
Verifiable Isogeny Walks: Towards an
Isogeny-based Postquantum VDF

Jorge Chavez-Saab1, Francisco Rodŕıguez-Henŕıquez1,2, and Mehdi Tibouchi3

1 Computer Science Department, Cinvestav IPN, Mexico City, Mexico
2 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi,

United Arab Emirates
3 NTT Corporation, Tokyo, Japan

Abstract. In this paper, we investigate the problem of constructing
postquantum-secure verifiable delay functions (VDFs), particularly based
on supersingular isogenies. Isogeny-based VDF constructions have been
proposed before, but since verification relies on pairings, they are broken
by quantum computers. We propose an entirely different approach using
succinct non-interactive arguments (SNARGs), but specifically tailored
to the arithmetic structure of the isogeny setting to achieve good asymptotic
efficiency. We obtain an isogeny-based VDF construction with postquantum
security, quasi-logarithmic verification, and requiring no trusted setup.
As a building block, we also construct non-interactive arguments for
isogeny walks in the supersingular graph over Fp2 , which may be of
independent interest.

Keywords: Isogeny-based cryptography · Postquantum cryptography
· Verifiable delay functions · Supersingular elliptic curves · SNARGs ·

Verifiable computation

1 Introduction

A Verifiable Delay Function (VDF) is a cryptographic primitive first formalized
by Boneh, Bonneau, Bünz and Fisch in 2019 [9], which has since gathered
increasing interest due to its various applications such as power-efficient blockchains,
benchmarking, and randomness beacons (these and other applications are discussed
in [9,15]).

The intuitive idea of a VDF is that it acts as a function whose value is
uniquely determined at the moment that we pick an input, but no one is able
to compute its output faster than a guaranteed prescribed wall-clock time T . To
achieve this, it is crucial that the only known approaches for computing a VDF
must be inherently sequential, such that no reasonable amount of parallelism
could be effective on speeding up the VDF evaluation. At the same time, we
also require the peculiar feature that the VDF’s output must be efficiently and
publicly verifiable, meaning that any other party can confirm its correctness,
without relying on secret parameters nor on repeating the lengthy evaluation
work that was required to produce it in the first place.



Constructing an ordinary delay function is a simple task, as it suffices to
use T iterations of any function that can be composed with itself and whose
output is unpredictable (such as a hash function). However, achieving an efficient
verification is usually a much bigger challenge. For this, one may rely on general
techniques for verifiable computation, specifically on Succinct Non-interactive
Arguments (SNARGs) which allow for efficient proofs of any computation, where
the time complexity of the proof construction is asymptotically close to that
of the original computation, and its verification is polylogarithmic. This paper
presents a quantum-resistant VDF, whose evaluation involves isogeny walks over
supersingular elliptic curves that can be publicly verified by means of a SNARG-
based validation process.

In terms of quantum security, none of the current VDF constructions proposed
as of today manage to achieve an exponential time gap between evaluation and
verification while still being based on commonly studied postquantum assumptions.
Our construction benefits from being derived from isogeny-based cryptography,
which provides security guarantees that have been carefully scrutinized in the
postquantum setting for over a decade. These studies add confidence in our
security assumptions as well as in providing accurate estimates of how fast
isogeny evaluations can be performed using optimized software and hardware
libraries.

Previous Work: The usage of SNARGs for constructing a VDF was first
proposed by Boneh et al. [9], and independently by Döttling et al. [16]. The
concept of verifiable computation branched out from probabilistic checkable
proofs, as proposed by Babai et al. [3], and its development towards proofs
that are short, efficient and non-interactive began with Micali’s work [26].

In the context of verifiable delay functions, as of today the only isogeny-based
construction was proposed by De Feo et al. in 2019 [15]. The main computational
task for the evaluation of this VDF is that of finding images of points under a
fixed large degree isogeny of a supersingular elliptic curve, whereas its verification
essentially consists of performing a bilinear pairing computation. This verification
is much more efficient than a SNARG-based verification, but the trade-off is
that a quantum attacker can compute the VDF output by solving an associated
discrete logarithm problem rather than going through the intended isogeny
evaluation. Moreover, the construction has the added drawbacks of requiring
a trusted setup and the setup itself being slow (requiring about as much time as
an evaluation).

More recently, Leroux [24] proposed an isogeny-based verifiable random function
that makes use of a proof of knowledge of a secret isogeny. While it is pointed
out that this proof provides an exponential gap between prover and verifier,
it cannot be adapted to a VDF since it only convinces the verifier that the
prover knows some isogeny without any guarantee that the isogeny was somehow
derived from an input. The evaluation of the random function actually maps the
input to points, and then evaluates the images of those points, but this is not
quantum-resistant unless it is treated as a single-use function.

2



Our Contribution: We present an isogeny-based VDF that is free of the
three main drawbacks suffered by the construction of De Feo et al.: the setup
is fast, is not required to be trusted, and the construction is postquantum. By
using a SNARG verification, we are able to obtain an evaluator with Õ(T )
time complexity using O((log T )4) parallelism, and a quasi-logarithmic verifier
with Õ((log T )4+log log T ) time complexity using no parallelism. This result is of
interest not only due to its asymptotic complexity, but also because of the fact
that it could directly benefit from future advances in SNARG constructions.

Since our VDF construction performs a random walk in the supersingular
isogeny graph over Fp2 , it can be seen as an instance of the Charles-Lauter-
Goren hash function [12] augmented with a SNARG verification of this random
walk. While there exist general-purpose SNARGs that can be applied for any
computation in a straightforward fashion (see for example [6,34]), we save as
much as possible on overhead by specializing to the isogeny setting and constructing
a SNARG over the field Fp2 , which verifies the computation at the field-arithmetic
level as opposed to the ALU-operation level. This implies that we have to
generalize various SNARG results to work efficiently over a prescribed field,
which leads us to present a framework that connects the SNARG with the
isogeny walk setting in a natural way. Moreover, we describe the process for
“ordering” the possible isogenies at each vertex of the isogeny graph so that the
walk can be derived from an input string. This was never presented explicitly
in [12], and in order to be compatible with our SNARG, our method selects an
isogeny using only Fp2 arithmetic (i.e. we refrain from using arbitrary rules that
look at the bit-representation of the field elements).

Organization: The remainder of the manuscript is organized as follows.
Section 2 contains an overview and background of both isogeny-based cryptography
and time-sensitive cryptography. In Section 3 we present the evaluation method
of our isogeny-based delay function, and in Section 4 we present its SNARG-
based verification. We then provide our security analysis in Section 5, and
concluding remarks in Section 6.

2 Background

In this section we present some basic definitions and background material used
throughout this paper.

2.1 Elliptic Curves

Basic definitions of elliptic curves over finite fields. Let Fp be a finite
field with p a large odd prime, and let Fq = Fp2 be its quadratic extension. We

denote the algebraic closure of Fq as Fq.

Let E be a Montgomery elliptic curve over Fq, expressed as,

E(Fq) : By2 = x3 +Ax2 + x , (1)

3



such that A,B ∈ Fq, A2 ̸= 4 and B ̸= 0. The set of solutions of (1) plus
the neutral element O, known as the point at infinity, form an abelian additive
group, with the inverse of a point (x, y) being (x,−y). For N ∈ N, the N−torsion
subgroup E[N ] is defined as the kernel of the multiplication-by-N map.

The cardinality of E (Fq) is given by #E (Fq) = q + 1 − t, where t is the
trace of E over Fq and satisfies |t| ≤ 2

√
q. An elliptic curve E is said to be

supersingular if p | t, and ordinary otherwise. When q = p2, it follows that
t ∈ {0,±p,±2p} for any supersingular curve. In the rest of this paper we only
consider supersingular curves with t = −2p, so that the group order is (p+ 1)2.

