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Abstract

Zero-knowledge proof is widely used in blockchains. For example, zk-SNARK

is used by Zcash as its core technology in identifying transactions. Up to

now, various range proofs have been proposed, and their efficiency and range-

flexibility are enhanced. Bootle et al. used inner product method and recursion

to make an efficient zero-knowledge proof. Then, Benediky Bünz et al. came

up with an efficient zero-knowledge proof scheme called Bulletproofs which can

convince the verifier that a secret number lies in [0, 2κ−1]. By combining inner-

product and Lagrange’s four-square theorem, we structure a range proof scheme

which is called Cuproof. The scheme of Cuproof would make a range proof to

prove that a secret number v ∈ [a, b] without exposing redundant information of

v. In Cuproof, all the communication cost, the proving time and the verification

time are constant. When the interval of the range proof is large, our Cuproof

would show much better.

Keywords: Blockchain, Zero-Knowledge Proof, Range Proof, Inner-product,

Bulletproofs

1. Introduction

The blockchain-based cryptocurrencies enable peer-to-peer transactions and

make sure that the transactions are valid. In the Bitcoin [1] system, all the
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transactions are recorded in a common ledger. So every one can check whether

the transactions in the ledger are valid. The used hash function also makes5

the transactions in the blockchains can’t be tampered. However, every coin

has two sides. The transparency is both an advantage and a disadvantage of

Bitcoin. In a transaction of Bitcoin, the data of transaction, the addresses of the

senders and the receivers are all transparent, and it means that the anonymities

of Bitcoin are not so strong.10

In order to offset the disadvantage of Bitcoin, other cryptocurrencies using

NIZK like Zcash [2] were proposed. The transactions between the shielded

addresses are the special parts of Zcash. In these kind transactions, although the

traders’ addresses and the amount of the transactions are all covert, the validity

of these transactions can still be checked because a kind of zero knowledge15

proof so called zk-SNARK is applied. However, zk-SNARK requires a trusted

setup that means the trusted setup should be honest. The trusted setup is the

weakness of zk-SNARK because once the setup organization is rantankerous,

the security of the secret number in the proof can’t be guaranteed. To avoid

trusted setup, some other zk-SNARKs without trusted setup were proposed. For20

example, Srinath Setty [3] put forward a kind of zk-SNARK which doesn’t need a

trust setup. One could also avoid trusted setup by using STARK [4]. According

to the property of protecting anonymity, more and more cryptocurrencies apply

zero knowledge proof as a tool to avert the disclosure of users’ information.

In this paper, we combine the Lagrange integers theorem to Bulletproofs25

[5] to construct an range proof for arbitrary interval. In our scheme, the com-

munication costs are 4 elements of G, 3 elements of Zn and 15 elements of Z.

Compared to the communication costs of Bulletproofs [5] which are logarith-

mic in κ where the κ is the exponent of upper limit value of the proving range

[0, 2κ−1], the costs of ours are constant. So when the interval of the range proof30

is large, our scheme has more advantage than Bulletproofs in the communication

cost.
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1.1. Related work

There are lots of research work on range proof from the day when the first

relevant algorithm of range proof was proposed. Brickel et al. [6] first stated the35

correlative algorithm of range proof in 1987. Its aim was to send reliable values

to other participants, this can allow a user with a discrete logarithm time to

disclose a bit of information to another user so that any other user can verify the

equations as they receive each bit. In 1998, Chan et al. [7] showed how to use

the algorithm of [6] to verify the non-negative transaction amount and enhanced40

the algorithm in [6]. This is so called CTF proof because its security depends on

modulus. To keep completeness, the order of the used group must be unknown.

In 2000, Boudot [8] used the square numbers to build an effective range proof

which is based on CTF. Using the Lagrange’s four-square theorem [9], that is,

any non-negative integer can be represented as the sum of squares of some four45

integers, Lipmaa [10] pushed out a proof of any range for first time. In 2005,

Groth [11] pointed out that if y was a non-negative integer, then 4y+1 could be

represented as the sum of the squares of some three integers. The protocol given

in [11] needed a trusted setup to generate RSA modulus or needed a prohibitively

large modulus. Using Boneh-Boyen signature [12], Teranishi et al. [13] proposed50

many anonymous authentication methods in 2006. In 2008, Camenisch et al.

[14] used signature method which relies on the security of the q-Strong Diffie-

Hellman assumptions to construct a range proof. In 2014, Belenkiy [15] designed

a scheme to extend the u-proof cryptographic specification [16] by making use

of the membership proof of a set, this scheme can be used twice to compare55

the size of one committed value with other committed value, therefore it can

make a range proof. In 2019, Maller et al. [17] presented Sonic which is the

first potentially practical zk-SNARK with fully succinct verification for general

arithmetic circuits with SRS, but the verson of Sonic enabling fully succinct

verification still requires relatively high proof construction overheads. Later,60

Gabizon et al. [18] presented PLONK which is more efficient than Sonic.

