
Post-Quantum Authentication with Lightweight
Cryptographic Primitives

Henrique Faria and José Manuel Valença ∗ 1

1HasLAB, Departamento de Informática, Universidade do Minho

September 27, 2021

Abstract
We propose to adapt ”low-algebra” digital signature schemes SPHINCS+

and PICNIC, present in the NIST-PQC contest, to the limitations of
resource-bounded low-end devices. For this, we replaced the crypto-
graphic primitives (hash functions and symmetric ciphers) of these schemes
with lightweight alternatives presented in the NIST-LWC contest. With
these specifically conceived primitives, we improve the performance of the
signature schemes and still preserve the NIST’s security levels.
Regarding SPHINCS+, besides replacing the hash function, we also take
into consideration relaxing some parameters and introduce a new notion:
security as life expectancy. Furthermore, we also introduce an attack to
the SPHINCS+ scheme that takes advantage of the usage of FORS on this
scheme and the way its leaves are calculated. Also, we give some solu-
tions on how to avoid this attack. Additionally, a modification of PICNIC
is introduced as PICNIC+WOTS where PICNIC is used to generate the
secret keys for several WOTS+ signatures significantly reducing the size
and signature time of each signature.

keywords: SPHINCS+; PICNIC; ASCON; SKINNY; WOTS+;

1 Introduction
Cryptographic authentication must be present in any information system.

More so in safety-critical or mission-critical systems which rely upon a large
loosely-structured network of semi-autonomous devices: e.g. sensors, controllers,
communication units.

There are some major obstacles to such goal: usually, these devices are com-
putationally limited only allowing the execution of the simplest cryptographic
techniques. Moreover, recent progress in the development of quantum comput-
ers foresees the day when existing ”number theoretic” public key cryptosystems
no longer provide the security level required by such systems.

Thus critical systems must use authentication techniques that are immune
to quantum attacks and, simultaneously, can run on resource-limited low-end
devices.

∗a82200@alunos.uminho.pt, jmvalenca@di.uminho.pt

The NIST-PQC[1] standardization process proposed several digital signature
schemes (DSS’s) capable of providing, in the context of quantum attacks, the
required security levels. Of these, some classify as ”low-algebra” and derive
high levels of security, exclusively from the properties of simple cryptographic
primitives, symmetric ciphers, and hash functions used in very long computation
chains.

In another NIST contest (NIST-LWC[2]) ”lightweight” cryptographic prim-
itives have been developed. These are classical cryptographic algorithms, like
hash functions and block ciphers capable of being used with a good security
level in the least powerful devices.

These algorithms may not be suited to schemes which require high levels
of algebraic complexity but there exists a good possibility of excelling in com-
bination with ”low-algebra” schemes. In this paper we will provide evidences
on the performance of post-quantum ”low-algebra” schemes (SPHINCS+ and
PICNIC) merged with lightweight implementations of hash functions and block
ciphers featured in the NIST-LWC initiative (ASCON and SKINNY).

Note that both ASCON and SKINNY appear in submissions selected to the
3rd round of the NIST-LWC standardization process: ASCON is part of the
submission ASCON, whereas SKINNY is the underlying algorithm in the sub-
mission ROMULUS. According to the report[13], both algorithms have received
comprehensive third-party security analysis. More than raw throughput, good
security is the main requirement in using symmetric primitives in authentication
schemes.

In this work we show that:

1. Using lightweight primitives (ASCON and SKINNY) is a viable solution
to enhance ”low-algebra” schemes’ signature speed.

2. If we acknowledge SPHINCS+ security as the life expectancy of a low-end
device we can relax its security parameters accordingly.

3. Once the SPHINCS+ scheme’s hypertree height is diminished, there is a
viable attack that can be avoided with a minor tweak.

4. PICNIC can be greatly enhanced both in signature size and speed by
merging it with the WOTS+ scheme.

2 Results
Here we present how we merged PICNIC and SPHINCS+ with the lightweight
ciphers and the results obtained.

2.1 SPHINCS+
The SPHINCS+ scheme is a hash based signature scheme that allows several
trade-offs between signature size and signing speed. A full formal specification
of SPHINCS+ is given in [3].

Regarding the proposed modifications, the SPHINCS+ scheme allows for the
most simple implementation of both leightweight primitives as it only requires
the use of a secure hash function independently of how it works underneath.

The table 1 show the average number of cycles it took to produce 100 sig-
natures for the SPHINCS+ scheme using SHA3, ASCON, and SKINNY as the
underlying hash function respectively.

Version Average Cycles per Run
SPHINCS+ with SHA3 133,098,259

SPHINCS+ with ASCON-Hash 112,104,936
SPHINCS+ with SKINNY-Hash 6,435,300,567

Table 1: SPHINCS+ versions performance.

As can be seen in the above table, using ASCON allows for an average of 16%
decrease on the number of cycles taken to produce 100 signatures. On the other
hand, using SKINNY, it took 48 times more cycles to produce the same amount
of signatures. Considering the above results, only the ASCON-Hash is viable,
and we can further improve its speed if we look at its underlying behavior.

