ0, and the sets
I0 and J0 give a solution to the problem:

c =
∑
i∈I0

ζi +
∑
j∈J0

ζj (17)

The complexity of this algorithm is about O(2
22·t·u

4 ) which is more than
O(2n).

From (10) we can construct the following binary matrix:

L( 2
2·t·u
2 +h)×( 2

2·t·u
2 +1) =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
0 0 0 · · · 1 0
ζ0 ζ1 ζ2 · · · ζ 22·t·u

2 −1
c

 (18)

The submatrix E
22·t·u

2 × 22·t·u
2 of (18) (�rst 22·t·u

2 rows 22·t·u
2 columns) is an

identity one. So, the columns of the binary matrix (18) form a basis of the
lattice of binary vectors or a basis of the linear code over GF (2). From (10)

it follows that some linear combination over GF (2) of binary vectors ζ
(h)
j

gives the binary vector c:

22·t·u
2 −1∑
j=0

µj · ζ(h)j + c = 0, µj ∈ GF (2), (19)

where µj is an element of a binary vector µ(
22·t·u

2 ) on the position j. From (18)
and (19) we get:

22·t·u
2 −1∑
j=0

µj · Lj + L
22·t·u

2 = ψ( 2
2·t·u
2 +h), µj ∈ GF (2), (20)
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where Lj is a j-th column of the binary matrix L, ψ( 2
2·t·u
2 +h) is a binary vector

(codeword). As we can see, the coordinates of nonzero bits of ψ are equal to
the coordinates j of nonzero elements µj of µ and vice versa. If we know a
binary vector ψ we can easy decrypt an encrypted message c by matching its
coordinates with appropriate T-box-es. Note that ψ is a low weight vector
(codeword) with a Hamming weight wt(ψ) = wt(µ) = u

2 . So, the problem of
�nding the binary vector ψ from the code (18) is the problem of �nding low
weight codewords which is known to be NP-hard [14][15].

The practical experiments show that the reduction techniques for binary
codes including LLL [15] are not e�ective in �nding codeword ψ from (20).
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