An elliptic curve E is uniquely defined up to isomorphism by its j-invariant,
given by

j(E(Fq)) = 256
(A2 − 3)3

A2 − 4
. (2)

Since the parameterB does not appear at all in (2), it follows that Montgomery
curves are completely determined by the parameter A up to isomorphism. Let
E′/Fq be another elliptic curve with parameter A′ ∈ Fq. Then, E is isomorphic
to E′ over Fq, denoted by E ∼= E′, if and only if j (E) = j (E′). Appropriate
values for A always result in supersingular curves. In particular, A = 0 and A = 6
correspond to supersingular elliptic curves whenever p ≡ 3 mod 4. Moreover,
even when E is defined over Fq we always have j(E) ∈ Fq if E is supersingular,
so there exists an isomorphic curve defined over Fq. We therefore assume without
loss of generality that all supersingular curves are defined over Fq.

Isogenies. An isogeny ϕ : E → E′ over Fq, is a non-constant rational map
between elliptic curves defined over the finite field Fq, which satisfies ϕ(O) = O.
It is known that two curves E and E′ are isogenous over Fq if and only if they
have the same number of points [32, Theorem 1]. Therefore, E is supersingular
if and only if E′ is.

Isogenies inherit the notion of degree and separability from rational maps. A
separable isogeny has a kernel size equal to its degree, and is uniquely determined
by its kernel up to composition with an isomorphism. The fastest known method
for computing the co-domain curve of a smooth-degree isogeny is to decompose
it into prime-degree components, so a degree-ℓT isogeny requires T isogeny
evaluations of degree ℓ.

We refer to an isogeny of prime degree ℓ as an ℓ-isogeny. For any ℓ-isogeny
ϕ : E → E′, there exists a dual ϕ̂ : E′ → E which is also an ℓ-isogeny, such that
the composition ϕ̂ ◦ ϕ equals the multiplication-by-ℓ map.

Supersingular isogeny graphs. See [20] for a comprehensive study of supersingular
isogeny graphs. For any prime ℓ, the supersingular isogeny graph GFq (ℓ) is
the directed graph having Fq-isomorphism classes of ℓ-isogenous supersingular
elliptic curves (represented by their j-invariants) as vertices, and ℓ-degree isogenies
as edges. The graph GFq

(ℓ) is a Ramanujan graph [29], meaning that random
walks in it have an asymptotically optimal mixing rate. Moreover, GFq

(ℓ) is

(ℓ + 1)-regular whenever
(−p

ℓ

)
= 1. There are two special vertices, j = 0 and

4



j = 1728, which represent the only curves with non-constant automorphisms.
Outside of these two vertices the graph contains no self-loops, and can be taken
to be undirected since edges are symmetric.

Modular polynomials. For any prime ℓ, there exists a polynomial Φℓ ∈
Z[X,Y ] of degree ℓ+1, called the ℓth modular polynomial, such that two curves E
and E′ are ℓ−isogenous if and only if Φℓ(j(E), j(E′)) = 0. Given a starting curve
E, we can walk a step in the ℓ-isogeny graph by finding a root of Φℓ(j(E), X)
rather than explicitly computing an isogeny.

2.2 Time-sensitive cryptography and Verifiable Delay Functions

Time-sensitive cryptography was first proposed in 1996 by Rivest, Shamir and
Wagner [31]. The authors of [31], presented time-lock puzzle constructions that
must be computed by performing a prescribed number of sequential squarings
over an RSA modulus of unknown order. More recently, Lenstra and Wesolowski
introduced in [23], a slow-timed hash function dubbed sloth. The evaluation of
sloth is accomplished by the iterated computation of a fixed number of sequential
functions. Also, the notion of Proof of Sequential Work (PoSW) was introduced
by Cohen and Pietrzak in Eurocrypt 2018 [14]. Then, Boneh, Bonneau, Bünz
and Fisch formalized this branch of cryptography by rigorously defining verifiable
delay functions.

A Verifiable Delay Function (VDF) as defined in [23,9] is a function f : X 7→
Y that cannot be computed in less than a prescribed delay, regardless of the
amount of parallelization available for its evaluation. At the same time, once a
VDF has been computed, it can be easily verified by any third party, typically
with the help of a companion proof produced during the evaluation. Moreover,
the verification should be achievable with a limited amount of parallel cores, and
ideally, by performing a single-core computation. Formally, a VDF is composed
of three main algorithms:

– Setup: takes as input a security parameter λ and a delay parameter T and
outputs public parameters pp.

– Eval: Takes a certain input x and public parameters pp and calculates an
output y and a proof π.

– Verify: Takes as input x, y, π and pp and outputs 1 if and only if π is a valid
proof for the input-output pair (x, y).

Moreover, a secure VDF satisfies the following properties:

– Sequentiality : The eval procedure can be completed in time O(T, λ) using
polylog(T ) parallelism, but cannot be completed in time o(T ) even when
poly(T ) parallelism is available

– Completeness: An honest evaluation always causes the verifier to accept
– Soundness: If y is not the output of Eval(x, pp), then no PPT adversary can

find a proof π such that the verifier accepts (x, y, π).

5



VDFs have important applications for Blockchain proof of work, space and
stake [13], constructing a trustworthy randomness beacon [17], benchmarking of
high-end servers and many more [11,33]. Several examples of VDFs proposed in
the literature can be found on [9,15,28,35].

Isogeny-based VDFs The only isogeny-based VDF construction proposed as
of today is the one presented by De Feo, Masson, Petit, and Sanso in Asiacrypt
2019 [15].

The authors of [15], proposed an isogeny-based VDF where the evaluator
must compute the image of a point under a large smooth-degree isogeny ϕ
(consisting of the composition of T isogenies each of prime degree ℓ), between
two ℓT -isogenous supersingular curves E and E′. The order of the elliptic curves
E and E′ has a large prime divisor N, and their N -torsion subgroups are used
for the verification via a pairing comparison using a point P with known image
ϕ(P ) (these points are public parameters and are computed at setup time).

This VDF construction has three important drawbacks. The first one is that
it requires a trusted setup. This implies that a dishonest party computing the
setup, can easily backdoor the function to make the evaluation much faster
(as discussed in [15], knowledge of the random walk that generated E, can be
used to compute the endomorphism ring of the curve E, which can be used to
reduce the degree-ℓT isogeny to a shorter one). A second issue is that the setup
computation is slow, taking as long as the delay from the evaluation itself. A
third drawback is that the verification crucially depends on the computation of
a pairing, which opens the door against any quantum attack targeting discrete
logarithm computations.

VDFs from iterated sequential functions Given an input parameter x, the
authors of [9,15] gave as an example of a naive VDF the chained computation
of a one-way function as,

xi = H(xi−1), for i = 1, . . . , T,

with x0 = x, and where the output y = xT can only be calculated sequentially
independently of the amount of parallelism available for the evaluator. Notice
however, that if the evaluator publishes some of the intermediate values xi for
i = 1, . . . , T (see Figure 1), then a verifier with access to many independent
processors, can verify the work of the evaluator in a wall-clock delay significantly
shorter than the time invested by the evaluator for producing y. This simple
version of a VDF was discussed in [23, §3.1] as a trivial design, and later proposed
by Yakovenko as a Proof of History consensus protocol with direct applications to
blockchains [36]. Although this type of construction cannot achieve a polylogarithmic-
time verification without requiring poly(T ) parallelism from the verifier, they are
still sufficiently efficient for various applications. In particular, Yakovenko’s Proof
of History consensus protocol is massively used by the cryptocurrency Solana as
its main consensus mechanism.

In order to obtain an asymptotically efficient verification without parallelism,
the verification can be improved by means of verifiable computation. Verifiable

6



g g g
x0 x1 x2 xk−1

y = xk
· · ·

y = f(k, x)

Fig. 1. Ilustration of an Iterated Sequential Function f : N × X 7→ X , defined as
f(k, x) = g ◦ g ◦ . . . ◦ g. In the figure, x0 = x, and the output of the function f = (k, x)
is y = xk.

computation can be used by the evaluator to compute a succinct non-interactive
argument (SNARG), which certifies that a given computation was performed
honestly. An important characteristic of a SNARG is that its verification can
achieve a complexity that is logarithmic in the size of the original computation.

