
Convexity of division property transitions:
theory, algorithms and compact models∗

Aleksei Udovenko

CryptoExperts, Paris, France
aleksei@affine.group

November 30, 2021

Abstract. Integral cryptanalysis is a powerful tool for attacking symmetric primitives,
and division property is a state-of-the-art framework for finding integral distinguishers.
This work describes new theoretical and practical insights into traditional bit-based

division property. We focus on analyzing and exploiting monotonicity/convexity
of division property and its relation to the graph indicator. In particular, our
investigation leads to a new compact representation of propagation, which allows
CNF/MILP modeling for larger S-Boxes, such as 16-bit Super-Sboxes of lightweight
block ciphers or even 32-bit random S-boxes. This solves the challenge posed by
Derbez and Fouque (ToSC 2020), who questioned the possibility of SAT/SMT/MILP
modeling of 16-bit Super-Sboxes. As a proof-of-concept, we model the Super-Sboxes of
the 8-round LED by CNF formulas, which was not feasible by any previous approach.
Our analysis is further supported by an elegant algorithmic framework. We

describe simple algorithms for computing division property of a set of n-bit vectors
in time O(n2n), reducing such sets to minimal/maximal elements in time O(n2n),
computing division property propagation table of an n × m-bit S-box and its compact
representation in time O((n + m)2n+m). In addition, we develop an advanced
algorithm tailored to “heavy” bijections, allowing to model, for example, a randomly
generated 32-bit S-box.
Keywords: Division Property · S-boxes · SAT · CNF · MILP · LED

Acknowledgements
The author thanks the anonymous reviewers for their helpful comments and Claude Carlet
for fruitful discussions on graph indicators and division property.

∗© IACR 2021. This article is a minor revision of the version published by Springer-Verlag available at
https://doi.org/10.1007/978-3-030-92062-3_12.

mailto:aleksei@affine.group
https://doi.org/10.1007/978-3-030-92062-3_12

2 Convexity of division property transitions: theory, algorithms and compact models

1 Introduction 3

2 Preliminaries 5
2.1 Partial order . 5

3 New insights into division property 6
3.1 Division property and parity sets . 6
3.2 Link with the set indicator . 7
3.3 Division property propagation . 8
3.4 Core transitions and their characterizations 8
3.5 Division core and its relation to transition classes 10
3.6 Convex structure of the set of minimal transitions 12
3.7 Linear combinations at the input/output 12
3.8 Relationships with graph indicator-based degree bounds 14

4 CNF modeling of a convex set 15
4.1 Basic modeling . 16
4.2 Cardinality bounds . 17
4.3 Linear masks at the input / at the output 19

5 Algorithmic framework for dense sets 19
5.1 Bitwise transformations, lower, upper, min-, max-sets 19
5.2 Division property of a set . 20
5.3 Division core and propagation table . 20
5.4 Compact representation (advanced algorithm) 21

6 Application to LED 24
6.1 Structure of LED and its model . 24
6.2 Modeling details . 25
6.3 Exhausting all linear masks . 25
6.4 Summary . 27

A Framework - API example 30

B Quine-McCluskey algorithm for Boolean minimization 30

C (Multi-dimensional) cardinality bounds 31

Aleksei Udovenko 3

1 Introduction
With the ongoing surge of lightweight cryptography, the field of cryptanalysis of lightweight
symmetric primitives is pressured to evaluate the security as precisely as possible: adding
a few extra rounds as a security margin is not affordable in the lightweight setting. Among
the most powerful cryptanalysis techniques are linear and differential cryptanalysis, and
integral cryptanalysis. For example, the long-standing MISTY1 [Mat97] block cipher was
broken recently by integral cryptanalysis [Tod15a,BK16] (based on division property, the
topic of this work) with a surprisingly low time complexity 270. While provable security
arguments against linear and differential cryptanalysis exist already since the design of the
AES block cipher [DR02], provable security arguments against integral attacks started to
appear only recently [HLLT20,HLLT21].

Division property is a state-of-the-art technique for finding integral distinguishers in
symmetric ciphers. Since the seminal work of Todo [Tod15b] focusing on word/state-based
division property, many improvements and variants of the technique were developed. The
focus shifted towards bit-based division property [TM16a], followed by a surprisingly
effective MILP-based approach [XZBL16] (mixed-integer linear programming) of finding
division property-based distinguishers via the search of the so-called division trails. This
line continued with a series of works improving MILP and SAT/SMT-based (satisfiability
modulo theories) modeling [SWW16,ST,HWW20,GD21]. Classic (also called traditional
or conventional) division property is imperfect: it may miss an integral distinguisher,
although it never produces a false positive. A more recent advancement is the development
of “perfect” monomial prediction techniques [HLM+20,HSWW20,HLLT20], which require
counting division trails and so far are computationally feasible only in a few cases. This
work focuses on traditional division property, as it remains powerful and the most widely
applicable tool for integral cryptanalysis.

From the theory side, following preliminary analysis [SHZ+16,GRW16], the work of
Boura and Canteaut [BC16] formalized and studied the state-based division property in
terms of parity sets. In particular, they showed that state-based division property of a
set is defined by the set’s algebraic degree. While many of their results about parity sets
translate directly into bit-based division property, such links were not explicitly stated. To
the best of our understanding, the theory behind bit-based division property is not fully
developed. Furthermore, very recently, Carlet [Car20a] proposed method for bounding the
algebraic degree of a composition of function from the degrees of their graph indicators. It
is a natural question whether division property can be improved by incorporating such
bounds. A recent work [CXZZ21] studied formally relationships between different variants
of division property and algebraic degree bounds for composite functions, such as the
Boura-Canteaut bound [BC13]. However, this work did not consider graph indicator-based
bounds, leaving this gap open. As a part of this work, we aim to fill the aforementioned
gaps and extend the theory, focusing on the monotonicity/convexity aspects of division
property and relations with the graphs of the analyzed functions.

The imperfectness of traditional bit-based division property shows up in various ways.
Division property analysis can be applied to any Boolean circuit implementation of a
cipher (constructed from e.g. AND and XOR gates). However, due to the imperfectness,
information gets lost during propagation through the circuit. Considering larger parts of
the cipher, such as S-boxes and linear maps, allows to slow down the loss of information.
For example, Zhang and Rijmen [ZR18] showed that propagating division property through
a linear map via a basic COPY-and-XOR implementation is imperfect. The right way
to handle a linear map is to encode all invertible square submatrices of the linear map’s
matrix. A typical linear layer of a lightweight block cipher operates on at least 16 bits
and its matrix may contain a large number of invertible submatrices. Encoding the
division property propagation through such a layer in a SAT/MILP instance deemed to
be not feasible until recently, when Hu, Wang and Wang [HWW20] proposed a generic

4 Convexity of division property transitions: theory, algorithms and compact models

SMT-based solution, which is feasible for up to 64-bit linear maps. Lambin, Derbez and
Fouque [LDF20] showed that propagation through S-boxes is also fragile: combining an
S-Box with a linear map may also result in loss or gain of information.

To battle the imperfectness of traditional division property, Derbez and Fouque [DF20]
proposed to increase its precision by considering a Super-Sbox - a composition of the cipher’s
linear map with the adjacent S-boxes - as a single propagation unit. For many lightweight
block ciphers, Super-Sboxes are 16-bit bijections. The results of [DF20] shows that this
approach increases precision significantly and allows to find new integral distinguishers for
1-2 more rounds for some ciphers. However, SAT/MILP modeling of Super-Sboxes was
not feasible by state-of-the-art techniques and the authors of [DF20] had to develop an
ad-hoc search technique. In fact, they challenged the community to develop SAT/MILP
modeling of such large mappings: “We also believe this work will challenge the community
in handling such large propagation tables with generic solvers for MILP, SAT or SMT
models.”. As a part of this work, we provide a solution to this challenge, based on our
theoretical advancement.

Our contribution This work focuses on theory and practice of traditional division property.
All other variants, such as three-subset division property [TM16a] (and without the
unknown subset [HLM+20]), monomial prediction [HSWW20], are out of scope of this
work. The main contributions of this work are:

1. Development of the theoretic framework behind the classic division property. This
includes fine-grained (bit-based) formulations of previous statements about division
property, exhibiting convexity of division property and its relation to the recent
graph indicator-based bounds by Carlet [Car20a].

2. Compact characterization of division property propagation through a function F by
means of the (reduced) division property of its graph. This yields compact constraint
systems for MILP/SAT solvers, allowing us to model much larger S-boxes than
was previously possible, including 16-bit Super-Sboxes and, as a proof-of-concept,
randomly generated 32-bit S-boxes. We also introduce additional techniques for
improving modeling efficiency.

3. A framework for manipulation of dense sets of binary vectors. It includes simple
algorithms for computing division property of a set of n-bit vectors (complexity
O(n2n)), reducing such sets to minimal/maximal elements (complexity O(n2n)),
computing division property propagation table of an n×m-bit S-box and its compact
representation (complexity O((n+m)2n+m)). These algorithms improve previous
best algorithms by a factor of 2n. In addition, we develop an advanced algorithm for
the compact representation tailored to “heavy” n-bit bijections, for which it runs in
time Õ(2n) (heuristically).

4. As a proof-of-concept, we apply our techniques to 8-round LED and show that its
Super-Sbox model does not yield integral distinguishers (although they might still
exist), even with linear masks applied to an input and an output Super-Sbox. This
fills the gap left by [DF20], as their approach was not feasible for LED.

Our implementations are written in a mix of Python and C++, featuring performance
and a convenientAPI (an excerpt is provided in Appendix A). All the source code is made
publicly available. For details, see:

https://github.com/CryptoExperts/AC21-DivProp-Convexity

https://github.com/CryptoExperts/AC21-DivProp-Convexity

Aleksei Udovenko 5

Outline Section 2 provides the necessary background with a focus on the partial order on
bit-vectors. In Section 3, we briefly reintroduce traditional division property and develop
its theory, culminating in a new compact representation. As a byproduct, we exhibit
a direct link between division property and graph indicators. The following Section 4
focuses on CNF/MILP modeling aspects of the new representation. Section 5 presents our
algorithmic framework for manipulating dense sets of binary vectors. Finally, in Section 6,
we show how our techniques can be applied to model the Super-Sbox representation of
LED.

2 Preliminaries
Boolean operations AND,OR,XOR,NOT denoted respectively by ∧,∨,⊕,¬ can be applied
to (pairs of) single bits or bitwise to bit-vectors. We use 1 ∈ Fn2 (resp. 0) to denote
the all-one (resp. all-zero) vector of a dimension n depending on the context. We write
¬x := x⊕ 1 and ¬X := {¬x | x ∈ X}, X ⊆ Fn2 , to disambiguate from the set complement
X := {y ∈ Fn2 | y /∈ X}. The unit vectors ej ∈ Fn2 , 0 ≤ j < n, are the vectors with the j-th
(0-based) coordinate equal to 1 and all other coordinates equal to 0.

The notation xu, u ∈ Fn2 , is used to denote the monomial
∏n−1
i=0 x

ui
i , letting x0

i = 1.
Any Boolean function f : Fn2 → F2 has a unique expression f(x) =

⊕
u∈Fn2

aux
u, where

au ∈ F2. This expression is called the algebraic normal form (ANF) of f . We say that f
contains the monomial xu if au = 1 in the ANF of f . The ANF support of f , denoted
SuppANF (f), is the set of all exponents u with au = 1 in the ANF of f .

