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Abstract. A tweakable enciphering scheme (TES) is a length preserving (tweakable) en-
cryption scheme that provides (tweakable) strong pseudorandom permutation security on
arbitrarily long messages. TES is traditionally built using block ciphers and the security
of the mode depends on the strong pseudorandom permutation security of the underlying
block cipher. In this paper, we construct TESs using public random permutations. Pub-
lic random permutations are being considered as a replacement of block cipher in several
cryptographic schemes including AEs, MACs, etc. However, to our knowledge, a systematic
study of constructing TES using public random permutations is missing. In this paper, we
give a generic construction of a TES which uses a public random permutation, a length
expanding public permutation based PRF and a hash function which is both almost xor
universal and almost regular. Further, we propose a concrete length expanding public per-
mutation based PRF construction. We also propose a single keyed TES using a public
random permutation and an AXU and almost regular hash function.

1 Introduction

Permutation Based Cryptography. A cryptographic permutation is a key-less pub-
lic permutation that is designed to behave as a random permutation. In recent years
cryptographic permutations have started to evolve as a useful primitive in parallel to the
block ciphers. The primary feature of a cryptographic permutation is that it does not
use any key and hence separate processing of the key and the data input is not required
as in a block cipher. This makes cryptographic permutations a more efficient primitive
compared to block ciphers in certain scenarios. The use of cryptographic permutation
gained popularity during the SHA-3 competition [1], as several submitted candidates in
the competition were based on this type of primitive. Furthermore, the selection of the
permutation-based Keccak sponge function as the SHA-3 standard has generated ample
confidence within the community for using this primitive [49]. In 2007, Bertoni et al. de-
fined the cryptographic permutation based sponge function [8], which was initially aimed
for hashing. Soon after, several efficient modes for encryption, authentication and au-
thenticated encryption were developed [45, 6, 7]. Today, permutation based sponge-based
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constructions have become a successful and a full-fledged alternative to the block cipher-
based modes. In fact, in the first round of the ongoing NIST lightweight competition [47],
24 out of 57 submitted constructions are based on cryptographic permutations, and out
of 24, 16 permutation based proposals have qualified for round 2. These statistics, beyond
any doubt, clearly depict the wide adoption of permutation based schemes [4, 5, 10, 16,
27, 33] in parallel to the block cipher based designs. Apart from the modes, several cryp-
tographic permutations have also been designed which are claimed to be efficient than
standard block ciphers [9, 14, 5].

Besides the permutation based designs of encryption/authentication schemes, a long line
of research has been carried out in the study of designing block cipher and tweakable
block cipher out of public random permutations. Even Mansour (EM) [3] and Iterated
Even Mansour (IEM) ciphers are notable approaches in this direction. EM cipher is de-
fined as EM(x)

∆
= π(x ⊕ k1) ⊕ k2, where π is a public random permutation and k1, k2

are two independent keys. Iterating EM cipher for r ≥ 2 times with r independent
permutations and r + 1 independent round keys defines the r-round IEM cipher, i.e.
EMr(x)

∆
= kr+1 ⊕ πr(kr ⊕ πr−1(. . . (π2(k2 ⊕ π1(k1 ⊕ x)) . . .)). A long line of research has

studied the security of r-round IEM [15, 26, 32, 28]. Recently, Chen et al. have designed
two public permutation based PRFs [25] which have been proven to be secure beyond the
birthday bound.

Tweakable Enciphering Schemes. A Tweakable Enciphering Scheme or in short TES
is a deterministic length preserving encryption scheme which provides security against
adaptive chosen plaintext and ciphertext attacks, i.e., no efficient adversary should be
able to distinguish ciphertexts from random strings and should not be able to tamper a ci-
phertext so that it gets decrypted to something meaningful. The security requirement of a
TES is very similar to that of a deterministic authenticated encryption (DAE) scheme [2].
However, DAE schemes are not length preserving; the ciphertext resulting from the DAE
is always expanded by the expansion factor defined by a specific DAE scheme. It is thus
the length preserving property that makes TES a separate cryptographic primitive from
DAE. The length preserving feature of TES makes it a suitable candidate for low level
disk encryption [21, 17]. One can see a tweakable enciphering scheme as a tweakable block
cipher [43] with arbitrary block lengths and are thus sometimes called wide block modes.

Over the years, there have been several proposals of TES constructions and most of them
are build on top of block ciphers. Constructions like CMC [38], EME [39], EME* [37],
FMix [12], AEZ [40] are build only using block ciphers whereas XCB [44, 18], HCTR [51],
HCH [21] uses both block ciphers and universal hash functions. There are few construc-
tions of TES using stream ciphers [19, 50].
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Most block cipher based schemes have been proven to be secure assuming the block
cipher to be a strong pseudorandom permutation, as these constructions require the
decryption functionality of the block cipher for deciphering the ciphertext. However, there
are some constructions such as FMix [12], AEZ [40] and FAST [17], which do not require
the decryption functionality of the block cipher and hence their security can be proved
under the assumption that the underlying block cipher is a pseudorandom function. Such
schemes are called inverse free TESs. Moreover, the security of all these constructions
caps at birthday bound 1. Dutta and Nandi [35] proposed a tweakable block cipher based
TES and proved its security beyond the birthday bound 2 assuming the underlying block
cipher to be a tweakable strong pseudorandom permutation.

Our Contributions. Although several modes for authentication, hash function, and au-
thenticated encryption, have been developed using public permutations till date, to our
knowledge, the only work which describes a TES built using a public random permuta-
tion is [6]. The construction in [6] uses four round Luby Rackoff construction using two
pseudorandom functions and the pseudorandom functions are constructed using public
permutations. Concrete security bounds and formal security proofs for the TES scheme
are not provided in [6] and to the best of our knowledge, there is no provably secure
public permutation based TES scheme. We initiate a study of such a construction in this
paper. Our concrete contributions are the following.

1. First, we propose a generic construction of a public permutation based TES, called
ppTES. Our proposal closely resembles the HCTR construction. ppTES is designed
using a public permutation π, a length expanding public permutation based pseudo-
random function3 Fπ

′
k , where π and π′ are two independent public random permu-

tations over the same space. Additionally, ppTES uses a keyed hash function Hkh ,
which is required to be both almost xor universal (AXU) and almost regular (AR)
(we further call such functions as AXUAR functions). We prove that if Fπ

′
k is a se-

cure length expanding public permutation based PRF and the hash function is a
secure AXUAR function, then ppTES is secure against adaptive chosen plaintext and
ciphertext adversaries.

2. As our second contribution, we construct a length expanding public permutation
based PRF which we call ppCTR. ppCTR essentially is a counter mode of encryption

1 A cryptographic construction is said to be birthday bound secure if its security retains as long as the
number of queries is upto 2n/2, where n is the block size of the underlying primitive. In literaure, there
are plenty of constructions which are birthday bound secure [20, 22, 17, 23].

2 A cryptographic construction is said to be beyond birthday bound secure if its security retains even
if the number of queries exceeds 2n/2, where n is the block size of the underlying primitive. Examples
of beyond birthday bound secure construction includes [29, 46, 30, 31, 36, 34].

3 Informally, a length expanding PRF takes an input x and the number of blocks b and outputs b many
blocks, where block refers to an element of {0, 1}n, for some fixed n.
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where the block ciphers are replaced by the single round Even Mansour [3] construc-
tion. We show that ppCTR offers a tight n/2 bit security. We use ppCTR and the
PolyHash [52] function in ppTES construction to realize a concrete TES which we call
ppHCTR. ppHCTR requires two keys and two independent public permutations.

3. Finally, we propose ppHCTR+, a public permutation based TES which uses a single
key and a single public permutation. Along with the permutation, ppHCTR+ also
requires an AXUAR hash function and the only key required in ppHCTR+ is the
hash key of the AXUAR hash function. We prove that ppHCTR+ is a birthday bound
secure public permutation based TES.

We would like to mention that any block-cipher based TES can be converted to a public
permutation based scheme by replacing the block ciphers with a single round EM con-
struction. But such direct replacement of block cipher by the EM scheme will require
multiple keys, for example a direct replacement of the block cipher with the single round
EM construction in HCTR mode results in a three keyed (along with the hash key)
construction with two independent permutations. Whereas our proposed construction
ppHCTR+ requires only the hash key and a single random permutation. Additionally,
ppHCTR+ saves a few XOR counts compared to the direct replacement of the block ci-
pher with single round EM construction. Also, ppHCTR+ provides comparable security
to the existing block cipher based TES schemes.

2 Preliminaries

Basic Notations. For a finite set X , X←$X denotes that X is sampled uniformly at
random from X . For a sequence of r random variables (X1, . . . , Xr), X1, . . . , Xr←$X
denotes that Xi’s are independently and uniformly sampled from X . For q ∈ N, we write
[q] to refer to the set {1, . . . , q}. For n ∈ N, {0, 1}n denotes the set of all binary strings of
length n and {0, 1}≥n denotes the set of all binary strings of length at least n. Therefore,
{0, 1}≥0 is the set of all binary strings of arbitrary length (including the empty string
ε) and denoted by {0, 1}∗. An element of {0, 1}n is called a block. For x ∈ {0, 1}∗, |x|
denotes the length of x in bits. For s ∈ N, first(s, x) denotes the first s bits of a binary
string x whose length is at least s. For x, y ∈ {0, 1}∗, x‖y denotes the concatenation of
x followed by y. For x, y ∈ {0, 1}n, we write x ⊕ y to denote their bitwise xor. For any
x ∈ {0, 1}∗, parsen(x) parses x as x1‖x2‖ . . . ‖x` where each xi, for i ∈ [`− 1], is a block
and 0 ≤ |x`| ≤ n. For a sequence of elements x1, x2, . . . , xs ∈ {0, 1}∗, we write xia to
denote the a-th block of the i-th element xi. 〈j〉 denotes the n-bit binary representation
of a non negative integer j < 2n. For integers 1 ≤ b ≤ a, we write P(a, b) to denote
a(a− 1) . . . (a− b+ 1), where P(a, 0) = 1 by convention.
The set of all functions from X to Y is denoted by Func(X ,Y). When Y = {0, 1}n,
then we denote Func(X , {0, 1}n) simply as FuncX (n) and sometimes we write Func(n) by
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omitting X when the domain of the function is understood from the context. We denote
the set of all n bit permutations by Perm(n).