Both Boneh et al. [9] and Döttling et al. [16] proposed that any iterative
sequential function can be augmented with a SNARG to produce an asymptotically
efficient VDF. This is precisely the steps that we follow for our isogeny-based
VDF, with the iterative function being instantiated by a step in the supersingular
isogeny graph and the SNARG being constructed at the Fp2 arithmetic level.

3 An Isogeny-based delay function

We now present an overview for the evaluation method of our VDF, leaving the
SNARG-based verification for Section 4.

Our function involves computing a walk of length T in the 2-isogeny graph
of supersingular curves over Fp2 , where p2 ≡ 9 mod 16 (which is required
for applying Kong’s square-root algorithm [22]) and p = poly(T ) (which is
required to make field arithmetic efficient for the verifier). The walk itself is
determined from a string that is derived from the input to the VDF, starting
from a prescribed initial curve, and the j−invariant of the final curve is taken
as the output of the VDF. Therefore, our output exactly matches the output
from an instantiation of the Charles-Goren-Lauter hash function [12], where the
isogeny at each step is determined after assigning some ordering to the outgoing
isogenies. In order to make the procedure suitable for a SNARG construction,
however, we develop a procedure that makes this ordering not only explicit but
also verifiable using only field arithmetic.

3.1 Evaluation overview

Given a delay parameter T , we ask the evaluator to compute a walk of length T
on the 2-isogeny graph, where the exact path is determined by a string s and is
non-backtracking. We would not be able to specify kernel points of order ℓT as in
the SIDH setting, since doing so would require either p = O(ℓT ) or working over
an O(T ) field extension, both of which would make all field arithmetic inefficient
for the verifier. Therefore, each step in the isogeny walk has to be determined

7



“on the fly”, and we chose to derive it from the modular polynomial root-finding
problem since it is naturally expressed in Fp2 arithmetic.

Given two curves with j-invariants ji and ji+1, they are 2-isogenous over Fp2

if and only if the modular polynomial Φ2(ji, ji+1) vanishes. Thus, for fixed ji,
the next curve in the path can be computed by finding a root of Φ2(ji, X). This
is a cubic polynomial, but we can exploit the fact that we already know one of
the roots (namely ji−1, the previous curve in the walk) to factor out a linear
term: if X = ji−1 is a known root of Φ2(X) = X3 + aX2 + bX + c then we can
rewrite

Φ2(X) = (X − ji−1)(X
2 + (a+ ji−1)X + b+ aji−1 + j2i−1)

and focus on finding the roots of the quadratic factor. This accomplishes three
distinct goals:

1. It ensures the walk is non-backtracking by discarding the X = ji−1 root
2. It reduces the root-finding problem to a quadratic equation (reducing the

size of the computation yields heavy savings on SNARG overhead)
3. It enables the step in the walk to be defined by a canonical square-root along

with a bit indicating its sign

Taking into account the explicit form of Φ2, the other two roots are given by

ji+1 =
1

2

(
j2i − 1488ji − ji−1 + 162000±

√
Di

)
(3)

where

Di =j4i − 2976j3i + 2j2i ji−1 + 2532192j2i − 2976jiji−1 (4)

− 645205500ji − 3j2i−1 + 324000ji−1 − 8748000000

The evaluator computes a canonical square root Si =
√
Di using Kong’s

algorithm [22]: first fix any quadratic nonresidue d and precompute t = d
p2−9

8 ,
then compute

Ri = (2Di)
p2−9
16 (5)

and set

Si =

{
RiDi(2DiR

2
i − 1) if (2aR2

i )
2 = −1

RitdDi(2R
2
i t

2d2Di − 1) if (2aR2
i )

2 = +1
(6)

which can be combined into

Si =

(
1− (2aR2

i )
2

2

)
RiDi(2DiR

2
i −1)+

(
1 + (2aR2

i )
2

2

)
RitdDi(2R

2
i t

2d2Di−1)

(7)
After the square root has been calculated, the evaluator uses the input string

to choose the sign, yielding a deterministic process for the walk. Note that the

8



input string cannot have length O(T ) (since the verifier must receive it and
process it in time polylog(T )), so we will construct the signs pseudorandomly
from a smaller string, as detailed in Section 4.1.

Note also that the evaluator could use any algorithm for computing square
roots, but for the SNARG verification process it is convenient to use a procedure
that is deterministic and also produces a fixed choice of sign, hence the choice
of Kong’s algorithm. For the verification process, the evaluator will keep track
of ji, Di, Ri, Si at each step and construct a SNARG that shows that equations
(3), (4), (5) and (7) are satisfied.

Initial conditions. Since equation (3) requires knowledge of the j−invariant
two steps into the past, we need to specify the first two curves as initial conditions.
The 2-isogeny graph is a 3-regular graph without repeated edges or self-loops
except for the two special vertices j = 1728 and j = 0. At j = 1728 there is
one self-loop and two edges going to the vertex j = 287496, so we use the initial
curve j0 = 287496 and take j−1 = 1728 to avoid going back to the non-regular
vertex. Note that the SNARG will only access values at indices 0 through T −1,
so we replace j−1 = 1728 by an equivalent condition on D0 using equation (4).

4 SNARG-based Verification

In this section we deal with the verification process of the VDF, specifically how
to fit the evaluation into a SNARG framework.

The notion of verifiable computation emanated from Probabilistic Checkable
Proofs (PCP), a term first coined by Arora and Safra [2] to refer to a protocol
between a prover who generates a proof of membership in a language (known as
the PCP witness) for a given input and a randomized verifier which interacts with
it. Both Babai et al. [3] and Feige et al. [18] independently proposed algorithms
for transforming any NP witness into a PCP witness which, at the cost of
making the verification probabilistic and the witness polynomially larger, allow
for logarithmic-time verification by sampling only a logarithmic number of bits
from the witness.

The results from [3] and [18] show that the history of any computation can
be put into an alternate form which can be verified with an exponential speedup.
In practice, however, these PCP constructions have two major drawbacks. First,
they require interaction between the two parties throughout the protocol, and
second, the amount of communication is still inefficient since the full PCP witness
must be transmitted even if only a few bits of it are sampled. Succinct Non-
interactive Arguments (SNARGs) are an alternative primitive which overcomes
both limitations (they do not require interaction and are succinct in the sense
that the witness is of logarithmic size). It was shown by Micali [26] that any
PCP construction can be efficiently transform into a SNARG.

General-purpose SNARGs aim to verify a computation by working at the
level of a RAM model and translating the correctness of the computation into
either a circuit satisfiability or an algebraic constraint problem. For our construction

9



we have focused on the latter approach, and use a checksum-type PCP to verify
said constraint problem.

In this section we review how the different construction ingredients are adapted
to our particular problem. Section 4.1 describes the process of transforming the
correctness of our computation into an algebraic constraint problem (known
as arithmetization). Section 4.2 then gives a high-level summary for the rest
of the SNARG construction and the complexities of the resulting verification
scheme, leaving most details for the appendix. Finally, Section 4.3 discusses
the parallelization of the SNARG proof construction to obtain a concrete proof
construction time close to the evaluation time.

4.1 Arithmetization

The sumcheck protocol that we work with is a PCP that verifies conditions of
the form ∑

x⃗∈Bn

P (x⃗) = 0, (8)

where P is a polynomial in n variables over some ring R ⊃ B.

To turn the verification of our VDF into an instance of this problem we
arithmetize by storing the intermediate values into polynomials that act as
lookup tables. Specifically, for the computation with T steps, we pick a base
b and integer n such that T ≈ bn, and let B = {0, 1, . . . , b− 1}. The time steps
t ∈ {0, 1, . . . , T − 1} can then be expressed as b−ary strings of length n, where
we refer with tx⃗ to the integer represented by string x⃗ ∈ Bn.