Bootle et al. [19] made a step forward on the efficiency of space in zero-

knowledge proof based on discrete logarithms. They used inner product method
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and recursion to enhance the efficiency of zero-knowledge proof. Based on these

works, Bünz et al. [5] improved the inner product method for zero certificate65

range proof and came up with a more efficient zero knowledge proof scheme

called Bulletproofs. It can not only be applied to the range of certificates and

reshuffle and other applications, but also doesn’t need any trusted set up.

1.2. Contributions

Our scheme, called Cuproof for conveniency, is established on the techniques70

of Bulletproofs and Lagrange’s three-square theorem given in [11]. Our protocol

can make a range proof for arbitrary range. The argument of ours has low

computation complexity. The main difference between Bulletproofs and ours

is that Bulletproofs’s communication costs[5] are logarithmic in κ, where κ is

the exponent of upper limit value of the proving range [0, 2κ− 1], while the our75

costs are constant. The key is that we combine our following Theorem 2 into

Bulletproofs [5]. Our Cuproof can satisfy the three security properties required

for a secure zero-knowledge proof: correctness, soundness and zero-knowledge.

1.3. Structure of the paper

In Section 2, some mathematical symbols, definitions and theorems are given.80

The framework and construction of our range proof protocol are stated in Sec-

tion 3. In Section 3.1, we show how to construct a proof which convinces the

verifier that the prover knows the secret number v. In Section 3.2, we describe

our range proof protocol Cuproof in detail. Some performance comparisons be-

tween Bulletproofs and Cuproof are shown in Section 4. Finally, the Forking85

Lemma and the proof of Theorem 3 will be given in Appendix B.

2. Preliminaries

Before we state our protocol, we first state some of the underlying tools.

In this paper, A is a PPT adversary which is a probabilistic interactive Turing

Machine that runs in polynomial time in the security parameter λ.90
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2.1. Assumptions

Groups of Unknown Order: In order to keep the soundness of our range

proof, we use the RSA group G where the order of the group is unknown. The

RSA group is generated by a trusted setup.

RSA Group. In the multiplicative group G of integers modulo n where n is95

the product of the large primes p and q. The hardness of computing the order

of the group G is as the same as the hardness of factoring n.

Assumption 1 (Discrete Log Relation Assumption). For all PPT adversaries

A and for all j ≥ 2 there exists a negligible function µ(λ) such that

P


G = Setup

(
1λ
)
,

g1, ..., gj
$← G;

a1, ..., aj ∈ Zn ← A (g1, ..., gj)

:
∃ai 6= 0,∏j
i=1 g

ai
i = 1

 6 µ(λ)

As Bünz et al. [5] stated,
∏j
i=1 g

ai
i = 1 is a non trivial discrete log relation100

between g1, ..., gj . The discrete log relation assumption makes sure that an

adversary can’t find a non-trivial relation between randomly selected group

elements. This assumption is equivalent to the discrete-log assumption when

j ≥ 1.

Assumption 2 (Order Assumption). The Order Assumption holds for Setup

if for any efficient adversary A there exists a negligible function µ(λ) such that:

P

 g1 6= 1 ∧ ga11 = 1 :

G
$← Setup(λ),

(g1, a1)
$← A(G),

where a1 6= 0 ∈ Zn,

and g1 ∈ G

 ≤ µ(λ)

Lemma 1. The Order Assumption implies the Discrete Log Relation Assump-105

tion.

Proof. We show that if an adversary AOrd breaks the Order Assumption, then

we can construct ADL which breaks the Discrete Log Relation Assumption
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with overwhelming probability. In order to get a vector (g1, g2, ..., gj) ∈ Gj and

a vector (a1, a2, ..., aj) ∈ Zjn such that ga11 · g
a2
2 · · · gann = 1 where gi 6= 1, ai 6= 0110

and i ∈ {1, 2, . . . , j}, we run AOrd for n times and it will outputs gj ∈ G and

aj ∈ Z such that g
aj
j = 1 for j = 1, . . . , n. And it follows

∏n
j=1 g

aj
j = 1.

2.2. Commitments

Definition 1 (Commitments). A non-interactive commitment scheme consists115

of a pair of probabilistic polynomial time algorithms (Setup, Com). The setup

algorithm pp ← Setup(1λ) generates the public parameters pp with the security

parameter λ. The commitment algorithm Compp defines a function Mpp×Rpp →

Cpp for a message space Mpp, a randomness space Rpp and a commitment space

Cpp determined by pp. For a message x ∈ Mpp, the algorithm draws r
$← Rpp120

uniformly at random, and computes commitment com = Compp(x, r).

Definition 2 (Homomorphic Commitments). A homomorphic commitment scheme

is a non-interactive commitment scheme such that (Mpp, ∗), (Rpp,+), and (Cpp,+)

are all abelian groups, and for all x1, x2 ∈ Mpp, r1, r2 ∈ Rpp, we have

Com(x1; r1) ∗ Com(x2; r2) = Com(x1 + x2; r1 + r2).

