
Leveled Homomorphic Encryption Schemes with
Hensel Codes

David W. H. A. da Silva1, Luke Harmon1, Gaetan Delavignette2, and Carlos
Araujo1

1 Algemetric, Colorado Springs, CO, 80919, USA
{dsilva,lharmon,caraujo}@algemetric.com

https://www.algemetric.com/
2 University of Colorado at Colorado Springs, Colorado Springs, CO, 80918, USA

gdelavig@uccs.edu https://www.uccs.edu/

Abstract. We propose the use of Hensel codes (a mathematical tool
lifted from the theory of p-adic numbers) as an alternative way to con-
struct homomorphic encryption (HE) schemes that rely on the hardness
of some instance of the approximate common divisor (AGCD) problem.
We provide a self-contained introduction to Hensel codes which covers
all the properties of interest for this work. Two constructions are pre-
sented: a private-key leveled HE scheme and a public-key leveled HE
scheme. The public-key scheme is obtained via minor modifications to
the private-key scheme in which we explore asymmetric properties of
Hensel codes. The efficiency and security (under an AGCD variant) of
the public-key scheme are discussed in detail. Our constructions take
messages from large specialized subsets of the rational numbers that ad-
mit fractional numerical inputs and associated computations for virtually
any real-world application. Further, our results can be seen as a natural
unification of error-free computation (computation free of rounding er-
rors over rational numbers) and homomorphic encryption. Experimental
results indicate the scheme is practical for a large variety of applications.

Keywords: Rational numbers · Homomorphic encryption · Hensel codes
· Public-key encryption · Extended Euclidean algorithm.

1 Introduction

Homomorphic encryption (HE) is a type of encryption that enables meaningful
and general computation over encrypted data. This notion, originally referred to
as privacy homomorphisms, was introduced in 1978 [56]. Although every single
instance of practical homomorphic computation can be interesting in itself, it
is clear that the ultimate goal of HE was to enable computation of any circuit.
Several constructions provided partial solutions [17, 25, 24, 53, 4] but it was not
until 2009 that Craig Gentry proposed the first fully homomorphic encryption
(FHE) scheme [22, 23]. Gentry’s strategy consisted in first realizing a somewhat
homomorphic encryption (SHE) scheme that enables the (homomorphic) eval-
uation of low-degree multivariate polynomials. Ciphertexts are embodied with

noise, which grows slightly over addition and tremendously over multiplication,
which compromises the limits of low-degree polynomials. To solve this problem,
Gentry introduced a bootstrapping mechanism with which one can transform a
SHE scheme that is able to homomorphically evaluate its own decryption func-
tion into a FHE scheme, that is, an encryption scheme that is able to evaluate
any circuit up to a predefined depth. The bootstrapping technique produces a
“fresh” ciphertext: a ciphertext with an amount of noise equivalent to what it
was prior to any homomorphic operation.

As remarked by Brakerski et al. [5], not only few SHE schemes are able to
evaluate their own decryption function but also FHE schemes that follow Gen-
try’s blueprint suffer from poor performance. To put things into perspective, the
complexity of performing bootstrapping is at least the complexity of decryption
multiplied by the bit-length of the individual ciphertexts that are used to encrypt
the bits of the secret key. In the context of Gentry’s blueprint this is necessary
since the SWHE evaluates the decryption function using an encrypted secret key
and each bit of the secret key is then replaced by a very large ciphertext that
encrypts that bit [5]. To address this problem, Brakerski, Gentry, and Vaikun-
tanathan introduced two schemes [5] (known as BGV) which are conceived via
an entirely new approach, with much better performance than Gentry’s original
blueprint. This new approach consists in skipping the SWHE step and directly
constructing leveled HE schemes with the possibility of using bootstrapping as
an optimization. The BGV scheme, as the vast majority of FHE schemes, is
latticed-based and its security is based on some version of the learning with
errors (LWE) assumption.

Dijk, Gentry, Halevi, and Vaikuntanathan, when introducing the scheme
known as DGHV propose an interesting question: “What is the simplest encryp-
tion scheme for which one can hope to achieve security?”. Naturally, the simple
will not always be secure so the reconciliation of simplicity and security is un-
doubtedly a much desired and sometimes hard-to-achieve property. Compared to
any lattice-based HE scheme, DGHV is significantly simpler: very small descrip-
tion with basic modular arithmetic. Similarly to Gentry-like constructions, it
encrypts individual bits. Unlike lattice-based schemes (which work with vectors
and matrices), it operates over the integers. DGHV’s security is based on both
the single-source-shortest-paths (SSSP) and the approximate greatest common
divisor (AGCD) assumption introduced by Howgrave-Graham in [34]. Several
other contributions were able to improve DGHV’s efficiency [15, 16, 9, 8, 14].

Could a simpler HE scheme be as secure as the lattice-based ones? A re-
markable result by Cheon and Stehlé [10] introduces a reduction from LWE to
AGCD which is demonstrated by constructing a HE scheme with security based
on the AGCD assumption by deriving the AGCD parameters from the LWE
parameters. Among the similarities between DGHV and the scheme proposed
by Cheon and Stehlé, we remark two facts: 1) they both encrypt bits and 2)
they derive a public-key encryption scheme by first describing a private-key en-
cryption scheme and then converted into its public-key counterpart by applying
the method introduced by Rothblum [58] which is based on the fact that any

2

additively homomorphic private-key encryption scheme that is compact can be
converted into a public-key encryption scheme. (Informally, a HE scheme is com-
pact if the size of ciphertexts output by homomorphic evaluations is independent
of the number of ciphertexts and/or operations from which it was created.) The
combination of these two facts has, at least, the following implication: if γ is
the bit length of ciphertexts generated by a HE scheme with the aforemen-
tioned characteristics, for each n-bit message, their corresponding ciphertexts
have length nγ. Since in that kind of encryption scheme the public key is a τ -
tuple of ciphertexts encrypting n-bit messages, the length of the public-key is
τnγ bits.

1.1 Homomorphic Rational Arithmetic

The need for performing homomorphic operations with rational numbers has
been recently investigated. This issue is usually addressed by adding an encod-
ing scheme to the homomorphic encryption scheme so rational numbers can be
encoded to, typically, polynomials over some ring. A clever solution was proposed
in [6] where a technique from proposed by Hoffstein and Silverman [32] is com-
bined with the Fan-Vercauteren homomorphic encryption scheme [18] so a new
encryption scheme is derived where rational numbers can be encoded and then
used as input. Another interesting solution was proposed in [12] where rational
numbers are thought as continued fractions and then represented as a sequence
of integers. It is not surprising, due to its simplicity, that some form of modular
arithmetic is used to encode rational numbers for carrying computation over
the integers [44]. Our contribution, at the very least, is distinct in the fact that
the encoding of rational numbers into integers is the encryption function itself.
Thus, we do not follow the blueprint of using a scheme for encoding rational
numbers and another scheme for encrypting and evaluating homomorphic oper-
ations. Instead, Hensel codes are employed for both encoding and encryption.
Another advantage of our constructions is that we show how to probabilistically
encode rational numbers in a structure-preserving way so other homomorphic
encryption schemes can use our encoding for performing rational arithmetic.

1.2 Our Contributions

Would it be possible to describe a leveled HE scheme that conveniently evalu-
ates ciphertexts over the integers and at the same time has a better ciphertext
expansion? Would it be possible to work with a public key with length smaller
than the length of corresponding ciphertexts? Furthermore, what if we wanted
to further expand the message space from bits to not only large integers but
also large (positive and negative) rational numbers? Properly expanding the
message space of a HE scheme to a more comprehensive set that includes ra-
tional numbers immediately enables the application of homomorphic encryption
in scenarios that involve fractional data such as those associated with statistics,
finance, machine learning, digital signal processing, among others, without any
further need of data formatting. Besides the obvious benefits of such features,

3

not having to format data at the bit level (for accommodating custom message
spaces) represents, at the very minimum, less overhead. We believe that a lev-
eled HE scheme with these desired characteristics requires an approach that is
distinct from those employed up to today.

We propose a new approach to construct a leveled HE scheme that takes mes-
sages over a specialized set of rational numbers that can be sufficiently large to
contain all rational numbers of interest for any real-world practical application.
Our technique allows us to describe a private-key encryption scheme and turn it
into a public-key encryption scheme where its public-key has length smaller than
the ciphertext it generates. Moreover, both private-key and public-key leveled
HE schemes produce ciphertexts with the same length. We show that the security
of our schemes can be clearly mapped to the AGCD assumption while we also
introduce the notion of a new hardness assumption, which makes the security
analysis clearer and more objective. We showcase a mathematical tool mostly
used outside the context of cryptography, which enables our contributions, and
we propose its use and further investigation in cryptography.