The ASCON cipher output is obtained by drawing 8 bytes at a time from its
internal state, meaning that if we require the hash function’s output to have 8
bytes, we can improve the scheme performance-wise. This solution should only
be considered regarding small non-critical IoT devices that do not need as much
security as more important devices do. The average cycles it takes to produce
100 signatures using ASCON and a hash output of 8 bytes represent 61% of the
cycles required to produce the same amount of signatures using SHA3 and a
hash output of 8 bytes.

Version Hash Output length (bits) Average Cycles per Run
SPHINCS+ with SHA3 128 133,098,259

SPHINCS+ with ASCON-Hash 128 112,104,936
SPHINCS+ with SHA3 64 67,247,767

SPHINCS+ with ASCON-Hash 64 40,937,728

Table 2: SPHINCS+ performance.

From [3] we know that the number of layers in the hypertree and the Winter-
nitz parameter do not affect the scheme’s security. Additionally, lowering the
height of the hypertree or the number of FORS trees also lowers the security of
the scheme. However, we are aiming at low-end devices which usually do not
need to sign a lot of messages over short periods of time. That means we can
relax the hypertree height parameter to produce smaller signatures. As such,
several parameters’ combinations were tested and an average of the signature
size and number of cycles to run each signature are presented in table 3. Each
version was used to produce 100 signatures and they all use the best underlying
hash function (ASCON-Hash).

Version index h d k w Signature size (bytes) Average Cycles per Run
Control version 66 22 33 16 17088 109,010,685

Version 1 66 22 33 256 11041 819,792,980
Version 2 44 22 33 16 16736 61,261,492
Version 3 33 11 33 16 10400 59,636,855
Version 4 66 11 33 256 7936 3,085,134,761
Version 5 55 11 33 256 7760 1,562,615,851
Version 6 44 11 33 256 7584 791,835,778
Version 7 33 11 33 256 7408 413,112,696

Table 3: SPHINCS+ with ASCON-Hash 128 bits versions’ performance.

A quick analysis of the previous table shows that the best signing speed
is obtained by having fewer layers and a low Winternitz parameter while the
smallest signature size is obtained by having a lower hypertree, fewer layers, and
a high Winternitz parameter. To attain NIST’s first security level the hypertree
must have a minimum height of 63 corresponding to SPHINCS+-128s[3]. How-
ever, for low-end devices, we introduce a new idea of security as life expectancy.

Security as life expectancy: The security of the SPHINCS+ signatures
relies on each of the WOTS+ key-pairs single use. Therefore, for this scheme,
life expectancy defines as the moment all WOTS+ key-pairs have been used
once. To compute the life expectancy, one needs to know how many different
WOTS+ key-pairs exist in a SPHINCS+ scheme, which is given by the number
of XMSS trees in the last layer of the hypertree times the number of WOTS+
key-pairs in each XMSS: 2h−h′ ∗2h′ , where h is the total height of the hypertree
and h′ the height of each XMSS tree.

As an example of the life expectancy of a low-end device, assume we are using
a version of the SPHINCS+ scheme with the following parameters: h = 33, d =
11. For this version, the number of WOTS+ key-pairs is 233. The best versions
of this scheme presented on table 3 are version 3 regarding speed needing 0.02
seconds per signature and version 7 regarding memory requiring 0.1132 seconds
per signature. Time-wise, if a device produced signatures non-stop, it would
take approximately 5.45 and 30.83 years to exhaust all the possible WOTS+
key pairs, respectively. After this time, the device needs either to be replaced or
to generate a new secret key. Therefore, we believe that relaxing the hypertree
height is an acceptable modification.

2.2 PICNIC
PICNIC is a signature scheme based in a non-interactive zero knowledge proof
of knowledge of a circuit’s input. The proof of knowledge is an instance of
the “multi-party computation (MPC) in-the head” approach of Ishtai[4]. The
circuit is defined by a secure block cipher {Fx} , a pseudo-random generated
plaintext u and a computed ciphertext y . The pair (u, y) is part of the sig-
nature scheme’s public-key; the signer proves knowledge of a secret key x such
that y = Fx(u) .

Moreover the only cryptographic building blocks of the scheme are symmetric
primitives (block ciphers and hash functions) and its post-quantum security does
not rely in any number theoretic assumptions. Thus the scheme is truly “low-
algebra”.

A full formal specification of PICNIC is given in [5, 8]. In all instances of
PICNIC thus defined, the block cipher is instantiated with LowMC, a simple ci-
pher designed with very few non-linear components. However, this cipher uses,
for good diffusion properties, matrix multiplications of large boolean matrices,
and a very large chunk of the signature verification algorithm is spent with these
multiplications. Clearly, there is some gain in replacing LowMC with some al-
ternative cipher more in the line of the NIST-LWC candidates.