For y⃗ ∈ Bn we define the polynomial

δy⃗(x⃗) =

n−1∏
j=0

∏
z∈B−{yj}

xj − z

yj − z
(9)

which maps x⃗ ∈ Bn to 1 if x⃗ = y⃗ and 0 if x⃗ ̸= y⃗. Regarding B as a subset of Fp2 ,
the above formula can be seen as a polynomial over (Fp2)n, and is in fact the
unique degree-(b − 1) polynomial that agrees with the δ function on Bn (note
that throughout this paper, the “degree” of a multivariate polynomial refers to
the maximum degree of any individual variable).

The δ polynomial can be used as an auxiliary tool to select a specific index
when summing over all indices. Given the sequence ji of j-invariants at each
step, we can define the polynomial

j(x⃗) =
∑
y∈Bn

jty⃗δy⃗(x⃗). (10)

This polynomial encodes the history of the computation since it maps x⃗ ∈ Bn to
jtx⃗ , but can also be evaluated (with less predictable outcome) over all of (Fp2)n.
We can then define similar polynomials D(x⃗), R(x⃗), S(x⃗) for the quantities Di,

10



Ri, Si defined in Section 3, and also use the constants

Lt1,t2 =

{
1 if t2 = t1 + 1

0 else

to define the polynomial

L(x⃗, y⃗) =
∑

x⃗′,y⃗′∈Bn

Ltx⃗′ ,ty⃗′ δx⃗′(x⃗)δy⃗′(y⃗) (11)

which vanishes in B2n unless x⃗ and y⃗ represent consecutive integers. Similarly
to the δ polynomial, this polynomial will be used as a sequential counter that
selects only consecutive indices when summing over all pairs of indices.

With this in hand, equations (3), (4), (5) and (7) can be represented as
polynomial conditions. For instance, (3) becomes

P j(x⃗, y⃗, z⃗) = 0 ∀ (x⃗, y⃗, z⃗) ∈ B3n, (12)

where

P j(x⃗, y⃗, z⃗) :=[
2j(z⃗)− j(y⃗)2 + 1488j(y⃗) + j(x⃗)− 162000− s(y⃗)S(y⃗)

]
L(x⃗, y⃗)L(y⃗, z⃗).

Here, s(x⃗) represents the choice of sign at step tx⃗, which we have also
represented as a polynomial. We have not specified how the sign is derived from
the input, but it will be necessary for the verifier to be able to efficiently evaluate
s(x⃗). Therefore, we will take

s(x⃗) =

n−1∏
i=0

si(xi), (13)

where si are single-variable polynomials of degree b−1 mapping B to {+1,−1}.
Since a polynomial of degree b − 1 is determined by its values at any b points,
we only need b bits to uniquely specify each si. This means that we use a total
of nb bits to define s(x⃗), and we now define these bits as the input to the
VDF (the input bits can be passed through a hash function first to enforce
pseudorandomness of the resulting polynomial).

We then turn equations (4) and (7) into polynomial conditions

PD(x⃗, y⃗) = 0 ∀ (x⃗, y⃗) ∈ B2n

and
PS(x⃗) = 0 ∀ x⃗ ∈ Bn

in an analogous way.
As for equation (5), the polynomial that we would obtain by arithmetizing it

directly would be of large degree, which is undesirable for the SNARG construction

11



(as described in Appendix A, the sumcheck protocol verification is linear in the
degree of the polynomial). Therefore, we introduce additional state and break
the exponentiation down into a right-to-left strategy: let K = ⌈log((p2−9)/16)⌉
and e0, e1, . . . , eK−1 be the bits of (p2 − 9)/16. We define R

(0)
i = 1, D

(0)
i = Di

and for 0 < k < K,

D
(k)
i = (D

(k−1)
i )2, (14)

and
R

(k)
i = R

(k−1)
i (D

(k−1)
i )ek (15)

so that R
(k−1)
i = Ri. For each 0 ≤ k < K we define polynomials D(k)(x⃗) and

R(k)(x⃗) from the values of D
(k)
i and R

(k)
i , respectively, and use them to write

polynomial conditions
PR,k(x⃗) = 0 ∀ x⃗ ∈ Bn

and
PD,k(x⃗) = 0 ∀ x⃗ ∈ Bn.

Note that we now have K = log p pairs of polynomials to work with, but each
being of degree d = O(b) just as P j , PD and PS (this is inherited from the
degree of the δ polynomial).

Finally, to wrap the whole verification into the form of (8), we use the
weighted sum

P (x⃗, y⃗, z⃗) = wJ(x⃗, y⃗, z⃗)P J(x⃗, y⃗, z⃗) (16)

+ wD(x⃗, y⃗)PD(x⃗, y⃗) + wS(x⃗)PS(x⃗)

+
∑
k

(
wD,k(x⃗)PD,k + wS,k(x⃗)PS,k

)
,

where each w is a weight polynomial. These polynomials are defined in the same
way as s(x⃗) in equation (13), but are chosen randomly by the verifier so that
proving that ∑

x⃗,y⃗,z⃗∈Bn

P (x⃗, y⃗, z⃗) = 0

is enough to convince the verifier that P J , PD, PS , P k,D, P k,S vanish at all
points, and hence that the whole computation is correct.

We stress that general-purpose SNARGs exist that can be applied to any
program (see for example [6] and [5]), but they usually perform arithmetization
at the ALU level, which increases the overhead cost. For instance, they may
have lookup polynomials that encode the values of CPU registers at each time
step and obtain polynomial conditions that represent the correctness of ALU
operations (which in our case would include even the breakdown of all Fp2

arithmetic into basic ALU operations). The arithmetization that we propose
is performed directly at the field arithmetic level, meaning that the values
encoded into our polynomials are Fp2 elements and our polynomial conditions
represent equality over this field, without actually including the correctness of
Fp2 arithmetic procedures in the SNARG proof since it is within the verifier’s
capabilities to perform them directly.

12



4.2 Overview of the SNARG construction

We now present a high-level summary of the steps required to complete the
SNARG construction, with a more detailed account presented in the appendix.

We have reduced the verification process to the verification of a condition of
the form4 ∑

x⃗∈Bn

P (x⃗) = 0,

where P is of degree d = O(b) in n variables, and T = nb. This verification
is handled by the sumcheck protocol of Lund, Fortnow, Karloff and Nisan [25],
detailed in Appendix A. The sumcheck protocol is a PCP that reduces the
problem to the verifier’s ability to evaluate P at a random point x⃗ ∈ (Fp2)n. To
enable this, the prover publishes a PCP witness that contains the table of values
for each of the polynomials j(x⃗), D(x⃗), S(x⃗), R(k)(x⃗), S(k)(x⃗) in all of (Fp2)n. The
table of values for L(x⃗, y⃗) is assumed to be precomputed and publicly available
(since it is independent of the input), while the polynomials for the sign and the
random weights are directly evaluated by the verifier.

The next step is to apply Micali’s transform [26], described in detail in
Appendix B, which both eliminates interactiveness and shortens the proof to
a polylogarithmic size. The core idea is to encode the tables of values into a
Merkle tree and publish only the root of the tree as a commitment, answering
specific queries with a value along with its verification path in the Merkle tree.
We then apply the Fiat-Shamir transform [19] to replace all random choices from
the verifier (including the choice of the weight polynomials in (16)).

The resulting verification scheme has a prover time complexity ofO((n2b)nb log b)
withO(n2 log p) parallelism and space complexity ofO((n2b)n log p) field elements
(from computing and storing the tables of values, as detailed in Appendix A.1),
and a verifier time complexity of O(n3b log(nb) log p) with no parallelization nor
significant storage requirements (from the degree test, detailed in Appendix A.2).
We argue in Section 5 that a choice of p = poly(T ) is natural, so the evaluator
parallelism is polylog(T ).