The indicator vector of a set X ⊆ Fn2 is the vector I ∈ F2n
2 such that Ix = 1 if and only

if x ∈ X. Here we use the natural identification of Fn2 with {0, . . . , 2n − 1}. By an abuse
of notation, we will identify a set X with its indicator vector implicitly. The indicator
function of X is the map 1X : Fn2 → F2 : x 7→ Ix.

The graph of a function F : Fn2 → Fm2 , denoted ΓF , is the set

ΓF = {(x, y) | x ∈ Fn2 , y = F (x)} ⊆ Fn2 × Fm2 .

The graph indicator of F is the indicator function of its graph ΓF .

2.1 Partial order
We use the product order on vectors over F2, which is, for x, y ∈ Fn2 , x � y if and only if
xi ≤ yi for all i. We write x ≺ y if x � y and x 6= y.

Definition 1. The lower closure of a set X ⊆ Fn2 , denoted by LowerClosure (X), is the
set of all u ∈ Fn2 with u � x for some x ∈ X:

LowerClosure (X) := {u ∈ Fn2 | ∃x ∈ X : u � x} =
⋃
x∈X
{u ∈ Fn2 | u � x} .

The upper closure of a set X ⊆ Fn2 , denoted by UpperClosure (X), is the set of all u ∈ Fn2
with x � u for some x ∈ X:

UpperClosure (X) := {u ∈ Fn2 | ∃x ∈ X : u � x} =
⋃
x∈X
{u ∈ Fn2 | u � x} .

A set X is an upper set if its upper closure is X itself. A set X is a lower set if its lower
closure is X itself.

Remark 1. An intuitive interpretation is as follows. For each vector in X, the upper closure
converts positions with the value 0 into a wildcard, whereas the lower closure converts
positions with the value 1 into a wildcard.

6 Convexity of division property transitions: theory, algorithms and compact models

Example 1. LowerClosure ({110, 001}) = {000, 010, 100, 110, 000, 001} .

Example 2. UpperClosure ({110, 001}) = {001, 011, 101, 110, 111} .

Proposition 1. Let X,Y be lower sets (resp. upper sets). Then, X ∪ Y and X ∩ Y are
lower sets (resp. upper sets); X is an upper set (resp. a lower set).

Definition 2. A subset X ⊆ Fn2 is called convex, if for any a, b, c ∈ Fn2 , a � b � c and
a, c ∈ X imply b ∈ X. An equivalent condition is

X = LowerClosure (X) ∩UpperClosure (X) .

Definition 3. The max-set of a set X ⊆ Fn2 , denoted by MaxSet (X), is the set of all
maximal elements in X:

MaxSet (X) := {u ∈ X | @x ∈ X : x � u} .

The min-set of a set X ⊆ Fn2 , denoted by MinSet (X), is the set of all minimal elements in
X:

MinSet (X) := {u ∈ X | @x ∈ X : x ≺ u} .

Max-/min-sets are compact representations of lower/upper sets. Max-/min-sets are
antichains (their elements are pairwise incomparable) and so are convex.

Proposition 2. The operator ¬ anti-commutes with MinSet, MaxSet, LowerClosure,
UpperClosure: for any set X,

¬MinSet (X) = MaxSet (¬X) , ¬LowerClosure (X) = UpperClosure (¬X) ,
¬MaxSet (X) = MinSet (¬X) , ¬UpperClosure (X) = LowerClosure (¬X) .

3 New insights into division property
We start by briefly reformulating the traditional bit-based division property in terms
of parity sets in Subsection 3.1. Then, we present a complete link with the set indica-
tor (Subsection 3.2). This link helps us to develop new characterization of transitions
(Theorem 1), which in turn leads to a compact representation. Next, Subsection 3.6
summarizes the observed convex structure of division property transitions, setting the
basement for modeling techniques described in Section 4. In Subsection 3.7, we revisit
the approach of applying input/output linear masks and reformulate it in our framework.
Finally, relationships with recent graph indicator-based degree bounds by Carlet [Car20a]
are investigated in Subsection 3.8.

3.1 Division property and parity sets
Boura and Canteaut [BC16] introduced the notion of parity sets as another view of division
property.

Definition 4 (Parity set [BC16]). The parity set of a set X ⊆ Fn2 , denoted ParitySet (X),
is the set of all u ∈ Fn2 such that

⊕
x∈X x

u = 1.

We reformulate the bit-based division property [Tod15b,TM16a] in terms of parity sets
and the partial order framework.

Definition 5 (Bit-based division property). A set X ⊆ Fn2 satisfies bit-based division
property K ⊆ Fn2 , if

ParitySet (X) ⊆ UpperClosure (K) .

Aleksei Udovenko 7

We define two special cases of division property mainly to simplify analysis.

Definition 6. For any set X ⊆ Fn2 , define:

1. the minimal division property MinDP (X) of X as

MinDP (X) := MinSet (ParitySet (X)) ,

2. the full division property FullDP (X) of X as

FullDP (X) := UpperClosure (ParitySet (X)) .

Boura and Canteaut developed distinguishers based on UpperClosure (ParitySet (X)),
however the link with the bit-based division property was not explicitly established. In
fact, they showed [BC16, Prop.6] that UpperClosure (ParitySet (X)) is precisely what is
preserved when X goes through a constant addition:

UpperClosure (ParitySet (X ⊕ c)) = UpperClosure (ParitySet (X))

for all c ∈ Fn2 . It follows that bit-based division property is essentially equivalent to parity
sets in the presence of key additions.

3.2 Link with the set indicator
We first note that the parity set of a set is closely linked to the ANF of the indicator of
the set.

Proposition 3. Parity set’s coefficients can be expressed in terms of the ANF (Möbius)
transform in the reverse direction:

u ∈ ParitySet (X) ⇔
⊕
x�u

1X(x) = 1 ⇔
⊕
x∈Fn2

xu · 1X(x) = 1.

Proof. The elements x ∈ X contributing to the sum
⊕

x∈X x
u = 1 in Definition 4 are

precisely those with x � u.

Corollary 1. For any set X ⊆ Fn2 ,

ParitySet (X) = ¬SuppANF (1¬X) .

Several works [BKP16,GRW16,BC16] established independently the relation between
the degree of a set and its state-level division property. Let Dn

k consist of all vectors of Fn2
of weight at least k. Then, a set X ⊆ Fn2 satisfies the division property Dn

k if and only if the
degree of the indicator 1X of the set is at most n−k. The following proposition generalizes
this relation to the case of bit-based division property. Naturally, minimal vectors of a
bit-based division property define maximal monomials that can occur in the ANF of the
indicator. As minimal/maximal vectors are compact representations of upper/lower sets,
the same fact holds also for the respective closures.

Proposition 4. Let X ⊆ Fn2 . Then,

MinDP (X) := MinSet (ParitySet (X)) = ¬MaxSet (SuppANF (1X)),
UpperClosure (ParitySet (X)) = ¬LowerClosure (SuppANF (1X)) .

Proof. Follows from Corollary 1, Proposition 2 and the fact that the set of maxterms in
the ANF does not change on adding a constant to the input:

MinSet (ParitySet (X)) = MinSet (¬SuppANF (1¬X))
=¬MaxSet (SuppANF (1¬X)) = ¬MaxSet (SuppANF (1X)) .

8 Convexity of division property transitions: theory, algorithms and compact models

More generally, an arbitrary division property K of a set X defines vectorial upper
bounds on monomials in the indicator’s ANF.

Corollary 2. Let X ⊆ Fn2 such that X satisfies division property K ⊆ Fn2 . Then,

SuppANF (1X) = ¬ParitySet (¬X) ⊆ LowerClosure (¬K) .

3.3 Division property propagation
Xiang et al. [XZBL16] proposed a method to propagate division property through a public
function (an S-box). Essentially the same method was described by Boura and Canteaut
in terms of parity sets, although not linked to the division property. We define division
property transitions based on these methods.

Definition 7 (Division property transition). Let S : Fn2 → Fm2 , u ∈ Fn2 , v ∈ Fm2 . We say
that (u, v) is a valid division property transition for S and write u S−→ v if there exist
u′ � u, v′ � v, such that Sv′(x) contains the monomial xu′ . Otherwise, we write u 6S−→ v.

The defined kind of transition corresponds to full division property in the output and
is useful for analysis. In practice, minimal (reduced) output division property is used as it
reduces the search space of trail search algorithms.

Definition 8 (Minimal transition). Let u S−→ v. If v is minimal such vector, then we say
that u S−→ v is a minimal transition and write u S−−−→

min.
v.

Transitions allow to propagate division property through a public function. Due to
monotonicity of division property, the propagation can be done by propagating each
element of division property set K into a set of elements of output division property and
taking a union over all such sets. This is a standard “propagation rule” in the division
property literature, and was also formulated in terms of parity sets in [BC16, Prop.7].

Proposition 5. Let S : Fn2 → Fm2 and let X ⊆ Fn2 satisfy division property K ⊆ Fn2 . Then,
the odd-multiplicity elements of S(X) satisfy division property K′, with

K′ =
⋃
u∈K

{
v ∈ Fm2 | u

S−→ v
}
.

Remark 2. It is sufficient to consider minimal transitions u S−−−→
min.

v instead of all u S−→ v,
however, even in this case the resulting division property K′ is not guaranteed to be
minimal and has to be reduced if required so by search algorithms.

3.4 Core transitions and their characterizations
In this subsection, we describe the key component of our work: a new compact description
of the set of division property transitions of a function. This new description is rather
natural and turns out to be equivalent to the minimal division property of the graph of
the function, or, alternatively, to the set of maximal monomials in the ANF of the graph
indicator of the function.

First, we define a new subclass of transitions, called core transitions, which are minimal
transitions with additional maximality restriction of the input division property vector.
The idea is that, by Definition 7, a valid transition u S−→ v induces valid transitions u′ S−→ v
for all u′ � u. As a result, it is sufficient to store transitions with maximal u and minimal
v. Indeed, any minimal transition u S−→ v can be covered by some maximal u′ such that
u′

S−→ v is a core transition.

Aleksei Udovenko 9

Definition 9 (Core transitions). Let u S−→ v. If (u, v) is (maximal,minimal) such pair,
then we say that u S−→ v is a core transition and write u S−−→

core
v.

Remark 3. Todo and Morii [TM16b] proposed alternative compact structure of division
property transitions. Their idea is to group input division property vectors by the output
division sets they propagate to. However, the main usage of their compact structure was in
an ad-hoc exhaustive trail search. It is not clear if SAT/MILP-based trail search can profit
from such a structure. Our structure, on the contrary, lends itself naturally to compact
CNF/DNF/MILP encodings (see Section 4).

We now show that core transitions have rich equivalent characterizations in terms of
the ANFs of products of outputs bits, in terms of the ANF of the graph indicator and,
finally, in terms of the (minimal) division property of the graph of the function.

Lemma 1. Let f : Fn2 → F2, u ∈ Fn2 . Then,⊕
x∈Fn2

xuf(x) = 1 (1)

and u is minimal such vector if and only if the ANF of f contains maximal monomial x¬u.

Proof. Let X be the support of f . By Proposition 3, (1) holds if and only if u ∈
ParitySet (X). By Proposition 4, the vector u is minimal in ParitySet (X) if and only if
¬u is maximal in SuppANF (1X) = SuppANF (f).

Theorem 1. Let S : Fn2 → Fm2 , u ∈ Fn2 , v ∈ Fm2 . The following statements are equivalent:

1. u S−−→
core

v (i.e., (u, v) is (maximal,minimal) such that u S−→ v);

2. (u, v) is (maximal,minimal) such that Sv(x) contains the monomial xu;

3. (¬u, v) belongs to DivCoreS := MinDP (ΓS) := MinSet (ParitySet (ΓS)); (Defini-
tion 10 below)

4. the graph indicator 1ΓS (x, y) contains the maximal monomial xuy¬v.