2.1 Security Definitions

In this paper, we adapt the definitions of PRF and TES in the random permutation
model.
PRF Based on Public Random Permutation. Let F : K × X → Y be a keyed
function from X to Y constructed using d many n-bit permutations π

∆
= (π1, . . . , πd),

where K is called the key space, X is called the input space and Y is called the output
space. We consider the Pseudo Random Function (PRF) security of F under public per-
mutation model where we assume that π1, . . . , πd←$Perm(n) and the distinguisher D is
given access to either (FπK ;π±1 , . . . , π

±
d ) for a random key K←$K or (RF;π±1 , . . . , π

±
d ) for

RF←$Func(X ,Y). The superscript ± for the πi’s denotes that the distinguisher can query
πi in both the forward and reverse directions. Query of the distinguisher to πi is called
the primitive query and query to FπK or RF is called the construction query. We define
the PRF advantage of F in public permutation model with respect to the distinguisher
D that makes q construction queries and total qp primitive queries as

AdvPRF
F (D)

∆
= | Pr[DFπK ;π±1 ,...,π

±
d → 1]− Pr[DRF;π±1 ,...,π

±
d → 1] |,

where K←$K, π1, . . . , πd←$Perm(n) and RF←$Func(X ,Y). F is said to be a (q, qp, t)-
secure PRF if AdvPRF

F (q, qp, t)
∆
= maxD AdvPRF

F (D) ≤ ε, where the maximum is taken
over all distinguishers D that makes q construction queries, total qp primitive queries and
runs for time at most t.

TES Based on Public Random Permutation. Let K, T andM be three non-empty
finite sets. A tweakable enciphering scheme (TES) T is defined by a pair of efficient
algorithms T = (Enc,Dec), where Enc : K × T ×M → M and Dec : K × T ×M →
M. Let Enc and Dec be constructed by d many n-bit permutations π

∆
= (π1, . . . , πd),

then we call them by Encπ and Decπ. For all k ∈ K and all T ∈ T , Encπk (T, ·) is a
length preserving permutation over M, i.e., |Encπk (T,M)| = |M | for all M ∈ M. For
the correctness, one requires that for all k ∈ K, for all T ∈ T , and for all M ∈ M,
Decπk (T,Encπk (T,M)) = M . A tweakable permutation with tweak space T and domain
M is a mapping Π̃ : T ×M → M such that for all tweak T ∈ T , M 7→ Π̃(T,M) is a
permutation ofM. We often write Π̃T (M) for Π̃(T,M). TP(T ,M) denotes the set of all
such tweakable permutations.
We consider the tweakable Strong Pseudo Random Permutation (tSPRP) security of
T in public permutation model where we assume that π1, . . . , πd←$Perm(n) and the
distinguisher D is given access to either the oracles (T.EncπK ;T.DecπK ; π±1 , . . . , π

±
d ) for a
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random key K←$K or the oracles (Π̃; Π̃−1;π±1 , . . . , π
±
d ) for Π̃←$TP(T ,M). We call such

a distinguisher as Chosen Ciphertext Attack (CCA) distinguisher. We define the tSPRP
advantage of T in public permutation model with respect to the CCA distinguisher D
that makes qe encryption queries to the first oracle, qd decryption queries to the second
oracle and altogether qp primitive queries as

AdvtSPRP
T (D)

∆
= | Pr[DT.EncπK ;T.DecπK ;π±1 ,...,π

±
d → 1]− Pr[DΠ̃;Π̃−1;π±1 ,...,π

±
d → 1] |,

whereK←$K, π1, . . . , πd←$Perm(n) and Π̃←$TP(T ,M). T is said to be a (qe, qd, qp, `, σ, t)-
secure tSPRP if

AdvtSPRP
T (qe, qd, qp, `, σ, t)

∆
= max

D
AdvtSPRP

T (D) ≤ ε,

where the maximum is taken over all CCA distinguishers D that run at most time t and
make qe encryption, qd decryption and altogether qp primitive queries with a maximum
of ` data blocks present in a single encryption or decryption queried message and total
σ many data blocks queried throughout all the encryption and decryption queries.
In all of the above definitions of security advantage, we omit the time parameter t for
information-theoretic distinguisher 4. In the rest of the paper, we assume information-
theoretic non-trivial distinguishers, i.e., they do not ask duplicate queries or queries
to which they already can compute the answers by themselves from the earlier query-
response. Since, we assume the distinguishers are computationally unbounded, without
loss of generality, we limit the distinguishers to be deterministic.

Almost (XOR) Universal and Almost Regular Hash Function. Let Kh,X be
two non-empty finite sets and H be an n-bit keyed function H : Kh × X → {0, 1}n.
Then, H is said to be an ε-Almost Xor Universal (AXU) hash function if for any distinct
X,X ′ ∈ X and for any δ ∈ {0, 1}n,

Pr[Kh←$Kh : HKh(X)⊕ HKh(X
′) = δ] ≤ ε. (1)

Moreover, H is said to be an ε-Almost Regular (AR) hash function if for any X ∈ X and
for any δ ∈ {0, 1}n,

Pr[Kh←$Kh : HKh(X) = δ] ≤ ε. (2)

A keyed hash function is said to be an (εaxu, εreg)-AXUAR hash function if it is εaxu-AXU
and εreg-AR hash function.
PolyHash Function. PolyHash [52] is one of the popular examples of algebraic hash
function, defined as follows: for a fixed key kh ∈ {0, 1}n and for a message M ∈ {0, 1}∗,
we first apply a padding rule 0∗ i.e., pad the minimum number of zeros to the end of M ,
4 An information-theoretic distinguisher is the one who is computationally unbounded but can make a
limited number of queries to its available oracles.
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so that the total number of bits in the padded message becomes a multiple of n. Let the
padded message be M∗ = M1‖M2‖ . . . ‖Ml where l = d|M |/ne and for each i, |Mi| = n.
Then,

Polykh(M) =M1 · khl+1 ⊕M2 · khl ⊕ . . .⊕Ml · k2
h ⊕ 〈|M |〉 · kh, (3)

where l is the number of blocks of M∗ and the multiplications in Eqn. (3) are in the
field GF(2n). If M = ε, the empty string, we define Polykh(ε) = k2

h ⊕ kh. Note that
the use of the non-injective padding rule (i.e., appending 0∗ at the end of the message)
does not make the hash function insecure as the definition includes the message length
information which is the safeguard against the xor universal attack. The following result
says that the PolyHash defined in Eqn. (3) with an n-bit key, is an (`/2n, `/2n)-AXUAR
hash function, where ` is the maximum number of message blocks. Proof of the lemma
is straightforward and hence omitted.

Lemma 1. PolyHash as defined in Eqn. (3) is (`/2n, `/2n)-AXUAR hash function.

2.2 An Useful Result

Let T be a public permutation based tweakable enciphering scheme over the message
space M and the tweak space T . Let us assume that T is based on d many permuta-
tions π1, . . . , πd. Let $0 and $1 are two functions sampled uniformly and independently
from Func(M,M) and π1, . . . , πd are d many n-bit random permutations sampled uni-
formly and independently from Perm(n). Then, the following result says that a uniform
length-preserving random permutation is very close to a uniform length-preserving ran-
dom function. More formally,

Theorem 1. Let T be a public permutation based TES over a message spaceM⊆ {0, 1}∗
which is based on d many n-bit independent random permutations π1, . . . , πd. Let $0

and $1 are two functions sampled uniformly and independently from Func(M,M) and
π1, . . . , πd are d many n-bit random permutations sampled independently to $0 and $1.
Then, for any information theoretic non-trivial CCA distinguisher D, making altogether
q encryption and decryption queries and total qp primitive queries, we have,

AdvtSPRP
T (D) ≤ |Pr[DT.EncπK ;T.DecπK ;π±1 ,...,π

±
d → 1]− Pr[D$0;$1;π±1 ,...,π

±
d → 1]|︸ ︷︷ ︸

Adv±rnd
T (D)

+
q(q − 1)

2m+1
, where m = min{` :M∩ {0, 1}` 6= φ}.