1.3 Hensel Codes

Between the end of the 19th and the beginning of the 20th centuries, Kurt
Hensel introduced the p-adic numbers theory [31]. One of Hensel’s main mo-
tivations was to relate the ring integers Z to the field of rationals Q. For our
purposes, it suffices to provide a brief discussion of the fundamental idea. If p is
prime, any positive integer x can be represented uniquely as an expansion of the
form x = a0 + a1p + a2p

2 + ... + anp
n, where ai is an integer with 0 ≤ ai < p.

In fact, one can similarly expand any rational number x
/
y by allowing negative

powers of p. Such expansions are called p-adic numbers [26]. In the p-adic number
system, the elements of Q are represented as infinite expansions α =

∑∞
−∞ aip

i.
Applications of p-adic numbers are varied, and include dynamical systems, the-
oretical physics, algebraic geometry, non-Archemdian analysis [35], differential
calculus [42], topology [38, 37], and analytic functions [50, 57].

Between the 1970s and 1980s, Krishnamurthy, Rao, Subramanian [41], Al-
parslan [1], Hehner and Horspool [30] proposed the use of truncation of p-adic
expansions to replace arithmetic operation on rational numbers by the corre-
sponding operations on integers that represent those rational numbers. They
named these special integers as Hensel codes and they established the founda-
tion of the theory of Hensel codes as a solution to the problem of error-free
computation [20, 27, 29, 51, 41, 55], that is, the computation over approximations
of real numbers in such a way that rounding errors do not occur. This property
is particularly relevant when working with ill-conditioned problems and numer-
ically unstable algorithms.

Converting rational numbers into Hensel codes is rather trivial, however,
the inverse mapping of Hensel codes was for many years an open problem [54]
until Gregory identified the required boundaries in absolute value to the numer-
ators and denominators of rational numbers so a Hensel code could be uniquely

4

inverted [27–29]. Having these boundaries well-defined allowed Miola [48] to pro-
pose an efficient algebraic solution for inverting Hensel codes by applying a mod-
ified version of the Extended Euclidean Algorithm. Over the years, the theory
of Hensel codes expanded to address a variety of areas benefited by error-free
computation such as computation of Gröbner bases [19], overflow detection [47],
matrix inversion [51], fast integer division [40], parallel computation [49], solving
linear systems of equations [36], polynomial matrix computations [39], to cite a
few.

Hensel codes can be represented and computed in many forms, from the “dot-
ted” representation [54] to matrices of rational polynomials [39]. In this work we
focus on the integer representation of Hensel codes using just the first coefficient
of a conventional truncated p-adic expansion. We show that Hensel codes can
be p-adic and g-adic (defined via single or multiple primes, respectively) and we
expand the original special set of rational numbers to represent as Hensel codes
in order to achieve a bijection between those special rational numbers and a
finite set of integers reduced modulo a prime or a prime composite.

1.4 General Intuition

We were initially interested in Hensel codes solely for purpose of establishing
a bijection between a subset of the rationals and a finite set of integers so we
could construct a leveled HE scheme with a more comprehensive message space.
In the past, the use of Hensel codes for error-free computation was shown to be a
more efficient solution in comparison to known alternatives [54, 28]. Could Hensel
codes still provide advantages for error-free computation nowadays? In 2019,
Barillas proposed an efficient machine learning classification approach based on
Restricted Boltzmann Machines using Hensel codes. Barillas worked with limited
hardware resources since the goal was to provide a solution suitable for embed-
ded devices and classification problems over data containing a small to medium
amount of features. Barillas’ results over the MNIST dataset outperformed the
current state-of-the-art of exact machine learning computations by a factor of
42 in terms of performance, and a factor of 62 in terms of energy efficiency [2].
So we were encouraged to proceed.

However, we identified an additional opportunity that is enabled by two facts:
1) The mapping we use to establish a connection between a special set of rational
numbers and their corresponding Hensel codes has well-defined boundaries which
are unique per prime or group of primes. Failure in observing these boundaries
will lead to correctness violation. 2) The knowledge of the primes involved in the
computation of Hensel codes is required for computing back their corresponding
rational numbers. We then created a cryptosystem based on the hardness of
inverting Hensel codes without the knowledge of the primes involved in that
computation. We do it in such a way that trivial attempts will always violate the
boundaries for correctness. Once the primes are unknown, so are the boundaries.
This allows us to provide a new asymmetric encryption algorithm based on
Hensel codes.

5

2 Hensel Codes

We now provide a sufficient and self-contained review of the theory of Hensel
codes. While we omitted some portions of that theory (for lack of a direct con-
nection with our contributions), we believe that more of the theory can not only
be applied in future developments of our research. We hope that this work can
motivate further study of Hensel codes as underlying tools for building crypto-
graphic tools.

2.1 Hensel Codes and the Extended Euclidean Algorithm

It was shown by R.T. Gregory [28] that there is a one-to-one mapping from the
so-called order-N Farey fractions

FN :=
{
x
/
y | |x| ≤ N, 0 < |y| ≤ N

}
, N =

⌊√
(p− 1)/2

⌋
to the finite field GF (p) = Z/pZ, given via the mapping x

/
y 7→ xy−1 (mod p).

The major drawback of the order-N Farey fractions is that they only corre-
spond to a subset of GF (p). We will use a modification of the extended Eu-
clidean algorithm (EEA) to enlarge FN to a set whose elements are in bijective
correspondence with the elements of GF (p). In particular, we construct a factor
ring (isomorphic to the finite field of order p) from a subring of the rationals Q
and then use the to-be-defined modification of the EEA to select one represen-
tative fraction from each coset of the factor ring. To this end, fix an odd prime
p, and recall that the set

{
a
/
b | gcd(p, b) = 1

}
can be realized as the localiza-

tion of the integers Z at the prime ideal (p). We will denote this ring by Z(p).
Since gcd(p, b) = 1 guarantees that b−1 exists in GF (p), we can define the map
Hp : Z(p) → GF (p) by a

/
b 7→ ab−1 (mod p). It is easy to verify that this map

is a surjective ring homomorphism. Consequently, we obtain an isomorphism
Z(p)

/
ker(Hp) ∼= GF (p). There are many ways to select representatives from the

cosets of Z(p)

/
ker(Hp), but we will make our selection to guarantee that the set

of representatives contains FN .
Recall that the Extended Euclidean Algorithm (EEA) calculates the great-

est common divisor of two integers x0, x1 along with the associated Bézout
coefficients. The computation generates the tuples (x2, . . . , xn), (y2, . . . , yn),
(z2, . . . , zn), and qi = bxi−1

/
xic such that:

xi+1 = xi−1 − qixi, where x0, x1 are the input,
yi+1 = yi−1 − qiyi, with y0 = 0, y1 = 1,
zi+1 = zi−1 − qizi, with z0 = 1, z1 = 0.

Moreover, for each i ≤ n, we have yix1 + zix0 = xi. The computation stops with
xn = 0, at which point xn−1 = gcd(x0, x1). We define a modified version of this
algorithm, as follows:

Definition 1 (Modified Extended Euclidean Algorithm). Let g be a prod-

uct of distinct odd primes, h ∈ Z , and N =
⌊√

(g − 1)
/

2
⌋

. Run EEA with

6

x0 = g and x1 = h. Once |xi| ≤ N , output (x, y) =
(
(−1)i+1xi, (−1)i+1yi

)
. We

write this as MEEA(g, h) = (x, y). Observe that there is an integer z (namely,
(−1)i+1zi) such that yh+ zg = x.

Lemma 1. Let g be a product of distinct, odd primes, N =
⌊√

(g − 1)/2
⌋
, and

h, h′ ∈ Zg. The following hold:

(i) If MEEA(g, h) = (x, y), then |x| ≤ N and |y| ≤ 2N + 1.
(ii) Let p be prime, MEEA(p, h) = (x, y), and MEEA(p, α) = (x′, y′). α = h

(mod p) if and only if x = x′ and y = y′ (mod p)
(iii) MEEA(g, h) = (0, ·) if and only if gcd(g, h) > N or h = 0.

Proof. (i) Suppose MEEA(g, h) =
(
(−1)i+1xi, (−1)i+1yi

)
. That |x| ≤ N is imme-

diate from the stopping condition in MEEA. The outputs of the EEA satisfy [59]

|yk| ≤
x0
xk−1

, for all k.