Proof. (1 ⇔ 2) Observe that u S−−→
core

v implies that Sv(x) contains the monomial xu.

Conversely, if Sv(x) contains the monomial xu, then u S−→ v. It follows that the extremality
is transferred in both directions.

(2⇔ 3) By Definition 4, (¬u, v) ∈ MinSet (ParitySet (ΓS)) if and only if⊕
(x,y)∈ΓS

x¬uyv =
⊕
x∈Fn2

x¬uSv(x) = 1 (2)

and (¬u, v) is minimal such pair. For any fixed v, by Lemma 1, (2) holds with ¬u minimal
if and only if Sv(x) contains the maximal monomial xu. It follows that the extremality is
transferred in both directions.

(3⇔ 4) Follows from Proposition 4 applied to the set ΓS .

Remark 4. The extremality conditions are crucial and the proposed statements without
them are not generally equivalent. On the other hand, the statements without extremality
conditions hold instead for the respective upper/lower/mixed closures.

10 Convexity of division property transitions: theory, algorithms and compact models

Remark 5. While characterizations 1 and 2 are related simply by definition, the other
relations are more interesting. Remarkably, (1⇔ 3) identifies division property propagation
through S with the (minimal) division property of the graph of S; (2 ⇔ 4) identifies
extreme exponents (u, v) such that Sv(x) contains xu with maximal monomials in the
graph indicator of S.

Note that the asymmetry of maximality/minimality of u/v is not present in characteri-
zations 3 and 4: valid division property transitions of both S and S−1 (if it exists) are
determined by the same set of minimal vectors (¬u, v) ∈ ParitySet (ΓS), or, equivalently,
by the same set of maximal monomials xuy¬v in the ANF of the graph indicator of S.
This yields the following proposition.

Proposition 6. Let S be a permutation of Fn2 , u, v ∈ Fn2 . Then,

u
S−→ v if and only if ¬v S−1

−−→ ¬u,

u
S−−→

core
v if and only if ¬v S−1

−−→
core

¬u.

Proof. If u S−→ v, then by Definition 7 there exist u′ � u, v′ � v such that u′ S−−→
core

v′ and
then by Theorem 1 ⊕

(x,y)∈ΓS

x¬u
′
yv
′

= 1.

By swapping roles of x, y, we obtain ¬v′ S−1

−−→ ¬u′. Since ¬u′ � ¬u,¬v′ � ¬v, we get
¬v S−1

−−→ ¬u. Equivalence for core transitions holds because the extremality condition is
the same for both directions: (¬u, v) is minimal.

Remark 6. This result is an extension of [BC16, Lemma 3] to the framework of division
property transitions and extremality. The cited lemma states that Sv(x) contains xu if
and only if (¬S−1)¬u(¬x) contains x¬v. Furthermore, a similar degree-based statement
was given by Boura and Canteaut already in [BC13].

Importantly, this proposition shows a bijection between forward and backward integral
distinguishers based on division property. While this relation was known before, it is
unfortunately rarely used in the literature to convert discovered forward distinguishers
into backward distinguishers.

3.5 Division core and its relation to transition classes
From now on, we focus on studying the set of core transitions. Due to the aforementioned
symmetry, it is more convenient to study its characterization as the the min-set of the
parity set of the graph of S. As we shall use this set extensively, we introduce a new term
for brevity.

Definition 10 (Division Core). Let S : Fn2 → Fm2 . Define the division core of S, denoted
DivCoreS , as the minimal division property of the graph of S:

DivCoreS := MinDP (ΓS) = MinSet (ParitySet (ΓS)) =

= MinSet

(u, v) ∈ Fn2 × Fm2

∣∣∣∣ ⊕
(x,y)∈ΓS

xuyv = 1

 .

We deduce the following characterization of division property transitions solely from
the division core.

Aleksei Udovenko 11

Theorem 2. Let S : Fn2 → Fm2 . Then,

1. u S−→ v if and only if (¬u, v) ∈ UpperClosure (DivCoreS);

2. u S−−−→
min.

v if and only if (¬u, v) ∈ MinSetv(UpperClosure (DivCoreS));

3. u S−−→
core

v if and only if (¬u, v) ∈ DivCoreS.

If, in addition, n = m and S is bijective:

4. v S−1

−−→ u if and only if (u,¬v) ∈ UpperClosure (DivCoreS);

5. v S−1

−−−→
min.

u if and only if (u,¬v) ∈ MinSetu(UpperClosure (DivCoreS));

6. v S−1

−−→
core

u if and only if (u,¬v) ∈ DivCoreS.

Here, the subscript of MinSet defines the variable on which the min-set is computed (the
vectors are labeled (u, v)).

On the compactness of division core. By Sperner’s theorem, the division core, as a min-
set, has size bound O(2n+m/

√
n+m). This might seem as not so “compact” representation.

For example, linear functions with domain Fn2 contain only vectors of weight n (to show
this, consider any minimal transition u S−−−→

min.
v and observe that wt(¬u) + wt(v) = n).

Furthermore, for a random binary matrix Fn×m2 one can expect a large number of invertible
submatrices which translates into a large number of minimal/compact division property
transitions (see [ZR18,HWW20]). Perhaps counter-intuitively, it follows that linear maps
are the ones that may achieve the largest size of the division core, which could be interpreted
as having the most complex division property propagation. On the opposite side, for a
random function of full degree, most minimal transitions u S−−−→

min.
v have v of very small

weight which translates into small-weight vectors in division core. This in turn makes most
vectors of larger weight redundant and so the division core is expected to be a small set.
The right intuition is that “heavier” functions tend to have “simpler” division property
propagation and this is exactly captured by the division core as a compact representation.

Finally, we describe a new view on division trail composition in terms of the division
core.
Proposition 7. Let F : Fn2 → Fm2 , G : Fm2 → Fr2, u ∈ Fn2 , w ∈ Fr2. Then, there exists a
valid division trail

u
F−→ v

G−→ w

if and only if there exist a ∈ Fn2 , b, b′ ∈ Fm2 , c ∈ Fr2 such that

a � ¬u, (a, b) ∈ DivCoreF , b ∧ b′ = 0, (b′, c) ∈ DivCoreG, c � w.

Proof. From u
F−→ v there must exist u′ F−−→

core
v′ with u′ � u, v′ � v. Let a = ¬u′, b = v′.

Then, by Theorem 1, we have (a, b) ∈ DivCoreF . From v
G−→ w there must exist v′′ G−−→

core
w′

with v′′ � v, w′ � w. Let b′ = ¬v′′, c = w′. Then, we have (b′, c) ∈ DivCoreG. Since
v′ � v � v′′, we have b ∧ b′ := v′ ∧ ¬v′′ = 0.

The other direction is analogous. The constraint b ∧ b′ = 0 implies that b � ¬b′
and then there exists a vector v ∈ Fm2 such that b � v � ¬b′, so that (a, v) ∈
UpperClosure (DivCoreF), (¬v, c) ∈ UpperClosure (DivCoreG), implying the trail ¬a F−→ v

G−→
c. Since ¬a � u and c � w, the trail u F−→ v

G−→ w is also valid.

12 Convexity of division property transitions: theory, algorithms and compact models

3.6 Convex structure of the set of minimal transitions
In theory, identifying valid transitions (UpperClosure (DivCoreS)) is sufficient to identify
propagation of division property and resulting integral distinguishers. In practice, it is
crucial to also remove redundant transitions to reduce the search space of automated
SAT/MILP solvers or ad-hoc search engines such as [Tod15b,TM16a,DF20]. Therefore,
we analyze the set of minimal/reduced transitions in more details.

Definition 11. Let S : Fn2 → Fm2 . Define the following sets:

IS :=
{

(u, v) ∈ Fn2 × Fm2 | ¬u 6
S−→ v

}
,

MS :=
{

(u, v) ∈ Fn2 × Fm2 | ¬u
S−→ v,@v′ ≺ v : ¬u S−→ v′

}
,

RS :=
{

(u, v) ∈ Fn2 × Fm2 | ¬u
S−→ v,∃v′ ≺ v : ¬u S−→ v′

}
.

Remark 7. These sets contain respectively invalid transitions, minimal transitions and
redundant transitions through S. The defining condition ofMS is equivalent to ¬u S−−−→

min.
v.

Proposition 8. The sets IS ,MS ,RS form a partition of Fn2 × Fm2 . Moreover, IS is a
lower set,MS is a convex set, RS is an upper set.

Proof. The conditions of set generators in the sets’ definitions clearly induce a partition of
Fn2 × Fm2 .

It is clear thatMS ∪RS = UpperClosure (DivCoreS) (both from the definitions and
the fact that it is the complement of IS). Since IS is the complement of this upper set, it
must be a lower set.

The convexity ofMS follows from the fact thatMS = (Fn2 × Fm2) \ RS \ IS . Indeed,
let a, c ∈ MS . If there exists b /∈ MS such that a � b � c, then from b ∈ IS it would
follow that a ∈ IS and so a /∈ Ms. The same argument applies to c and RS , leading to
contradiction.

We emphasize that all the three sets IS ,MS ,RS can be derived from the division core
DivCoreS , highlighting its universality as a compact representation:

IS = UpperClosure (DivCoreS),
MS = MinSetv(UpperClosure (DivCoreS)),
RS = IS ∪MS .

Remarkably, these sets can themselves be expected to have compact representations in
the form of max-set for IS , min-set for RS , and both min-set and max-set forMS . We
discuss concrete efficient algorithms for computing these sets in Section 5.

Note that the maximal upper-set of removable vectors is given by

R′S := LowerClosure (MS).

Compared to RS , it may include some extra vectors from IS (but it always is a superset
of RS). While its size is not smaller than that of RS , most often it has a simpler structure
resulting in smaller models, as we shall see later on examples (see Table 1 in Section 4).

3.7 Linear combinations at the input/output
Lambin, Derbez and Fouque [LDF20] noticed that division property is not preserved under
a composition of S-boxes with linear maps. One has to consider such maps in order to
find integral distinguishers with a non-cube-shaped affine space at the input and/or a

Aleksei Udovenko 13

balanced linear combination of bits at the output. The authors of [LDF20] exhausted all
4-bit linear maps to be composed with one S-box at the input and one S-box at the output.
In [DF20], Derbez and Fouque showed that exhaustion of linear maps is unnecessary
and exhaustion of linear masks is sufficient for finding maximal integral distinguishers,
tremendously reducing the complexity.

For the input linear masks, they use the fact that an affine space of dimension n− 1
can be defined by its 1-dimensional orthogonal complement, i.e. by its single non-zero
vector. It is thus sufficient to define a linear bijective map that maps this vector to a single
bit (completed arbitrarily), compose its inverse at the input of an S-box in the first round
(and recompute the division property propagation through the composition), and assume
this bit to be a constant and all other bits to be active in the division trail search.

For the output linear masks, the approach is more straightforward: define a bijective
linear map that maps the chosen linear combination to a single bit, compose it at the
output of an S-Box in the last round (and recompute the division property propagation
through the composition), and, finally, check if this single output bit is balanced.

3.7.1 Formulaton in our framework

We now formulate this problem and simplify its solution in our framework. For simplicity,
we assume that an “S-box” covers the full state. The case when target S-boxes cover only
part of the state follows naturally. Our analysis is restricted to using traditional division
property to find such distinguishers.