In [6], one can find a formal specification of the Skinny cipher and in [7]
ASCON-Hash specification. Both are present in the NIST-LWC contest, the
former as an instance of the ”substitution permutation network” (SPN) and the
latter as an example of the ”sponge” construction.

As in LowMC, both the non-linear s-boxes in SKINNY and ASCON have
an algebraic degree of 2. With that in mind, these ciphers were modified to
resemble the LowMC cipher S-box. Another tweak used on both ciphers was
to reduce the number of rounds in each one, as keeping them would double the
size of the scheme’s signature.

SKINNY: The SKINNY cipher has a non-linear s-box based on the 8-bit
state transformation:

(x7, x6, x5, x4, x3, x2, x1, x0)

(x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2))

Figure 1: SKINNY 8-bit transformation.
SKINNY’s 8-bit state transformation was modified to work on each 8-bit

state as if it was two 4-bit states and, for each, the first three bits remained
unchanged while the fourth-bit updates as the result of applying an AND gate
to the first and second bits. The following image shows the new transformation.

(x7, x6, x5, x4, x3, x2, x1, x0)

(x7, x6, x5, (x7 ∧ x6), x3, x2, x1, (x3 ∧ x2))

Figure 2: Modified SKINNY 8-bit transformation.

As previously mentioned, another problem identified was the size of each
signature on the PICNIC-SKINNY implementation. This size reflects the num-
ber of rounds the SKINNY cipher uses on its state encryption, resulting in view
transcripts with double the original version’s size. To attain the same signature
size, the number of rounds in the SKINNY cipher was cut from 56 to 24. A
thorough analysis of the security of SKINNY’s modified S-box and its rounds
can be found in A.

ASCON: The ASCON cipher, just like SKINNY, has a non-linear s-box
which needs to be addressed. This s-box is applied to all the five words in the
cipher’s internal state. Each word is represented by the wi’s in the scheme
below.

(w0, w1, w2, w3, w4)

(w0 ⊕ (w1 ∧ w2), w1 ⊕ (w2 ∧ w3), w2 ⊕ (w3 ∧ w4), w3 ⊕ (w4 ∧ w0), w4 ⊕ (w0 ∧ w1))

Figure 3: ASCON 5-words transformation.

The AND gate on each word was replaced by a series of S-boxes that applied,
to each word’s bytes, the same operations presented for the SKINNY modified
S-box.

Once again, the transcript generated was too big when compared to the
original cipher. The solution found was to reduce the rounds on the ASCON
cipher. So, on the initial state permutations, rounds were reduced from 12 to
4, and on the permutations occurring after every 8 bytes of plaintext absorbed,
rounds were reduced from 6 to 3.

The resulting PICNIC schemes were run 100 times and the values presented
are the average signature size and average signature speed.

Version Number of Runs Signature size (bytes) Real Time
Original PICNIC-FS 100 [32500,33500] 9.56

PICNIC with SKINNY 100 [37000,38000] 2.51
PICNIC with ASCON 100 [38000,38600] 2.37

* The times presented were measured in seconds.

Table 4: PICNIC versions performance.

As presented in the table above, both versions are significantly better than
the original taking less than a third of the time to sign a message. Addition-
ally, it’s shown how both Sponge models and SPN(substitution Permutation
Networks) designed to be used by low-end devices are good alternatives when
it comes to reducing performance-wise costs.

Nevertheless, PICNIC still uses lots of memory. Not only that, both modifi-
cations slightly increased PICNIC’s signature due to the transcript size in each
round. To solve this issue we implemented the WOTS+ scheme over PICNIC
presented in section 4.

3 SPHINCS+ Attack
The security margin for SPHINCS+ is the ratio, in relation to the height of the
original hypertree, of minimum height for which we can not forge a signature in
an acceptable time.

To estimate the security margin we run our attack against several hypertrees
of differente heights. Much like previous attacks, this attack was executed on
simple domestic personal computer with low processing capabilities. Further-
more the computer was being used for fay-to-day tasks and other programs.
Even so it was able to produce a valid signature for a hypertree of height 28 in
approximately 120 hours.

That establishes a security margin which is no better than 58%; meaning
that is unsafe to use this scheme with a height inferior to 28, since a simple
domestic computer can forge signatures in acceptable time.

In SPHINCS+’s scheme, the leaves indexes used in the FORS signature, as
well as the index of the XMSS tree and the WOTS+ key pair are the result of
hashing the message we intend to sign with a random value R.

As the FORS secret keys are computed using the indexes of the XMSS and
WOTS+ key pair, for a given XMSS and WOTS+ key pair the FORS public key

is always the same independently of the message being signed. Furthermore, as
each WOTS+ key pair has the same AUTH path in a XMSS, and each XMSS,
independently of the WOTS+ key pair used in it, is signed with the same
WOTS+ key pair in the layer above, the hypertree signature for a choosen
WOTS+ key pair is also exactly the same.