(4)

The above result has been already been used in the standard model in several places
including in [13, 42]. The proof of Theorem 1 is very similar to the proof given in [42] and
hence we omit it here.
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2.3 H-Coefficient Technqiue

In this section, we briefly discuss the H-Coefficient Technique, which was introduced by
Patarin [48] and regained attention since the work of Chen and Steinberger [24] to analyze
the security of iterated Even-Mansour [3] cipher. Since then, it has been successfully used
as a tool to upper bound the statistical distance between the responses of two interactive
systems and is typically used to prove the pseudo randomness of several constructions
against information theoretic distinguishers. We consider a information theoretic deter-
ministic distinguisher D with access to either the real oracle, i.e., the construction of our
interest, or the ideal oracle which is usually considered to be a uniform random func-
tion or permutation. The collection of all the queries made by D to the oracle and the
responses received by D from the oracle, is called the attack transcript of D, denoted as
τ . Sometimes, we allow the oracle to release more internal information to D only after it
completes all its queries, but before it outputs the decision bit. In this case, the transcript
of D includes the additional information about the oracle and clearly the maximum dis-
tinguishing advantage of D in this setting can not be less than that of without additional
information. The transcript τ is a random variable and the randomness of the distribution
of τ comes only from the randomness of the oracle with which D interacts.
Let Tre and Tid denote the random variable that takes the transcript τ resulting from the
interaction between D and the real world or between D and the ideal world respectively.
The probability of realizing a transcript τ in the real (resp. ideal) world is called the real
(resp. ideal) interpolation probability. A transcript τ is said to be attainable with respect
to D if its ideal interpolation probability is non-zero (i.e., Pr[Tid = τ ] > 0). We denote
the set of all attainable transcripts by V. Following these notations, we state the main
theorem of H-Coefficient Technique [48, 24] as follows:

Theorem 2 (H-Coefficient Technique). Let D be a fixed deterministic distinguisher
that has access to either the real oracle Ore or the ideal oracle Oid. Let V = Vg ∪ Vb,
Vg ∩ Vb = ∅, be some partition of the set of all attainable transcripts of D. Suppose there
exists εratio ≥ 0 such that for any τ ∈ Vg,

Pr[Tre = τ ]

Pr[Tid = τ ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Tid ∈ Vb] ≤ εbad. Then,

AdvOid
Ore

(D)
∆
= |Pr[DOre → 1]− Pr[DOid → 1]| ≤ εratio + εbad. (5)

3 HCTR Construction

HCTR is one of the popular tweakable enciphering modes, proposed by Wang et al. [51],
that turns an n-bit strong pseudorandom permutation into a variable length tweakable
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HCTR.Enck,kh(T,M)

1. M1‖ . . . ‖Ml ← parsen(M);
2. ML ←M1;MR ← (M2‖ . . . ‖Ml);
3. U ←ML ⊕ Polykh(MR‖T );
4. V ← Ek(U); Z ← U ⊕ V ;
5. for i = 1 to l
6. Si ← Ek(Z ⊕ i) ;

7. S
∆
= S1‖ . . . ‖Sl ;

8. CR ← first(|MR|,S)⊕MR;
9. CL ← V ⊕ Polykh(CR‖T );

10. return (CL‖CR);

HCTR.Deck,kh(T,C)

1. C1‖ . . . ‖Cl ← parsen(C);
2. CL ← C1;CR ← (C2‖ . . . ‖Cl);
3. V ← CL ⊕ Polykh(CR‖T );
4. U ← E−1

k (V ); Z ← U ⊕ V ;
5. for i = 1 to l
6. Si ← Ek(Z ⊕ i) ;

7. S
∆
= S1‖ . . . ‖Sl;

8. MR ← first(|CR|,S)⊕CR;
9. ML ← U ⊕ Polykh(MR‖T );
10. return (ML‖MR);

Fig. 3.1. HCTR construction based on an n-bit block cipher Ek and an n-bit Polyhash function. Left
part of the algorithm is the encryption function and right part is the decryption function.

strong pseudorandom permutation. The encryption and decryption algorithm of HCTR
is shown in Fig. 3.1 and its pictorial representation is shown in Fig. 3.2.

We explain the encryption algorithm of HCTR using an example. The decryption
algorithm can be understood in a similar way. Suppose the input messageM = (M1‖M2)
and for the sake of simplicity, we assume that |M1| = |M2| = n, i.e., M consists of two
full blocks. Therefore, in step (2) of the algorithm, the variable ML is assigned to M1

and MR is assigned toM2. In step (3) of the algorithm, we evaluate the poly hash Polykh
on (M2‖T ) which results to M2 · k3

h ⊕ T · k2
h ⊕ 〈|M2| + |T |〉 · kh which is xored with

the n-bit value M1 to produce U . In step (4), we take the xor of U and its encryption
V = Ek(U) to produce Z. In step (6), we compute the key stream S = S1‖S2 where each
|S1| = |S2| = n. Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the input along
with tweak T to the poly hash function Polykh . Evaluation of the poly hash on input
CR‖T results to CR · k3

h ⊕ T · k2
h ⊕ 〈|CR|+ |T |〉 · kh. Then the result is xored with V to

produce CL, which is returned along with CR as the encryption of M =M1‖M2.
Wang et al. [51] have shown that HCTR is a secure TES against all adaptive chosen plain-
text and chosen ciphertext adversaries that make roughly 2n/3 encryption and decryption
queries. Later Chakraborty and Nandi [20] improved its security bound to O(σ2/2n),
where σ is the total number of message blocks among all q queries. Recently, Dutta and
Nandi [35] proposed a tweakable block cipher based HCTR, called tweakable HCTR, and
showed its security beyond the birthday bound.

Remark 1. In [51], authors defined the output of the PolyHash to be the hash key kh for
ε. But that definition of the PolyHash function leads to an attack on the construction
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EK ⊕
Z

P
ol

y K
h

⊕

M1

U

V

M2M3 Ml

CtrEK

P
ol

y K
h

⊕

T

C1 C2C3 Cl

Fig. 3.2. HCTR construction with tweak T and message M1‖M2‖ . . . ‖Ml and the corresponding cipher-
text C1‖C2‖ . . . ‖Cl. PolyKh

is the polynomial hash function with hash key Kh. CtrEK is the block cipher
based counter mode of encryption.

as reported in [41]. This attack does not work if the message space contains messages of
length at least n + 1. We redefine the output of the PolyHash for an empty input string
to be k2

h ⊕ kh, which eliminates the message length restriction.

Motivated by HCTR, we first replace the block cipher based counter mode part of HCTR
with a public permutation based length expanding PRF, and the block cipher EK (see
Fig. 3.2) with a public permutation π. We show that such combination yields a secure
public permutation based TES, which we call ppTES as described in section 4. In section
6, we construct a public permutation based length expanding PRF, which we call ppCTR.
Using ppCTR along with the the PolyHash function, we instantiate ppTES to realize a
public permutation based TES, which we call ppHCTR. However, ppHCTR requires two
independent public permutations, a key for the ppCTR and another independent hash
key for the PolyHash function. Next, we go one step further to reduce the number of
keys and permutations used in ppHCTR and come up with a single keyed (for the Poly-
Hash function) and single permutation based TES construction, ppHCTR+. We describe
ppHCTR+ in section 7.

4 ppTES : A Generic Public Permutation Based TES

ppTES is based on three cryptographic components: (i) an n-bit public random permuta-
tion π1, (ii) an AXUAR hash function Hkh which maps {0, 1}∗ to {0, 1}n, and (iii) a public
permutation based length expanding PRF Fπ2

k , where π2 is a n-bit independent public
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random permutation independent of π1. The message space of ppTES is {0, 1}≥n and the
tweak space is {0, 1}tw. The working principle of ppTES is exactly same as HCTR where
the block cipher is replaced by a public permutation π1 and the counter mode encryption
is replaced by a public permutation based length expanding PRF Fπ2

k . The algorithmic
description of encryption and decryption function of ppTES is shown in Fig. 4.1. The
description in Fig. 4.1 mentions Fπ2

k , which is a length expanding PRF. We describe this
primitive next.

ppTES.Encπ1,π2
k,kh

(T,M)

1. M1‖ . . . ‖Ml ← parsen(M);
2. ML ←M1;MR ← (M2‖ . . . ‖Ml);
3. U ←ML ⊕ Hkh(MR‖T );
4. V ← π1(U); Z ← U ⊕ V ;

5. S
∆
= S1‖ . . . ‖S`−1 ← Fπ2

k (Z, l);
6. CR ← first(|MR|,S)⊕MR;
7. CL ← V ⊕ Hkh(CR‖T );
8. return (CL‖CR);

ppTES.Decπ1,π2
k,kh

(T,C)

1. C1‖ . . . ‖Cl ← parsen(C);
2. CL ← C1;CR ← (C2‖ . . . ‖Cl);
3. V ← CL ⊕ Hkh(CR‖T );
4. U ← π−1

1 (V ); Z ← U ⊕ V ;

5. S
∆
= S1‖ . . . ‖S`−1 ← Fπ2

k (Z, l);
6. MR ← first(|CR|,S)⊕CR;
7. ML ← U ⊕ Hkh(MR‖T );
8. return (ML‖MR);

Fig. 4.1. ppTES based on an n-bit public random permutations π1, an AXUAR hash function Hkh
and a public permutation based length expanding PRF Fπ2

k . M ∈ {0, 1}≥n is the input message and
T ∈ {0, 1}tw is the tweak. Left part of the algorithm is the encryption function and right part is the
decryption function.

As in case of HCTR to explain the encryption algorithm we use a two block message
M = (M1‖M2), where |M1| = |M2| = n. On input M , in step (2) of the algorithm, the
variable ML is assigned to M1 and MR is assigned to M2. In step (3) of the algorithm,
we evaluate the hash value Hkh on (M2‖T ) which is xored with the n-bit value M1 to
produce U . In step (4), we take the xor of U and its permuted value V = π1(U) to
produce Z. In step (5), we compute the key stream S = S1 using length expanding PRF
Fπ2
k where |S1| = n. Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the input

along with tweak T to the hash function Hkh . Then the resulting hash value is xored with
V to produce CL, which is returned along with CR as the encryption of M =M1‖M2.

4.1 Length Expanding Pseudorandom Function

For an arbitrary large positive integer L, Let F ⊆ Func({0, 1}n×N,∪0<i≤L{0, 1}ni), such
that F ∈ F if and only if the following two conditions are satisfied:
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1. For every x ∈ {0, 1}n and every b ∈ [L], |F (x, b)| = nb.
2. For every x ∈ {0, 1}n and every b, b′ ∈ [L], b ≥ b′, first(nb′, F (x, b)) = F (x, b′).