Let Sin : Fn2 → Fn2 be a bijection, F : Fn2 → Fm2 , Sout : Fm2 → Fr2. Let α ∈ Fn2 , β ∈ Fr2
be the input and the output linear masks respectively, α 6= 0, β 6= 0. We are interested in
the integral (zero-sum) distinguishers of Sout ◦ F ◦ Sin with the input linear mask α and
the output mask β:⊕

x∈Fn2 ,〈α,x〉=c

〈β, Sout ◦ F ◦ Sin(x)〉 = 0, c ∈ F2 a constant.

The approach of [LDF20,DF20] is to search for division trails through each of the three
steps of the composition

(〈β, Sout〉) ◦ F ◦ (Sin ◦ L−1
α),

where Lα ∈ GLn(F2) is any such that the first coordinate of Lα(x) equals to 〈α, x〉. To
ensure the precision, the first and the last step must be propagated as units. The following
theorem states an equivalent to the method of [DF20] sufficient condition of existence of
such an integral distinguisher based on division property. As we will show in Subsection 4.3,
this leads to easy and efficient CNF/MILP modeling.

Theorem 3. Let Lα ∈ GLn(F2) be such that Lα(x) = (〈α, x〉 , . . .) Then, there exists a
division trail

(0, 1, . . . , 1) Sin◦L−1
α−−−−−→ u

F−→ v
〈β,Sout〉−−−−−→ (1)

if and only if u F−→ v and

¬u ∈ LowerClosure
(
SuppANF

〈
α, S−1

in
〉)
, (3)

v ∈ LowerClosure (SuppANF 〈β, Sout〉) . (4)

Proof. The first transition by Proposition 6 is equivalent to ¬u
Lα◦S−1

in−−−−−→ (1, 0, . . . , 0),

equivalently ¬u
〈α,S−1

in 〉−−−−−→ (1), equivalent to (3). The last transition is similarly equivalent
to (4).

14 Convexity of division property transitions: theory, algorithms and compact models

Remark 8. For a non-invertible Sin : Fn′2 → Fn2 , the Boolean function y 7→
〈
α, S−1

in (y)
〉
can

be replaced with the function

y 7→
⊕

x∈(Sin◦L−1
α)−1(y)

〈α, x〉 .

3.8 Relationships with graph indicator-based degree bounds
Recently, Carlet [Car20a] derived new degree bounds on compositions of functions based
on the degrees of the graph indicators of the involved functions. It is a natural question
whether these bounds can beat traditional bit-based division property and whether division
property can be improved by incorporating these bounds. In this section, we show a close
relationship of these bounds with division property propagations, based on the relationship
of division property propagation and the graph indicator given by Theorem 1.

Carlet in [Car20b] gives an elegant expression for the graph indicator of the composition
of functions in terms of their graph indicators.

Proposition 9 ([Car20b, Car20a]). Let Gi : Fmi−1
2 → Fmi2 , i ∈ {1, . . . , r}, let F =

Gr ◦ . . . ◦G1. Then,

1ΓF (x, z) =
⊕

(y1,...,yr−1)
∈Fm1

2 ×...×F
mr−1
2

1ΓG1
(x, y1) · 1ΓG2

(y1, y2) · . . . · 1ΓGr (yr−1, z).

Example 3. Let H : Fn2 → Fm2 , G : Fm2 → Fr2. Then,

1ΓG◦H (x, z) =
⊕
y∈Fm2

1ΓH (x, y)1ΓG(y, z).

This expression naturally allows to bound possible monomials in 1ΓF (x, z): (i) 1ΓF (x, z)
does not contain a monomial multiple of xuz¬v if and only if (ii)

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr (yr−1, z)

does not contain a monomial multiple of xuym1
1 ym2

2 . . . y
mr−1
r−1 z¬v. By Theorem 1, the

condition (i) is equivalent to: for any v′ � v, F v′(x) does not contain a monomial multiple
of xu. Sufficient conditions for (ii) can be derived from degree bounds of the involved
graph indicators, as done in [Car20a]. In this way, graph indicators’ degrees allow to derive
upper bounds on monomials occurring in products of outputs of the composition F .

We now show that bit-based division property verifies a stronger condition, which in
fact can be seen as a bit-based formulation of the degree-based bounds.

Theorem 4. Let F,Gi be defined as above. Let I be the formal expansion (i.e., no
⊕-cancellations) of

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr (yr−1, z).

Then, I contains a monomial multiple of

xuym1
1 ym2

2 . . . y
mr−1
r−1 z¬v (5)

if and only if there exists a valid division trail

u
G1−−→ w1

G2−−→ . . .
Gr−1−−−→ wr−1

Gr−−→ v. (6)

Aleksei Udovenko 15

Proof. By Theorem 1, each link in the trail has an equivalent condition on the monomial
multiple in the corresponding graph indicator:

u
G1−−→ w1 ⇔ 1ΓG1

(x, y1) contains a monomial multiple of xuy¬w1
1 ,

w1
G2−−→ w2 ⇔ 1ΓG2

(y1, y2) contains a monomial multiple of yw1
1 y¬w2

2 ,

. . .

wr−1
Gr−−→ v ⇔ 1ΓGr−1

(yr−1, z) contains a monomial multiple of ywr−1
r−1 z¬v.

(⇒) If I contains a monomial multiple of (5), there exists one monomial per each of
1ΓG1

,1ΓG2
, . . . such that all these monomials multiply to (5). Clearly, there must exist

w1, . . . , wr−1 such that 1ΓG1
(x, y1) contains a monomial multiple of xuy¬w1

1 , 1ΓG2
(y1, y2)

contains a monomial multiple of yw1
1 y¬w2

2 (to get ym1
1), etc.

(⇐) If there exists a trail of the form (6), then there exist corresponding monomial
multiples of xuy¬w1

1 , yw1
1 y¬w2

2 , etc. that obviously multiply to a monomial multiple
of (5).

This theorem gives an alternative view on division property trails: a division property
trail u G1−−→ . . .

Gr−−→ v is equivalent to a chain of monomials, one from each of the
graph indicators of the composed functions G1, . . . , Gr, such that, in their product, all
intermediate variables are fully saturated, the input variable has an exponent succeeding
u and the output variable has an exponent succeeding ¬v. In particular, division property
allows to derive an upper bound on monomials occurring in the graph indicator of the
composition.

While an existence of such a trail / a monomial chain does not mean that 1ΓF in fact
contains a monomial multiple of xuy¬v (due to the possible cancellations), the inverse
is true: for 1ΓF to contain such a monomial multiple, there must exist a corresponding
division trail.

We conclude that traditional bit-based division property is optimal in determining
upper bounds on monomials in 1ΓF as long as cancellations in the product

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr (yr−1, z)

are not considered.

4 CNF modeling of a convex set
In this section, we show that the convex structure of division property transitions from
Subsection 3.6 naturally lends itself to CNF models. We recall that it is sufficient to derive
constraints removing the lower set IS and the upper set RS (or R′S).
Remark 9. Any CNF formula can be trivially converted to a MILP system, however MILP
inequalities are generally more expressive and one can expect a significant reduction in the
number of inequalities compared to the number of clauses. Recently, Udovenko [Udo21]
developed techniques for constructing smallest MILP models for Boolean functions. In
particular, an efficient approach for modeling monotone Boolean functions (lower/upper
sets) is given and can be directly applied to remove the lower set IS and the upper set
RS/R′S optimally (separately).

Throughout this section, we consider division property transitions in the “directionless”
(symmetric) way: for a transition u

S−→ v, we consider the vector (¬u, v). This is done
for convenience and has no extra cost since the variable negation is free in CNF/MILP
models.

16 Convexity of division property transitions: theory, algorithms and compact models

4.1 Basic modeling
A lower setW is called principal if it is spanned by a single element: W = LowerClosure ({w}).
Such a lower set can be removed by one CNF clause precisely without removing any other
point from the hypercube {0, 1}n. In fact, up to negation of the variables, a principal lower
set is exactly what can be removed by a single CNF clause. It is thus a building block of
general CNF modeling tools such as the Quine-McCluskey algorithm [Qui55,McC56].

Proposition 10. Let w ∈ Fn2 . Then,

x /∈ LowerClosure ({w}) ⇐⇒
∨

i:wi=0
xi

x /∈ UpperClosure ({w}) ⇐⇒
∨

i:wi=1
¬xi.

Since a general lower set is a union of principal lower sets by definition, it can be
removed by a set of clauses each removing a principal lower set spanned by one of the
maximal elements. The case of an upper set is completely analogous.

Corollary 3. The set MS of minimal division property transitions can be modeled by
|MaxSet (IS)|+ |MinSet (RS)| constraints (CNF clauses or integer inequalities).

It is also easy to show that such CNF model is optimal (in the number of clauses),
although separately for each of the two sets IS and RS .

Proposition 11. Let L ⊆ Fn2 be a lower set. If a CNF formula precisely removes L from
the hypercube {0, 1}n, then it contains at least |MaxSet (L)| clauses.

Proof. Let a⊕LowerClosure (w) , a∧w = 0 be the cube removed by a clause in the formula
modeling L. Observe that

a⊕ LowerClosure (w) ⊆ LowerClosure (a ∨ w) ⊆ L,

where the second inclusion follows from the monotonicity of L. Therefore, we can replace
all clauses in the formula by monotone ones (i.e. with a = 0). Observe that each such
principal lower set can remove at most one element from MaxSet (L) (without removing
anything from LowerClosure (L)). The proposition follows.

We provide the sizes of the relevant sets for a variety of S-boxes in Table 1. For
optimal CNF encodings, we used the Quine-McCluskey algorithm together with the open
source SCIP optimization suite [GAB+20] to find/bound the minimum number of clauses
(approach described in [BC20]).

Example 4. Consider the AES S-Box S : F8
2 → F8

2 as an example. Its division core
DivCoreS contains 122 vectors (u, v) ∈ F8

2 × F8
2 with (wt(u),wt(v)) distributed as follows:

(0, 8) : 1, (1, 1) : 25, (1, 2) : 40, (1, 3) : 6,
(2, 1) : 26, (2, 2) : 4, (3, 1) : 19, (8, 0) : 1.

Here, weights (8, 0) and (0, 8) correspond to the vectors (1, 0), (0, 1) which in turn cor-
respond to the division property of the domain and of its image. The set MaxSet (IS)
contains 87 maximal invalid vectors, the MinSet (RS) contains 319 minimal redundant
vectors. Therefore, minimal transitions through S can be precisely described by 406 CNF
clauses (and 87 are sufficient at the cost of allowing redundant transitions). Using the
alternative upper bound MinSet (R′S) allows to further reduce the number to 87+274=361
clauses.

Aleksei Udovenko 17

We compare briefly with other tools/methods. The automated tool Solvatore [EKKT19]
generates 2921 CNF clauses. A tool from Hu-Wang-Wang [HWW20] uses the STP solver
and generates a DNF formula by enumerating all 2001 valid non-redundant trails. Our
approach can be easily adapted to compute two DNF formulas with much less clauses:
122 + 119 = 241. With the Quine-McCluskey algorithm (applied to division property
in [GD21]) we obtain the optimal value of 234 CNF and a heuristic value of ≤151 DNF
clauses. This is about 2 times better than our result, showing however that our models are
close to optimal (in particular, removing invalid and redundant trails separately is done
optimally by Proposition 11). Most importantly, Quine-McCluskey is not applicable to
larger S-boxes while our method can produce CNF/DNF models of very good quality.