The only difference between signatures using the same WOTS+ key pair is
the combination of the FORS trees’ signatures. However, such combinations can
overlap over one or multiple trees, and that’s the peculiarity that an EUF-CMA
attack takes advantage of.

In this attack, an adversary chooses a message he wants to forge and a
random value R and uses them as input to the known hash function. From the
hash’s output, he retrieves the XMSS and WOTS+ key pair indexes to target,
and, from the remaining digest, the indexes of each FORS trees he needs for
the forgery.

Afterwards, he generates more messages which are sent to the signing oracle.
He then selects those which are signed with the same XMSS and WOTS+
key pair indexes. For each of the selected signatures, he then checks if any
index of a message digest overlaps the required FORS indexes, and if so, he
can withdraw from the oracle’s response the FORS tree signature. Note that,
from the signature output by the oracle, he only needs to retrieve the part
corresponding to the overlapping tree/trees. After repeating this process enough
times, he will have the forgery complete.

Assume we want to attack a SPHINCS+ scheme with the following FORS trees,
each with four leaves.

FORS public key

r0

n0

n4 n5

n1

n6 n7

r1

n2

n8 n9

n3

n10 n11

Figure 4: FORS tree example

Assume that we have generated three messages that use the same WOTS+
key pair, meaning they share the same hypertree signature H over the same
FORS public key. The first message m0 is the one we intend to forge, and the
second and third were sent to the oracle to be signed.

The table below shows, for each message, the computed leaves of each
FORS’s tree and the nodes contained in each FORS tree’s signature. The sig-
natures of m0 will be represented with the symbol ? as the table only shows
the results of querying the oracle with the messages m1 and m2.

Message Hash output Signature first tree Signature second tree
m0 [0, 0] ? ?
m1 [0, 3] (n4, [n5, n1]) (n11, [n10, n2])
m2 [2, 0] (n6, [n7, n0]) (n8, [n9, n3])

* For each signature the first node is the secret key and the nodes in brackets
are the authentication path.

Table 5: Message being forged (m0) and messages signed by the oracle (m1

and m2).

As already mentioned, the messages above share the same FORS trees,
meaning that if two of them share the same leaf of a specific tree they share
the same signature for that same FORS tree. That allows us to obtain m0’s
signature by combining m1’s first tree signature and m2’s second tree signature
updating the table as follows. The rest of the SPHINCS+ signature (Hypertree
signature) is the same for the three messages, so we only need to copy either
m1’s or m2’s hypertree signature to have a successful forgery.

Message Hash output Signature first tree Signature second tree
m0 [0, 0] (n4, [n5, n1]) (n8, [n9, n3])
m1 [0, 3] (n4, [n5, n1]) (n11, [n10, n2])
m2 [2, 0] (n6, [n7, n0]) (n8, [n9, n3])

* For each signature the first node is the secret key and the nodes in brackets
are the authentication path.

Table 6: Successfull forgery of message m0.

A first version of this attack was written in C and used on SPHINCS+
benchmark implementation. The results are summed in the table below.

Number of Runs N (Security parameter) W h d k a Average Cycles per run
100 16 16 12 3 33 6 7,281,725,614

* The time was measured in seconds.

Table 7: Successfull attack on SPHINCS+.

During this attack, while attempting to forge a signature, several collisions
for other leafs were found. This lead us to believe that, if we try to forge
several signatures at the same time the overhead time-wise would be negletible
as it would be the time spent checking if the collision found was for one of the
forgeries we are attempting.

As such, this attack was also tested for multiple forgeries at the same time.
The following table compares the time it took to forge a signature on the first
version of the algorithm with the time took to forge h′ forgeries in the second
for hypertrees of height 12 and 18.

Number of forgeries Number of Runs N (Security parameter) W h d k a Average Cycles per run
1 100 16 16 12 3 33 6 7,281,725,614
16 100 16 16 12 3 33 6 21,060,881,184
1 100 16 16 18 3 33 6 1,075,532,284,162
64 100 16 16 18 3 33 6 1,584,206,932,122

Table 8: Single forgery vs Multiple forgeries.

As can be seen in the previous table, the time difference in both attacks is ne-
glectable given the number of messages forged. The time overhead corresponds
to the time it takes to verify if the signature output by the oracle corresponds
to one of the WOTS+ key-pairs we are targeting and to retrieve the required
FORS tree signatures. Furthermore, this time overhead grows linearly with the
number of forgeries we are forging for a hypertree with a given height.

We now introduce the notion of security margin for SPHINCS+ as the min-
imum height of the hypertree for which we can not forge a signature in an
acceptable time. To define a base security margin, we run an attack against
several hypertrees of different heights. Much like the previous attacks, this
attack was run on a personal computer with low processing capabilities and
shared resorces. As stated before we were able to produce a valid signature, for
a hypertree of height 28, in 120 hours of processing time. This suggests security
margin no larger then 50%.