There is still some freedom regarding the choice of parameters n and b, since
they only need to satisfy nb ≈ T . Choosing b ≈ (log T )1/ϵ for some ϵ > 0 means
that

n ≈ log T

log b
=

ϵ log T

log log T
,

and

nn ≈
(

ϵ log T

log log T

) ϵ log T
log log T

< log T
ϵ log T

log log T = T ϵ,

so the prover complexity becomes Õ(T 1+2ϵ) time (which can be made arbitrarily
close to linear) andO(T 1+2ϵ log p) space, while the verification complexity becomes
Õ((log T )4+1/ϵ).

4 For ease of notation we collapse x⃗, y⃗, z⃗ into a single vector, implicitly substituting
n 7→ 3n throughout.

13



Another option is to chose a slowly decreasing function ϵ = 1/ log log T . This
causes the proof construction to be strictly quasi-linear, but at the cost of making
the verification only quasi-polylogarithmic.

4.3 Parallelization of the Proof Construction

It is also desirable for the evaluation algorithm of a VDF to take time that
is concretely (as opposed to asymptotically) close to T . Both Boneh et. al. [9]
and Döttling et. al. [16] independently proposed similar methods for exploiting
parallelism to finish evaluation of an iterative function and its SNARG proof
construction at the same time by working with subsegments of geometrically
decreasing size. Assuming that computing the proof is slower than the function
evaluation by a factor of α, the evaluator stops after completing T/(1 + α)
iterations of the computation and then starts a proof for this partial computation
in parallel with the remaining αT/(1 +α) steps. This is repeated recursively, so

the evaluator does proof constructions of size T
(

α
1+α

)i

for i = 1, 2, 3, . . . until

i ≈ log(T )/ log(1 + 1
α ) when approximately a single step remains and it can be

computed directly by the verifier without proof. Since log(1 + 1
α ) =

1
α +O( 1

α2 ),
this increases the parallelization requirement by a factor of α log T .

Note that in the case when b = (log T )1/ϵ for constant ϵ this results in an
amount of parallelism polynomial in T , which is coined a weak VDF by Boneh
et al. [9, Definition 5]. We favor the case when ϵ = 1/ log log T instead, which
means the parallelism is strictly logarithmic at the cost of making the verification
slightly slower (quasi-polylogarithmic).

5 Security Analysis

The soundness of the VDF relies entirely on that of the SNARG proof, which is
discussed throughout the appendix. In this section we discuss the other crucial
security property of a VDF, namely its sequentiality.

As a side note, we point out that any protocol where the isogeny walk is not
prescribed in some way is insecure in terms of sequentiality. For instance, one
could have asked the evaluator for a SNARG proof of any large-degree isogeny
and naively hope that this makes for a good proof of sequential work even if
the output is not unique. However, much like the proof of isogeny knowledge
proposed by Leroux [24], this does not constitute proof of a sequential computation
if the evaluator is free to choose the path. Indeed, even if backtracking is avoided
it has been shown by Adj, Ahmadi and Menezes [1] that it is easy to find
cycles of any length in the ℓ−isogeny graph, which allows a cheating evaluator
to construct a SNARG for a “long” walk by repeating a short cycle as many
times as necessary. Of course, the prescribed walks in our construction may still
contain cycles, but this is not a problem so long as they cannot be forced nor
predicted by the evaluator.

In our context, sequentiality relies on a similar version of the Isogeny Shortcut
Problem defined by De Feo et al. [15] :

14



Problem 1 (Isogeny Shortcut Problem). Let E/Fp be a random supersingular
elliptic curve and ϕ : E → E′ an isogeny of degree ℓT to a curve E′/Fp2 . After a
precomputation time poly(T, λ), find the image of a given point whose order is
coprime to ℓ in time o(T ).

Our setting differs from the one in this problem in three important ways:

1. Our problem is not to find images of points, but codomain curves. Since
the codomain curve can be computed from any three point evaluations, the
problem in our setting could be considered more general. However, all known
point-evaluation methods have complexities asymptotically equal to those
of codomain-evaluation, so we do not expect our security assumption to be
significantly stronger.

2. The precomputation time that we allow in our setting is granted before
learning the isogeny to be evaluated, which reflects the fact that our VDF
uses a different isogeny for each input as opposed to fixing the isogeny at
setup time. In this regard, our security is stronger since it relies on a much
weaker assumption.

3. We do not assume that the starting curve was randomly sampled, which is
done in [15] to prevent shortcut attacks (see below) when the endomorphism
ring is known. However, we argue that such attacks are unimportant in our
setting precisely due to the previous point. Starting from a public curve
means we do not need a trusted setup.

Despite these differences, our security analysis is very similar to De Feo’s,
as we still distinguish two types of attacks: either finding a way to perform the
isogeny walk faster (possibly exploiting parallelism), or attempting to find an
equivalent isogeny walk of smaller degree (which we call isogeny shortcuts).

Faster Isogenies The best known method for computing a degree-ℓT isogeny is
by sequentially performing the composition of T consecutive ℓ-isogenies, where
each ℓ-isogeny is computed using Vélu’s formulas. We consider the time of this
computation as a lower bound for the delay parameter offered by our VDF,
even though our specification of the evaluation algorithm does not use kernel
points. While Vélu’s formulas parallelize almost perfectly, attempting to directly
evaluate an isogeny of degree ℓT in time O(T ), would require an amount of
parallelism exponential in T which exceeds the evaluator’s capabilities. This is
leaving aside the fact that our isogeny is not readily presented as a kernel that
could be plugged directly into these formulas, and even if such a kernel could be
obtained it would be defined over a degree-T field extension. Assuming then that
the best strategy is to decompose into small-degree isogenies, it is unlikely that
any algorithm would be able to compute the composition of all such isogenies
without going through each intermediate curve.

While none of the above premises are often studied as security assumptions,
they are long-standing conjectures that have endured the test of time, despite
considerable incentives to optimize isogeny evaluations. For instance, finding a
way to compute an isogeny of degree ℓT in linear time without exploiting the

15



smooth decomposition would be equivalent to computing an arbitrary-degree
isogeny in time logarithmic in the degree, which would be ground-breaking for
all isogeny-based cryptography.

It should be noted that recent improvements to the evaluation of ℓ−isogenies
do exist, most notably the algorithm of Bernstein et al. [7], which achieves
a square-root time complexity improvement over the previous state-of-the-art.
Although this does not affect the asymptotic complexity of computing T isogenies
in series, having the possibility for variations in the concrete cost is still problematic
for a VDF. However, the gains in these new formulas are asymptotic in ℓ and
we only use 2−isogenies for which the formulas are so simple that they can be
conjectured to be already optimal.

Isogeny Shortcuts The second possibility is for the evaluator to produce a
different isogeny path between the two end curves, and hope that it is shorter
than the original. Because construction of the proof requires the evaluator to
know each of the j-invariants in the original isogeny path, one might mistakenly
assume that such an attack would be useless. However, an attacker that is able
to predict the output in a shorter time, even if unable to produce a proof for it,
would still violate the security of the VDF.

A shorter path always exists because the isogeny graph is of size O(p) and
the optimal expander property of Ramanujan graphs [29] implies the distance
between any two curves is bounded by O(log p) (which is necessarily logarithmic
in T , otherwise all field arithmetic would be inefficient). However, the sequentiality
property only requires that such path cannot be found in time o(T ). In the case
of arbitrary curves, when the endomorphism ring is not known, the best one can
do is to try to solve the isogeny problem between the curves, disregarding the
already known isogeny. The best algorithm for this is a birthday attack, which
takes O(p1/4) time using a quantum Grover search [8]. This sets a theoretic
limit on the admissible delay parameters of T = O(p1/4). However, it should be
noted that even this attack would not apply directly since it requires previous
knowledge of the codomain curve.