Table 1: Sizes of the convex sets relevant for modeling division property for a variety of
S-boxes. MinDPPTS is the set of all minimal division property transitions. DivCoreS is the
compact set containing all the information about division property transitions. MaxSet(IS)
and one of MinSet(RS), MinSet(R′S) define the number of CNF clauses sufficient for SAT
modeling (see Section 4). † since MixColumn of Midori-64/Skinny-64 consist of 4 parallel
independent 4-bit maps, the optimal CNF was computed from concatenating 4 optimal
CNF models (28/21 clauses respectively) of each 4-bit block.

func. S n |MinDPPTS | |DivCoreS | |MaxSet (IS)| |MinSet (RS)|
∣∣MinSet

(
R′S
)∣∣ CNF (our) CNF (opt.)

Present 4 47 16 20 24 24 44 26
Knot 4 49 26 32 29 27 59 40
Ascon 5 190 71 83 93 83 166 115
Keccak 5 137 57 45 75 25 70 50
Fides 6 419 188 146 359 254 400 222
Misty S7 7 1779 436 396 1000 967 1363 607
AES 8 2001 122 87 319 274 361 234
Skinny-128 8 2089 611 193 1383 198 391 246
DryGASCON-
256

9 7983 631 480 1309 552 1032 475

Misty S9 9 27 623 6755 5120 18 575 16 868 21 988 10403-11819
LED MixColumn 16 177 643 913 177 643 913 33 412 334 974 429 33 061 66 473 -
Midori-64 Mix-
Column

16 9 834 496 9 834 496 56 39 337 984 56 112 112†

Skinny-64 Mix-
Column

16 1 185 921 1 185 921 40 6 324 912 44 84 84†

Midori-64 Super-
Sbox (all keys)

16 14 714 723 2 380 924 1 912 088 6 277 211 4 317 883 6 229 971 -

LED Super-Sbox
(all keys)

16 8 458 909 319 606 321 168 1 119 494 1 261 465 1 440 662 -

LED Super-Sbox
(zero key)

16 8 481 417 382 591 388 134 1 215 435 1 317 330 1 603 569 -

4.2 Cardinality bounds
Cardinality bounds allow to bound the number of bits equal to 1 among a given set
of variables. A popular CNF construction for encoding cardinality bounds is due to
Sinz [Sin05] and is based on the so-called sequential counters, which encode addition of
integer variables in the unary representation. Although it requires auxiliary variables, it is
known to perform well on practice, since it is decided by unit propagation. Cardinality
bounds using sequential counters were used recently for differential/linear trail search
using SAT-solvers [SWW21].

Cardinality bounds may be particularly helpful for constraining division property
transitions, as they can remove a large number of transitions at a very low cost. There are
two particular use cases.

The first use is to replace a precise convex upper bound (e.g., MinSet (RS) or MinSet
(
R̃S
)
)

by a simpler (yet possibly imprecise) cardinality upper bound. Here, we use the fact

18 Convexity of division property transitions: theory, algorithms and compact models

that removing precisely all redundant transitions is not necessary: it is usually done as a
heuristic aid for SAT solvers to reduce the search space. For a function S, this cardinality
constraint is given by wt(u||v) ≤ h, where h := maxw∈MS

wt(w) and u, v are the division
property variables modeling the transition ¬u S−→ v.

The second use is to supplement precise bounds to allow faster conflicts during the SAT
search. Cardinality bounds allow solvers to quickly skip a large part of invalid transitions,
and to process the remaining precise constraints on the remaining smaller search space. In
addition to the upper bound described above, a supplementary lower bound is given by
l ≤ wt(u||v), where l := minw∈MS

wt(w).

4.2.1 The case of a linear map

We consider the particular case of a linear map S : Fn2 → Fn2 . For a minimal transition
¬u S−−−→

min.
v it is known that wt(¬u) = wt(v) is necessary but not sufficient. In the

symmetric form (u, v), this constraint becomes

n−wt(u) = wt(v) ⇔ wt(u||v) = n.

A redundant transition (u, v) is such that wt(v) > wt(¬u), implying

wt(u||v) > n.

It follows that redundant transitions RS can be removed with a single cardinality constraint
wt(u||v) ≤ n.

Proposition 12. For a linear map S : Fn2 → Fn2 , for some I ⊆ IS, the set RS ∪ I can be
removed with a single cardinality constraint wt(u||v) ≤ n, where (u||v) ∈ F2n

2 .

Remark 10. It is natural to use the more strict constraint wt(u||v) = n, since it may also
remove a larger part of IS .

Remark 11. This constraint is equivalent to wt(¬u) = wt(v) (for the transition ¬u S−→ v)
and is basic and well-known in the literature. What is important for our purposes is that
it fully removes RS .

Example 5. Consider the MixColumns matrix of LED [GPPR11], M : F16
2 → F16

2 (see
Table 1). It is such that:

|MM | = 177 643 913; |MinSet (RM)| = 334 974 429;
|MaxSet (IM)| = 33 412; |MinSet (R′M)| = 33 061.

Despite a large number of minimal division property transitions (177M), it can be modeled
by only 33k CNF clauses plus a cardinality constraint, which adds a negligible amount of
clauses and auxiliary variables.

Remark 12. The approach of [HWW20] (using auxiliary variables) allows to model large
linear layers (up to 64 bits), by encoding the submatrix invertability condition in the
problem, in a way that requires the SMT solver to find the inverse matrix. We remark
though that it was only presented in the SMT form, not in pure SAT or MILP.

The advantage of our SAT encoding (which although has a smaller feasible range of
about 16-bit linear maps) is its simpler form and the fact that it can be decided by unit
propagation: given the input and output mask (u, v), the SAT solver can decide its validity
without making further guesses (although at the cost of verifying a possibly large number
of clauses).

Aleksei Udovenko 19

Multidimensional cardinality bounds Cardinality bounds may be generalized to multiple
dimensions by bounding vectors of cardinalities of smaller chunks of the vector (u||v).
However, we did not notice a significant performance improvement of this method in our
application to LED (see Section 6). The technique is described in Appendix C.

4.3 Linear masks at the input / at the output

In Subsection 3.7, we derived simple conditions for applying linear masks at the input
and/or at the output. We now show how to model these conditions. Recall that we
consider a composition Sout ◦ F ◦ Sin with an input linear mask α and an output linear
mask β. Theorem 3 provides the following necessary and sufficient conditions (together
with the validity of u F−→ v):

¬u ∈ LowerClosure
(
SuppANF

〈
α, S−1

in
〉)
,

v ∈ LowerClosure (SuppANF 〈β, Sout〉) .

These three conditions can be efficiently modeled by CNF/MILP formulas as was described
in Subsection 4.1.

Moreover, it is sufficient to check if a transition u F−→ v is valid for any of maximal
exponents ¬u, v in the ANFs of

〈
α, S−1

in
〉
and 〈β, Sout〉 respectively. However, the maxi-

mality of v can not be guaranteed in practice since the corresponding trail u F−→ v may
be redundant, while standard modeling approaches disallow redundant transitions for
efficiency reasons.

For the input case, we can restrict the division property mask of the input to F to
take values only from ¬MaxSet

(
SuppANF

〈
α, S−1

in
〉)
, with the goal of reducing the search

space. Since a max-set is an antichain, it is convex, and can be modeled by removing the
complementary lower and upper bounds. Formally, define

U := MaxSet
(
SuppANF

〈
α, S−1

in
〉)
,

P := MaxSet
(

UpperClosure (U)
)
,

Q := MinSet
(

LowerClosure (U)
)
.

Then, a vector x ∈ Fn2 belongs to U (we set x := ¬u) if and only if

(x /∈ LowerClosure (P)) ∧ (x /∈ UpperClosure (Q)),

which can be encoded by |P |+ |Q| CNF clauses (or MILP inequalities).

5 Algorithmic framework for dense sets

5.1 Bitwise transformations, lower, upper, min-, max-sets

We start by introducing a simple yet very generic and powerful tool for manipulating
dense subsets of Fn2 represented by their indicator vectors. This is a straightforward
abstraction of well-known algorithms such as the Möbius transform for computing the
ANF, the Walsh-Hadamard transform, sum-over-subsets technique, etc. The tool is
described in Algorithm 1.

20 Convexity of division property transitions: theory, algorithms and compact models

Algorithm 1 Bitwise multidimensional transform
Input: array X ∈ A2n , transformation map f : A2 → A2, mask I ∈ Fn2 set to 1 by default
Output: in-place transformed array X ∈ A2n

Complexity: O(wt(I)2n) ≤ O(n2n)
1: function Transform[f, I](X)
2: for all i ∈ {0, . . . , n− 1}, s.t. I has i-th bit set do . 0-based
3: for all j ∈ {0, . . . , 2n − 1}, s.t. j has (n− 1− i)-th bit set do . 0-based
4: (Xj−2i , Xj)← f(Xj−2i , Xj)
5: return X

Definition 12. Define the following maps with the signature (F2)2 → (F2)2:

XOR-up : (a, b) 7→ (a, b⊕ a),
XOR-down : (a, b) 7→ (a⊕ b, b),

OR-up : (a, b) 7→ (a, b ∨ a),
OR-down : (a, b) 7→ (a ∨ b, a),
LESS-up : (a, b) 7→ (a, b ∧ ¬a), equiv. b← b ∧ [a < b],

MORE-down : (a, b) 7→ (a ∧ ¬b, b), equiv. a← a ∧ [a > b].

Proposition 13. The defined transformations have the following effects:

1. Transform[XOR-up] computes the Möbius transform (involution), i.e. transforms
the truth table of a Boolean function into its ANF and vice versa.

2. Transform[XOR-down] computes the involution ParitySet;

3. Transform[OR-up] computes UpperClosure.

4. Transform[OR-down] computes LowerClosure.

5. Transform[LESS-up] ◦ Transform[OR-up] computes MinSet.

6. Transform[MORE-down] ◦ Transform[OR-down] computes MaxSet.

Proof. The proofs can be done by induction on the bit-position.

Remark 13. The transformations can be efficiently batched in an efficient bitslice fashion,
by lifting the set A and operations from F2 to Ft2 where t is the number of considered sets.

5.2 Division property of a set
Malviya and Tiwari [MT21] consider the problem of computing the minimal division
property of a given (multi)set X. They claim classical complexity O(n2n|X|) and quantum
complexity O(n2n

√
|X|).

The relation between the division property and the set indicator given by Proposition 4
together with the fast MinSet algorithm from the previous subsection lead to a simple and
efficient classical algorithm with complexity O(n2n) for the problem (see Algorithm 2).

5.3 Division core and propagation table
Let S : Fn2 → Fm2 . By definition, DivCoreS := MinDP (ΓS), which can be computed by
Algorithm 2. This approach leads to time and memory complexity O((n+m)2n+m). In
particular, for bijective S-Boxes we get the time complexity O(n22n). The complexity is
independent of the S-box and of the size of the division core.

Aleksei Udovenko 21

Algorithm 2 Minimal division property of a set
Input: X ⊆ Fn2
Output: MinDP (X) ⊆ Fn2
Complexity: O(n2n)

1: G← indicator vector of X (∈ F2n
2)

2: G← Transform[XOR-down] (G) . parity set of X
3: G← Transform[OR-up] (G) . upper set of parity masks
4: G← Transform[LESS-up] (G) . min-set of parity masks
5: return G . MinDP (X)

Recall that the set of all valid division property transitions through S can be computed
as (1, 0) ⊕ UpperClosure (DivCoreS). To obtain the usual reduced division property
propagation table (i.e., all minimal transitions), we can simply compute partial min-set on
the second coordinate. See Algorithm 3 for details.