By definition, xi−1 > N . Whence, for N ′ =
√

(g − 1)
/

2,

|yi| ≤
g

xi−1
<

g

N ′
<

2(N ′)2 + 1

N ′
= 2N ′ +

1

N ′

It follows that |yi| ≤
⌊
2N ′ + 1

/
N ′
⌋
≤ 2N + 1, proving (i).

(ii) By hypothesis, there is an integer k such that α = h+kg. Suppose that α 6= h
(i.e., at least one of h,k is nonzero). Apply the EEA in two cases: (1) x0 = p,
x1 = h, and (2) x0 = p, x1 = h+ kp. After three iterations of (2), one observes
that the values of xi match those obtained after one iteration of (1). Moreover,
MEEA applied to (1) and (2), respectively, will not terminate before the values
of xi match. This proves x = x′. The above, in conjunction with yh + zp = x
and y′α + z′p = x′, yields yh = y′α. Then yh − y′h = y′kp, and so y′h = yh
(mod p). Since gcd(p, h) = 1, y′ = y (mod p). The converse follows easily.
(iii) Suppose gcd(g, h) > N . Recall that the EEA with x0 = g and x1 = h
terminates when xn = 0, at which point xn−1 = gcd(g, h). Item 3 then follows
from the stopping condition in MEEA. Conversely, if MEEA(g, h) = (0, ·), then
gcd(g, h) > N . For if not, then MEEA(g, h) =

(
(−1)i+1xi, ·

)
, where i ≤ n− 1, a

contradiction. ut

Definition 2 (Order-(N, p) Farey Fractions). Let p be an odd prime and

N =
⌊√

(p− 1)
/

2
⌋

. We define the set of order-(N, p) Farey fractions as

FN,p :=

{
x

y
: ∃h ∈ {0, 1, . . . , p− 1} s.t. MEEA(p, h) = (x, y)

}
.

Throughout the paper, we will consider FN,p with the familiar addition and
multiplication on Q. Note that FN,p is not closed under these operations. The
following lemma collects some important facts about FN,p.

7

Proposition 1. Let p be an odd prime and N =
⌊√

(p− 1)
/

2
⌋

.

(i) FN ⊆ FN,p.
(ii) If x

/
y ∈ FN,p, then |x| ≤ N and |y| ≤ 2N .

(iii) The elements of FN,p are in lowest terms.
(iv) Distinct elements of FN,p lie in distinct cosets of Z(p)

/
ker(Hp).

(v) Hp : FN,p → {0, 1, . . . , p− 1} ⊆ Z is a bijection.

Proof. (i) Let x
/
y ∈ FN such that h = xy−1 (mod p), and say MEEA(p, h) =

(xi, yi). By construction, xi ≤ N and xj > N for all j < i. As shown by Kornerup
[28], implementing EEA with x0 = p and x1 = h will yield xk

/
yk = x

/
y for some

k. Now, suppose that |yi| > N . One easily verifies inductively |yj | ≤ |yj+1| and
xj > xj+1 for all j. Whence for all i, either xi > N or |yi| > N , contradicting
xk
/
yk ∈ FN . Thus |yi| ≤ N , and xi

/
yi ∈ FN . Finally, since xiy

−1
i (mod p) =

xy−1 (mod p) = h, and representations of elements of FN in Zp are unique, we
conclude that xi

/
yi = x

/
y. This shows that x

/
y ∈ FN,p.

(ii) Use Lemma 1 with g = p.
(iii) MEEA(p, 0) = (0, ·), so let h ∈ Zp be nonzero and MEEA(p, h) = (x, y). By
definition, there is an integer z (output by EEA) such that x = yh+ zp. Further,
properties of greatest common divisors yield

gcd(x, y) = gcd(yh+ zp, y) = gcd(zp, y).

By (ii), 0 < |y| < p. We deduce from Lemma 1(iii), that 0 < |z| < p. Conse-
quently,

gcd(zp, y) = gcd(z, y) · gcd(p, y) = gcd(z, y).

Now, by [59, Theorem 4.3], gcd(z, y) = 1, which proves (iii).
(iv) First, notice that (ii) implies FN,p ⊆ Z(p). Let x

/
y, x′

/
y′ ∈ FN,p be dis-

tinct. Necessarily, Hp

(
x
/
y
)
6= Hp

(
x′
/
y′
)
. Since Hp is a homomorphism, then

Hp

(
x
/
y − x′

/
y′
)
6= 0, which implies x

/
y and x′

/
y′ lie in distinct cosets.

(v) The result follows immediately from (iv) and the isomorphism Z(p)

/
ker(Hp) ∼=

Zp. ut

We may now define the mapping that allows us to recover an element of FN,p
given an arbitrary integer.

Definition 3. Let p be prime and h ∈ Z. Define

H−1p : Z→ FN,p by h 7→ x

y mod p
, (1)

where MEEA(p, h) = (x, y).

Remark 1. Lemma 1(ii) guarantees that the output x
/(
y(mod p)

)
from the pre-

ceding definition is in FN,p. Moreover, by the definition of the order-(N, p) Farey
fractions, H−1p is surjective.

Proposition 2. If x
/
y ∈ FN,p and h ∈ Zp, then H−1p

(
Hp

(
x
/
y
))

= x
/
y and

Hp

(
H−1p (h)

)
= h.

8

Proof. Obvious. ut

The following results establish the compatibility of H−1p with arbitrary arith-
metic circuits. For simplicity, we represent a circuit by the multivariate polyno-
mial which it computes.

Lemma 2. Let h1, . . . , hk ∈ Z. If P is a polynomial in k variables over Z which
takes rational arguments, and H−1p

(
P (h1, . . . , hk)

)
= a

/
b, then

Hp

(
P
(
H−1p (h1), . . . ,H−1p (hk)

))
= Hp

(a
b

)
.

Proof. Suppose H−1p (hi) = xi
/
yi. Certainly xiy

−1
i = hi(mod p), whence

P
(
H−1p (h1), . . . ,H−1p (hk)

)
= P

(
h1, . . . , hk

)
(mod p).

The result follows, since P (h1, . . . , hk) = ab−1(mod p). ut

Proposition 3. If h1, . . . , hk ∈ Z and P is a polynomial in k variables over Z
which takes rational arguments, then

H−1p
(
P (h1, . . . , hk)

)
= H−1p

(
Hp

(
P
(
H−1p (h1), . . . ,H−1p (hk)

)))
.

Proof. Since FN,p is not closed under addition and multiplication then

P = P
(
H−1p (h1), . . . ,H−1p (hk)

)
need not be an element of FN,p. However, by Lemma 3, P andH−1p

(
P (h1, . . . , hk)

)
lie in the same coset (are equivalent modulo p). Consequently, H−1p

(
Hp(P)

)
=

H−1p
(
P (h1, . . . , hk)

)
. ut

We now present the remaining maps which are fundamental to our scheme.

Definition 4. Let g = p1 · · · pk be a product of at least two distinct primes.
Define maps

Hg : Q→ Z by
x

y
7→

{
xy−1(mod g), if gcd(g, y) = 1

0, if gcd(g, y) 6= 1

H̃−1g : Z→ Q by h 7→ x

y mod g
, where MEEA(g, h) = (x, y).

Remark 2. If n is an integer, then Hg(n) = n (mod g).

Remark 3. We write “H̃−1g (·)” instead of “H−1g (·)” because H̃−1g is not the in-

verse of Hg when g is composite. This is because if H̃−1g (h) = x
/
y we may

have y|g, in which case y is not invertible modulo g, and so (provided x 6= 0)

Hg

(
H̃−1g

(
x
/
y
))

= 0 6= x
/
y.

9

Recall that the Chinese Remainder Theorem (CRT) simply describes an iso-
morphism Zp1 × · · · ×Zpk ∼= Zp1···pk for distinct primes p1, . . . , pk. The image of
(h1, . . . , hk) under this isomorphism will be denoted by h = CRTp1,...,pk(h1, . . . , hk).
Henceforth, for primes p1, . . . , pk and h1, . . . , hk ∈ Z, we will denote

H̃−1p1···pk

(
CRTp1,...,pk

(
h1, . . . , hk

))
by H̃−1p1,...,pk(h1, . . . , hk).

Lemma 3. Let g = p1 · · · pk be a product of distinct primes. If Hg

(
x
/
y
)
6= 0,

then Hg

(
x
/
y
)

= Hpi

(
x
/
y
)

(mod pi).