We call a uniform random element of F a length expanding random function.
In Fig. 4.2 we give an algorithmic description of a length expanding random function

ρ. The algorithm depicts ρ as a lazy sampler which gives as output ρ(x, b) upon receiving
a query (x, b). For any input (x, b), it first checks whether x is a fresh element or not.
If it is fresh, then it samples b many blocks uniformly at random from {0, 1}nb. If it is
not fresh, then it first checks whether the number of requested blocks b′ in the earlier
query for input x is less than the number of requested blocks in the current query for the
same input. In that case, it first fetches b′ many blocks which are already stored at T[x],
and then samples the remaining blocks, i.e., b − b′ blocks independently and uniformly
at random from {0, 1}n(b−b′) which is appended with the first b′ many fetched blocks and
finally updates the entry T[x] with the output of the current query. The final case is if
the number of requested blocks in the current query for input x is less than the number
of requested blocks in the earlier query with the same input. Then it fetches the first b
many blocks out of b′ many blocks which are already stored at T[x] and returns it.

Informally, length expanding pseudorandom function is a function which is indistin-
guishable from a length expanding random function by any efficient distinguisher. For
the sake of our construction, we require a public permutation based length expanding
PRF which we formally define next.

Definition 1. Public Permutation Based Length Expanding PRF . Let L be an
arbitrary large positive integer and let F : K × {0, 1}n × [L]→ ∪1≤i≤L{0, 1}ni be a keyed
function based on d many n-bit permutations π

∆
= (π1, . . . , πd) such that for any input

(x, b) ∈ {0, 1}n × [L], Fπk (x, b) returns (y1, . . . , yb) where each yi ∈ {0, 1}n. We consider
the length expanding PRF security of F under public permutation model where we assume
that π1, . . . , πd←$ Perm(n) and the distinguisher D is given access to either of the world
(FπK , π

±
1 , . . . , π

±
d ) for a random key K←$K or (ρ, π±1 , . . . , π

±
d ), where ρ works as shown in

Fig 4.2. We define the LENPRF advantage of F in public permutation model with respect
to the distinguisher D that makes q construction queries and total qp primitive queries as

AdvLENPRF
F (D)

∆
= | Pr[DFπK ,π±1 ,...,π

±
d → 1]− Pr[Dρ,π±1 ,...,π

±
d → 1] |,

where K←$K, π1, . . . , πd←$Perm(n). F is said to be a (q, qp, σ, t)-secure LENPRF if
AdvLENPRF

F (q, qp, σ, t)
∆
= maxD AdvLENPRF

F (D) ≤ ε, where the maximum is taken over
all distinguishers D that makes q construction queries with total σ = (b1+. . .+bq) blocks,
where bi is the number of blocks requested at i-th construction query. It also makes total
qp primitive queries and runs for time at most t. As before, for information theoretic
distinguisher, we omit the time parameter t and in the rest of the paper, we assume the
distinguisher is information theoretic.
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Algorithm for ρ

1. initialize:
2. for all x ∈ {0, 1}n

3. T[x]← ⊥;L[x]← ⊥;
4. end for;
5. on input (x, b) 6= (x′, b′);
6. if x = x′

7. if b > b′, then

8. Y
∆
= (yb′+1, yb′+2, . . . , yb)←$ {0, 1}n(b−b′);

9. T[x]← T[x]‖Y ; L[x]← b; return T[x];
10. else return T[x′]1,...,b;
11. end if;
12. else
13. Y

∆
= (y1, . . . , yb)←$ {0, 1}nb;

14. T[x]← Y ; L[x]← b;
15. return T[x];
16. end if;

Fig. 4.2. Algorithm corresponding to a length expanding random function. T[x]1,...,b denotes the first b
many blocks stored at the x-th entry of table T.

Remark 2. The length expanding PRF is a weaker notion than the notion of variable
output length PRF [11]. For a length expanding PRF, if two queries have the same input
with different number of requesting blocks, then one output is a prefix of other. In case
of variable output length PRF, outputs for two queries are completely random even if
they have the same input with different number of requesting blocks.

4.2 Security of ppTES

In this section, we show that if π1, π2←$Perm(n) are two independently sampled n-bit
public random permutations, K←$ {0, 1}n be a uniformly sampled n-bit key, H is an
(εaxu, εreg)-AXUAR n-bit keyed hash function and Fπ2

K is a secure public permutation
based length expanding PRF, then ppTES is a public permutation based secure TES
against all (qe, qd, qp1 + qp2 , `, σ) information theoretic adaptive CCA distinguishers that
make qe many encryption, qd many decryption queries with total σ many blocks queried
among all q ∆

= qe + qd queries and ` is the maximum number of message blocks present
in a single encryption or decryption query. Moreover, it also makes qp1 primitive queries
to π1 and qp2 primitive queries to π2. Formally, the following result bounds the tSPRP
advantage of ppTES in public permutation model.
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Theorem 3. Let Kh be a finite and non-empty set, π1, π2←$ Perm(n) be two indepen-
dently sampled n-bit public random permutations and K←$ {0, 1}n be an n-bit random
key. Let H : Kh × {0, 1}∗ → {0, 1}n be an (εaxu, εreg)-AXUAR n-bit keyed hash function.
Let Fπ2

K be a secure LENPRF. Then, for any (qe, qd, qp1 + qp2 , `, σ) information theoretic
adaptive CCA distinguisher D against the tSPRP security of ppTES[π1, π2,K,H] in the
public permutation model, there exists a LENPRF adversary B against the length expand-
ing PRF security of Fπ2

K in the public permutation model, where σ is the total number of
message blocks queried, such that

AdvtSPRP
ppTES (D) ≤AdvLENPRF

F (B) + q2εaxu + 2qqp1εreg +
q2

2n+1
+
q(q − 1)

2n+1
.

The proof of this result is given in section 5.

5 Proof of Theorem 3

As a matter of convenience, we refer to the construction ppTES[π1, π2,K,H] as simply
ppTES when the underlying primitives are assumed to be understood.

5.1 Initial Set Up

By Theorem 1, we have

AdvtSPRP
ppTES (D) ≤ Adv±rnd

ppTES(D) +
q(q − 1)

2n+1
, (6)

where recall that n is the minimum message length allowed for ppTES. Therefore, we
bound the±rnd advantage of ppTES. Let D be any information theoretic non-trivial adap-
tive deterministic CCA distinguisher with access to the oracles in either of the following
two worlds: in the real world it interacts withOre = (ppTES.Encπ1,π2

K,Kh
, ppTES.Decπ1,π2

K,Kh
, π±1 , π

±
2 )

for an n-bit random key K, a random hash key Kh and two independent n-bit random
permutations π1 and π2 or in the ideal world it interacts with Oid = ($0, $1, π

±
1 , π

±
2 ),

where $0 and $1 are two independent random functions that output uniform random
strings for every distinct input. Now, our goal is to upper bound the maximum advan-
tage in distinguishing the real world from the ideal one.
For doing this, as the first step of the proof, we replace Fπ1,π2

K with the function ρ as
described in Fig. 4.2. We call the resulting construction as ppTES∗. This replacement
comes at the cost of the length expanding PRF security of Fπ

′
K in the random permutation

model, where the PRF adversary B simulates D as follows: it first samples a hash key
Kh←$Kh and an n-bit random permutation π←$Perm(n). Then, for any input (M,T ),
it computes

Z ← π1(HKh(MR‖T )⊕ML)⊕ HKh(MR‖T )⊕ML.
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Then it calls its own oracle with (Z, d |M |n e) as input and receives the nd |M |n e bit output S.
Then it masks the first |MR| bits of S with MR and produces the ciphertext blocks CR

which is hashed along with T and the hash output is masked with π1(HKh((MR‖T )⊕ML)
to generate the first ciphertext block CL. For any primitive query x made by D to π1, B
accordingly returns the value π1(x). Similarly, it returns the response for backard query
to π1. For any primitive query x made by D to π2, B forwards the query to its own oracle
and returns the received response. Similarly, it returns the response for backward query
to π2. Finally B outputs the same bit as returned by D. Therefore, we have

Adv±rnd
ppTES(D) ≤ AdvLENPRF

F (B) +Adv±rnd
ppTES∗(D)︸ ︷︷ ︸
δ∗

. (7)

5.2 Attack Transcript

Our main goal is to bound δ∗, i.e., we need to distinguish the two worlds: the real
world Ore = (ppTES∗.Encπ1,π2

K,Kh
, ppTES∗.Decπ1,π2

K,Kh
, π±1 , π

±
2 ) from the ideal world Oid =

($0, $1, π
±
1 , π

±
2 ), where K is an n-bit random key, Kh is a random hash key and π1, π2

are two independent n-bit random permutations. Since, we consider the maximum distin-
guishing advantage, let us assume that D be the information theoretic non-trivial adaptive
CCA distinguisher for which the distinguishing advantage is maximum. Let D makes qe
(resp. qd) encryption (resp. decryption) queries and qp1 primitive queries to π1 and qp2

primitive queries to π2. Since, our proof is in random permutation model, D can query
the primitive in forward and reverse direction. After the interaction is over, the real world
returns the hash key Kh and the ideal world samples a dummy hash key Kh←$Kh and
returns it to D. Finally, D outputs a single bit. Let τ ∆

= {(T 1,M1, C1), (T 2,M2, C2),
. . . , (T q,M q, Cq)} be the list of construction queries and responses (i.e., including en-
cryption and decryption queries), τp1

∆
= {(x1, y1), (x2, y2), . . . , (xqp1 , yqp1 )} and τp2

∆
=

{(u1, v1), (u2, v2), . . . , (uqp2 , vqp2 )} be the two list of primitive queries and responses to
π1 and π2 respectively made by D. The triplet τ ′ = (τ, τp1 , τp2 ,Kh) constitutes the query
transcript of the attack.