Algorithm 3 Division property propagation table (only minimal transitions)
Input: S : Fn2 → Fm2 as a lookup-table
Output: reduced DPPT of S: D =

{
(u, v) ∈ Fn2 × Fm2 | u

S−−−→
min.

v
}

Complexity: O((n+m)2n+m)
1: D ← indicator vector of ΓS (∈ F2n+m

2)
2: D ← Transform[XOR-down] (D) . ParitySet (ΓS)
3: D ← Transform[OR-up] (D) . full DPPT (up to ¬u)
4: D ← Transform[LESS-up, (0, 1)] (D) . min-set on v; =MS from Definition 11
5: return D ← (1, 0)⊕D . compute ¬u

This in particular achieves “quadratic” complexity O(n22n), an improvement over the
“cubic” complexity O(23n) claimed in [DF20] for computing the DPPT using algorithm
from [XZBL16] (in the case m = n).

Finally, from the setMS computed by Algorithm 3 we can easily compute the necessary
min-/max-sets and respective complementary sets required for modeling:

IS = UpperClosure (DivCoreS),
RS = IS ∪MS ,

R′S = LowerClosure (DivCoreS).

For the compact CNF modeling (Section 4), it is left to compute MaxSet (IS) and
MinSet (RS) (or MinSet (R′S)).

5.4 Compact representation (advanced algorithm)
In this subsection, we describe a breadth-first search algorithm which performs much better
for “heavy” functions, i.e., those having many high-degree monomials in most products of
output bits, implying a small size of the division core and a small number of non-trivial
invalid transitions. In this algorithm, we assume access to the lookup table of the function
and the memory footprint is of the same magnitude, so this approach is limited up to
about 32-bit functions on practice.

We restrict the description to the case of a bijective function S : Fn2 → Fn2 for simplicity,
as non-bijective functions would require more fine-grained case analysis due to possible
degeneracy.

22 Convexity of division property transitions: theory, algorithms and compact models

We consider first vectors (u, v) ∈ DivCoreS with u = 0 or v = 0. The case of
v = 0 corresponds to the minimal division property of the domain which leads exactly
to (1, 0) ∈ DivCoreS . The case of u = 0 can be exhausted by computing the minimal
division property of the image of S (more precisely, of the set of its elements with odd
multiplicity). For bijective S this case leads to only (0, 1) ∈ DivCoreS . Note that all strict
predecessors of these vectors define invalid transitions (have parity zero), and should be
explicitly excluded to avoid enumeration of the 2 · 2n “trivial” pairs.

We are going to explore all possible nonzero u, v in a breadth-first manner (from low
weight to high weight), until we obtain the full division core of S. Given a pair (u, v) of
unknown parity, and a promise that all its strictly preceeding vectors have parity zero
(due to the exploration order), we can compute its parity by computing the parity set of
(the support of) Sv or of (S−1)u; we choose the one with the minimal weight (wt(v) or
wt(u)). The parity set of, say, Sv, may provide many other vectors (u′, v) ∈ DivCoreS .
In particular, we consider all minimal u′ in the parity set as candidates and save the
corresponding pairs (u′, v) in a set D. Although D may also include redundant vectors,
each vector of DivCoreS will be present in one of such lists of candidates.

After the main step, if (u, v) has parity one, we add it to the division core (it is
guaranteed to be minimal due to the exploration order) and continue with the next pair
in the queue. Otherwise, if (u, v) has parity zero, we consider its successors for adding
to the exploration queue. However, for each pair, we maintain a counter of its direct
predecessors that were visited and have parity zero. The pair is added to the queue only
when the counter is full, i.e. when the last direct predecessor is visited. This allows to
avoid duplicate processing of (u, v), and, more importantly, ensures that all predecessors
have parity zero and the new pair is not redundant. In this way, when a new pair is visited
and it belongs to the list D of parity-1 pairs, we know that this pair is minimal and so
belongs to the division core.

The algorithm effectively explores full set IS and the bordering subset of UpperClosure (DivCoreS)
(in fact, among them, only the elements of DivCoreS are visited), which is at most 2n
times larger. Note that all the predecessors of (1, 0) and (0, 1) are excluded. Let

I×S := {(u, v) ∈ IS | u 6= 0, v 6= 0} .

Then, the algorithm performs at most 2n
∣∣I×S ∣∣ iterations of the algorithm. Each iteration

is dominated by an n-bit ParitySet computation together with its min-set (time n2n).
The total time complexity is upper bounded by O

(∣∣I×S ∣∣n22n
)
. Note however that, due

to maintaining the list D of parity-1 pairs, many visited pairs do not incur a parity set
computation. In addition, by storing masks u and v for which the parity sets were already
computed, we can avoid recomputing them for many pairs from I×S as well. We conclude
that the algorithm is expected to be much faster on practice.

The pseudocode is given in Algorithm 4.

5.4.1 Computing complete compact representation

Since the algorithm effectively enumerates full I×S , its max-set can be computed by marking
redundant vectors during the enumeration (in addition, we need to manually add direct
predecessors of (0, 1) and (1, 0) to avoid the enumeration of their exponentially-sized lower
sets). For the compact modeling, it is left to compute MinSet (RS). For this purpose, we
derive an alternative expression for RS .

Proposition 14. Let S : Fn2 → FM2 . Then,

RS =
⋃

(u,v)∈DivCoreS

{(u′, v′) ∈ Fn2 × Fm2 | u′ � u, v′ � v} .

Aleksei Udovenko 23

Algorithm 4 Computing division core of a bijection (BFS)
Input: lookup table S ∈ (Fn2)2n , lookup table S−1 ∈ (Fn2)2n

Output: DivCoreS ⊆ Fn2 × Fn2
Complexity: O

(∣∣I×S ∣∣n22n
)
, where I×S := {(u, v) ∈ IS | u 6= 0, v 6= 0}

1: K ← {(ei, ej) | i ∈ {0, . . . , n− 1} , j ∈ {0, . . . , n− 1}} . unknown parity vectors
2: C ← {(u, v) 7→ 0 | u, v ∈ Fn2} . neighbor counts
3: D ← {(1, 0), (0, 1)} . division core
4: P ← D . parity-one vectors
5: while K is not empty do
6: (u, v)← arg min(u,v)∈K (min(wt(u),wt(v)),max(wt(u),wt(v)))

Without loss of generality, assume that minimum is achieved in v
7: delete (u, v) from K
8: if (u, v) ∈ P then
9: D ← D ∪ {(u, v)}

10: else
11: U ← ¬MaxSet (SuppANF (Sv))
12: P ← P ∪ (U × {v})
13: if (u, v) /∈ P then
14: for all (u′, v′) a direct successor of (u, v) do
15: C((u′, v′))← C((u′, v′)) + 1
16: if C((u′, v′)) is correct (†) then
17: K ← K ∪ {(u, v′)}
18: return D

† Correctness of C((u, v)) means that C((u, v)) is equal to the number of predecessors
of (u, v), excluding ones having a full-zero half:

C((u, v)) = wt(u) + wt(v)− [wt(u) = 1]− [wt(v) = 1]

24 Convexity of division property transitions: theory, algorithms and compact models

Proof. Each set in the union defines redundant vectors identified by an element (u, v) ∈
DivCoreS . Conversely, each redundant vector must have an associated irredundant vector
from (u, v) ∈ DivCoreS .

It follows that MinSet (RS) can be computed from DivCoreS by replacing each vector
(u, v) ∈ DivCoreS by the set of vectors (u, v′), where v′ is taken from direct successors of
v (i.e., v′ � v,wt(v′) = wt(v) + 1). However, redundant vectors may occur there and a
final computation of MinSet is needed. Assuming sparse DivCoreS , it makes sense to use
the naive quadratic MinSet algorithm instead of the dense one. The final complexity of
computing MinSet (RS) is thus upper-bounded by O(|DivCoreS |2 · n2).

Corollary 4. Let S : Fn2 → Fm2 . Then, |MinSet (RS)| ≤ m · |DivCoreS | .

Example 6. We ran the algorithm on a randomly generated 32-bit bijective S-box.
Together with the generation and inversion, it took less than a core-day on a laptop with
64GB RAM. The resulting numbers are:

|DivCoreS | = 7 152, |MaxSet (IS)| = 2 958, |MinSet (RS)| = 40 093.

These numbers show that it would even be possible to model such an S-box in a cipher.
Although it is unlikely that such a cipher would be of interest, this proof-of-concept show
the power of the algorithm and of the compact representation to capture the simplicity of
“heavy” S-boxes (i.e., the compactness of the maximal sets of monomials).

6 Application to LED
Derbez and Fouque [DF20] increased precision of traditional division property by two
techniques: (1) computing “perfect” division property propagation tables of Super-Sboxes;
(2) checking linear combinations of bits (inside Super-Sbox boundaries) at the input and at
the output. In addition, the authors designed an ad-hoc search method, since modeling 16-
bit S-boxes was not possible with state-of-the-art techniques. They considered lightweight
block ciphers with 4-bit S-boxes and 16-bit Super-Sboxes, such as Midori64, Skinny-64,
LED [GPPR11]. Their approach succeeded for Midori64 and Skinny-64, for which they
improved best integral distinguishers by 1-2 rounds. However, the running time during
their experiments with LED was not reasonable.

In this section, we apply our new framework to handle this case. The best integral
distinguisher for LED is due to Hu, Wang and Wang [HWW20], who managed to model
perfectly the MixColumn matrix of LED, which is MDS. The distinguisher covers 7 rounds,
with 63 input active bits and full output state balanced. Full balanced state may hint
towards possibility of weaker distinguishers (partially balanced state) on 8 or more rounds.
We set to evaluate 8 rounds of LED using the two techniques by Derbez and Fouque
implemented using our advancements. As we shall see, these two techniques are insufficient
to find an 8-round integral distinguisher, if it exists.

All experiments were done on the version of LED with 128-bit key (the key size affects
the constants in the Super-Sboxes).

6.1 Structure of LED and its model
The structure of LED is particularly convenient for our analysis. Each round consists of four
standard operations: AddConstants(AC), SubBytes(SB), ShiftRows(SR), MixColumns(MC).
The state of LED is a 4 × 4 array of 4-bit nibbles. The key is added only after every 4
rounds (a step).

The 8-round LED has a natural Super-Sbox decomposition: 4 rounds of Super-Sboxes
(SB→ MC→ AC2i+1 → SB, applied on columns) with the SR→ MC→ SR linear layers

Aleksei Udovenko 25

in-between. For example, the following equation describes the Super-Sbox decomposition
of the first two rounds (note that SR commutes with SB):

AC0 → SB→ SR→ MC→ AC1 → SB→ SR→ MC
= AC0 → SR→ (SB→ MC→ AC1 → SB)→ SR→ MC.

The key addition happens outside of the Super-Sboxes and thus does not affect the
modeling. However, the constant addition AC does affect Super-Sboxes, and we compute
the division property transitions for each Super-Sbox separately, using the actual constant
in the middle. In the following subsection, we describe modeling details for the two main
components: Super-Sboxes and the MixColumns linear layer.

6.2 Modeling details
As our theoretical analysis shows that division property can be very naturally modeled
by pure CNF formulas, we set to use a bare SAT-solver (not an SMT-solver). We chose
Kissat [BFFH20], a recent solver which showed strong performance at a recent SAT
competition [HJS+20].

We modeled 2 Super-Sbox rounds with SR ◦MC ◦ SR layers in-between and outside
(5 rounds of 16-bit maps with re-wirings in between). The missing 2 Super-Sbox rounds
are treated by the linear mask analysis (Subsection 3.7) and by the trivial Super-Sbox
transitions 116 → 116, 016 → 016. Each such model took less than a few minutes to solve
on a laptop with an Intel(R) Core(TM) i5-10210U CPU and 64 GiB RAM.