Proof. To avoid confusion, we will denote the (multiplicative) inverse of y modulo
n by y−1n . If h = Hg

(
x
/
y
)
6= 0, then y is invertible modulo pi for each i. Put

hi = Hpi

(
x
/
y
)
. By definition, h = xy−1g (mod g) and hi = xy−1pi (mod pi) for

all i. Multiplying both sides of each congruence by y yields hy = x (mod g) and
x = hiy (mod pi). It follows that hy = hiy (mod pi) for all i. Finally, since y is
invertible modulo each pi, h = hi (mod pi). ut

Proposition 4. If g = p1 · · · pk is a product of distinct primes, Hg

(
x
/
y
)
6= 0,

and x
/
y ∈ FN,pi , then H−1pi

(
Hg

(
x
/
y
))

= x
/
y.

Proof. By Lemma 1(ii), Lemma 3, and the definition of H−1pi , we see that

H−1pi

(
Hg

(
x
/
y
))

= H−1pi

(
Hpi

(
x
/
y
))
.

The result then follows from Lemma 2. ut

Lemma 4. If g is a product of distinct primes and g|n, then H̃−1g (n) = 0.

Proof. Observe that gcd(g, n) = g >
⌊√

(g − 1)
/

2
⌋
. The result then follows from

Lemma 1(iii). ut

3 The AGCD Problem

Informally, the AGCD problem is defined as follows: given polynomially many
samples of the form x = r+ qp for a randomly chosen odd prime p, find p. Since
in the remainder of this paper we will refer to known (ρ, η, γ) AGCD parameters,
a formal definition of the AGCD problem is reproduced below.

Definition 5. [11] (AGCD). Let p,X ≥ 1, and φ a distribution over Z. We de-
fine AAGCD

X,φ (p) as the distribution over Z obtained by sampling q ← Z∩
[
0, X

/
p
)

and r ← φ, and returning x = qp+ r.
Let D be a distribution over Z ∩ [0, X). AGCDX,φ (D) consists in distin-

guishing, given arbitrarily many independent samples, between the uniform dis-
tribution over Z ∩ [0, X) and the distribution AAGCD

X,φ (p) for p ← D. We use

10

the notation AGCDm
X,φ (D) to emphasize the number of samples m used by the

eventual distinguisher. We say that an algorithm A is an (ε1, ε2)-distinguisher
for AGCDX,φ (D) if, with probability ≥ ε2 over the choice of p ← D, its distin-
guishing advantage between AAGCD

X,φ (p) and U (Z ∩ [0, X)) is ≥ ε1.
For ρ, η, γ ≥ 1, the (ρ, η, γ)-AGCD problem is AGCD2γ ,φ (D) with D the

uniform distribution over η-bit prime integers and φ the uniform distribution
over Z ∩ (−2ρ, 2ρ).

Cheon and Stehlé discuss a reduction from the Learning With Errors problem
(LWE) to a variant of the AGCD where such search variant consists in finding
the unknown p [11] while also introducing a reduction from the search variant
to the decision variant. They arrive at a set of secure AGCD parameters via
reduction of a LWE instance. For appreciating this reduction, we refer the reader
to [11] since we shall not repeat that discussion in this work. Instead, we will
use the proposed AGCD parameters in [11], the motivation for each one of them,
together with some additional considerations from [60].

3.1 Recommended AGCD Parameters

Following [60, 11], we let ρ denote the size of the noise, η denote the size of
the secret greatest common divisor, and γ denote the size of an AGCD sample.
Cheon and Stehlé note that for the AGCD problem to be potentially hard, the
parameters must satisfy the following: ρ ≥ λ in order to prevent brute force at-

tacks on the noise as discussed in [7, 34], η > ρ, and γ ≥ Ω
((
λ
/

log λ
)

(η − ρ)
2
)

in order to prevent lattice reduction attacks on AGCD such as orthogonal lattice
attacks [52, 60], as well as the Lagarias’ simultaneous Diophantine approximation
attack [43], and the Cohn-Heninger attack [21, 13].

4 A Private-Key Leveled HE Scheme

Now we introduce a private-key leveled HE scheme based on Hensel codes. Our
motivation is to provide a basic blueprint for a leveled HE scheme with Hensel
codes and then use it as the foundation of a public-key leveled HE scheme by
only applying an asymmetric property we have with Hensel codes. The reader
can see this private encryption scheme as first step towards its public-key coun-
terpart, which is the candidate scheme we want to highlight. For this reason,
we will concentrate the discussions about correctness, security, and practical
implications on the public-key version.

Given a parameter λ and the parameter d, define ρ, η, γ, and µ as follows:
ρ = λ, η = 2(d+ 2)λ, µ = γ − η − 2λ, and γ = λ

log2(λ)
(η − ρ)

2
. The encryption

scheme is then given by:

– Gen takes λ and d as input and generates uniform primes p1, . . . , p5 such
that |p1|bits = ρ + 1, |p3|bits , |p3|bits = ρ

2 , |p4|bits = η, |p5|bits = µ. We set

sk = (p1, p2, p3, p4) and evk = g =
∏5
i=1 pi. Note that |g|bits = γ. The

11

message space is defined as P = FN,p1 . We write the syntax as (sk, evk) ←
Gen

(
1λ, 1d

)
.

– Enc takes a message m ∈ P and sk, evk as input, generates uniform and
independent s1 ← Z2λ−1 , s2 ← Zp2 , and s3 ← Zp3 , and δ ← Zg/p4 , and

then computes c =
∣∣∣Hg

(
s1 · H̃−1p1,p2,p3 (0, s2, s3) +m

)
+ δp4

∣∣∣
g
. We write this

as c← Encsk,evk (m).
– Dec takes c and sk as input and computes m = H−1p1

(
Hp1

(
H−1p4 (c)

))
. We

write this as m = Decsk (c).
– Addition and multiplication of ciphertexts are computed in the natural way

over the integers modulo g.

Remark 4. In the encryption algorithm, let x
/
y = H̃−1p1,p2,p3 (0, s2, s3). Then, x

/
y

is a rational encoding of zero, and so is s1 ·x
/
y. Moreover, setting |p1|bits = ρ+1

implies p1 > 2
⌊√

(p1p2p3 − 1)
/

2
⌋
, which guarantees

(
by Lemma 2.5(ii)

)
that

gcd(p1, y) = 1, so Hp1(x
/
y) is defined.

Remark 5. In the decryption algorithm, for all c output by Enc, with high prob-
ability, it holds that H−1p4 (c) /∈ FN,p1 . We address this issue by computing

Hp1

(
H−1p4 (c)

)
which gives as a Hensel code in Zp1 . Then, we can just decode that

Hensel code using p1, which gives us the expression in the decryption algorithm,
so we obtain the desired member of FN,p1 .

5 A Public-Key Leveled HE Scheme

Now we introduce a public-key leveled HE scheme that is similar to the previ-
ously described private-key encryption with the exception that we now explore
asymmetric Hensel “encodings”. The parameters we use are conservative in com-
parison with the ones recommended in [10]. The reason for employing a more
conservative parameter definition is due to the fact that the ciphertext expansion
of our construction is significantly more efficient than any leveled HE construc-
tion where the message space is defined as {0, 1}. At the same time, we know
there are room for optimizations which can further improve the already encour-
aging runtime results presented in Section 7.1. Given a parameter λ and the
parameter d, define η, γ, and µ as follows:

ρ = λ, η = dλ, µ = d2λ log2 (λ)− η − 2λ− 3, γ = 2η + (3λ)
/

2 + µ+ 3. (2)

– Gen takes 1λ and 1d as input and generates uniform and independent odd
primes p1, p2, p3, and p′4 such that |p1|bits = λ, |p2|bits = λ+ 3, |p3|bits = η,

|p′4|bits = η, so we compute p4 = (p′4)
µ
/
η+1

. Let g = p1 · · · p4 and g′ = p3p4.
For t← Z2λ−1 and δe ← Z2γ−η , we compute

e = Hg

(
Hp3

(
H̃−1p1,p2 (0, t)

)
+ δep3

)
(3)

The public key is pk = (e, g′, evk = g) and the secret key is sk = (p1, p3).