Here (Mpp, ∗) can be additive or multiplicative. For ease of notation we drop

pp in the subindex.

Definition 3 (Hiding Commitment). A commitment scheme is said to be hiding

if for every PPT adversary A there exists a negligible function µ(λ) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
P


b = b′

pp← Setup(1λ);

(x0, x1) ∈ M2
pp ← A(pp),

b
$← (0, 1), r

$← Rpp,

com = Com(xb; r),

b′ ← A(pp, com)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ),

where the probability is over b, r,Setup and A. If µ(λ) = 0 then we say that the

scheme is perfectly hiding.125
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Definition 4 (Binding Commitment). A commitment scheme is said to be

binding if for every PPT adversary A there exists a negligible function µ such

that.

P

 Com(x0; r0) = Com(x1; r1),

x0 6= x1

pp← Setup(1λ),

x0, x1, r0, r1 ← A(pp)

 ≤ µ(λ)

where the probability is over Setup and A. If µ(λ) = 0 then we say that the

scheme is perfectly binding.

In the following content, to make sure that discrete log in the groups we

used is intractable for PPT adversaries, the order of these groups is implicitly

dependent on the security parameter.130

Definition 5 (Pedersen Commitment). Mpp,Rpp = Zn and Cpp = (G, ∗) being

a multiplicative group.

Setup : g, h
$← G,

Com(x; r) = (gxhr).

Definition 6 (Pedersen Vector Commitment). Mpp = Zjn,Rpp = Zn and Cpp =

(G, ∗) being a multiplicative group.

Setup : g = (g1, ..., gj), h
$← G,

Com(x = (x1, ..., xj); r) = hrgx = hr
∏
i g
xi
i ∈ G.

Under the discrete logarithm assumption, for the group G, the Pedersen

vector commitment is perfectly hiding and computationally binding. In the

definition, r is picked at random.

2.3. Zero-Knowledge Arguments of Knowledge

In our protocol, we construct zero-knowledge arguments of knowledge. A135

zero-knowledge proof of knowledge means a prover can convince a verifier that

some statement hold without revealing any information of the knowledge. An

argument is a proof which holds when the prover is computationally bounded

and certain computational hardness assumptions hold. The formal definitions

as follows.140
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Zero-knowledge arguments consist of three interactive algorithms (Setup, P,

V) which run in probabilistic polynomial time. Setup is the common reference

string generator, P is the prover and V is the verifier. The algorithm Setup

produces a common reference string σ on inputting 1λ. The transcript produced

by P and V is denoted by tr ←< P(s),V(t) > when they interact on the inputs145

s and t. We write [P(s),V(t)] = b where b = 0 if verifier rejects, b = 1 if verifier

accepts.

We let R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗ be a polynomial-time-decidable ternary

relation. Given a parameter σ, the w is a witness for a statement u only if

(σ, u, w) ∈ R. We define the CRS-dependent language

Lσ = {u|∃w : (σ, u, w) ∈ R}

as the set of all the statements which have a witness w in the relation R

Definition 7 (Argument of Knowledge). The triple (Setup, P, V) is called an

argument of knowledge for relation R if it satisfies both the Perfect Completeness150

and Computational Witness-Extended Emulation as defined in [5], respectively.

Definition 8 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin

argument of knowledge (Setup, P, V), as defined in [5], is a perfect special

honest verifier zero knowledge (SHVZK) argument of knowledge for R if there

exists a probabilistic polynomial time simulator S such that for every pair of

interactive adversaries A1 and A2:

P

 (σ, u, w) ∈ R and A1(tr) = 1

σ ← Setup(1λ)

(u,w, ρ)← A2(σ),

tr ← 〈P(σ, u, w),

V(σ, u; ρ)〉



= P

 (σ, u, w) ∈ R and A1(tr) = 1

σ ← Setup(1λ),

(u,w, ρ)← A2(σ),

tr ← S(u, ρ)


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where ρ is the public coin randomness used by the verifier. The ”transcript” can

be simulated by S without knowing w.

In this definition the adversary chooses a distribution over statements and

witnesses, but the adversary is still not able to distinguish between the simulated155

and the honestly generated transcripts for valid statements and witnesses.

Now we define range proofs. Range proofs are the proofs that the prover

knows an opening to a commitment in which the committed value is in a certain

range. Range proofs can be used to state that an integer commitment is for a

positive number or when two homomorphic commitments are added together,160

it will not overflow when they are taken modulo the given prime, and these two

homomorphic commitments are the commitments to the elements in a prime

field.

Definition 9 (Zero-Knowledge Range Proof). Given a commitment scheme

(Setup, Com) over a message space Mpp which is a set with a total ordering, a

zero-knowledge range proof is a SHVZK argument of knowledge for the relation

RRange :

(pp, (com, l, r), (x, ρ)) ∈ RRange ←→ com = Com(x; ρ) ∧ (l ≤ x < r).