3.1 Possible solutions
The previous attack takes advantage of SPHINCS+ by finding XMSS and
WOTS+ key pair indexes collisions over several messages. A simple solution
would be to increase the height of the hypertree. However, that would hardly
be the best option as it would increase SPHINCS+’s signature size and the time
it takes to process a signature making the scheme less apealing.

The best possible solution we came up with to prevent such an attack, is
to make the FORS public key independent from the hypertree indexes. Our
solution is to first, guarantee that all FORS’s tree signatures are different and
only then compute the indexes either from the FORS public key value or from
a FORS tree’s signature.

One way to do this is to take advantage of the security notion of EUF-CMA
SPHINCS+ is claimed to have. According to this security notion, the scheme
is secure as long as the same message isn’t used more than once. So, we can
compute each FORS tree secret values by using the message to be signed and
the secret seed. That means, as all messages are different, all the FORS tree’s
signatures and the FORS public keys will also be different. We will still use
the digest from hashing the message with the value R to choose the leaf used
in each FORS tree. Afterward, we can generate the hypertree indexes in two
ways.

We can hash the FORS public key to obtain the indexes to be used in the
hypertree, or we can have a FORS signature with one extra tree that does not
contribute to retrieve the FORS public key but to derive the hypertree required
indexes from its root node. Either way, this makes the previous attack invalid
as it forces an adversary to generate a FORS signature or a FORS public key
to retrieve the indexes. This is somewhat hard to do as an adversary can not
easily generate a valid FORS signature from the message not knowing the secret

seed. Furthermore, using the message to generate the FORS signature means
that even if the FORS public key is the same for two different messages (we
found a collision), its FORS signature is most likely different and can’t easily
be used in a forgery.

To prove this point, let’s assume an adversary generates random secret values
for a fake FORS scheme and obtains a digest from a chosen message and R
value. With this, he can create what seems to be a valid FORS signature. Now,
regarding our two solutions, he can either hash the FORS public key to obtain
the indexes required for the hypertree or generate another FORS tree and derive
the indexes from its root node.

The first solution requires him to find a FORS public key that not only
generates a pair of XMSS and WOTS+ key pair indexes that had already been
used in a valid signature. But also to have a collision for every hash chain length
in the respective WOTS+ key pair signature. The second solution forces an
adversary to forge not only a FORS tree, whose root node generates a collision of
the same indexes for an XMSS and WOTS+ key pair. But also to have a collision
for every hash chain length in the respective WOTS+ key pair signature.

In the worst-case, we can assume that, in either case, the adversary can
find a collision for the same indexes of the XMSS and WOTS+ key pair, which
corresponds to successfully forging a FORS signature and having it generate the
correct indexes for the XMSS and WOTS+ key-pairs. Unless the FORS public
key is the same for a previously signed message by the oracle for those same
indexes, the adversary still has to forge a WOTS+ signature which we know is
EUF-CMA secure. With this in mind, we can assume our solution makes this
scheme also EUF-CMA.

4 PICNIC+WOTS
PICNIC’s signature is considerable due to the number of rounds needed to
guarantee the scheme’s security. Each round increases the signature’s length
by approximately 174 bytes per round. To reduce the number of rounds the
WOTS+ scheme was implemented over PICNIC. This modification computes
a WOTS+ secret value for each of the PICNIC’s rounds using the computed
commits in that round and PICNIC’s secret key. Additionally, if it exists,
the previous round’s secret value is added as an input under the same WOTS+
signature. Furthermore, in the PICNIC-UR version, the UR commits computed
are also used to generate the WOTS+ secret key in each round. Also, we propose
that the challenge should be calculated using the WOTS+ public keys. That
allows for the verifier to only store a WOTS+ hash value per round of the
signature, increasing its efficiency and memory usage.

Unlike PICNIC, this version does not allow for parallel processing of each
round, instead it allows for parallel processing of sets of rounds. Each set
of rounds equals the WOTS+ number of chains as each chain’s secret values
depends on the previous round secret value.

seed1seed0 seed2

output1output1 output2

ciphercipher cipher

commit0 commit1 commit2

hash0hash0 hash0

hashPICNIC’s Secret Key

WOTS+ Secret Value

Figure 5: PICNIC’s first WOTS+ secret value computation.

seed1seed0 seed2

output1output1 output2

ciphercipher cipher

commit0 commit1 commit2

hash0hash0 hash0

hashPICNIC’s Secret Key Previous Round’s Secret Value

WOTS+ Secret Value

Figure 6: PICNIC’s remaining WOTS+ secret values computation.

Several versions of these PICNIC modifications using different ciphers and
hashes were devised and implemented. All the modifications aim at diminishing
the number of PICNIC’s rounds both for classical and post-quantum security.
The original versions of PICNIC-FS and PICNIC-UR for both classical and
post- quantum settings are summarized below.

Version Number of rounds Average Signature Size Number of Runs Real Time
PICNIC-FS Classical 219 32860 100 8.85
PICNIC-UR Classical 219 53961 100 9.22

PICNIC-FS Post-Quantum 438 65702 100 16.46
PICNIC-UR Post-Quantum 438 107890 100 18.84
* The times presented were measured in seconds.