12

– Enc encrypts a message m ∈ FN,p1 by choosing s1, s2 ← Z2λ−1 and δ ←
[p1p2, p1p2p4) ∩ Z and then computing

c← Encpk,evk(m) = Hg

(
Hg′ (s1e+m) + s2g

′ + δ (g′)
2
)
. (4)

– Dec takes a ciphertext c as input and computes m as follows:

m = Decsk,pk (c) = H−1p1
(
Hp1

(
H−1p3 (c)

))
. (5)

Remark 6. the constant e in the public key should never equal δep3, else an
adversary trivially computes gcd(e, g′) = p3 which compromises the secret key.

To this end, recall that H̃−1p1,p2(0, t) = H̃−1p1p2(h), where h = CRTp1,p2(0, t). Since

t 6= 0, h 6= 0 and gcd(h, p1p2) = p1. Lemma 1(iii) then implies that H̃−1p1p2(h) 6= 0

as long as p1 <
⌊√

(p1p2 − 1)/2
⌋
. This is guaranteed since |p1|bits = λ and∣∣⌊√(p1p2 − 1)/2

⌋∣∣
bits

> λ.

5.1 Correctness

Here we continue with the previously-adopted convention of using multivariate
polynomials instead of arithmetic circuits.

Definition 6. Let Pk,n ⊆ Q[x1, . . . , xk] be the family of polynomials of the form
P (x1, . . . , xk) = y1 ∗ y2 ∗ · · · ∗ yn, where yi ∈ {x1, . . . , xk} and ∗ is either + or
×.

Lemma 5. Let α be a natural number, P ∈ Pk,n, and
a1
/
b1, . . . , ak

/
bk ∈ Q be unknowns. Further,

suppose P
(
a1
/
b1, . . . , ak

/
bk
)

= x
/
y. If each |ai|, |bi| ≤ α, then |x| ≤ nαn and

|y| ≤ αn.

Proof. If P ∈ Pk,n has i ≤ n−1 additions, then the numerator of x is the sum of
i+ 1 monomials, each being a product of the ai,bj . Moreover, the denominator
y is simply a product of n (not necessarily distinct) of the bj . Note that for each
monomial m summand of x satisfies: m

/
y is a product (possibly with repeated

factors) of some number of the ai
/
bi. It follows that each monomial in the

numerator is a product of at most n of the aj ,bj . For if there is a monomial m
with more than n factors, then m

/
y reduces to a fraction with with more factors

(the ai,bj) in the numerator than the denominator. Such a fraction cannot satisfy
the above note, and so a contradiction is obtained. Now, since |ai|, |bj | ≤ α, we
see that the denominator y and the monomial summands of x all have absolute
value at most αn. The result then follows since x has at most n monomial
summands. ut

Theorem 1 (Correctness). For all sk,pk, and evk output by Gen and all m ∈
FN,p1 ,

Decsk,pk (Encpk,evk (m)) = m. (6)

13

Let P ∈ Pp1,D, m1, . . . ,mk ∈ FN,p1 and ci ← Encpk,evk (mi).
If P (m1, . . . ,mk) ∈ FN,p1 , d ≤ λ, and D ≤

(
d
/

5
)
− 1, then

Decsk,pk

(
P
(
c1, . . . , ck

))
= P (m1, . . . ,mt) . (7)

Proof. Let m ∈ FN,p1 , and suppose c = Encpk,evk(m). By construction,

c = Hg

(
Hg′
(
se+m

)
+ s2g

′δ(g′)2
)

= Hg′(se+m) + αp3, α ∈ Z,

where e = Hg

(
Hp3

(
H̃−1p1,p2(0, t)

)
+ δep3

)
and s ∈ Zp1 .

Proceeding with Dec
(
which computes H−1p1 (Hp1(H−1p3 (c)))

)
and applying Propo-

sition 2 and Proposition 3 , we obtain

H−1p3 (c) = H−1p3 (Hg′ (se+m) + αp3) , for someα ∈ Z
= H−1p3

(
Hp3

(
H−1p3 (Hg′ (se+m)) +H−1p3 (αp3)

))
= H−1p3

(
Hp3

(
H−1p3 (Hg′ (se+m))

))
= H−1p3 (Hg′ (se+m))

Put x
/
y = H̃−1p1,p2(0, t) and N =

⌊√
(p3 − 1)

/
2
⌋
. We note that |s|bits ≤ λ,

and deduce from Lemma 1(i) that |x|bits ≤ λ + 1 and |y|bits ≤ λ + 2. Further,
since (dλ − 2)

/
2 ≤ |N |bits (for d ≥ 5), we see that |sx|bits, |y|bits ≤ |N |bits.

Consequently, sx
/
y ∈ FN ⊆ FN,p3 . Now, through repeated applications of the

above observation, Lemma 1(iii), Proposition 3, and Lemma 4, we obtain

H−1p3 (Hg′ (se+m)) = H−1p3

(
Hp3

(
sx

y
+m

))
.

By comparing bit lengths (as above), we find that sx
/
y+m ∈ FN,p3 (this time,

as long as d ≥ 6). Thus, H−1p3 (c) = sx
/
y +m.

Lastly, we compute

H−1p1

(
Hp1

(
sx

y
+m

))
= H−1p1

(
Hp1

(
sx

y

)
+Hp1(m)− kp1

)
, k ∈ {0, 1}.

Since Hp1 is a ring homomorphism and s ∈ Z2λ−1 ⊆ Zp1 , we have
Hp1

(
sx
/
y
)

= Hp1(s)Hp1

(
sx
/
y
)

(mod p1) = sHp1

(
sx
/
y
)
− np1 for some n ∈ Z.

Moreover, Hp1

(
x
/
y
)

= 0 by construction.
Whence,

H−1p1

(
Hp1

(
sx

y
+m

))
= H−1p1

(
Hp1(m)− (k + n)p1

)
.

With a final application of Proposition 3 and Lemma 4, the above simplifies
to H−1p1

(
Hp1(m)

)
= m. Thus (6) is established.

We now show that the scheme is compatible with homomorphic operations.

14

Let c1, . . . , ck ∈ Zg be ciphertexts with corresponding messages mi ∈ FN,p1 , and
P ∈ Pk,D. Then, as above, there are si ∈ Z2λ−1 and an integer α′ such that for
each i, ci = Hg′(sie+mi) + α′g′. Suppose further that P (m1, . . . ,mk) ∈ FN,p1 .
Proceeding as in the proof of (6), we compute

H−1p3
(
P (c1, . . . , ck)

)
= H−1p3

(
P
(
Hg′(s1e+m1), . . . ,Hg′(ske+mk)

))
= H−1p3

(
Hp3

(
P
(
H−1p3

(
Hg′(s1e+m1)

)
, . . . ,H−1p3

(
Hg′(ske+mk)

))))
= H−1p3

(
Hp3

(
P
(
s1
x
y +m1, . . . , sk

x
y +mk

)))
.

Now, let xi
/
yi = six

/
y + mi and x∗

/
y∗ = P

(
x1
/
y1, . . . , xk

/
yk
)
. We will show

that x∗
/
y∗ ∈ FN,p3 . Recall that |si|bits ≤ λ, |x|bits ≤ λ+ 1 and |y|bits ≤ λ+ 2.

It follows that |xi|bits ≤ (5λ+ 3)
/

2 and |yi|bits ≤ (3λ+ 3)
/

2. For simplicity,

we take (5λ+ 3)
/

2 as the bound on bit length for both xi and yi.
By invoking Lemma 5, and the binary logarithm (to count bit lengths), we

have

|x∗|bits, |y∗|bits ≤ log2(D) +D

(
5λ+ 3

2

)
+ 1

Now, recalling that
∣∣∣⌊√(p3 − 1)

/
2
⌋∣∣∣

bits
≥ (dλ− 2)

/
2, we see that

log2(D) +D

(
5λ+ 3

2

)
+ 1 ≤ dλ− 2

2

is a sufficient condition to guarantee that x∗
/
y∗ ∈ FN , whereN =

⌊√
(p3 − 1)

/
2
⌋
.

Easy algebraic manipulations verify that the above inequality reduces to

log2(D2) + 3D + 3

d− 5D
≤ λ.

The hypotheses that d ≤ λ and D ≤
(
d
/

5
)
− 1 guarantee that the above in-

equality is true. Whence, x∗
/
y∗ ∈ FN ⊆ FN,p3 , and

H−1p3
(
P (c1, . . . , ck)

)
=
x∗

y∗
= P

(
x1
y1
, . . . ,

xk
yk

)
.