5.3 Definition and Probabilty of Bad Transcripts

In this section, we define bad transcripts and bound their probability in the ideal world.
From transcript τ ′, we derive the following notation: for i ∈ q, Ui =M i

1⊕Hkh(M i
2‖ . . . ‖M i

li
‖T i),

Vi = Ci1⊕Hkh(C
i
2‖ . . . ‖Cili‖T

i) and Zi = Ui⊕Vi. Having set up the notation, we identify
an event to be bad if for any two construction queries there is a collision in the Zi values
or there is a non-trivial input or output collision of the permutation π1.

Definition 2 (Bad Transcript for ppTES∗). An attainable transcript τ ′ = (τ, τp, τ
′
p,Kh)

is called bad for ppTES∗ if any of the following conditions hold:
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- B.1 : ∃ i 6= j ∈ [q] such that, U i = U j.
- B.2 : ∃ i 6= j ∈ [q] such that V i = V j.
- B.3 : ∃ i ∈ [q] and j ∈ [qp] such that U i = xj.
- B.4 : ∃ i ∈ [q] and j ∈ [qp] such that V i = yj.
- B.5 : ∃ i, j ∈ [q] such that Zi = Zj.

Lemma 2. Let Tid be the random variable that takes the transcript resulting from the
interaction between the distinguisher and the ideal world and Vb be the set of all attainable
bad transcripts for ppTES∗. Then we have,

Pr[Tid ∈ Vb] ≤ εbad = q2εaxu + 2qqpεreg +
q2

2n+1
.

Proof. By the union bound,

Pr[Tid ∈ Vb] ≤
4∑
i=1

Pr[B.i] + Pr[B.5 | B.1 ∧ B.2 ∧ B.3 ∧ B.4]. (8)

In the following, we bound the probability of all the bad events individually. The lemma
will follow by adding the individual bounds.
Bounding B.1. For two fixed values of i and j, we compute the probability of the event
U i = U j . Note that U i = U j implies the hash equation: HKh(M

i
R‖T i)⊕HKh(M

j
R‖T j) =

M i
1⊕M

j
1 . By fixing the value of all other random variables in the hash equation, the prob-

ability of this event is bounded by the AXU advantage of the hash function. Therefore,
by summing over all possible choices of i and j, we have

Pr[B.1] ≤
(
q

2

)
εaxu. (9)

Bounding B.2. This event is similar to that of B.1 where we consider the output collision
of π. Note that, V i = V j implies the hash equation: HKh(C

i
R‖T i) ⊕ HKh(C

j
R‖T j) =

Ci1 ⊕ C
j
1 . Similar to B.1, we bound the event using the AXU advantage of the the hash

function and thus we have
Pr[B.2] ≤

(
q

2

)
εaxu. (10)

Bounding B.3. For two fixed values of i and j, we compute the probability of the event
U i = xj . Note that U i = xj implies the hash equation: HKh(M

i
R‖T i) = M i

1 ⊕ xj . By
fixing the value of all other random variables in the hash equation, the probability of this
event is bounded by the AR advantage of the hash function. Therefore, by summing over
all possible choices of i and j, we have

Pr[B.3] ≤ qqp1εreg. (11)
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Bounding B.4. For two fixed values of i and j, we compute the probability of the event
V i = yj . Note that V i = yj implies the hash equation: HKh(C

i
R‖T i) = Ci1 ⊕ yj . Similar

to B.3, we bound the event using the AR advantage of the hash function and thus we
have

Pr[B.4] ≤ qqp1εreg. (12)

Bounding B.5 | B.1 ∧ B.2 ∧ B.3 ∧ B.4. To bound this event, we first fix the value of
i and j. Note that Zi = Zj implies U i ⊕ V i = U j ⊕ V j . Now, due to the condition, we
have U i 6= U j and V i 6= V j . Therefore, we obtain the following hash equation:

HKh(M
i
R‖T i)⊕ HKh(C

i
R‖T i)⊕ HKh(M

j
R‖T

j)⊕ HKh(C
j
R‖T

j) =W, (13)

where W = M i
1 ⊕M

j
1 ⊕ Ci1 ⊕ C

j
1 . W.l.o.g we assume that i < j. If the j-th query is an

encryption query, then Cj1 is uniformly distributed in the ideal world and if the j-th query
is a decryption query, then M j

1 is uniformly distributed in the ideal world. Combining
the above two arguments and by varying over all possible choices of indices, we have

Pr[B.5] ≤
(
q
2

)
2n
. (14)

The proof follows from Eqn. (8)-Eqn. (12) and Eqn. (14). ut

5.4 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp1 , τp2 , kh), realizing τ ′ is
almost as likely in the real world as in the ideal world.

Lemma 3. Let τ ′ = (τ, τp1 , τp2 , kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Since, in the ideal world, the encryption and the decryption oracle behaves per-
fectly random, we have

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp1)
· 1

P(2n, qp2)
· 1

2nσ
, (15)

where σ is the total number of blocks queried among all q construction queries that
includes encryption and decryption queries.
Real Interpolation Probability. Since, τ ′ is a good transcript, all the inputs and
outputs of π1 are fresh. Moreover, all Zi values are distinct. Therefore, the outputs of ρ
are all uniformly random. Since, there are total qp1 + q many invocations of π1, we have

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp1 + q)
· 1

P(2n, qp2)
· 1

(2n)σ−q
. (16)
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By doing a simple algebraic calculation, it is easy to see that the ratio of Eqn. (16) to
Eqn. (15) is at least 1 and hence proves the result. ut
By combining Lemma 2, Lemma 3, Theorem 2, Eqn. (6) and Eqn. (7), the result follows.

ut

6 ppCTR: Public Permutation Based Length Expanding PRF

In this section, we propose ppCTR, a public permutation based length expanding PRF.
Our proposed construction is a public permutation variant of the block cipher based
standard counter mode encryption where the block cipher is replaced by a single round
EM [3] cipher. The working principle of ppCTR is as follows: it takes an n-bit public
random permutation π and an n-bit random key k. Then for any n-bit input value z and
an integer b, it outputs b many blocks where the j-th block Sj is defined as follows:

Sj
∆
= π(z ⊕ γjk)⊕ γjk, j ∈ [b],

where γ is the root of a primitive polynomial of GF(2n). In the following section, we

π π π

z

⊕γk ⊕γ2k ⊕γ3k

⊕γk

S1

⊕γ2k

S2

⊕γ3k

S3

Fig. 6.1. ppCTR construction with an n-bit input z and an integer b = 3 and corresponding output
S1‖S2‖S3. π is the public random permutation, k is the key and γ is the root of a primitive polynomial
of GF(2n).

state and prove that ppCTR is a public permutation based secure LENPRF against all
adversaries that makes roughly 2n/2 construction and primitive queries. It is needless to
say that the above bound is tight as EM cipher is known to have a tight birthday bound
security [3].

6.1 Security Analysis of ppCTR

In this section, we show that ppCTR is a public permutation based length expanding
PRF.
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Theorem 4. Let π←$ Perm(n) be an n-bit public random permutation and letK←$ {0, 1}n
be an n-bit random key. Then, for any (q, qp, σ) adversary D against the LENPRF security
of ppCTR[π,K], we have

AdvLENPRF
ppCTR (D) ≤ σ2

2n
+

2σqp
2n

,

where σ is the total number of blocks queried across all q queries.

Proof. Let Dmax be the distinguisher with maximum distinguishing advantage in dis-
tinguishing the following two worlds: (a) in the real world it interacts with Ore =
(ppCTR[π,K], π±) for a random n-bit key K and a random n-bit permutation π and
(b) in the ideal world it has access to Oid = (ρ, π±), where ρ works in the similar way
as shown in Fig. 4.2. It makes q construction queries and qp primitive queries. After
the interaction is over, the real world returns K to Dmax and the ideal world randomly
samples a dummy key K←$ {0, 1}n and returns to Dmax. Finally, Dmax outputs a bit.
Let τ ∆

= {(z1, b1,S
1), (z2, b2,S

2), . . . , (zq, bq,S
q)} be the list of construction queries and

responses, where Si = (Si1, . . . , S
i
bi
) and τp

∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the

list of primitive queries and responses to π made by Dmax. Let σ = (b1 + . . . + bq) de-
notes the total number of blocks queried across all q queries. The triplet τ ′ = (τ, τp,K)
constitutes the query transcript of the attack. We define a relation ∼ over τ such that
(zi, bi,Si) ∼ (zj , bj ,Sj) if and only if zi = zj . Thus, ∼ induces a partition on τ and let us
assume we have r many such partitions. Each partition contains ci many elements and
therefore, c1 + . . . + cr = q. Note that, there exists a total ordering among bi values in
each component. This allows us to sort the elements of each component in the ascending
order of their b values. After rearrangement, we have the following:

{(z1, b
1
1,S

1
1), . . . , (z1, b

1
c1 ,S

1
c1)}

{(z2, b
2
1,S

2
1), . . . , (z2, b

2
c1 ,S

2
c2)}

...
...

...
...

{(zr, br1,Sr1), . . . , (zr, brc1 ,S
r
c1)}

Note that, for each i ∈ [r], bici ≥ b
i
ci−1 ≥ . . . ≥ bi1 and Sij is a prefix of Sij+1 for all j ∈ [ci].

6.2 Definition and Probability of Bad Transcripts

In this section, we define bad transcripts and bound their probability in the ideal world.
Informally, we define an event to be bad if it introduces any non-trivial input or output
collision of the permutation π.

Definition 3. (Bad Transcript for ppCTR ) : An attainable transcript τ ′ = (τ, τp,K)
is called a bad transcript for ppCTR if any of the following conditions hold:
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- B.1 : ∃ i 6= j ∈ [r], α ∈ [`ci ] and β ∈ [`cj ] such that zi ⊕ γαK = zj ⊕ γβK.
- B.2 : ∃ i ∈ [r], j ∈ [qp] and α ∈ [`ci ] such that zi ⊕ γαK = xj.
- B.3 : ∃ i 6= j ∈ [r], α ∈ [`ci ] and β ∈ [`cj ] such that Siα ⊕ γαK = Sjβ ⊕ γ

βK.
- B.4 : ∃ i ∈ [r], j ∈ [qp] and α ∈ [`ci ] such that Siα ⊕ γαK = yj.