Table 9: Original PICNIC versions’ performance.

PICNIC’s MPC clasical security is attained through the expression (32)
r

from [8], where r is the number of rounds needed to achieve the desired se-
curity. The WOTS+ classical security can be obtained with the expression

2n−log(lw)−log(2w+1) from [9], where l in the number of chains in the WOTS+
signature and w is the length of each chain. By merging both scheme’s security
claimes we have the expression (32)

r + r
l ∗ 2

n−log(lw)−log(2w+1) ≥ 2128, were r
l is

the number of WOTS+ signatures used in the PICNIC scheme. As the main
objective is to reduce PICNIC’s signature lenght, the chosen parameters for the
classical security were w = 16, l = 5 and n = 17 leading to r = 55. Note that, as
each WOTS+ signature has 5 chains, PICNIC’s rounds must be a multiple of 5.
In the following tables W represents the chain length of a WOTS+ signatures,
N represents the hash output lenght in a WOTS+ signature, and L represents
he number of chains in a WOTS+ signature.

These settings applied to PICNIC-FS, resulted in signatures with a third of
the original signature and a four to nineteen times faster algorithm, depending
on the version. Regarding PICNIC-UR, the signatures are six to seven times
smaller and up to eighteen times faster.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC SHAKE256 55 17 16 5 7450 100 2.26
LowMC ASCON 55 17 16 5 7447 100 2.29
LowMC SKINNY 55 17 16 5 7443 100 6.93
ASCON ASCON 55 17 16 5 8824 100 0.54
SKINNY SKINNY 55 17 16 5 8598 100 3.40
* The times presented were measured in seconds.

Table 10: Modified classical PICNIC-FS versions’ performance without chains.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC SHAKE256 55 17 16 5 7449 100 2.23
LowMC ASCON 55 17 16 5 7455 100 2.67
LowMC SKINNY 55 17 16 5 7453 100 7.00
ASCON ASCON 55 17 16 5 8828 100 0.91
SKINNY SKINNY 55 17 16 5 8609 100 3.37
* The times presented were measured in seconds.

Table 11: Modified classical PICNIC-FS versions’ performance with chains.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC SHAKE256 55 17 16 5 7456 100 2.99
LowMC ASCON 55 17 16 5 7452 100 2.60
LowMC SKINNY 55 17 16 5 7447 100 7.83
ASCON ASCON 55 17 16 5 8836 100 0.96
SKINNY SKINNY 55 17 16 5 8611 100 3.91
* The times presented were measured in seconds.

Table 12: Modified classical PICNIC-UR versions’ performance without chains.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC SHAKE256 55 17 16 5 7451 100 3.03
LowMC ASCON 55 17 16 5 7457 100 2.73
LowMC SKINNY 55 17 16 5 7454 100 7.67
ASCON ASCON 55 17 16 5 8825 100 0.94
SKINNY SKINNY 55 17 16 5 8604 100 3.97
* The times presented were measured in seconds.

Table 13: Modified classical PICNIC-UR versions’ performance with chains.

Our scheme’s post-quantum security can be obtained through the expression√
(32)

r + r
l ∗2

n
2 −log(lw)−log(2w+1) ≥ 2128. As in the previous security expression,

both scheme’s security claimes were drawn from [8] and [9]. To attain the
minimum level of post-quantum security the parameters used were w = 16,
l = 5 and n = 34 which also led to r = 55.

With these parameters, PICNIC-FS signatures are seven to eight times
smaller than the original scheme’s signature and 2 to 35 times faster to compute
depending on the version. In the PICNIC-UR versions, the schemes produce
signatures eleven to thirteen times smaller and are two to thirty-seven times
faster. The following tables summarize the obtained results.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC ASCON 55 34 16 5 8395 100 2.75
LowMC SKINNY 55 34 16 5 8380 100 9.31
ASCON ASCON 55 34 16 5 9767 100 0.89
SKINNY SKINNY 55 34 16 5 9545 100 4.70
* The times presented were measured in seconds.

Table 14: Modified post-quantum PICNIC-FS versions’ performance without
chains.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC ASCON 55 34 16 5 8387 100 2.55
LowMC SKINNY 55 34 16 5 8390 100 9.18
ASCON ASCON 55 34 16 5 8872 100 0.90
SKINNY SKINNY 55 34 16 5 9542 100 4.77
* The times presented were measured in seconds.

Table 15: Modified post-quantum PICNIC-FS versions’ performance with
chains.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC ASCON 55 34 16 5 8398 100 2.24
LowMC SKINNY 55 34 16 5 8385 100 8.92
ASCON ASCON 55 34 16 5 9762 100 0.59
SKINNY SKINNY 55 34 16 5 9546 100 4.61
* The times presented were measured in seconds.

Table 16: Modified post-quantum PICNIC-UR versions’ performance without
chains.