All that remains is to compute H−1p1

(
Hp1

(
x∗
/
y∗
))

. To this end, observe that

since Hp1 is a homomorphism under addition and multiplication modulo p1,
Hp1

(
xi
/
yi
)

= Hp1

(
six
/
y
)

+Hp1(mi)− αip1 = Hp1(mi)− αip1, and

Hp1

(
P
(
x1
/
y1, . . . , xk

/
yk
))

= P
(
Hp1

(
x1
/
y1
)
, . . . ,Hp1

(
xk
/
yk
))
− αp1, where

α, αi ∈ Z. Now, by the preceding observations and Proposition 3, we obtain

H−1p1

(
Hp1

(
x∗

y∗

))
= H−1p1 (P (Hp1(m1)− α1p1, . . . ,Hp1(mk)− αkp1)− αp1)
= H−1p1

(
Hp1

(
P
(
m1, . . . ,mk

)))
15

Finally, since P (m1, . . . ,mk) ∈ FN,p1 ,

H−1p1
(
Hp1

(
P
(
m1, . . . ,mk

)))
= P

(
m1, . . . ,mk

)
.

This completes the proof of (7).

Remark 7. The set Pp1,D, D =
⌊(
d
/

5
)
− 1
⌋
, does not contain all polynomials

with which our scheme is compatible. In particular, we note that for any poly-
nomial Q taking rational arguments: if Q(m1, . . . ,mk) ∈ FN,p1 and Q

(
s1x
/
y +

m1, . . . , skx
/
y +mk

)
∈ FN,p3 , then Decsk,pk

(
Q
(
c1, . . . , ck

))
= Q (m1, . . . ,mt).

Remark 8. The requirement that P (m1, . . . ,mk) ∈ FN,p1 may seem unreason-
able since FN,p1 is not closed under addition. However, one can always choose
p1 large enough to guarantee that the scheme is compatible with the requisite
polynomials P . For example, if one only needs to work with fractions whose
numerators and denominators are bounded (in absolute value) by M , then one

simply chooses p1 so that N =
⌊√

(p1 − 1)
/

2
⌋
� M . This creates a “bounded

closure”.

6 Security Analysis

We present a discussion on the security properties of our construction from at
least four perspectives: CPA indistinguishability, an analysis on encryptions of
zero, factoring concerns, and an intrinsic hardness of Hensel codes that are meant
to violate correctness boundaries.

6.1 Indistinguishability under Chosen Plaintext Attacks (CPA)

We present a variant of the AGCD assumption where the distinguisher is addi-
tionally given e, g, g′. For simplicity, we use (e, g, g′)-AGCD to denote the variant
of the AGCD problem and (e, g, g′)-AGCD (p) to denote its associated distribu-
tion.

Definition 7 ((e, g, g′)-AGCD). Let u, v, p be primes such that |u|bits = λ,

|v|bits = λ+3, |p|bits = η, and |w′|bits = η such that w = (w′)
γ
/
µ

, g = uvpw and
g′ = pw. We sample r, s ← Z2λ−1 , q ← [uv, uvw) ∩ Z, and σ ← Z2γ−η and we

compute e = Hg

(
Hp

(
H̃−1u,v (0, t)

)
+ σp

)
. Finally, we compute x = Hg (r + qg′)

and (e, g, g′)-AGCD (p) outputs x together with e, g, g′.

Lemma 6. For any message m ∈ FN,p1 , we can perfectly simulate Encpk,evk (m)
by obtaining x, e, g, g′ from (e, g, g′)-AGCD (p), sampling t ← Z2λ−1 , and out-
putting c = Hg (xg′ +Hg′ (te+m)).

16

Proof. Fix m ∈ FN,u. We claim that the following simulated ciphertext csim
decrypts to m: csim = Hg′(te + m) + qg′ − kg, for some integer k. We further
simplify to get c = Hg′(te + m) + αg′, where α = x − k(g/g′). It now fol-
lows immediately from the proof of correctness

(
Theorem 5.1, Equation (6)

)
that Decsk,pk(csim) = m. Furthermore, we observe trivially that the simulated
encryptions are distributed identically to the actual encryptions.

Definition 8. Consider the following experiment: a uniform η-bit prime p is
chosen along with a fixed message m from Z2λ . Then a uniform bit b ← {0, 1}
is chosen. A distinguisher D is given g, g′ from (e, g, g′)-AGCD (p), and then:

– If b = 0, the distinguisher is given repeated random samples from (e, g, g′)-AGCD (p).
– If b = 1, the distinguisher is given repeated simulations of encryptions of m

using samples from (e, g, g′) -AGCD (p) in the form of Hg (xg′ +Hg′ (m)).
– The distinguisher outputs a guess b′, and succeeds if b′ = b. It ε-distinguishes

if Pr [b′ = b] = 1
/

2 + ε.

Assumption 1 For any probabilistic polynomial-time distinguisher D, the prob-
ability that D is successful in the preceding experiment is negligible. That is, at
best, D ε-distinguishes with ε = ε(λ) negligible.

Theorem 2. The private-key leveled HE scheme described in Section 5 is CPA-
secure under Assumption 1.

Proof. Fix an adversary A attacking the scheme. Construct an adversary B as
follows: B is given repeated samples from (unknown) distribution. B runs A.
When A requests an encryption of m, then B does: 1) Get a sample x from the
given distribution, 2) Return a simulated ciphertext c (dependent on x) to A.
When A outputs its challenge messages m0,m1 then B chooses a random bit b
and does the exact same thing as above using the message mb. When A outputs
a guess b′, then B outputs 1 iff b = b′.

Claim (1). When B is given samples from distribution (e, g, g′)-AGCD (p), then
the probability that B outputs 1 is identical to A’s success probability in the
CPA experiment.

Proof (1). This follows since when B is given samples from distribution (e, g, g′)-AGCD,
then A’s view is identical to its view in the CPA experiment.

Claim (2). When B is given random samples from (e, g, g′)-AGCD (p), then the
probability that B outputs 1 is 1

/
2.

Proof (2). This follows since A’s view is independent of b. Indeed, for any mes-
sage m, B can perfectly simulate a ciphertext for m using random samples from
(e, g, g′)-AGCD (p). So, as per Lemma 6, the challenge ciphertext is computa-
tionally indistinguishable from a random element of (e, g, g′)-AGCD (p), which
is independent of m regardless of the choice of b. It follows that A correctly
outputs b′ = b with probability exactly 1

/
2.

17

By Assumption 1, the difference in the probability that B outputs 1 when
given samples from (e, g, g′)-AGCD(p) and the probability that it outputs 1 when
given uniform samples is negligible. It follows from this and the above claims
that the probability that A succeeds in the CPA experiment is 1

/
2 + negl. This

completes the proof. ut

6.2 Further Discussion of Security

Here we show that, under a particular assumption, ciphertexts are indistinguish-
able from random elements of Zg.

Lemma 7. There are p21p2 distinct encryptions of 0.

Proof. Encryptions of 0 are of the form Encpk,evk(0) = Hg

(
Hg′(se)+δg′

)
, where

s← [0, p1)∩Z and δ ← [p1p2, p1p2p4)∩Z. We will show that each pair s, δ yields
a unique encryption of 0. To this end, suppose s 6= s′ or δ 6= δ′ (mod p1p2). If
Hg

(
Hg′(se) + δg′

)
= Hg

(
Hg′(s

′e) + δ′g′
)
, then we deduce that s = s′ (mod g′).

Since 0 ≤ s, s′ < g′, s = s′, a contradiction. All that remains is the case where
s = s′ and δ 6= δ′ (mod p1p2). Again, if Hg

(
Hg′(se)+δg′

)
= Hg

(
Hg′(s

′e)+δ′g′
)
,

then Hg′(se) = Hg′(s
′e) implies δg′ − kg = δ′g′ − k′g, for some k, k′ ∈ Z.

Rearranging the equation yields δ− δ′ = (k− k′)p1p2, also a contradiction. The
result follows from that facts that there are p1 choices for s, and p1p2 choices
for δ. ut

We now define an experiment in which a distinguisher tries to distinguish
between a random subset of [0, g) ∩ Z and a set of encryptions of 0.

Definition 9. Let D be a probabilistic polynomial-time distinguisher which knows
the public-key pk = (e, g′, g). A uniform bit b ← {0, 1} and a random k ≤ p21p2
are chosen, and then:

– If b = 0, then D is given a random subset of [0, g) ∩ Z with k elements.
– If b = 1, then D is given a set of k random encryptions of 0.
– D outputs a guess b′ ∈ {0, 1} and succeeds if b′ = b. Say D ε-distinguishes if

Pr[b′ = b] = 1
/

2 + ε.