Lemma 4. Let Tid be the random variable that takes the transcript resulting from the
interaction between the distinguisher and the ideal world and Vb be the set of all attainable
bad transcripts for ppCTR. Then we have,

Pr[Tid ∈ Vb] ≤ εbad =
σ2

2n
+

2σqp
2n

.

Proof. By the union bound,

Pr[Tid ∈ Vb] ≤
4∑
i=1

Pr[B.i]. (17)

In the following, we bound the probability of all the bad events individually. The lemma
will follow by adding the individual bounds.
Bounding B.1. To bound this event, we first fix a value of the indices i 6= j ∈ [r] and
α ∈ [`ci ], β ∈ [`cj ]. For such a fixed choice of indices, we bound the probability of the
event zi ⊕ γαK = zj ⊕ γβK. Now, if α = β, then the probability of the event is zero as
zi 6= zj . Therefore, we assume that α 6= β. For this choice of indices, we write the event
as

K = (γα ⊕ γβ)−1(zi ⊕ zj). (18)

The probability of Eqn. (18) is 2−n, due to the randomness of the key K. Therefore, by
varying over all possible choices of i, j, α and β, we have

Pr[B.1] ≤ σ2

2n+1
. (19)

Bounding B.2. For a fixed choice of i ∈ [r], j ∈ [qp] and α ∈ [`ci ], the probability of the
event K = γ−α(zi ⊕ xj) is bounded by 2−n due to the randomness of K. Therefore, by
varying over all possible choices of i, j and α, we have

Pr[B.2] ≤ qp
2n

(bc1 + · · ·+ bcr) ≤
σqp
2n

. (20)

Bounding B.3. Bounding this event is similar to that of B.1. To bound this event, we
first fix the value of the indices i 6= j ∈ [r] and α ∈ [`ci ], β ∈ [`cj ]. For such a fixed choice
of indices, we bound the probability of the event Siα ⊕ γαK = Sjβ ⊕ γ

βK. Now we have
the following two cases:
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- Case A. Let us consider that α = β. As i 6= j, without loss of generality, we assume
that i < j. Therefore, the event boils down to Siα = Sjα, which is bounded by 2−n due
to the randomness of Sjα. Therefore, by varying over all possible choices of i, j and α,
we have

Pr[B.3] ≤ σ2

2n+1

- Case B. if α 6= β, then the event can be equivalently written as

K = (γα ⊕ γβ)−1(Siα ⊕ Siβ). (21)

Since, α 6= β, we have γα ⊕ γβ 6= 0 and therefore, the probability of Eqn. (21) is 2−n

due to the randomness of the key K. Therefore, by varying over all possible choices
of i, j, α and β, we have

Pr[B.3] ≤ σ2

2n+1
.

By taking the maximum of the above two, we have

Pr[B.3] ≤ σ2

2n+1
. (22)

Bounding B.4. Bounding this event is exactly identical to that of B.2, where we use the
randomness of K to bound the event. Therefore, we have

Pr[B.4] ≤ qp
2n

(bc1 + · · ·+ bcr) ≤
σqp
2n

. (23)

The proof follows from Eqn. (17) and Eqn. (19)-Eqn. (23). ut

6.3 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp, k), realizing τ ′ is almost as
likely in the real world as in the ideal world.

Lemma 5. Let τ ′ = (τ, τp, k) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Consider a good transcript τ ′ = (τ, τp, k). In the ideal world, ρ randomly sam-
ples nbci bit output for i-th class and the key k is sampled uniformly from {0, 1}n and
independent to all other sampled random variables. Thus, we have

Pr[Tid = τ ′] =
1

2n
· 1

P(2n, qp)
·
r∏
i=1

1

2nqbci
. (24)
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For computing the real interpolation probability, as τ ′ is good, all the inputs and outputs
of π are distinct. The total number of π invocations including the primitive queries is
(bc1 + . . .+ bcr + qp). Therefore,

Pr[Tre = τ ′] =
1

2n
· 1

P(2n, bc1 + . . .+ bcr + qp)
. (25)

It is trivial to see that the ratio of Eqn. (25) to Eqn. (24) is at least 1. Hence the result of
Lemma 5 follows. Finally, by combining Lemma 4, Lemma 5 and Theorem 2, the result
of Theorem 4 follows. ut

6.4 ppHCTR : An Instantiation of ppTES with ppCTR and PolyHash

We instantiate the public permutation based length expanding PRF Fπ2
k of ppTES[π1, π2, k,

H] with ppCTR[π2, k] and its underlying AXUAR hash function Hkh with the PolyHash
function Polykh , as described in Eqn. (3), to realize a practical candidate of a public
permutation based TES, referred to as ppHCTR[π1, π2, k,Polykh ]. We assume that the
tweak is µ blocks long, i.e., tw = nµ and thus, for any i ∈ [q], the maximum degree of
Polykh(M

i
2‖ . . . ‖M i

li
‖T i) is l̂i + µ, where l̂i = d

|Mi
R|
n e. Since, l̂i ≤ ` for all i ∈ [q], where

` denotes the maximum number of message blocks among all q queries, therefore the
AXU and the AR advantage of the PolyHash function is (`+ µ)/2n. Note that, ppHCTR
requires two independent n-bit random permutations π1 and π2, an n-bit random key K
and an independent n-bit random hash key Kh for the PolyHash function. Security result
of ppHCTR follows trivially from Theorem 3 and Theorem 4 which can be summarized
as follows:

Theorem 5. Let π1, π2←$ Perm(n) be two independent n-bit public random permutations
and let K←$ {0, 1}n be an n-bit random key. Let Kh←$ {0, 1}n be an n-bit random hash
key of PolyHash function as described in Eqn. (3). Then, for any (qe, qd, qp1 +qp2 , `, σ) in-
formation theoretic non-trivial adaptive CCA distinguisher D against the tSPRP security
of ppHCTR[π1, π2,K,PolyKh ], we have

AdvtSPRP
ppHCTR(D) ≤ σ2

2n
+

2σqp2

2n
+
q2`

2n
+

2qqp1`

2n
+
µq2

2n
+

2µqqp
2n

+
q2

2n+1
+
q(q − 1)

2n+1
,

where q = qe + qd, ` is the maximum number of message blocks and µ is the number of
tweak blocks.

7 ppHCTR+ : A Single-Keyed Variant of ppHCTR

In the last section, we have seen that ppHCTR, a public permutation based TES, requires
two independent n-bit public random permutations and two independent n-bit keys. In
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this section, we propose a single permutation and single keyed variant of ppHCTR, referred
to as ppHCTR+. The construction is based on an n-bit public random permutation π
and an n-bit random hash key of the PolyHash function as described in Eqn. (3). We
consider that the tweak size is µ blocks long. The encryption and decryption algorithm
of ppHCTR+ is shown in Fig. 7.1.

ppHCTR+.Encπkh(T,M)

1. (M1‖ . . . ‖Ml)← parsen(M);
2. ML ←M1;MR ← (M2‖ . . . ‖Ml);
3. U ←ML ⊕ Polykh(MR‖T );
4. V ← π(U); Z ← U ⊕ V ;
5. for j = 1 to l − 1

6. Zj ← Z ⊕ j;
7. Sj ← π(Zj)⊕ Zj ;

8. S
∆
= (S1‖ . . . ‖Sl−1);

9. CR ←MR ⊕ first(|MR|,S);
10. CL ← V ⊕ Polykh(CR‖T );
11. return (CL‖CR);

ppHCTR+.Decπkh(T,C)

1. (C1‖ . . . ‖Cl)← parsen(C);
2. CL ← C1;CR ← (C2‖ . . . ‖Cl);
3. V ← C1 ⊕ Polykh(CR‖T );
4. U ← π−1(V ); Z ← U ⊕ V ;
5. for j = 1 to l − 1

6. Zj ← Z ⊕ j;
7. Sj ← π(Zj)⊕ Zj ;

8. S
∆
= (S1‖ . . . ‖Sl−1);

9. MR ← CR ⊕ first(|CR|,S);
10. ML ← V ⊕ Polykh(MR‖T );
11. return (ML‖MR);

Fig. 7.1. ppHCTR+ based on an n-bit public random permutation π and an n-bit random hash key kh.
Left part is the encryption algorithm and right part is its decryption algorithm.

To see the dataflow of the encryption algorithm we consider an input message M =
(M1‖M2), where |M1| = |M2| = n, i.e., M consists of two full blocks. Therefore, in step
(2) of the algorithm, the variable ML is assigned to M1 and MR is assigned to M2. In
step (3) of the algorithm, we evaluate the poly hash Polykh on (M2‖T ) which results to
M2 · k3

h ⊕ T · k2
h ⊕ 〈|M2| + |T |〉 · kh which is xored with the n-bit value M1 to produce

U . In step (4), we take the xor of U and V = π(U) to produce Z. In step (6) and (7),
we compute the key stream S = S1 where each |S1| = n by S1 = π(Z ⊕ 1) ⊕ (Z ⊕ 1).
Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the input along with tweak T
to the poly hash function Polykh . Evaluation of the poly hash on input CR‖T results to
CR ·k3

h⊕T ·k2
h⊕〈|CR|+ |T |〉 ·kh. Then the result is xored with V to produce CL, which

is returned along with CR as the encryption of M =M1‖M2. The decryption works in a
similar way.