Theorem 1 (Lagrange’s four-square theorem). Any non-negative integer can

be represented as the sum of the squares of four integers.165

The proof for Theorem 1 is given in [9], and [10] offers an algorithm for

finding four such squares.

Theorem 2 (Lagrange’s three-square theorem). If x is a positive integer, then

4x+ 1 can be written as the sum of three integer squares.

The proof for Theorem 2 is given in [11], and [9] offered an efficient and170

simple algorithm for finding three such squares. Theorem 2 also means writing

4x+ 1 as the sum of three squares implies that x is non-negative.
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2.4. Notation

Let [N ] denote the set {1, ..., N−1}. Let p and q denote two prime numbers.

Let G denote the multiplicative group of integers modulo n, where n is the

product of p and q, i.e. G is a RSA group. Let Zn denote the ring of integers

modulo n. Let Z denote the set of all integers. Let Gj and Zjn be vector spaces of

dimension j over G and Zn, respectively. Let Z∗n denote Zn\{0}. Group elements

which represent commitments are capitalized. For example, C = gahα is a

Pedersen commitment to a for g, h ∈ G. x
$← Z∗n means the uniform sampling of

an element from Z∗n. In this paper, a ∈ Fj is a vector with elements a1, ..., aj ∈ F.

For an element c ∈ Zn and a vector a ∈ Zjn, we denote by b = c · a ∈ Zjn the

vector with bi = c · ai. For the two vectors a,b ∈ Fj , let 〈a,b〉 =
∑j
i=1 ai · bi

denote the inner product and a ◦ b = (a1 · b1, ..., aj · bj) ∈ Fj the Hadamard

product, respectively. We define vector polynomials P(x) =
∑d
i=0 pi ·xi ∈ Zj [x]

where each coefficient pi is a vector in Zj . The inner product between two vector

polynomials l(x) and r(x) is defined as

〈l(x), r(x)〉 =

d∑
i=0

i∑
j=0

〈li, rj〉 · xi+j ∈ Z[x] (1)

Let a‖b denote the concatenation of two vectors: if a ∈ Zjn and b ∈ Zmn then

a‖b ∈ Zj+mn . For 0 6 ` 6 s, we use Python notation to denote slices of vectors:

a[:`] = a[0:`] = (a1, ..., a`) ∈ F`,

a[`:] = a[`:s] = (a`+1, ..., as) ∈ Fs−`.

Let t(x) = 〈l(x), r(x)〉, then the inner product is defined such that t(x) =

〈l(x), r(x)〉 holds for all x ∈ Zn. For vectors g = (g1, ..., gj) ∈ Gj and a ∈ Zjn175

we write C = ga =
∏j
i=1 g

ai
i ∈ G. For 1 ≤ u we set ~u = (1, 2, 3, ..., u) ∈ Zu.

3. Efficient Range Proof Protocol

In this section, we will present our range proof protocol.

10



3.1. Four Integer Zero-Knowledge Proof

We now describe how to use the inner-product argument to construct a proof.180

The prover convinces the verifier that a commitment V contain a number v in

a given range without revealing v.

In our proof, a Pedersen commitment V is an element in the group G that

is used to perform the inner product argument.

We let v ∈ Zn, and an element V ∈ G be a Pedersen commitment to v which

uses a random number r. The proof system proves the following relation:

{(g, h, V ∈ G; v, r ∈ Zn) : V = hrgv} (2)

Choose a = (a1, a2, a3, a4) ∈ Z4
n such that

v = a21 + a22 + a23 + a24, i.e. 〈a,a〉 = v (3)

Let y ∈ Z∗n and y = ~4 · y ∈ Z4. The prover P uses an element in G to generate

a commitment to the vector a. To convince V that v be a positive number, the

prover must prove that he knows an opening a ∈ Z4
n and v, r ∈ Zn satisfying

V = hrgv and 〈a,a〉 = v. To construct this zero knowledge proof, V should

randomly choose z ∈ Zn, and then the prover proves that

〈a,a〉z2 + 〈a− a,y〉z = vz2 (4)

This equality can be re-written as:

〈a · z − y, a · z + y〉 = vz2 − δ(y) (5)

The verifier can easily calculate that δ(y) = 〈y,y〉 ∈ Z. So the problem of185

proving Eq. (3) holds is reduced to proving a single inner-product identity.