Cipher Hash Number of rounds N W L Average Signature Size Number of Runs Real Time
LowMC ASCON 55 34 16 5 8393 100 2.23
LowMC SKINNY 55 34 16 5 8396 100 8.99
ASCON ASCON 55 34 16 5 8886 100 0.57
SKINNY SKINNY 55 34 16 5 9543 100 4.67
* The times presented were measured in seconds.

Table 17: Modified post-quantum PICNIC-UR versions’ performance with
chains.

The previous tables show a great improvement in PICNIC’s signature size
and processing speed, especially when using the created ASCON cipher with
ASCON-HASH. Several other parameter combinations are still being tested for
their speed and security. Furthermore, if either ASCON or SKINNY ciphers are
proven secure, these modifications provide an immediate improvement, both in
performance and memory.

Note that, the use of LowMC with the ASCON-Hash is alredy a secure and
much faster and shorter version of PICNIC.

5 Conclusion
The eminent possibility of usable quantum computers threatens the security
level of current ”number theoretic” public-key cryptosystems. To prepare for
this eventuality, the cryptographic community took action and started a con-
test aiming to find post-quantum cryptosystems to prepare for this eventuality.
Although new alternatives to replace these pre-quantum cryptosystems are un-
der evaluation, the least powerful devices can’t use them either because they
lack memory space or acceptable processing speed. Among all the candidates,
some are considered ”high-algebra” and some ”low-algebra”. The ”low-algebra”
candidates use simple primitives that require low processing capacity but use
them so many times that it takes too long to sign a message. Both the PICNIC
and the SPHINCS+ schemes, can be adapted to ”low-end” devices by using
one of the lightweight primitives ASCON or SKINNY, as these were tailored
to guarantee security and efficiency on such devices. Nevertheless, the most
challenging part of the adaptation is to balance the assurance of security with
low memory usage and good performance during a signature. As can be seen
in the 2 section, speed and memory consumption are intertwined as decreasing
one often increases the other. In SPHINCS+, using the ASCON-Hash primitive
allows it to sign faster without increasing the memory used, thus contributing
hugely to decrease the time elapsed during a signature. This time advantage
also allows us to sacrifice some speed to save memory usage while still outper-
forming the original version of SPHINCS+ time-wise. Several combinations of
parameters were taken into consideration when trying to attain a good trade-off
between time and memory consumption. From all the possible combinations,
the most promising ones are:

• h = 33,d = 11,k = 33, w = 16.
This version takes 0.02 seconds to produce a signature with 3704 bytes.

• h = 33,d = 11,k = 33, w = 256.
This version takes 0.1132 seconds to produce a signature with 3000 bytes.

If a low-end device has the primitives hardwired, the above time can be
even further decreased for both implementations, making this scheme an even
better suited candidate to ensure the security of low- end devices’ communica-
tions. Furthermore, in this paper, a notion of security based on a device’s life
expectancy is presented. The viability of SPHINCS+ signatures relies on the
single usage of each WOTS+ key pair. As soon as all the WOTS+ key pairs
have been used, the scheme becomes insecure. This notion plays well with the
duration of low-end devices as most are meant to be used for a short time before
being replaced. Notice also that the minimum time before replacing a device
that implements each version of the algorithm is 0.7 and 3.85 years respectively.
But this only needs to happen if the device issues signatures nonstop through-
out those years. It is also important to notice that the above results are safe as
long as the attack previously pointed out is mitigated.

The SPHINCS+’s presented results not only show a way of fastening the
original SPHINCS+’s signatures using lightweight cryptography (to be applied
to ”normal” devices) as also a way of allowing the least powerful devices to
implement that same scheme using minimum memory and time with a decent
life expectancy and security.

As for PICNIC, both lightweight primitives were adapted to fit the scheme
and attained good results, greatly improving the scheme’s performance. The
biggest problem with PICNIC is its signature size, which renders it unsuited for
devices with memory restraints. However, the PICNIC modification with the
WOTS+ scheme improved the previous results time and memory-wise.

As it stands, if we consider using fifty-five rounds on PICNIC, and apply a
WOTS+ signature over each set of 5 rounds with a 16 length chain and a security
parameter of 17, we attain the first level of classical security for PICNIC. If the
security parameter is 34, the scheme attains the first level of post-quantum
security instead, while maintaining the number of rounds. Furthermore, using
a WOTS+ signature every five rounds, allows for parallel computation of sets
of five rounds. The speed the scheme can attain if computed in parallel is yet
to be tested, but it is expected to improve even further than the modification
improvements seen so far.

The improvements regarding PICNIC, have provided us with means to not
only reduce its signature length but also to improve its speed by shortening the
number of rounds as a result of applying WOTS+ over PICNIC. The current
secure and best combination uses LowMC as the cipher and ASCON-Hash as
the hash.