7.1 Security Result of ppHCTR+

The security result of ppHCTR+ is as follows:
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Theorem 6. Let π←$ Perm(n) be an n-bit public random permutation and letKh←$ {0, 1}n
be an n-bit random hash key of PolyHash function as described in Eqn. (3). Then, for any
(qe, qd, qp, `, σ) information theoretic non-trivial adaptive CCA distinguisher D against the
tSPRP security of ppHCTR+[π,PolyKh ], we have

AdvtSPRP
ppHCTR+(D) ≤ 9σ2

2n
+

6µσ2

2n
+

4qpσ(µ+ 1)

2n
+
q(q − 1)

2n+1
,

where σ is the total number of message blocks for all q ∆
= qe + qd queries and µ is the

number of tweak blocks.

8 Proof of Theorem 6

In section 6.4, we propose ppHCTR, which uses two independent random permutations
and two independent random keys, which allowed us to use the generic security result of
ppTES in order to derive the security result of ppHCTR. However, for the single keyed
variant of it, we cannot use the generic result of ppTES due to the input / output
dependency and that demands an independent security proof for ppHCTR+.
For the sake of simplicity, we refer ppHCTR+[π,PolyKh ] as ppHCTR+ when the underlying
primitives are assumed to be understood. By Theorem 1, we have

AdvtSPRP
ppHCTR+(D) ≤ Adv±rnd

ppHCTR+(D) +
q(q − 1)

2n+1
, (26)

where recall that n is the minimum message length allowed for ppHCTR+. Therefore, we
bound the ±rnd advantage of ppHCTR+. Let D be any information theoretic non-trivial
adaptive deterministic CCA distinguisher with access to the oracles in either of the follow-
ing two worlds: in the real world it interacts withOre = (ppHCTR+.EncπKh , ppHCTR+.DecπKh ,
π±) for an n-bit random hash key Kh and a random n-bit permutation π or in the ideal
world it interacts with Oid = ($0, $1, π

±), where $0 and $1 are two independent random
functions such that for any input, it responds with uniform values. Now, our goal is to
upper bound the maximum advantage in distinguishing the real world from the ideal one.

Let D be the maximum distinguishing advantage achieving distinguisher that makes qe
(resp. qd) encryption (resp. decryption) queries and qp primitive queries. After the in-
teraction is over, the underlying hash key is revealed to D and finally, D outputs a bit.
Let τ ∆

= {(T 1,M1, C1), (T 2,M2, C2), . . . , (T q,M q, Cq)} be the list of construction queries
and responses and τp

∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the list of primitive queries

and responses where each T i is exactly µ blocks long. The triplet τ ′ = (τ, τp,Kh) consti-
tutes the query transcript of the attack. Now, we characterize the set of bad transcripts
and good transcripts.
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8.1 Definition and Probability of Bad Transcripts

In this section, we define bad transcripts and bound their probabilities in the ideal world.
The defining criterion of the bad event is any non-trivial collision in the input or output
of the permutation. As defined in Fig. 7.1, Mi

R denotes M i
2‖ . . . ‖M i

li
and Ci

R denotes
Ci2‖ . . . ‖Cili . Moreover, for a transcript τ ′, we denote U i = PolyKh(M

i
R‖T i) ⊕M i

1, V
i =

PolyKh(C
i
R‖T i)⊕ Ci1 and Ziα = U i ⊕ V i ⊕ 〈α〉.

Definition 4. (Bad Transcript for ppHCTR+ ) : An attainable transcript τ ′ = (τ, τp,Kh)
is called a bad transcript for ppHCTR+ if any of the following conditions hold:

- B.1 : ∃ i 6= j ∈ [q] such that, U i = U j.
- B.2 : ∃ i, j ∈ [q] and α ∈ [lj − 1] such that, U i = Zjα.
- B.3 : ∃ i, j ∈ [q], α ∈ [li − 1] and β ∈ [lj − 1] with (i, α) 6= (j, β) such that Ziα = Zjβ,
where (i, α) 6= (j, β).

- B.4 : ∃ i 6= j ∈ [q] such that V i = V j.
- B.5 : ∃ i, j ∈ [q] and α ∈ [lj − 1] such that V i = Zjα ⊕M j

α+1 ⊕ C
j
α+1.

- B.6 : ∃ i, j ∈ [q], α ∈ [li − 1] and β ∈ [lj − 1] with (i, α) 6= (j, β) such that Ziα ⊕
M i
α+1 ⊕ Ciα+1 = Zjβ ⊕M

j
β+1 ⊕ C

j
β+1.

- B.7 : ∃ i ∈ [q] and j ∈ [qp] such that U i = xj.
- B.8 : ∃ i ∈ [q] , j ∈ [qp] and α ∈ [li − 1] such that Ziα = xj.
- B.9 : ∃ i ∈ [q] and j ∈ [qp] such that V i = yj.
- B.10 : ∃ i ∈ [q] , j ∈ [qp] and α ∈ [li − 1] such that Ziα ⊕M i

α+1 ⊕ Ciα+1 = yj.

Lemma 6. Let Tid be the random variable that takes the transcript resulting from the
interaction between the distinguisher and the ideal world and Vb be the set of all attainable
bad transcripts for ppHCTR+. Then, by assuming q ≤ σ, we have

Pr[Tid ∈ Vb] ≤ εbad =
9σ2

2n
+

6µσ2

2n
+

4qpσ(µ+ 1)

2n
.

Proof. By the union bound,

Pr[Tid ∈ Vb] ≤
10∑
i=1

Pr[B.i]. (27)

In the following, we bound the probability of all the bad events individually. The lemma
will follow by adding the individual bounds.
Notation. We consider that the tweak is µ blocks long, i.e., tw = nµ. Therefore, for
any i ∈ [q], the maximum degree of Polykh(M

i
R‖T i) is l̂i + µ, where l̂i

∆
= d |M

i
R|
n e. Let ˆ̀

i,j

denotes max{l̂i, l̂j}+ µ and σ̂ = qµ+ (l̂1 + . . .+ l̂q) denotes the total number of message
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blocks of Mi
R (including the tweak blocks) across all q queries. Therefore, σ = (σ̂−qµ+q)

which implies that σ − q = l̂1 + . . .+ l̂q. Since, ˆ̀i,j ≤ l̂i + l̂j + µ, we have∑
1≤i<j≤q

ˆ̀
i,j ≤

(
q

2

)
µ+

∑
1≤i<j≤q

(l̂i + l̂j) ≤ (q − 1)σ̂ ≤ qσ + µq2. (28)

Bounding B.1. Bounding this event is equivalent to bounding

PolyKh(M
i
R‖T i)⊕ PolyKh(M

j
R‖T

j) =M i
1 ⊕M

j
1 .

If Mi
R‖T i = Mj

R‖T j then the probability of this event is zero, otherwise it is bounded by
the AXU advantage of the PolyHash and hence from Eqn. (28) and by assuming q ≤ σ,
we have

Pr[B.1] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
≤ σ2(µ+ 1)

2n
. (29)

Bounding B.2. To bound the probability of B.2, we first fix the value of i, j and α.
Note that Zjα = Zj ⊕ 〈α〉. Therefore, U i = Zjα implies U i ⊕ U j ⊕ V j = 〈α〉. Now, this
essentially implies the following hash equation:

PolyKh(M
i
R‖T i)⊕ PolyKh(M

j
R‖T

j)⊕ PolyKh(C
j
R‖T

j) =M i
1 ⊕M

j
1 ⊕ C

j
1 ⊕ 〈α〉. (30)

Based on the values of i and j, we have the following two subcases:

- Case A: If i 6= j, then we first assume that i < j. Then, if the j-th query is an
encryption query, then Cj1 is random and therefore by conditioning on the hash key
and using the randomness of Cj1 , probability of Eqn. (30) can be bounded by 2−n

as Cj1 is uniformly distributed in the ideal world. Similarly, if the j-th query is a
decryption query, then M j

1 is random and therefore by conditioning on the hash key
and using the randomness of M j

1 , probability of Eqn. (30) can be bounded by 2−n as
M j

1 is uniformly distributed in the ideal world. Therefore, by varying over possible
choices of i and (j, α), we have

Pr[B.2] ≤ qσ

2n
.

On the other hand if i > j, then by conditioning all other random variables, we
bound the probability of the event using the AXU advantage of the PolyHash function.
Therefore, we have

Pr[B.2] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
.

By considering the maximum of the above two, we have

Pr[B.2] ≤ qσ + µq2

2n
. (31)
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- Case B: If i = j, then, Eqn. (30) boils down to the following hash equation:

PolyKh(C
i
R‖T i) = Ci1 ⊕ 〈α〉. (32)

Note that for a fixed choice of i and α, Eqn. (32) can be bounded by the AR advantage
of the PolyHash function. Therefore,

Pr[B.2] =

q∑
i=1

l̂i∑
α=1

l̂i + µ

2n
=

1

2n

q∑
i=1

l̂2i +
1

2n

q∑
i=1

l̂iµ ≤
σ2 + q2

2n
+
µσ

2n
. (33)

By considering both the cases and by assuming q ≤ σ, we have

Pr[B.2] ≤ σ2 + q2 + µσ

2n
+
qσ + µq2

2n
≤ 3σ2(µ+ 1)

2n
. (34)

Bounding B.3. To bound the probability of B.3, we first fix the value of i, j, α and β
such that (i, α) 6= (j, β). Note that Ziα = Zjβ implies the following hash equation:

PolyKh(M
i
R‖T i)⊕ PolyKh(M

j
R‖T

j)⊕ PolyKh(C
i
R‖T i)⊕ PolyKh(C

j
R‖T

j) =W,

where W = M i
1 ⊕M

j
1 ⊕ Ci1 ⊕ C

j
1 ⊕ 〈α〉 ⊕ 〈β〉. Note that for i = j, the probability of

this event is zero. For i 6= j, without loss of generality we assume that i < j, if the
j-th query is an encryption query, then Cj1 is uniformly distributed in the ideal world
which is used to bound the probability of the event by conditioning the hash key and
all other random variables. Similarly, if the j-th query is a decryption query, then M j

1

is uniformly distributed in the ideal world which is used to bound the probability of the
event by conditioning the hash key and all other random variables. Combining the above
two arguments with the assumption q ≤ σ and by varying over all possible choices of
indices, we have

Pr[B.3] =

(
σ−q

2

)
2n

≤ σ2 + q2

2n+1
≤ σ2

2n
. (35)

Bounding B.4. Bounding this event is equivalent to bounding

PolyKh(C
i
R‖T i)⊕ PolyKh(C

j
R‖T

j) = Ci1 ⊕ C
j
1 .