In our construction, we take an additional risk of fixing the starting curve j =
1728 where not only is the endomorphism ring known, but also elements of norm
ℓn can be easily found with the KLPT algorithm [21]. This leads to an attack
analogous to the CGL hash collision-finding algorithm that was described in [27]
and optimized by [15], which computes a shorter isogeny in time poly(T, log p).
One could always start from a curve of unknown endomorphism ring to avoid
this attack at the cost of requiring a trusted setup, but in our case even this
attack is admissible because there is a different isogeny used in each input and
computing the shortcut is still slower (in the VDF from De Feo et al. [15], this
is more of a problem because the same isogeny is always used, so the shortcut
breaks the VDF for all inputs after being computed once).

More generally, it is unlikely that any kind of reduction could be computed
fast enough since our isogeny is not readily represented as an ideal in the
quaternion algebra. Any reduction that works over the endomorphism ring would

16



have to translate the isogeny at each step into the language of quaternion ideals,
necessarily resulting in a Ω(T ) complexity, and the concrete time of whatever
parsing need to be performed is unlikely to be much faster than a simple degree-2
isogeny.

6 Conclusions and Future Work

We have presented a framework for applying a SNARG at the field-arithmetic
level to verify an isogeny walk, and used it to obtain a postquantum isogeny-
based VDF that does not require a trusted setup and is less susceptible to isogeny
shortcut attacks since it uses a different isogeny walk for each input.

In terms of asymptotic complexity, our VDF is less efficient relative to other
constructions: for example, the VDF from De Feo et al. [15] has O(T ) evaluator-
space complexity and verification time constant in T . However, no previous VDF
construction achieves post-quantum security.

Although SNARG-based VDFs have been deemed mainly of theoretical interest
by Boneh et al. [9], alluding to the fact that current SNARG constructions
have concrete costs about 100,000 times larger than the original computation,
it should be noted that this is the case for general-purpose constructions which
verify every step of the computation at the bit-operation level. Since our construction
verifies steps of the computation at the field-arithmetic level, it has the potential
to save significantly on overhead. Therefore, it could prove an interesting future
work to implement and benchmark our construction.

We leave it also as future work to propose concrete parameters for our
construction. We stress that definitions such as 128-bit security are not meaningful
for the sequentiality property of a VDF, whereas for soundness our security is
completely derived fromMicali’s work [26] and based on symmetric cryptography.
This means that the choice of parameters should be based only on the desired
delay time, which is impossible to fine-tune until a working implementation is
obtained.

We also point out that there is a factor of log p in both the evaluator’s
parallelism complexity and the verifier’s total complexity that emanates from
the breakdown of an exponentiation to verify a square-root computation, as
represented by equations (14) and (15). If the square-root computation was
verified via a squaring rather than repeating the computation, this factor could
be eliminated. However, the longer computation is required due to the fact that
we perform our arithmetization at the field arithmetic level, meaning that we
need a deterministic way of picking a sign that uses only field operations. We
leave it as an open question whether one can design a method to, given both
roots of a quadratic polynomial, choose one of them deterministically using only
field arithmetic and without resorting to a large exponentiation.

Finally, it should also be noted that the SNARGmechanism we have described
is fairly rudimentary and there are various recent developments that achieve
slight optimizations. However, most of these improvements rely on reducing the
arithmetic over ad hoc fields (such as [5], which uses a binary field) whereas

17



our SNARG is constrained to work in the field of the elliptic curve. We note
that this problem is likely to be ubiquitous when adapting SNARGs to work
with existing cryptographic frameworks, since such frameworks usually include
arithmetic over a prescribed field. Working directly over this prescribed field is
bound to save significantly on overhead when constructing SNARG proofs, so
we also encourage further optimizations of SNARG constructions over arbitrary
fields.

Acknowledgements. We thank Khashayar Barooti and Abdullah Talayhan for
pointing out a typo in the complexities in Appendix A which appeared in a
previous version of this preprint.

References

1. Adj, G., Ahmadi, O., Menezes, A.: On isogeny graphs of supersingular
elliptic curves over finite fields. Finite Fields and Their Appl. 55, 268–283
(2019). https://doi.org/10.1016/j.ffa.2018.10.002, https://doi.org/10.1016/j.

ffa.2018.10.002

2. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of
NP. J. ACM 45(1), 70–122 (1998). https://doi.org/10.1145/273865.273901, https:
//doi.org/10.1145/273865.273901

3. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations
in polylogarithmic time. In: Proceedings of the Twenty-Third Annual
ACM Symposium on Theory of Computing. p. 21–32. STOC ’91,
Association for Computing Machinery, New York, NY, USA (1991).
https://doi.org/10.1145/103418.103428, https://doi.org/10.1145/103418.

103428

4. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. 2018,
46 (2018), http://eprint.iacr.org/2018/046

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C:
verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II. Lecture Notes in Computer Science, vol. 8043, pp. 90–108.
Springer (2013). https://doi.org/10.1007/978-3-642-40084-1 6, https://doi.org/
10.1007/978-3-642-40084-1_6

7. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation
of isogenies of large prime degree. In: Galbraith, S. (ed.) ANTS-XIV -
14th Algorithmic Number Theory Symposium. Proceedings of the Fourteenth
Algorithmic Number Theory Symposium (ANTS-XIV), vol. 4, pp. 39–
55. Mathematical Sciences Publishers, Auckland, New Zealand (Jun 2020).
https://doi.org/10.2140/obs.2020.4.39, https://hal.inria.fr/hal-02514201

8. Biasse, J., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) Progress in Cryptology - INDOCRYPT 2014 - 15th International

18

https://doi.org/10.1016/j.ffa.2018.10.002
https://doi.org/10.1016/j.ffa.2018.10.002
https://doi.org/10.1016/j.ffa.2018.10.002
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
http://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.2140/obs.2020.4.39
https://hal.inria.fr/hal-02514201


Conference on Cryptology in India, New Delhi, India, December 14-17,
2014, Proceedings. Lecture Notes in Computer Science, vol. 8885, pp. 428–
442. Springer (2014). https://doi.org/10.1007/978-3-319-13039-2 25, https://

doi.org/10.1007/978-3-319-13039-2_25

9. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10991, pp. 757–788. Springer (2018)

10. Bostan, A., Éric Schost: Polynomial evaluation and interpolation on special sets
of points. Journal of Complexity 21(4), 420–446 (2005), festschrift for the 70th
Birthday of Arnold Schonhage

11. Cai, J., Lipton, R.J., Sedgewick, R., Yao, A.C.: Towards uncheatable benchmarks.
In: Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
pp. 2–11. IEEE Computer Society (1993)

12. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions
from expander graphs. Journal of Cryptology 22(1), 93–113 (Jan 2009).
https://doi.org/10.1007/s00145-007-9002-x, https://doi.org/10.1007/

s00145-007-9002-x

13. Chia Network Collaboration: Chia DAQ. Chia network (2021), available at: https:
//www.chia.net/faq/

14. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) Advances in Cryptology - EUROCRYPT 2018, Part II. Lecture Notes in
Computer Science, vol. 10821, pp. 451–467. Springer (2018)

15. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from
supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology - ASIACRYPT 2019, Part I. Lecture Notes in Computer Science,
vol. 11921, pp. 248–277. Springer (2019)

16. Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable delay
functions. In: Galdi, C., Kolesnikov, V. (eds.) Security and Cryptography for
Networks - 12th International Conference, SCN 2020. Lecture Notes in Computer
Science, vol. 12238, pp. 65–84. Springer (2020)

17. Drake, J.: Minimal VDF randomness beacon. ETH Research (2018), available at:
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566

18. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive
proofs and the hardness of approximating cliques. J. ACM 43(2), 268–
292 (1996). https://doi.org/10.1145/226643.226652, https://doi.org/10.1145/

226643.226652

19. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer (1986)

20. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
UC Berkeley (December 1996)

21. Kohel, D., Lauter, K.E., Petit, C., Tignol, J.: On the quaternion l-isogeny path
problem. IACR Cryptol. ePrint Arch. 2014, 505 (2014), http://eprint.iacr.
org/2014/505