If the prover sends to the verifier the two vectors in the inner product in

Eq. (5) then the verifier could check Eq. (5) itself by using the commitment

V to v and be convinced that Eq. (3) holds. But these two vectors reveal

the information of a, so the prover cannot send them to verifier. To solve190

this problem, we use two additional blinding terms sL, sR ∈ Z4
n to blind these

vectors.
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To prove the statement Eq. (2), P and V should obey the following protocol:

P inputs v, r and computes :

a = [a1, a2, a3, a4] ∈ Z4
n s.t.〈a,a〉 = v (6)

α
$← Zn (7)

A = hαgaha ∈ G (8)

sL, sR
$← Z4

n (9)

ρ
$← Zn (10)

S = hρgsLhsR ∈ G (11)

P → V : A,S (12)

V : y, z
$← Z∗n (13)

V → P : y, z (14)

Here, let us expand two linear vector polynomials l(x) and r(x) in Z4
p[x], and a

quadratic polynomial t(x) ∈ Zp[x] as follows:

l(x) = az − y + sLx ∈ Z4[x]

r(x) = az + y + sRx ∈ Z4[x]

t(x) = 〈l(x), r(x)〉 = t0 + t1 · x+ t2 · x2 ∈ Z[x]

The constant terms of l(x) and r(x) are the inner product vectors in Eq.

(5). The blinding vectors sR and sL make sure that the prover can publish

l(x) and r(x) for random x and doesn’t need to reveal any information of a.

The constant term t0 of t(x) is the result of the inner product in Eq. (5). The

prover needs to convince the verifier that the following equation be true:

t0 = vz2 − δ(y)

12



P computes :

τ1, τ2
$← Zn (15)

Ti = gtihτi ∈ G, i = {1, 2} (16)

P → V : T1, T2 (17)

V : x
$← Z∗n (18)

V → P : x (19)

P computes :

l = l(x) = az − y + sLx ∈ Z4 (20)

r = r(x) = az + y + sRx ∈ Z4 (21)

t̂ = 〈l, r〉 ∈ Z (22)

τx = τ2 · x2 + τ1 · x+ z2r ∈ Z (23)

µ = αz + ρx ∈ Z (24)

P → V : τx, µ, t̂, l, r (25)

V checks these equations and computes :

P = Az · Sx · g−y · hy ∈ G (26)

P
?
= hµ · gl · hr ∈ G (27)

gt̂hτx
?
= V z

2

g−δ(y) · T x1 · T x
2

2 ∈ G (28)

t̂
?
= 〈l, r〉 ∈ Z (29)

Corollary 1 (Four-Integer Zero-Knowledge Proof). The Four-Integer Zero-

Knowledge Proof presented in Section 3.1 has perfect completeness, perfect spe-

cial honest verifier zero-knowledge, and computational witness extended emula-195

tion.

Proof. The Four-Integer Zero-Knowledge Proof is a special case of the aggre-

gated logarithmic proof from the following Section 3.2 with m = 1, hence, it is

a direct corollary of Theorem 3.
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3.2. Aggregating Logarithmic Proofs200

Bünz et al [5] stated a kind of proof for m values which is more efficient

than conducting m individual range proofs. Based on Bulletproofs, we can also

perform a proof for m values as [5] does. In this section, we show that this can

be done with a slight modification to the protocol of zero-knowledge proof in

Section 3.1. The relation that we will prove is as follows:

{(g, h ∈ G,V ∈ Gm; v, r ∈ Zmn ) : Vj = hrjgvj for all j ∈ [m]} (30)

The prover does the similar work as the prover does for a simple zero-knowledge

proof in Section 3.1 with only the following slight modifications. First, we set

y ∈ Z∗n,y = y · −→4m ∈ Z4m and |−→4m| = 4m. In Eq. (6), the prover needs to find

a ∈ Z4m
n so that

〈a[4(j−1):4j],a[4(j−1):4j]〉 = vj for all j ∈ [m].

We accordingly modify l(x) and r(x) as follows:

l(x) =

m∑
j=1

z · j
(
04(j−1)‖a[4(j−1):4j]‖04(m−j)

)
− y + sL · x (31)

r(x) =

m∑
j=1

z · j
(
04(j−1)‖a[4(j−1):4j]‖04(m−j)

)
+ y + sR · x (32)

To compute τx, we adjust the randomness rj of each commitment Vj such that

τx = τ1 · x + τ2 · x2 + z2
m∑
j=1

j2 · rj . That is, the verification checking Eq. (28)

needs to be adjusted to include all the Vj commitments as follows

gt̂hτx = V(z2·~m◦~m)g−δ(y)T x1 T
x2

2 (33)

Finally, we change the definition of A as follows:

A = hα
m∏
j=1

g
j·a[4(j−1):4j]

[4(j−1):4j] ·
m∏
j=1

h
j·a[4(j−1):4j]

[4(j−1):4j] (34)

Theorem 3 (Aggregate Logarithmic Proof). The Aggregate Logarithmic Proof

presented in Section 3.2 has perfect completeness, perfect honest verifier zero-

knowledge and computational witness extended emulation.