Modeling MixColumn matrix The MixColumn matrix of LED is an MDS matrix M
mapping F4

24 to itself. We apply directly our algorithms to compute the complementary
lower and upper bounds on division property transitions. The lower bound (removing
invalid transitions) consists of 33 412 vectors, the upper bound (removing redundant
transitions) contains 334 974 429 vectors, the alternative upper bound contains 33 061
vectors. The total number of minimal transitions is 177 643 913. We observe that 33k
clauses is reasonable for the lower bound. However, the upper bound is unnecessarily large.
Therefore, we used the cardinality constraint described in Subsection 4.2 to remove RM
and used the 33k clauses to remove IM .

Modeling Super-Sbox We provide numbers for the case of Super-Sbox with the zero
constant; the cases of other constants are similar. The division core contains 382 591
vectors and the number of valid minimal transitions is 8 481 417; the complementary lower
and upper bounds contain 388 134 and 1 215 435 vectors respectively. These number are
rather large, but still in a feasible range of modern SAT solvers. We used the 388 134
clauses to remove invalid trails precisely, while we used a cardinality bound to remove a
part of redundant trails, to avoid using the 1 215 435 clauses per Super-Sbox for removing
all redundant trails.

6.3 Exhausting all linear masks
We applied the approach from Subsection 3.7 to search for distinguishers with linear masks
applied to an input and an output Super-Sbox.

Naive approach would be to exhaust all possible linear masks α, β and check the
existence of respective distinguishers. However, as noticed by [DF20], many linear masks are
redundant: an absence of distinguishers for one mask may imply absence of distinguishers
for others, making them redundant (in case a distinguisher is found, redundant masks may
be re-evaluated if needed).

26 Convexity of division property transitions: theory, algorithms and compact models

115

⟨α,x⟩�

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

SuperSbox

1111 1111 1111 1111

0010 1111 1111 1111

1111 1111 1111 1111

0110 1111 1111 1111

SR ○MC ○ SR

1111 1011 1111 1101

1111 1111 1101 1111

1111 1111 1111 1111

1101 1111 1101 1111

SuperSbox

0100 0011 1000 1000

0001 1111 0100 1111

1111 0001 0100 1010

1111 1111 0110 0100

SR ○MC ○ SR

0000 0000 1111 0000

0111 1011 0000 0011

1011 1101 1010 1101

0011 1101 0111 0111

SuperSbox

0000 0000 0100 0000

1010 0000 0000 0100

0000 0000 0000 0000

0000 0010 0010 0000

SR ○MC ○ SR

0000 0000 0000 0000

0000 0000 0000 0000

1011 0000 0000 0000

0111 0000 0000 0000

SuperSbox 11

⟨β,x⟩

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

Figure 1: Example division trail from the 1st input Super-Sbox to the 1st output Super-
Sbox. Covers input masks α such that the ANF of

〈
α,SSB−1

0,0(x)
〉
contains a multiple of

x4x5x7x12x15 (zeroes in the first column after the first Super-Sbox), output masks β such
that the ANF of 〈β,SSB3,0(y)〉 contains a multiple of y8y10y11y13y14y15 (ones in the first
column before the last Super-Sbox).

On practice, many linear combinations turn to have the same set of maxterms in the
ANF. For example, for the Super-Sbox of LED with the zero constant, the number of
unique sets of maxterms among linear combinations of outputs is only 1785 (out of 65 535).
The first step is thus to remove masks with duplicate sets of ANF maxterms.

From Theorem 3 it is clear that a mask is redundant if the lower closure of the
respective ANF (i.e., that of

〈
α, S−1

in
〉
or 〈β, Sout〉) covers the lower closure of the ANF

of another mask. As a result, we only need to consider masks corresponding to minimal
by inclusion lower closures of the ANF. In the example constant-0 Super-Sbox of LED,
the 1785 maxterm-unique ANFs reduce further to 255 (by a pairwise comparison). For
the Super-Sbox’ inverse, among 2021 maxterm-unique combinations again only 255 are
minimal by (lower closure) inclusion.

Still, a straightforward search (as done in [DF20] for other ciphers) would require solving
16×255×255 ≈ 1 million (4×4 combinations of input and output Super-Sboxes) of search
instances. This may be a feasible goal but it would require a significant computational
effort. We describe a natural optimization that shows to be particularly helpful in the case
of LED.

6.3.1 Reusing trails

Usually, one may expect that many linear combinations of output bits have similar ANFs.
Therefore, a trail ¬u F−→ v satisfying conditions of Theorem 3 for a pair of masks (α, β),
may satisfy the conditions for some other pairs of masks (α′, β′) as well, even if both pairs
correspond to unique and non-redundant ANFs. This condition can be checked much faster
than solving a SAT instance. This suggests the following optimization: before solving the
SAT instance for a pair of masks (α, β), check whether any previously found trail satisfies
the condition.

This approach works well for the 8-round LED. For each combination of input/output
Super-Sbox, about 30 trails are sufficient to show that the Super-Sbox model of 8-round
LED does not allow to find integral distinguishers. All computed trails are provided in the
code repository of the paper. An example trail is provided in Figure 1.

Aleksei Udovenko 27

6.4 Summary
Using the described techniques, we managed to show that integral distinguishers for the
8-round LED (and, by Proposition 6, for its inverse), if any exists, can not be found
using traditional bit-based division property even with perfect Super-Sbox modeling and
arbitrary linear masks applied to Super-Sboxes at the input and at the output. To do this,
we found a small set of division trails through 8-round LED that, together with Theorem 3,
proves the claim. These trails are provided in the code repository of the paper.

References
[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.

Youssef. MILP Modeling for (Large) S-boxes to Optimize Probability of
Differential Characteristics. IACR Transactions on Symmetric Cryptology,
2017(2):99–129, 2017. 30

[BC13] Christina Boura and Anne Canteaut. On the Influence of the Algebraic Degree
of F−1 on the Algebraic Degree of G ◦ F. IEEE Transactions on Information
Theory, 59(1):691–702, 2013. 3, 10

[BC16] Christina Boura and Anne Canteaut. Another view of the division property.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 654–682. Springer, Heidelberg, 2016. 3, 6, 7, 8,
10

[BC20] Christina Boura and Daniel Coggia. Efficient MILP modelings for Sboxes and
linear layers of SPN ciphers. IACR Transactions on Symmetric Cryptology,
2020(3):327–361, 2020. 16, 31

[BFFH20] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, volume B-2020-1 of Department of Computer Science Report
Series b, pages 51–53. University of Helsinki, 2020. 25

[BK16] Achiya Bar-On and Nathan Keller. A 270 Attack on the Full MISTY1. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, pages 435–456, 2016. 3

[BKP16] Alex Biryukov, Dmitry Khovratovich, and Léo Perrin. Multiset-algebraic
cryptanalysis of reduced Kuznyechik, Khazad, and secret SPNs. IACR Trans.
Symm. Cryptol., 2016(2):226–247, 2016. 7

[Car20a] Claude Carlet. Graph Indicators of Vectorial Functions and Bounds on the
Algebraic Degree of Composite Functions. IEEE Transactions on Information
Theory, 66(12):7702–7716, December 2020. 3, 4, 6, 14

[Car20b] Claude Carlet. Handling Vectorial Functions by Means of Their Graph
Indicators. IEEE Transactions on Information Theory, 66(10):6324–6339,
October 2020. 14

[CXZZ21] Siwei Chen, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. On the rela-
tionships between different methods for degree evaluation. IACR Transactions
on Symmetric Cryptology, 2021(1):411–442, Mar. 2021. 3

28 Convexity of division property transitions: theory, algorithms and compact models

[DF20] Patrick Derbez and Pierre-Alain Fouque. Increasing precision of division
property. IACR Transactions on Symmetric Cryptology, 2020(4):173–194,
2020. 4, 12, 13, 21, 24, 25, 26

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer-Verlag, 2002. 3

[EKKT19] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen.
Finding integral distinguishers with ease. In Carlos Cid and Michael J.
Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS, pages 115–138.
Springer, Heidelberg, 2019. 17

[GAB+20] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon
Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald,
Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre
Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Miltenberger, Erik
Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe
Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider,
Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0.
Technical report, Optimization Online, 2020. 16

[GD21] Shibam Ghosh and Orr Dunkelman. Security of sequential multiple encryp-
tion. In Patrick Longa and Carla Ràfols, editors, Progress in Cryptology –
LATINCRYPT 2021, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.
To appear. 3, 17

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of LNCS, pages 326–341. Springer, Heidelberg, 2011. 18, 24

[GRW16] Faruk Göloğlu, Vincent Rijmen, and Qingju Wang. On the division property
of S-boxes. Cryptology ePrint Archive, Report 2016/188, 2016. 3, 7

[HJS+20] M Heule, M Jarvisalo, M Suda, M Iser, T Balyo, and N Froleyks. SAT Com-
petition 2020 - Results. https://satcompetition.github.io/2020/index.html,
2020. 25

[HLLT20] Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower
bounds on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 537–566.
Springer, Heidelberg, 2020. 3

[HLLT21] Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Strong and
tight security guarantees against integral distinguishers. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021. Springer-Verlag, 2021. To
appear. 3

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against Trivium and Grain-128AEAD. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 466–495. Springer, Heidelberg, 2020. 3, 4

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formu-
lation of the division property: Revisiting degree evaluations, cube attacks,
and key-independent sums. In Shiho Moriai and Huaxiong Wang, editors,

Aleksei Udovenko 29

ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 446–476. Springer,
Heidelberg, 2020. 3, 4

[HWW20] Kai Hu, Qingju Wang, and Meiqin Wang. Finding bit-based division prop-
erty for ciphers with complex linear layer. IACR Trans. Symm. Cryptol.,
2020(1):396–424, 2020. 3, 11, 17, 18, 24

[LDF20] Baptiste Lambin, Patrick Derbez, and Pierre-Alain Fouque. Linearly equiv-
alent S-boxes and the division property. Designs, Codes and Cryptography,
88(10):2207–2231, October 2020. 4, 12, 13

[Mat97] Mitsuru Matsui. New block encryption algorithm MISTY. In Eli Biham,
editor, FSE’97, volume 1267 of LNCS, pages 54–68. Springer, Heidelberg,
1997. 3

[McC56] E. J. McCluskey. Minimization of boolean functions. The Bell System
Technical Journal, 35(6):1417–1444, 1956. 16, 30

[MT21] Ashwini Kumar Malviya and Namita Tiwari. Quantum algorithm to identify
division property of a multiset. Arabian Journal for Science and Engineering,
46(9):8711–8719, Sep 2021. 20

[Qui55] W. V. Quine. A way to simplify truth functions. The American Mathematical
Monthly, 62(9):627–631, 1955. 16, 30

[SHZ+16] Bing Sun, Xin Hai, Wenyu Zhang, Lei Cheng, and Zhichao Yang. New obser-
vation on division property. Science China Information Sciences, 60(9):098102,
December 2016. 3

[Sin05] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints. In Principles and Practice of Constraint Programming - CP 2005,
volume 3709, pages 827–831. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005. 17

[ST] Yu Sasaki and Yosuke Todo. New Algorithm for Modeling S-box in MILP
Based Differential and Division Trail Search. In Pooya Farshim and Emil
Simion, editors, SecITC 2017, volume 10543 of LNCS, pages 150–165, Cham.
Springer. 3

[SWW16] Ling Sun, Wei Wang, and Meiqin Q. Wang. MILP-aided bit-based divi-
sion property for primitives with non-bit-permutation linear layers. IET
Information Security, 14(1):12–20, 2016. 3