If Ci
R‖T i = Cj

R‖T j then the probability of this event is zero, otherwise it is bounded
by the AXU advantage of the PolyHash and hence from Eqn. (28) and by the assumpion
q ≤ σ, we have

Pr[B.4] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
≤ σ2(µ+ 1)

2n
. (36)

Bounding B.5. We first fix the values of i, j and α and compute the probability of
V i = M j

α+1 ⊕ C
j
α+1 ⊕ Z

j
α. This event boils down to computing the probability of the

following event: PolyKh(C
i
R‖T i)⊕ PolyKh(M

j
R‖T j)⊕ PolyKh(C

j
R‖T j) =W ,

where W = Ci1 ⊕M
j
α+1 ⊕C

j
α+1 ⊕M

j
1 ⊕C

j
1 ⊕ 〈α〉. Now, we have two subcases as follows:
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- Case A: if i = j, then we have PolyKh(M
i
R‖T i) = Ci1 ⊕M i

α+1 ⊕ Ciα+1 ⊕M i
1 ⊕ Ci1 ⊕

〈α〉, which can be bounded using the AR advantage of the PolyHash function after
conditioning all other random variables. Therefore, by assuming q ≤ σ, we have

Pr[B.5] =

q∑
i=1

l̂i∑
α=1

l̂i + µ

2n
=

1

2n

q∑
i=1

l̂2i +
1

2n

q∑
i=1

l̂iµ ≤
2σ2

2n
+
µσ

2n
. (37)

- Case B: Now we consider the case when i 6= j and without loss of generality we
assume that i < j. Then by fixing the hash key Kh, the probability of the above
event is the probability over the random draw of Cj1 (if j-th query is an encryption
query) or M j

1 (if j-th query is a decryption query), which is at most 2−n. Therefore,
varying over all the possible choice of i, j and α and q ≤ σ, we have

Pr[B.5] ≤ qσ

2n
≤ σ2

2n
. (38)

Taking the maximum of Eqn. (37) and (38), we have

Pr[B.5] ≤ 2σ2

2n
+
µσ

2n
. (39)

Bounding B.6. To bound this event we first fix i, j and α, β and then we compute the
probability of M i

α+1 ⊕ Ciα+1 ⊕ Ziα = M j
β+1 ⊕ C

j
β+1 ⊕ Z

j
β . Now, we have the following

subcases based on the values of i and j.

- Case A: If i = j, then the above event boils down to the following event M i
α+1 ⊕

Ciα+1 ⊕M i
β+1 ⊕Ciβ+1 = 〈α〉 ⊕ 〈β〉. Since α 6= β, without loss of generality we assume

that α < β. Therefore, using the randomness of Ciβ (if i-th query is encryption) or
using the randomness of M i

β (if i-th query is decryption), the probability of the event
is bounded by 2−n. By summing over all possible values of i, α and β, we have

Pr[B.6] ≤
q∑
i=1

(
l̂i
2

)
2n
≤ 1

2n+1
(

q∑
i=1

l̂i)
2 =

(σ − q)2

2n+1
≤ σ2 + q2

2n+1
. (40)

- Case B: If i 6= j, then we bound the probability of the event similar to that of B.3,
that is 1/2n and therefore, by summing over all possible values of i, j, α and β, we
have

Pr[B.6] ≤ σ2 + q2

2n+1
. (41)

By taking the maximum of Eqn. (40) and (41) and by assuming q ≤ σ, we have

Pr[B.6] ≤ σ2 + q2

2n+1
≤ σ2

2n
. (42)



Designing Tweakable Enciphering Schemes Using Public Permutations 29

Bounding B.7. Bounding this event is equivalent to bounding PolyKh(M
i
R‖T i) =M i

1⊕
xj . This event is bounded by the AR advantage of the PolyHash and hence from Eqn. (28)
and by assuming q ≤ σ, we have

Pr[B.7] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qpσ(µ+ 1)

2n
. (43)

Bounding B.8. To bound the probability of B.8, we first fix the value of i, j and α. Note
that Ziα = xj implies the following hash equation: PolyKh(M

i
R‖T i)⊕ PolyKh(C

i
R‖T i) =

M i
1 ⊕ Ci1 ⊕ 〈α〉 ⊕ xj . If the construction query comes after the primitive query then we

can bound the probability of the event using the randomness of Ci1 (if the construction
query is an encryption query) or using the randomness of M i

1 (if the construction query
is a decryption query). Therefore, by conditioning the hash key and all other random
variables, the bound will be 2−n. Therefore, we have

Pr[B.8] =
(σ − q)qp

2n
≤ σqp

2n
.

On the other hand, if the primitive query comes after the construction query, then we
condition every other random variables and bound the probability of this event by using
the AR advantage of the PolyHash function. Therefore, we have

Pr[B.8] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qp(σ + qµ)

2n
.

Therefore, by taking the maximum of the above two and by assuming q ≤ σ, we have

Pr[B.8] ≤ qpσ(µ+ 1)

2n
. (44)

Bounding B.9. Bounding this event is equivalent to bounding PolyKh(C
i
R‖T i) = Ci1⊕yj .

This event is bounded by the AR advantage of the PolyHash and hence from Eqn. (28)
and by assuming q ≤ σ, we have

Pr[B.9] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qpσ(µ+ 1)

2n
. (45)

Bounding B.10. To bound the probability of B.10, we first fix the value of i, j and
α. Note that M i

α+1 ⊕ Ciα+1 ⊕ Ziα = yj implies the hash equation: PolyKh(M
i
R‖T i) ⊕

PolyKh(C
i
R‖T i) = W , where W = M i

α+1 ⊕ Ciα+1 ⊕M i
1 ⊕ Ci1 ⊕ 〈α〉 ⊕ yj . Similar to B.8,

we bound the event as
Pr[B.10] ≤ qpσ(µ+ 1)

2n
. (46)

The proof follows from Eqn. (27), Eqn. (29)-Eqn. (46) and q ≤ σ. ut
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8.2 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp, kh), realizing τ ′ is almost
as likely in the real world as in the ideal world.

Lemma 7. Let τ ′ = (τ, τp, kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Since, in the ideal world, the encryption and the decryption oracle behaves per-
fectly random, we have

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp)

1

2nσ
, (47)

where σ is the total number of message blocks queried among all q queries.
Real Interpolation Probability. Since τ ′ is a good transcript, all the inputs and
outputs of π are fresh as we have eliminated all the internal input and output collisions
of π, including the primitive queries while defining the bad events. Since there are total
σ+ qp invocation of π, including the primitive queries, therefore, the required probability
is,

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp)

1

P(2n − qp, σ)
. (48)

By doing a simple algebraic calculation, it is easy to show that the ratio of Eqn. (48) to
Eqn. (47) is at least 1. This proves Lemma 7. ut
By combining Lemma 6, Lemma 7, Theorem 2 and Eqn. (26), the result of Theorem 6
follows. ut

Discussion. We would like to note here that a simple birthday bound attack reveals
the hash key of the Polyhash function for ppHCTR and ppHCTR+. This would allow an
adversary to generate the ciphertext for any plaintext. The same attack also works for
HCTR construction. A simple remedy of this problem is to introduce additional permu-
tation calls after the hash evaluation in upper and bottom layers. This would resolve
the problem of revealing the hash difference to any adversary, which in turn makes the
recovery of the hash key difficult. A formal security analysis of this modified construction
is beyond the scope of this paper.

9 Conclusion

Permutation based cryptography is a promising new addition in the cryptographic liter-
ature. There has been a continued effort in building cryptographic schemes using public
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permutations as the base primitive. Permutation based designs are generally lightweight.
The overwhelming number of candidates using permutation based designs in the ongoing
NIST competition of lightweight ciphers bears a proof of the fact that permutation based
designs are preferred for computationally constrained scenarios.

There are permutation based designs available for various cryptographic schemes like
authenticated encryption, authenticated encryption with associated data, message au-
thentication codes, collision resistant hash etc., but to our knowledge there are no existing
permutation based construction of tweakable enciphering schemes. Tweakable encipher-
ing schemes are a class of encryption schemes which are length preserving and have thus
found its use in low level disk encryption or encryption of any storage media which is
organized as sectors. All the exisiting tweakable enciphering schemes are either build on
top of block-ciphers, pesudorandom functions, or tweakable block ciphers [21, 38, 39, 51,
12, 35, 17]. In this paper, we study the security of tweakable enciphering schemes built
on a low level primitive like public random permutation. We initiate the study with a
generic construction of a public permutation based TES, called ppTES. Then we con-
struct ppCTR, a public permutation based length expanding PRF and finally, we propose
a single keyed and single permutation based TES which we call ppHCTR+. To the best
of our knowledge, this is the first provably secure public permutation based TES.

Our constructions, both ppTES and ppHCTR+ requires both the forward and inverse
calls of the permutation. Most existing public random permutations are more efficient
in their forward calls compared to the inverse calls, thus a inverse free construction
like [17, 12] is worth studying. Another direction of future research would be to construct
a permutation based TES which is beyond birthday bound secure.
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