The proof for Theorem 3 is presented in Appendix B. This protocol can also

be transformed into a NIZK protocol by using the Fiat-Shamir heuristic.205
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3.3. Our Protocol

In this section, we will demonstrate how to prove that a secret number is

within an arbitrary interval. The goal of our range proof protocol is to convince

the verifier that the secret number v be in [a, b]. Based on Theorem 2, We

can find a, b ∈ Zn and d = (d1, d2, d3, d4, d5, d6) ∈ Z6
n such that the following

conditions hold:  d21 + d22 + d23 = 4v − 4a+ 1 = v1 ∈ Z,

d24 + d25 + d26 = 4b− 4v + 1 = v2 ∈ Z.
(35)

The whole protocol is similar to the special case of the aggregating logarithmic

proofs from Section 3.2 for m = 2 and a ∈ Z6
n. In this protocol, we set δ(y) ∈

Z, y ∈ Z6. We will prove the following relations:

{(g, h ∈ G,V ∈ G2) : Vj = hrjgvj ∀ j ∈ {1, 2}, V = gvhr ∧ v ∈ [a, b]} (36)

The protocol is as follows:

P inputs v, r, and computes :

v1 = 4v − 4a+ 1, v2 = 4b− 4v + 1 ∈ Z (37)

d = (d1, d2, d3, d4, d5, d6) ∈ Z6
n satisfying Eq. (35) (38)

α
$← Zn (39)

A = hα
2∏
j=1

g
j·d[3(j−1):3j]

[3(j−1):3j] ·
2∏
j=1

h
j·d[3(j−1):3j]

[3(j−1):3j] ∈ G (40)

sL, sR
$← Z6

n (41)

ρ
$← Zn (42)

S = hρgsLhsR ∈ G (43)

P → V : A,S (44)

V : y, z
$← Z∗n (45)

V → P : y, z (46)
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Here, as showed in Section 3.1, t(x) = 〈l(x), r(x)〉 = t0 + t1 · x+ t2 · x2 ∈ Z[x].

P computes :

τ1, τ2
$← Zn (47)

r1 = 4r, r2 = −4r ∈ Z (48)

Ti = gtihτi ∈ G, i ∈ {1, 2} (49)

(t1, t2 can be directly computed without knowing x)

P → V : T1, T2 (50)

V : x
$← Z∗n (51)

V → P : x (52)

P computes : (53)

l = z ·
2∑
j=1

j · (03(j−1)‖d[3(j−1):3j]‖03(2−j))− y + sLx (54)

l ∈ Z6 (55)

r = z ·
2∑
j=1

j · (03(j−1)‖d[3(j−1):3j]‖03(2−j)) + y + sRx (56)

r ∈ Z6 (57)

t̂ = 〈l, r〉 = t0 + t1 · x+ t2 · x2 ∈ Z (58)

τx = τ2x
2 + τ1x+ z2

2∑
j=1

j2 · rj ∈ Z (59)

µ = αz + ρx ∈ Z (60)

P → V : τx, µ, t̂, l, r (61)

V computes and checks these equations :

V1 = V 4 · g−4a · g = g4v−4a+1h4r = gv1hr1 ∈ G (62)

V2 = g4b · V −4 · g = g4b−4v+1h−4r = gv2hr2 ∈ G (63)
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V = (V1, V2) ∈ G2 (64)

P = AzSxg−yhy ∈ G (65)

P
?
= hµglhr ∈ G (66)

gt̂hτx
?
= Vz2·(~2◦~2)g−δ(y)T x1 T

x2

2 ∈ G (67)

t̂
?
= 〈l, r〉 ∈ Z (68)

Corollary 2 (Range Proof). The Range Proof presented in Section 3.3 has

perfect completeness, perfect special honest verifier zero-knowledge, and compu-

tational witness extended emulation.

Proof. The Range Proof is a special case of aggregated logarithmic proof from210

Section 3.2 with m = 2, a ∈ Z6
n, hence it is a direct corollary of Theorem 3.

4. Performance

4.1. Theoretical Performance

Table 1 shows the communication cost of zero-knowledge proof of our Cuproof.

Table 2 shows the communication costs of Bulletproofs [5] and Cuproof, respec-215

tively. Table 2 states the numbers of the elements of the group, ring and set

applied in the range proof protocols. We set m = 2 in the range proof protocol

of Bulletproofs to achieve a range proof that can prove v ∈ [a, b]. We compare

our range proof Cuproof to Bulletproofs. Table 2 indicates that our range proof

protocol has some advantages over Bulletproofs when κ is large, where κ is the220

exponent of the upper limit value of the proving range [0, 2κ−1] in Bulletproofs.

The proof size of Bulletproofs [5] grows by an additive logarithmic factor while

ours remains constant.