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differen-
tial and linear characteristics with the sat method. IACR Transactions on
Symmetric Cryptology, 2021(1):269–315, Mar. 2021. 17

[TM16a] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS,
pages 357–377. Springer, Heidelberg, 2016. 3, 4, 6, 12

[TM16b] Yosuke Todo and Masakatu Morii. Compact representation for division
property. In Sara Foresti and Giuseppe Persiano, editors, CANS 16, volume
10052 of LNCS, pages 19–35. Springer, Heidelberg, 2016. 9

[Tod15a] Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 413–432. Springer, Heidelberg, 2015. 3

30 Convexity of division property transitions: theory, algorithms and compact models

[Tod15b] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 287–314. Springer, Heidelberg, 2015. 3, 6, 12

[Udo21] Aleksei Udovenko. MILP modeling of Boolean functions by minimum number
of inequalities. Cryptology ePrint Archive, Report 2021/1099, 2021. 15

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678.
Springer, Heidelberg, 2016. 3, 8, 21

[ZR18] Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ciphers
with a binary diffusion layer. IET Information Security, 13(2):87–95, August
2018. 3, 11

A Framework - API example
We describe an excerpt of usage of our framework with a Python binding (the set manipu-
lation part is written in C++), to show the ease of using and its power. In the example
below, we manipulate large sets of 32-bit vectors and each manipulation takes at most a
few seconds. Due to dense packing of bits, one such set occupies only 512MB of RAM. For
more details, see https://github.com/CryptoExperts/AC21-DivProp-Convexity.

from subsets import DenseSet, DenseBox
from divprop import SboxDivision, Sbox
from divprop.ciphers import SSB_LED

sbox = SSB_LED().MC
divcore = sbox.graph_dense().Mobius().MaxSet().Not()
divcore
<DenseSet hash=473e100dda56d8d9 n=32 wt=177643913 | 16:177643913>

dc = SboxDivision(sbox)
dc.divcore
<DenseSet hash=473e100dda56d8d9 n=32 wt=177643913 | 16:177643913>
dc.invalid_max # MaxSet(I_S)
<DenseSet hash=6f370f1ff06cbe0a n=32 wt=33412 | 15:2596 16:5442 17:6876
18:6415 19:5108 20:3469 21:1896 22:942 23:423 24:161 25:68 26:15 27:1>
dc.redundant_min # MinSet(R_S)
<DenseSet hash=0fb28b3f6fdef9b4 n=32 wt=334974429 | 17:334974429>
dc.redundant_alternative_min # MinSet(R'_S)
<DenseSet hash=1940406c7b877628 n=32 wt=33061 | 5:8 6:11 7:31 8:163 9:418
10:964 11:2024 12:3404 13:4925 14:6240 15:6689 16:5474 17:2710>

B Quine-McCluskey algorithm for Boolean minimization
Boura and Coggia reformulated the Quine-McCluskey [Qui55, McC56] algorithm for
minimization of Boolean Functions, previously used in [AST+17] to optimize model-
ing. They show that its first part consists in finding all maximal subsets of the form
a⊕ LowerClosure (u), a, u ∈ Fn2 (prime implicants) of the given set P ⊆ Fn2 (which is the
complement of the set being modeled) and provide efficient yet heuristic algorithm for this

https://github.com/CryptoExperts/AC21-DivProp-Convexity

Aleksei Udovenko 31

step. We design a simple more efficient algorithm in our framework with simple complexity
analysis. Although it is inferior to an optimized implementation of the Quine-McCluskey
algorithm, this implementation highlights the universality of our framework.

Similarly to the Boura-Coggia algorithm, our algorithm enumerates all a ∈ P and finds
all maximal u such that a ⊕ LowerClosure (u) is a subset of P . The problem naturally
reduces to finding all maximal u such that LowerClosure (u) ⊆ (a⊕ P). Let

U =
⋃

u:LowerClosure(u)⊆a⊕P

LowerClosure (u)

be the lower set of all solutions. It is easy to show that its complementary upper set has only
non-elements of P in its min-set. Indeed, otherwise such an element of P could be merged
with U into a bigger set of solutions. This leads to the following algorithm: compute the
upper set of non-elements of a⊕ P , and complement it to get U . Let Û = MaxSet (U). It
is only left to remove elements of Û having common bits set with current value of a to
ensure unique solutions and to couple the remaining vectors with the a. See Algorithm 5
for a details.

For example, the complements of the DDT supports of the S-boxes of AES and
SKINNY128 are processed in 22s/36s respectively on a single core of a laptop using Al-
gorithm 5. This drastically improves the reported 15m/2h by [BC20], although the
improvement may also come from the use of C++ in our benchmark.

We remark that, on practice, the first step of the Quine-McCluskey algorithm is
not dominating the overall complexity. Therefore, our improved algorithm does not
immediately provide a significant improvement. However, coupled with, for example, the
greedy algorithm for step 2, it allows to obtain high quality (although sub-optimal) models
for larger S-Boxes.

Algorithm 5 Find all subsets of P ⊆ Fn2 of the form a⊕ LowerClosure(u) with maximal
u
Input: P ⊆ Fn2
Output: S = {a, u ∈ Fn2 | (a⊕ LowerClosure ({u})) ⊆ P, u maximal such vector}
Complexity: O(n2n|P |)

1: S ← ∅
2: for all a ∈ P do
3: X ← a⊕ P
4: X ← UpperClosure

(
X
)

5: U ← MaxSet (X)
6: S ← S ∪ {(a, u) | u ∈ U, u ∧ a = 0}
7: return S

C (Multi-dimensional) cardinality bounds
In order to allow faster conflicts during the SAT/MILP search, we describe techniques
of cardinality bounds on the transitions. The idea is to model an over-approximation of
the set of minimal transitions by relatively small formulas. This allows solvers to quickly
skip a large part of bad transitions, and to process the remaining precise constraints on
the remaining smaller search space. In addition, part of precise constraints covered by
approximate constraints becomes redundant and can be removed.

The one-dimensional case from Subsection 4.2 generalizes easily to higher dimensions.

32 Convexity of division property transitions: theory, algorithms and compact models

Definition 13. Let t0, t1, . . . , tk−1 ∈ Z+, 2n =
∑
i ti. Define the (t0, t1, . . . , tk−1)-

projection ρt0,t1,...,tk−1 :

ρt0,t1,...,tk−1 : F2n
2 → {0, . . . , t0} × . . .× {0, . . . , tk−1}

: x 7→ (wt(x0,...,t0−1),wt(xt0,...,t0+t1−1), . . . ,wt(xn−tk−1,...,n−1)).

Let tr-projection ρtr be a shortcut for ρt,t,...,t, where t is repeated r times.

Example 7. ρ34(101 000 111 011) := ρ3,3,3,3(101 000 111 011) = (2, 0, 3, 2).

Note that the partial order framework (lower/upper/min-/max-/convex sets) applies
naturally sets of the form {0, . . . , t0} × . . .× {0, . . . , tk−1}.

Proposition 15. Let t, r ∈ Z+, 2n = t · r, M := ρtr (MS),

L := MaxSet
(

UpperClosure (M)
)
,

H := MinSet
(

LowerClosure (M)
)
.

Then, for all w ∈MS, we have

ρtr (w) 6� l, ∀l ∈ L,
ρtr (w) 6� h, ∀h ∈ H.

Remark 14. The case t = 2n, r = 1 corresponds to the one-dimensional cardinality bound
described above. However, for higher dimensions, the bound becomes “collective”, i.e. a
system of constraints. The opposite edge case, t = 1, r = 2n, partially corresponds to our
general modeling by removing sets IS ,RS . While indeed L = MaxSet (IS) in this case, it
only holds that UpperClosure (H) ⊇ RS .

Example 8. Consider the Super-Sbox of LED (with the zero constant in the middle, see
Section 6). For t = 2n, r = 1, for all w ∈MS , we get

L1 = {(5)} , H1 = {(17)} ,
wt(w) 6� l, ∀l ∈ L1,

wt(w) 6� h, ∀h ∈ H1.

For t = n, r = 2, for all (u, v) ∈MS , we get

L2 = {(0, 15), (1, 6), (2, 3), (3, 2), (6, 1), (15, 0)} ,
H2 = {(1, 14), (2, 13), (5, 10), (7, 9), (9, 6), (11, 5), (13, 3), (14, 2), (16, 1)} ,
(wt(u),wt(v)) 6� l, ∀l ∈ L2

(wt(u),wt(v)) 6� h, ∀h ∈ H2.

Observe that, in the example above, the 1-dimensional bound covers some elements
from the 2-dimensional bound: (2, 3), (3, 2) ∈ L2 are redundant as they are covered by
(5) ∈ L1; (16, 1) ∈ H2 is redundant as it is covered by (17) ∈ H1. For more fine-grained
projections however, we did not observe a significant reduction on practice.

Finally, we show how a constraint ρtr 6� l can be encoded.

Proposition 16. The constraint ρtr(w) 6� l, l ∈ Zr+, can be encoded by a single CNF
clause given the r cardinality vectors c0, . . . , cr−1; ci := wt(wit,...,it+t−1) are encoded, as
follows: ∨

i

ci ≥ li + 1.

Aleksei Udovenko 33

Remark 15. Here, by the cardinality vector we mean the unary-encoded sum of the
variables.
Remark 16. MILP system can be generated similarly. The unary cardinality vector (ci,j)
(with the binary variable ci,j ∈ {0, 1} equal to 1 if and only if ci ≥ j) can be encoded as
j · ci,j ≤ ci ≤ j − 1 + (t− j + 1) · ci,j for all constant j.

Example 9. Recall the example from above of the LED’s Super-Sbox. For the record,
there are in total 39 704 319 invalid and 4 246 781 560 redundant vectors (out of 232 possible
vectors).

Using the 1-dimensional cardinality bound (1 cardinality vector of length 32) and
1+1 extra clauses, 242 825 invalid (0.61%) and 1 846 943 453 (43%) redundant vectors are
removed.

Using the 2-dimensional cardinality bound (2 cardinality vectors of length 16) and
6+9 extra clauses, 756 157 invalid (1.9%) and 2 402 421 469 (57%) redundant vectors are
removed.

Using the 8-dimensional cardinality bound (8 cardinality vectors of length 4) and
341+4 478 extra clauses, 33 861 085 invalid (85%) and 4 170 189 661 (98%) redundant
vectors are removed.

Finally, among 388 134 vectors from MaxSet (IS), still 329 670 vectors remain to be
removed to completely avoid invalid trails.

We remark that in the case of LED from Section 6 we did not observe a noticeable
performance improvement from using multidimensional cardinality bounds. The tool may
be however useful in other, heavier cases.

	Introduction
	Preliminaries
	Partial order

	New insights into division property
	Division property and parity sets
	Link with the set indicator
	Division property propagation
	Core transitions and their characterizations
	Division core and its relation to transition classes
	Convex structure of the set of minimal transitions
	Linear combinations at the input/output
	Relationships with graph indicator-based degree bounds

	CNF modeling of a convex set
	Basic modeling
	Cardinality bounds
	Linear masks at the input / at the output

	Algorithmic framework for dense sets
	Bitwise transformations, lower, upper, min-, max-sets
	Division property of a set
	Division core and propagation table
	Compact representation (advanced algorithm)

	Application to LED
	Structure of LED and its model
	Modeling details
	Exhausting all linear masks
	Summary

	Framework - API example
	Quine-McCluskey algorithm for Boolean minimization
	(Multi-dimensional) cardinality bounds