22. Kong, F., Cai, Z., Yu, J., Li, D.: Improved generalized Atkin algorithm
for computing square roots in finite fields. Inf. Process. Lett. 98(1), 1–5
(2006). https://doi.org/10.1016/j.ipl.2005.11.015, https://doi.org/10.1016/j.

ipl.2005.11.015

19

https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://www.chia.net/faq/
https://www.chia.net/faq/
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://doi.org/10.1145/226643.226652
https://doi.org/10.1145/226643.226652
https://doi.org/10.1145/226643.226652
http://eprint.iacr.org/2014/505
http://eprint.iacr.org/2014/505
https://doi.org/10.1016/j.ipl.2005.11.015
https://doi.org/10.1016/j.ipl.2005.11.015
https://doi.org/10.1016/j.ipl.2005.11.015


23. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with
sloth, unicorn, and trx. Int. J. Appl. Cryptogr. 3(4), 330–343 (2017).
https://doi.org/10.1504/IJACT.2017.10010315, https://doi.org/10.1504/

IJACT.2017.10010315

24. Leroux, A.: Proofs of isogeny knowledge and application to post-quantum one-
time verifiable random function. IACR Cryptol. ePrint Arch. 2021, 744 (2021),
https://eprint.iacr.org/2021/744

25. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

26. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(Oct 2000)

27. Petit, C., Lauter, K.E.: Hard and easy problems for supersingular isogeny graphs.
IACR Cryptol. ePrint Arch. 2017, 962 (2017), http://eprint.iacr.org/2017/
962

28. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) 10th Innovations
in Theoretical Computer Science Conference, ITCS 2019. LIPIcs, vol. 124, pp.
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

29. Pizer, A.K.: Ramanujan graphs and Hecke operators. Boulletin
of the American Mathematical Society 23, 127–137 (1990).
https://doi.org/https://doi.org/10.1090/S0273-0979-1990-15918-X

30. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960).
https://doi.org/10.1137/0108018, https://doi.org/10.1137/0108018

31. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto. Tech. rep., MIT (1996), available at: https://tinyurl.com/

time-lock-puzzles

32. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones
Mathematicae 22, 134—-144 (1966)

33. VDF Alliance: VDF research. VDF Alliance (2021), available at: https://

vdfresearch.org/

34. Wahby, R.S., Setty, S., Howald, M., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient
RAM and control flow in verifiable outsourced computation. Cryptology ePrint
Archive, Report 2014/674 (2014), https://eprint.iacr.org/2014/674

35. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147
(2020)

36. Yakovenko, A.: Solana: A new architecture for a high performance blockchain
v0.8.13. Solana cryptocurrency whitepaper (2020), available at: https://tinyurl.
com/solana-whitepaper

A The Sumcheck Protocol

We base our verification process on the sumcheck protocol first described by
Lund, Fortnow, Karloff and Nisan [25], which was first applied to verifiable
computation in [3]. The sumcheck protocol is a probabilistic checkable proof
where the prover demonstrates an arithmetic condition over a given ring of the
form ∑

x⃗∈Bn

P (x⃗) = c0 (17)

20

https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1504/IJACT.2017.10010315
https://eprint.iacr.org/2021/744
http://eprint.iacr.org/2017/962
http://eprint.iacr.org/2017/962
https://doi.org/https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://tinyurl.com/time-lock-puzzles
https://tinyurl.com/time-lock-puzzles
https://vdfresearch.org/
https://vdfresearch.org/
https://eprint.iacr.org/2014/674
https://tinyurl.com/solana-whitepaper
https://tinyurl.com/solana-whitepaper


to a verifier with computational power Poly(n,degP ), by first producing a
witness WP and then engaging in an n−round interactive protocol:

1. The prover computes and publishes the partial sum

P0(x0) =
∑

(x1,...,xn−1)∈Bn−1

P (x0, . . . xn−1) (18)

2. The verifier checks that ∑
x0∈B

P0(x0) = c0, (19)

then picks r0
$←− I from a subset B ⊂ I ⊂ Fp2 and computes c1 = P0(r0).

3. The prover now shows that∑
(x1,...,xn−1)∈Bn−1

P (r0, x1, . . . , xn−1) = c1 (20)

by applying the protocol recursively, since this is of the same form as (8) but
in one less variable.

4. After n rounds, the verifier has picked random r0, . . . , rn−1 and it must be
shown that

P (r0, . . . , rn−1) = cn, (21)

which is done through direct evaluation by the verifier.

Note that verifying (17) directly would take the verifier (#B)n evaluations
of P , but the sumcheck protocol reduces this to a single evaluation at a random
point outside ofBn. Since a single evaluation is still outside the verifier’s capabilities,
the witness WP that the prover publishes beforehand is a list of values of all the
underlying polynomials required for the evaluation of P (x⃗) (e.j. the polynomials
j,D, S,D(k), R(k) defined in Section 4.1), at each point of In.

The security of the sumcheck protocol is reflected by the following theorem:

Theorem 1 (BFL [4]). If the verifier can query P (r⃗) reliably and
∑

x⃗∈Bn P (x⃗) ̸=
c0, then any cheating prover has a probability negligible in λ ≡ nd/#I of causing
the verifier to accept, assuming that d ≡ deg(P ) < #I.

Proof. If the value of the sum is incorrect but P0 is computed correctly as defined
in (18) then equation (19) will be false and cause the verifier to reject. However,
the cheating prover may lie and return a different polynomial P̃0(x0) which
satisfies (19) but was not computed according to (18). The recursive step is then
to check that P0 and P̃0 agree on a random point r0. Since distinct polynomials of
degree d can only agree on up to d points, this means that there is a probability of
at least (d/#I) that the value c1 of the next sum is also false, and the same logic
applies for each iteration. In the final step the verifier catches any false values via
its direct evaluation, so the verification passes only if Pi(ri) = P̃i(ri) at any of the
previous steps, which happens with probability at most (1− d/#I)n < exp(−λ)
where we have used the inequality 1− x < e−x for x ∈ (0, 1).

21



The above suggests picking #I = O(nd) to achieve constant soundness, but
note that we also assume that the verifier can query P (r⃗) reliably while in
reality it only receives a list of values which may not even represent a degree-
d polynomial. This problem is addressed in Section A.2 and actually requires
increasing the size of I to O(n2d), which means the size of the witness is
O((n2d)n) field elements.

A.1 Computation of the PCP witness via multievaluation

Let {f i(x⃗)}i be the set of lookup polynomials used in our arithmetization. The
heaviest part of the prover’s work is the construction of the witness, which
involves evaluating each f i(x⃗) (which are of degree b−1 in n variables, as defined
in (10)) at all points in In for some subset I ⊂ Fp2 of size #I = O(n2d) where
d = O(b) is the degree of the polynomial in (17).

The problem of batching evaluations of a polynomial to achieve a higher
efficiency is known as polynomial multievaluation, and the multivariate case
can be easily reduced to the single-variable case. Indeed, for a multivariate
polynomial

f(x0, . . . xn−1) =
∑

i0,i1,...,in−1

f(i0,...,in−1)x
i0
0 · · ·x

in−1

n−1 ,

we may rewrite

f(x0, . . . , xn−1) =
∑

i1,...,in−1

f̂i1,...,in−1
(x0)x

i1
1 · · ·x

in−1

n−1 , (22)

where

f̂i1,...,in−1(x0) =
∑
i0

fi0,i1,...,in−1x
i0
0 ,

which suggests the following procedure:

1. For each (i1, . . . , in−1) ∈ {0, 1, . . . , d}n−1, evaluate the single-variable polynomial

f̂i1,...,in−1
(x0) at each point x0 ∈ I

2. Use (22) to solve the problem recursively, which now requires evaluations at
all combinations of only n − 1 variables, repeated O(n2d) times (once for
each value of x0)

Let T (n) be the complexity of obtaining the evaluations at all combinations
of n variables. The above procedure yields the recursion

T (n) = dn−1T (1) + n2dT (n− 1),

which resolves to

T (n) = O
(
(n2d)nT (1)

)
(23)

22



For the single variable case we make use of the Newton basis representation:
given a set of points x0, x1, . . . , xd we define xi := (x−x0)(x−x1) · · · (x−xi−1),
and then every polynomial of degree d has a representation f =

∑
i f̃ix

i, where

f̃i are known as the coefficients of f in the Newton basis associated to the points
{xi}. Note that equation (22) takes the same form in the Newton basis, so the
same reduction from multi-variable to single-variable applies.