Table 1: the number of elements

Protocol G Zp Z

This scheme 4 3 11
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Table 2: the number of elements

Protocol G Zp Z Zn

Bulletproofs[5] 6 + 2 log κ 5 0 0

Cupoof 4 0 15 3

4.2. Practical Performance

In order to evaluate the practical performance of our Cuproof, we provide a225

reference implementation in Python. We set that the sizes of the two primes p

and q are 128 bits. The prover uses the algorithms of [9] and [10] to generate

the witnesses a and d, and compute the l and r. A Pedersen hash function

over an RSA group whose modulo n = p ∗ q is benchmarked. We performed

our experiments on our computer with an Intel i5-7500 CPU@3.4 GHZ and we230

used a single thread. The performance is as practicable as we expect. Table

3 shows the proving time, verification time and the gates of the range proofs

under the different range (The final data is the average of the data we obtained

by doing 10000 experiments). Figure 1 shows the line charts of the proving

time and the verification time of the Four-Integer Zero-Knowledge Proofs (no235

including witness generation) respectively. Figure 2 shows the line charts of the

proving time and the verification time of the Range Proofs (no including witness

generation) respectively. No matter how big the range is, the proving time is

near 22.5 ms and the verification time is near 16.5 ms. Figure 3 shows the sizes

of different interval range proofs.240

5. Conclusions

In this paper, we construct an efficient range proof scheme, called Cuproof,

which can prove v ∈ [a, b] without revealing v’s actual value. Our scheme is

based on the Bünz et al.’s work on Bulletproofs. In our protocol, by combining

Theorem 2 into Bulletproofs, we reduce the communication cost to the constant245

sizes and make the computation complexity lower and enhance the efficiency of

our zero-knowledge range proof. Our range proof has unconditional soundness

18



Figure 1: Four-Integer Zero-Knowledge Proof Time

Figure 2: Range Proof Time
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Figure 3: Sizes for range proofs

Table 3: Range proofs: performance

Range size Gates Proof Size Timing (ms)

(bytes) Prove Verify

8 bit 6 1062 22.8 16.8

16 bit 6 1063 22.3 16.7

32 bit 6 1082 23.0 16.5

64 bit 6 1081 22.8 16.2

128 bit 6 1063 22.0 16.2

256 bit 6 1061 22.4 16.0
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and perfect zero-knowledge. The inadequacy of our range proof is that it needs

a trusted setup.
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Appendix A. A General Forking Lemma

Now we briefly describe the forking lemma of [19] that will be needed in the

proofs.

Suppose that we have a (2µ+1)-move public-coin argument with µ challenges

x1, ..., xµ in sequence. Let ki (≥ 1) ∈ Z for 1 ≤ i ≤ µ. Consider there are
∏µ
i=1 ki320

accepting transcripts with challenges in the following tree format. The tree has∏µ
i=1 ki leaves and depth µ. The root of the tree is labeled with the statement.

Each node of depth i < µ has exactly ki children nodes, each child node is

labeled with a distinct value of the ith challenge xi.

The above structure can be referred to a (k1, ..., kµ)-tree of accepting tran-325

scripts. Given a suitable tree of accepting transcripts, one can compute a valid
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witness for our inner-product argument, range proof, and argument for arith-

metic circuit satisfiability. This is a natural generalization of special-soundness

for Sigma-protocols with µ = 1 and k1 = 2. Combined with Theorem 3, this

shows that the protocols have a witness-extended emulation, and hence, the330

prover cannot produce an accepting transcript unless they know a witness. For

simplicity in the following lemma, we assume that the challenges are chosen uni-

formly from Zn with |n| = λ, but any sufficiently large challenge space is enough.

The success probability of a cheating prover scales inversely with the size of the

challenge space and linearly with the number of accepting transcripts that an335

extractor needs. Therefore, if
∏µ
i=1 ki is negligible in 2λ, then a cheating prover

can create a proof that the verifier accepts with only negligible probability.

Theorem 4 (Forking Lemma [19]). Let (Setup,P,V) be a (2k+1)-move, public

coin interactive protocol. Let χ be a witness extraction algorithm that succeeds

with probability 1−µ(λ) for some negligible function µ(λ) in extracting a witness340

from an (k1, ..., kk)-tree of accepting transcripts in probabilistic polynomial time.

Assume that
∏k
i=1 ki is bounded above by a polynomial in the security parameter

λ. Then (Setup,P,V) has witness-extended emulation.

Like Bulletproofs [5], Theorem 4 is slightly different from the lemma 1 of

[19]. We allow the extractor χ to fail with a negligible probability. Whenever345

this happens, the emulator ε as defined by Definition 9 also simply fails. Even

with this slight modification, this lemma still holds as ε overall still only fails

with negligible probability.

Appendix B. Proof of Theorem 3

Proof. Perfect completeness always holds as the fact that t0 = z2 · 〈 ~m ◦ ~m,v〉−

δ(y,y) for all valid witnesses. In order to prove perfect honest-verifier zero-

knowledge, we construct a simulator that produces a distribution of proofs for a

given statement (g, h ∈ G, g,h ∈ G4·m,V ∈ Gm) which is indistinguishable from

valid proofs produced by an honest prover interacting with an honest verifier.