Assumption 2 The probability that D is successful in the preceding experiment
is negligible. That is, D can only ε-distinguish if ε = ε(λ) is negligible.

Proposition 5. For a fixed m ∈ FN,p1 , elements of the set {Encpk,evk(m)} are
indistinguishable from random elements of [0, g) ∩ Z under Assumption 2.

Proof. Let m ∈ FN,p1 , Encpk,evk(m) = Encpk,evk(m + 0) = Encpk,evk(m) +
Encpk,evk(0). By Assumption 2, encryptions of 0 are indistinguishable from ran-
dom elements of [0, g) ∩ Z, whence Encpk,evk(m) + Encpk,evk(0) = Encpk,evk(m)
is indistinguishable from a random element of [0, g) ∩ Z.

18

6.3 Factoring

The most obvious threat to our construction is also the easiest to thwart. It is
associated with factoring attacks since the public evaluation key evk corresponds
to g, which is the product of p1, . . . , p4. Successfully factoring g leads to a total
break of the scheme since decryption only uses the knowledge of p1 and p3
according to (5). Even a partial factorization of g might lead to a total break of
our scheme, as long as p1 and p3 are recovered. The main threat could be provided
by some variation ECM factoring method [3, 46] (since p4 in our scheme is not
prime) with running time on the size of the smallest prime factor as opposed
of the size of g. To prevent ECM threats, one must set the size of individual
primes to be at least 512 bits and preferably at least 768 bits. Additionally, if
g is sufficiently large (e.g., greater than or equal to 4096 bits), index calculus
methods such as the Number Field Sieve method [45] will not succeed.

6.4 Hensel Code Problem

We close this section with a proof that an adversary, knowing only g = p1 · · · p4,
g′ = p3p4, and c = Hg

(
Hg′
(
x
/
y
)

+ δg′
)
, cannot deduce x

/
y using H̃−1g or H̃−1g′ .

Furthermore, the range of the “noise parameter” δ can be restricted to guarantee
that an adversary cannot even deduce the denominator y (a problem we noticed
in some simulations).

Proposition 6. If α = g′ or g, then H̃−1α
(
Hg′(se+m)

)
6= m.

Proof. Suppose by way of contradiction that H ′g(se+m) = Hα(m).
Let α = g′.

If we let m = x
/
y, then we get Hg′

(
(sey+x)

/
y
)

= Hg′
(
x
/
y
)
. Since p1 � p3, p4,

y is invertible modulo g′, whence (sey+ x)y−1 = xy−1 (mod g′). It follows that
se = 0 (mod g′). Since s < p1, we also have s invertible modulo g′, which means
e = 0 (mod g′). In particular, we note that e = 0 (mod p4). But, since e =
H−1p1,p2(0, s2) + δep4, this implies H−1p1,p2(0, s2) = 0 (mod p4). Put H−1p1,p2(0, s2) =

x0
/
y0. Since s2 6= 0, x0 6= 0. Moreover, since the inverse of y0 modulo p4 cannot

be divisible by p4, we conclude that x0 = 0 (mod p4). This contradicts 0 <
|x0| ≤

⌊√
(p1p2 − 1)/2

⌋
< p4.

Let α = g.

Since g′|g, Hg′

(
(sey+x)

/
y
)

= Hg

(
x
/
y
)

implies Hg′

(
(sey+x)

/
y
)

= Hg′
(
x
/
y
)
.

The result follows. ut

Lemma 8. Suppose H̃−1α

(
Hg′

(
x
/
y
))

= x′
/
y′, where α = g or g′. If x 6= x′,

then y 6= y′ or |x− x′| ≥ g′.

Proof. Suppose α = g. Then Hg′
(
x
/
y
)

= Hg

(
x′
/
y′
)
. We will prove the contra-

positive. If y = y′ and |x − x′| < g′, then we use the fact that g′|g to obtain
|x − x′|g′ = 0. Since |x − x′| is less than g′, x = x′. The proof for α = g′ is
analogous.

19

Proposition 7. Let x
/
y ∈ FN,p1 , N =

⌊√
(g′ − 1)/2

⌋
, and α = g or g′. If

s ∈
(
N + |x|
e|y|

,
g′ − (N + |x|)

e|y|

)
, and H̃−1α

(
Hg′

(
se+

x

y

))
=
x′

y′
, (8)

then y 6= y′.

Proof. In light of Lemma 8, it suffices to prove that x+ sey 6= x′ and |(x+ se ·
y)− x′| < g′.
If s > (N + |x|)

/
(e|y|), then

|x+ sey| ≥
∣∣|x| − se|y|∣∣ > ∣∣|x| − (N + |x|)

∣∣ = N.

Since |x′| ≤ N , by definition of H̃−1g (MEEA, in particular), we see that x+δp4y 6=
x′.
Similarly, if 0 < s < (g′ −N − |x|)

/
(e|y|), then

|(x+ sey)− x′| ≤ |x|+ se|y|+N < |x|+ (g′ −N − |x|) +N = g′.

This completes the proof. ut

7 Practical Considerations

The security parameters of our construction are defined in observance of the
results in [11, 60]. Among several alternative concrete parameter configurations
we considered, the one we discuss in this work is not the most efficient in terms
of ciphertext expansion. However, it is an instance that works as desired with
respect to the homomorphic operations. As mentioned before, the noise growth
on addition is still a concern. In our scheme, messages are members of a subset
of the rational numbers so if we let two messages x1

/
y1 and x2

/
y2, be encrypted

to two ciphertexts c1 and c2, then c1 · c2 and c1 + c2 will decrypt, respectively,
to

x1x2
y1y2

and
x1y2 + x2y1

y1y2
. (9)

We note that the space taken up by addition is similar to the space taken up by
multiplication (in the sense that the scheme admits a similar number of additions
and multiplications), and acknowledge that this might be a downside for some
applications.

Advantages of Working with Hensel Codes Although there are some limit-
ing aspects, we want to emphasize some of the advantages in working with Hensel
codes. Recall that P = FN,p1 . Considering that p1 must be at least a 768-bit
prime, its corresponding N is a 384-bit number and thus the message space will
be sufficiently large to include the solutions for most applications that require
rational numbers as inputs. For instance, the set of rational numbers FN,p1 in-
cludes integers (negative and positive) up to 384 bits. This is a message space

20

large enough to contemplate a large class of real-world applications. Obviously,
the larger p1 is, the larger will be the message space. Perhaps one of the great-
est takeaways is that we can merge error-free computation with homomorphic
encryption via Hensel codes. As an immediate consequence, we can naturally
compute the arithmetic gates addition, subtraction, multiplication, and division
as follows: |c1 + c2|g, |c1 − c2|g, |c1c2|g, and

∣∣c1/c2∣∣g, respectively. Correctness

follows the discussion in Section 5.1. It is clear that addition, subtraction, and
multiplication are computed in the natural way modulo g. For all c1, c2 output
by Enc or Eval, the division

∣∣c1/c2∣∣g , will work as long as gcd (c2, g) = 1. One

simple way to ensure that division is always defined is to allow an encryption of
zero to be public and implement the following division algorithm: Given c1, c2, g
and a public encryption of zero cz, generate a uniform rc ← Z2λ−1 and update c2
as c2 = rccz + c2. If gcd (c2, g) = 1, compute and output

∣∣c1/c2∣∣g, if not, repeat.

Given any homomorphic encryption that takes positive integers as valid mes-
sages, it is not surprising that one could easily provide a way for allowing that
scheme to accept rational numbers as inputs. Given a rational number a

/
b (as-

sumed to be positive, for simplicity), options include: 1) a simple modular en-
coding with a modulus q > a, b such that you have m = aq + b, 2) CRT with
two moduli q1, q2 > a, b such that m = CRTq1,q2 (a, b), or yet 3) any pairing
function, such as the Cantor pairing function [33], in which case we could obtain
m = 1

/
2 (a+ b) (a+ b+ 1) + b. None of the above options, along with many

other numeric manipulations, preserve operations in the message space. Thus,
since Hensel codes create an operation-preserving correspondence between a set
of rationals and a set of integers, they are preferable as a tool for modifying
existing schemes to take rational inputs.

7.1 Performance

The results presented in Table 1 were generated from experiments conducted
with an implementation of our candidate scheme using Python 3.8.5, on a Mac-
Book Pro 15-inch, MacOS High Sierra 10.13.6, 2.8 GHz Intel Core i7, 16 GB 1600
MHz DDR3, 500GB HD. Each runtime (in seconds) presented is the arithmetic
mean of 100 runs.