Both schemes presented show potential to be applied to ”low-end” devices
to grant them post-quantum security. Each scheme having its own advantages.
Although the PICNIC scheme is faster than SPHINCS+, it has a bigger sig-
nature size. That makes PICNIC ideal for ”low-end” devices prioritizing speed
over memory and SPHINCS+ better suited for devices that prioritize memory
efficiency over speed. However, using the modifications, still under evaluation,
given to make PICNIC’s signature shorter, PICNIC might have signatures with
similar size to the ones of SPHINCS+ while maintaining or even further increas-
ing its processing speed advantage.

References
[1] https://csrc.nist.gov/Projects/post-quantum-cryptography

[2] https://csrc.nist.gov/Projects/lightweight-cryptography

[3] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph
Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas
Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lau-
ridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost
Rijneveld, Peter Schwabe, Bas Westerbaan. SPHINCS+: Submission to the
NIST post-quantum project, v.3. October 1, 2020.

[4] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
Knowledge from Secure Multiparty Computation. SIAM Journal on Com-
puting 39, 3 (2009), 1121–1152.

[5] Greg Zaverucha. The Picnic Signature Algorithm Specification Version 3.0.
September 30, 2020.

[6] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash v1.0.

[7] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.2. March 29, 2019.

[8] Melissa Chase, David Derler, Steven Goldfeder, Daniel Kales, Jonathan
Katz, Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, Xiao Wang, Greg Zaverucha. The Picnic
Signature Scheme Design Document. September 30, 2020.

[9] Mikhail A. Kudinov, Evgeniy O. Kiktenko, and Aleksey K. Fedorov. Secu-
rity analysis of the WOTS+ signature scheme: Updating security bounds.
February 18, 2020.

[10] Lorenzo Grassi, Daniel Kales, Christian Rechberger, and Markus Schofneg-
ger. Survey of key-recovery attacks on LowMC in a single plaintext/ciphertext
scenario. September 1, 2020.

[11] Subhadeep Banik et al. Cryptanalysis of LowMC instances using single
plaintext/ciphertext pair. In: IACR Transactions on Symmetric Cryptology
2020.4 (Dec. 2020), pp. 130–146. doi: 10.46586/tosc.v2020.i4.130-146.

[12] Claude Carlet. Vectorial Boolean functions for cryptography. In: Boolean
Models and Methods in Mathematics, Computer Science, and Engineering.
Vol. 134. 2010, p. 398.

[13] M. Turan, K. McKay, D. Chang, C. Calik, L. BassHam, J. Kang, and J.
Kelsey. NISTIR 8369, Status Report on the Second Round of the NIST Ligh-
weight Cryptography Standardization Process. Computer Security Division.
Information Technology Laboratory. 21 July 2021.

Appendices
A Security vs. signature size in PICNIC
The security of an MPC-in-the-head zero-knowledge protocol, as defined in 2.2,
relies essentially on the immunity of the cipher against single plaintext/ciphertext
attacks. Such immunity depends on the number of cipher’s rounds which impact
the size of the signatures. Therefore, it is important to discuss how we can re-
duce the number of rounds without compromising the zero-knowledge property
of the proof of knowledge protocol (PKP).

The MPC-PKP requires interplayer messages for each execution of a non-
linear component of the cipher; these messages are part of the signature; there-
fore, because one main objective of such design is to control the signature’s size,
one must also control the size and number of the interplayer messages. A low
S-box algebraic degree along with a low density of non-linear components con-
trols the size of the messages; the number of messages is further controlled by
the number of iterations of each S-box: i.e. the number of rounds in the cipher.

The block-ciphers relevant for PICNIC use S-boxes of a small algebraic de-
gree, namely 2. Therefore the number of rounds, as in any SPN architecture,
dictates the overall algebraic degree d of the cipher, and this bounds the immu-
nity against algebraic attacks [10]. A simple analysis shows that, in this case,
we have d ≃ O(2r) for r rounds: a reduction of r affects directly the immunity
against algebraic attacks.

Moreover, a low value of d will naturally increase the distance of the cipher
to an ”almost perfect non-linear function” [12] and consequently decreases its
immunity against differential and linear attacks. For LowMC instances [11]
similar observations can be made in relation to other higher-order attacks.

We can conclude that the same factors contributing to shorter signatures,
low algebraic degree of the s-boxes, low density of non-linear components, and
a small number of rounds, also contribute to an increasing vulnerability against
those attacks which compromise the zero-knowledge property of the PKP.

According to [8, 10], when the LowMC cipher has a full S-box layer it needs
only four rounds to achieve the first level of security on the PICNIC scheme.
Much like the LowMC’s S-box, the modified SKINNY’s S-box can also be de-
scribed as a second-degree boolean function. As such, one can argue that the
analyses on the LowMC’s S-box can be used to ensure a similar security level
on the SKINNY’s modified S-box.

The ASCON cipher is not an SPN; is a sponge construction where blocks
of 8 bytes are transformed with a different number of rounds. Although each
round has also an algebraic degree of 2, it is not possible to define an overall
degree of the cipher. The reduction proposed for the number of rounds is just
a first approximation, and further analysis must be performed on the security
effects of such reduction.