All the proof elements and the challenges according to the randomness supplied
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by the adversary from their respective domains are chosen by the simulator or

directly computed by the simulator. S and T1 are computed according to the

verification equations, i.e.:

S = (h−µ · g−l−y · hy−r ·Az)−x
−1

T1 = (g−t̂−δ(y) · h−τx·V
z2·~m◦~m

· T x
2

2 )−x
−1

According to the simulated witness (l, r) and the verifier’s randomness, the350

simulator runs the inner-product argument. In the zero-knowledge proof, all

elements are either independently randomly distributed or their relationship is

completely defined by the verification equation. Because we can successfully

simulate the witness, the inner product argument remains zero knowledge, thus

the leaking information about witness or revealing it does not change the zero-355

knowledge property of the overall protocol. The simulator is efficient because it

runs in time O(V + PInnerProduct).

We construct an extractor χ to prove computational witness extended emu-

lation. The extractor χ uses 4m different values of y, m+ 2 different values of z

and 3 different values of the challenge x to run prover algorithm. It additionally360

invokes the extractor for the inner product argument on each of the transcripts.

This results in 4 ·m · (m+ 2) · 3 ·O(1) valid proof transcripts.

For each transcript, in order to extract the witnesses l and r to the inner

product argument such that hµglhr = P ∧ 〈l, r〉 = t̂, the extractor χ first

runs the extractor χInnerProduct for the inner-product argument. In order to365

compute α, ρ,a, sL and sR such that A = hα
m∏
j=1

g
j·a[4(j−1):4j]

[4(j−1):4j] ·
m∏
j=1

h
j·a[4(j−1):4j]

[4(j−1):4j]

and S = hρgsLhsR , we can compute the linear combinations of the Eq. (27) by

using two valid transcripts and extract the inner product argument witnesses

for different x challenges.

If the extractor can compute a different representation of A or S with any370

other set of the challenges (x, y, z), then this yields a non-trivial discrete loga-

rithm relation between independent group elements h,g and h, which contra-

dicts the discrete logarithm assumption.

Then, using these representations of A, S, l and r, we find that for all
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challenges x, y, and z, we have

l = l(x) = z ·
m∑
j=1

j · (04(j−1)‖a[4(j−1):4j]‖04(m−j))− y + sLx,

r = r(x) = z ·
m∑
j=1

j · (04(j−1)‖a[4(j−1):4j]‖04(m−j)) + y + sRx.

Once these equalities do not hold for l, r and all the challenges, then we have two

distinct representations of the same group element using a set of independent375

group elements. This would be a non-trivial discrete logarithm relation.

Given y and z, we takes 3 transcripts for different x and use linear combi-

nations of Eq. (33) to compute τ1, τ2, t1 and t2 such that

T1 = gt1hτ1 ∧ T2 = gt2hτ2 .

Additionally, we can compute a set of v and r such that gvhr =
∏m
j=1 V

z2·j2
j .

Repeating this for m different z challenges, we can compute (vj , rj)
m
j=1 such that

gvjhrj = Vj , ∀ j ∈ [m]. If there exists any transcript
m∑
j=1

z2 · j2 · vj − δ(y) + t1 ·

x+ t2 · x2 6= t̂, then this directly yields a discrete log relation between g and h,

i.e. a violation of the binding property of Pedersen commitment. If not, then

for all the y, z challenges and the 3 distinct challenges X = xj , j ∈ {1, 2, 3}:

2∑
i=0

tiX
i −P(X) = 0

with t0 =
m∑
j=1

z2 · j2 · vj − δ(y) and P(X) =
∑2
i=0 pi ·Xi = 〈l(X), r(X)〉. Since

the polynomial t(X) −P(X) is of degree 2, but has at least 3 roots (for each

challenge xj), it is necessarily a zero polynomial, i.e. t(X) = 〈l(X), r(X)〉.

Because this implies that t0 = p0, the following condition holds for all y, z
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challenges:∑m
j=1 z

2 · j2 · vj − δ(y)

=

< z ·
m∑
j=1

j · (04(j−1)‖a[4(j−1):4j]‖04(m−j)),

z ·
m∑
j=1

j · (04(j−1)‖a[4(j−1):4j]‖04(m−j)) >

+ < z ·
m∑
j=1

j · (04(j−1)‖a[4(j−1):4j]‖04(m−j)),y >

− < y, z ·
m∑
j=1

j · (04(j−1)‖a[4(j−1):4j]‖04(m−j)) + y >∈ Zp

If this equality holds for 4m distinct y challenges and 3 distinct z challenges,

then we can infer the following:

vj = 〈aj ,aj〉 ∈ Z, ∀ j ∈ [m].

Because gvjhrj = Vj , ∀ j ∈ [m], we have that v and r are valid witnesses for380

the relation Eq. (30). The extractor rewinds the prover 3 · (m+ 2) · 4 ·m ·O(1)

times. The extraction is efficient and the number of transcripts is polynomial in

λ because m = O(λ). Note that the extraction either returns a valid witness or

a discrete logarithm relation between the independently chosen group elements.

In our definition, χ′ is equal to χ but when χ extracts a discrete log relation, χ′385

will fail. This would happen with at most negligible probability because of the

discrete log relation assumption. Therefore, we can apply the Forking lemma

to make the computational witness emulation hold.
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