We present practical results using two configurations. First, we set ρ = λ =
512, d = 10, which gives η = 5120, µ = 454653, and γ = 461571, |p1|bits = 512,
|p2|bits = 515, |p3|bits = 5120, |p4|bits = 455672, |g′|bits = 460791, and |g|bits =
461818 (slightly larger than γ). Second, we set ρ = λ = 768, d = 20, which
gives η = 15360, µ = 2927601, and γ = 2950275, |p1|bits = 768, |p2|bits = 771,
|p3|bits = 15360, |p4|bits = 2933708, |g′|bits = 2949067, and |g|bits = 2950606.
In Table 1 we display runtime results for the key generation, encryption, and
decryption algorithms, and the homomorphic evaluation of the dot product of
two 3D vectors.

21

Algorithm Runtime for λ = 512, d = 10 Runtime λ = 768, d = 20

Key Generation 184.244738 927.6136270000001
Encryption 0.9383330000000001 35.50052400000004
Decryption 0.0067889999999977135 0.09174399999994876
3D vector dot product 0.3805450000000121 12.849364999999807

Table 1. Runtime results.

References

1. Alparslan, E.: Finite p-adic number systems with possible applications. Ph.D. the-
sis, Ph. D. Dissertation. Department of Electrical Engineering, University of . . .
(1975)

2. Barillas, B.S.S.: Efficient Machine Learning Inference for Embedded Systems with
Integer Based Restricted Boltzmann Machines Classifiers. Ph.D. thesis, University
of Colorado Colorado Springs (2019)

3. Beullens, W., Smart, N., Vercauteren, F.: Security evaluation of x-logos factoring-
based, private key fhe. personal communication (2020), on 2020-07-13

4. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In:
Theory of cryptography conference. pp. 325–341. Springer (2005)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

6. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomor-
phic encryption. In: Cryptographers’ Track at the RSA Conference. pp. 116–136.
Springer (2018)

7. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 502–519. Springer (2012)

8. Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 315–
335. Springer (2013)

9. Cheon, J.H., Kim, J., Lee, M.S., Yun, A.: Crt-based fully homomorphic encryption
over the integers. Information Sciences 310, 149–162 (2015)

10. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 513–536. Springer (2015)

11. Cheon, J.H., Stehle, D.: Fully homomorphic encryption over the in-
tegers revisited. Cryptology ePrint Archive, Report 2016/837 (2016),
https://eprint.iacr.org/2016/837

12. Chung, H., Kim, M.: Encoding rational numbers for fhe-based applications. IACR
Cryptol. ePrint Arch. 2016, 344 (2016)

13. Cohn, H., Heninger, N.: Approximate common divisors via lattices. The Open
Book Series 1(1), 271–293 (2013)

14. Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: International Workshop on Public Key Cryptography.
pp. 311–328. Springer (2014)

22

15. Coron, J.S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Annual Cryptology Conference.
pp. 487–504. Springer (2011)

16. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 446–464. Springer (2012)

17. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

19. Fitzpatrick, P., Flynn, J.: A gröbner basis technique for padé approximation. Jour-
nal of Symbolic Computation 13(2), 133–138 (1992)

20. Froment, A.: Error free computation: a direct method to convert finite-segment p-
adic numbers into rational numbers. IEEE Computer Architecture Letters 32(04),
337–343 (1983)

21. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the approximate
common divisor problem. LMS Journal of Computation and Mathematics 19(A),
58–72 (2016)

22. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings

of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

24. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental
poker keeping secret all partial information. In: Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing. pp. 365–377 (1982)

25. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of computer and sys-
tem sciences 28(2), 270–299 (1984)

26. Gouvêa, F.Q.: p-adic numbers. In: p-adic Numbers, pp. 43–85. Springer (1997)
27. Gregory, R.T.: Error-free computation with finite number systems. ACM SIGNUM

Newsletter 14(3), 9–16 (1979)
28. Gregory, R.T.: Error-free computation: why it is needed and methods for doing it.

RE Krieger (1980)
29. Gregory, R.: Error-free computation with rational numbers. BIT Numerical Math-

ematics 21(2), 194–202 (1981)
30. Hehner, E.C.R., Horspool, R.: A new representation of the rational numbers for

fast easy arithmetic. SIAM Journal on Computing 8(2), 124–134 (1979)
31. Hensel, K.: Theorie der algebraischen Zahlen, vol. 1. BG Teubner (1908)
32. Hoffstein, J., Silverman, J.: Optimizations for ntru. public-key cryptography and

computational number theory (2002)
33. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-

guages, and computation. Acm Sigact News 32(1), 60–65 (2001)
34. Howgrave-Graham, N.: Approximate integer common divisors. In: International

Cryptography and Lattices Conference. pp. 51–66. Springer (2001)
35. Khrennikov, A.Y., Nilsson, M.: P-adic deterministic and random dynamics,

vol. 574. Springer Science & Business Media (2013)
36. Koç, Ç.K.: Parallel p-adic method for solving linear systems of equations. Parallel

Computing 23(13), 2067–2074 (1997)
37. Krasner, M.: Prolongement analytique uniforme et multiforme dans les corps val-

ues complets: preservation de l’analycite par la convergence uniforme et par la

23

derivation; theoreme de mittag-leffler generalise pour les elements analytiques’.
CR Acad. Sci. Paris 244, 2570–2573 (1957)

38. Krasner, M.: Nombres semi-réels et espaces ultramétriques. Comptes-Rendus de
l’Académie des Sciences 2, 219 (1944)

39. Krishnamurthy, E.V.: Error-free polynomial matrix computations. Springer Science
& Business Media (2012)

40. Krishnamurthy, E., Murthy, V.K.: Fast iterative division of p-adic numbers. IEEE
transactions on computers 32(04), 396–398 (1983)

41. Krishnamurthy, E., Rao, T.M., Subramanian, K.: Finite segment p-adic number
systems with applications to exact computation. In: Proceedings of the Indian
Academy of Sciences-Section A. vol. 81, pp. 58–79. Springer (1975)

42. Kurt, M.: Introduction to p-adic numbers and their functions (1981)

43. Lagarias, J.C.: The computational complexity of simultaneous diophantine approx-
imation problems. SIAM Journal on Computing 14(1), 196–209 (1985)

44. Laine, K., Player, R.L., Chen, H.: Rational number arithmetic in homomorphic
encryption (Jun 25 2019), uS Patent 10,333,695

45. LENSTRA, A.K.: The development of the number field sieve. Lecture Notes in
Mathematics (LNM) (1993)

46. Lenstra Jr, H.W.: Factoring integers with elliptic curves. Annals of mathematics
pp. 649–673 (1987)

47. Li, X., Lu, C., Sjogren, J.A.: A method for hensel code overflow detection. ACM
SIGAPP Applied Computing Review 12(1), 6–11 (2012)

48. Miola, A.: Algebraic approach to p-adic conversion of rational numbers. Informa-
tion Processing Letters 18(3), 167–171 (1984)

49. Morrison, J.F.: Parallel p-adic computation. Information processing letters 28(3),
137–140 (1988)

50. Motzkin, E., Robba, P.: Prolongement analytique en analyse p-adique. Séminaire
de théorie des nombres de Bordeaux pp. 1–47 (1968)

51. Murthy, V.: Exact parallel matrix inversion using para-hensel codes with systolic
processors. Applied optics 27(10), 2022–2024 (1988)

52. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: International
Cryptography and Lattices Conference. pp. 146–180. Springer (2001)

53. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International conference on the theory and applications of cryptographic
techniques. pp. 223–238. Springer (1999)

54. Rao, T.M., Gregory, R.T.: The conversion of hensel codes to rational numbers. In:
1981 IEEE 5th Symposium on Computer Arithmetic (ARITH). pp. 10–20. IEEE
(1981)

55. Rao, T.M., Subramanian, K., Krishnamurthy, E.: Residue arithmetic algorithms for
exact computation of g-inverses of matrices. SIAM Journal on Numerical Analysis
13(2), 155–171 (1976)

56. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation 4(11), 169–180 (1978)

57. Robba, P.: Fonctions analytiques sur les corps valués ultramétriques complets.
Prolongement analytique et algèbres de Banach ultramétriques (1973)

58. Rothblum, R.: Homomorphic encryption: From private-key to public-key. In: The-
ory of cryptography conference. pp. 219–234. Springer (2011)

59. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge university press (2009)

24

60. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Annual international conference on the theory
and applications of cryptographic techniques. pp. 24–43. Springer (2010)

25