Assuming that we know the values of f at the points {0, 1, . . . , d}, we can
extrapolate to find the values at {h(d+1), h(d+1)+1, . . . , h(d+1)+d} for any
h ∈ N via the following procedure:

1. Construct the coefficients of f in the {0, 1, . . . , d} Newton basis
2. Obtain new coefficients by shifting the basis to {h(d+1), h(d+1)+1, . . . , h(d+

1) + d}
3. Use the new coefficients to evaluate f(h(d+1)), f(h(d+1)+1), f(h(d+1)+d)

Step 1 is accomplished easily by setting f̃0 = f(0) and then

f̃i = f(i)−
i−1∑
j=0

f̃j
(i− j − 1)!

,

for each 0 < i ≤ d, which runs in O(d).
Step 2 can be done by first transforming from the Newton basis to the

monomial basis, and then from the monomial basis to the new Newton basis.
Both procedures can be done in O(d log d) (see [10, Section 3.1]).

Finally, step 3 is accomplished by inverting step 1:

f(hb+ i) = f̃i +

i−1∑
j=0

f̃j
(i− j − 1)!

,

which also runs in O(d).
Recall that the sumcheck protocol requires #I = O(n2d), so it is natural

to split I into O(n2) subsets Ik = {k(d + 1), k(d + 1) + 1, . . . , k(d + 1) +
d} and perform the single-variable multievaluation in batches. We assume the
prover processes all batches in parallel. Going back to (23), this means the
evaluation of an n−variable polynomial of degree d at #In points can be done
in time O((n2d)nd log d) with O(n2) parallelism. The complete protocol requires
the prover to build witnesses for each Dk(x⃗) and Rk(x⃗) defined in (14) and
(15), which can be absorbed into an extra factor of log p in the parallelization
requirements.

A.2 The degree test

As previously mentioned, the sumcheck protocol depends on the assumption
that the verifier is able to query each fi(r⃗) reliably, but the list of values in the
witness may be arbitrary. Note that a polynomial of degree d in n variables is

23



uniquely determined by its values at any (d + 1)n points, meaning that every
such polynomial corresponds to some computation history, and it suffices to show
that the table of values is consistent with some degree-d polynomial.

Since there is large redundancy in representing a polynomial by its table
of values, we can treat said representation as an error correcting code, which
corresponds to the Reed-Solomon code [30], where the codeword can be inferred
by looking at only a small portion of itself and another portion is used as a
consistency check. The idea is that we reduce to a single-variable polynomial by
fixing random values to all but one coordinate, at which point it is within the
verifier’s capabilities to check that the values along this subspace are consistent
with a single-variable degree−(d) polynomial.

Algorithm 1 Degree test

Input: A table of values for f : In → Fp2 and an integer c
Output: True if f is largely consistent with a degree-(d) polynomial, False otherwise

1: r⃗
$←− In

2: j
$←− {0, . . . , n− 1}

3: for i = 0 to d do
4: r⃗i ← (r⃗ with its jth coordinate replaced by i)
5: Query f(r⃗i)
6: end for
7: g ← POLY EXTRAPOLATE(f(r⃗0), . . . , f(r⃗n−1)).
8: for i = 1 to c do
9: t

$←− I
10: r⃗test ← (r⃗ with its jth coordinate replaced by t )
11: Query f(r⃗test)
12: if f(r⃗test) ̸= g(t): return False
13: end for
14: return True

The degree test, described in Algorithm 1, first constructs a degree-(d) polynomial
by running the extrapolation subroutine from last section on the first d + 1
values querried, and then checks that this polynomial agrees with f in another
c randomly chosen points. Taking c > n, it has a complexity of O(c log d) due to
the multievaluations and makes O(c) queries to f .

The soundness of the test follows from the next theorem:

Theorem 2. Let ρ be the smallest number such that f differs from a degree-d
polynomial only in a fraction ρ of the points in In. If ρ > 3n2d/#I then the
probability of the degree test with c > n2d passing is bounded above by 1− δ for
some constant δ > 0 that is independent of n, d.

Proof. See Proposition 5.6, Theorem 5.13 and Remark 5.15 from [4].

By picking #I = O(n2d), a successful degree test with c = O(n2d) gives us a
constant bound for ρ with constant confidence. This means that the probability

24



of a “false” value coming up in the final step of the checksum protocol is
also bounded by a constant, and we can achieve arbitrarily high soundness by
repeating O(1) times. Since the number of lookup polynomials that need to be
tested in our isogeny construction is logarithmic in p, this means that the degree
tests need to query a total of O(n2d log p) values.

B SNARGs from PCPs

Formally, a SNARG for an NP language L consists of two algorithms,

– SNARG-Prove: on input (x,w) such that x ∈ L and w is an NP witness
for x, outputs a proof π

– SNARG-Verify: on input (x, π), outputs either true or false,

which satisfy three properties:

1. Succinctness: The new proof π is of length polylog(|xw|).
2. Completeness: SNARG-Verify(x, π) = true whenever π = SNARG-Prove(x,w)

for some w such that (x,w) is a valid member-witness pair for L.
3. Computational Soundness: If x /∈ L, any PPT algorithm has negligible

probability of producing a proof π such that SNARG-Verify(x, π) = true.

In addition, we set efficiency constraints: the proving algorithm must run in time
poly(|xw|), while the verification algorithm runs in polylog(|xw|).

Probabilistic Checkable Proofs achieve similar goals, but they require communicating
a witness that is much larger than the original. Moreover, the interactiveness of
the protocol means that it cannot be directly dropped in for various primitives
like VDFs. Micali [26] solved both problems by proposing a transform that acts
on any PCP to produce a SNARG. That is, it achieves succinctness and non-
interactiveness, at the cost of replacing soundness by computational soundness
(i.e. a computationally unbound attacker may be able to fool the verifier, and
soundness is defined in terms of a security parameter).

To achieve succinctness, the Micali transform encodes the witness W into a
Merkle tree, and communicates only the root of the tree as a commitment rather
than the whole witness. In our case, one Merkle tree of heigth O(n log(nd)) is
constructed for each polynomial f , and each leaf contains the value of f(x⃗) for
one x⃗ ∈ In. Whenever a query for f(r⃗) is made, the evaluator responds with
the value f(r⃗) along with a verification path from the corresponding leaf to the
root, and the verifier computes the hashes in the verification path to check that
it agrees with the Merkle root commitment. Therefore, each query to the witness
now comes at a cost of O(n log(nd)) for both verifier and prover, which increases
the verifier’s complexity to O(n3d log(nd) log p) due to the queries in the degree
test (Appendix A.2).

Since the resulting protocol depends only on public random coins, it can easily
be made non-interactive via a Fiat-Shamir transform [19]. For our sumcheck
protocol this can be achieved by obtaining each value ri from a cryptographic
hash of the previous ci value and the Merkle root commitment, whereas for the

25



degree test it suffices to pick the evaluation points from a hash of the Merkle root
along with a counter value. As long as the hash function is collision-resistant,
it is straightforward to show that the soundness of this construction reduces to
the soundness of the original PCP (see [26] for concrete proofs of security).

26


	 Verifiable Isogeny Walks: Towards an Isogeny-based Postquantum VDF 

