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Abstract—This paper introduces Verdict, a transparency
dictionary, where an untrusted service maintains a label-
value map that clients can query and update (foun-
dational infrastructure for end-to-end encryption and
other applications). To prevent unauthorized modifications
to the dictionary, for example, by a malicious or a
compromised service provider, Verdict produces publicly-
verifiable cryptographic proofs that it correctly executes
both reads and authorized updates. A key advance over
prior work is that Verdict produces efficiently-verifiable
proofs while incurring modest proving overheads. Verdict
accomplishes this by composing indexed Merkle trees (a
new SNARK-friendly data structure) with Phalanx (a new
SNARK that supports amortized constant-sized proofs and
leverages particular workload characteristics to speed up
the prover). Our experimental evaluation demonstrates
that Verdict scales to dictionaries with millions of labels
while imposing modest overheads on the service and clients.

I. INTRODUCTION AND MOTIVATION

A transparency dictionary is a system in which an
untrusted service maintains a list of label-value tuples
that clients can query and update [22, 23, 33, 48, 63].
The dictionary supports efficient membership and non-
membership queries, unlike transparency logs, which
may only support membership queries. Transparency
logs and dictionaries have been proposed as a foundation
for PKIs, end-to-end encryption (e.g., for email or
messaging), software updates, etc. For example, in key
transparency [48], a dictionary maps unique identities
to their public keys (e.g., RSA encryption keys).

Concretely, when used for key transparency, a trans-
parency dictionary enables the following message
exchange: To send a “top secret” document D to
bob@dom.org, Alice picks a symmetric secret key
k, encrypts D using k, and then encrypts k using the
public key(s) associated with bob@dom.org in the
transparency dictionary; she then sends both ciphertexts
to bob@dom.org via an untrusted channel (e.g., the
cloud). However, if the dictionary can return “rogue”
public keys (i.e., public keys that Bob does not con-
trol), then even perfect cryptography cannot protect the
secrecy of Alice’s document. Non-membership queries
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are important for this scenario as well; otherwise, the
service’s dictionary might contain more than one tuple
for the bob@dom.org label, allowing the service to
show different tuples to different clients.1

Prior work [22, 23, 33, 48, 63] shows that an effective
way to secure transparency dictionaries is to enforce
that the dictionary maintained by the untrusted service
remains append-only. Specifically, the domain of the
dictionary (i.e., the set of labels) may only grow over
time, and the associated values may only be updated
according to an application-specific policy. In the con-
text of key transparency, this means that the set of
identities maintained by the dictionary never shrinks.
Further, suppose that the first public key registered for
bob@dom.org was legitimate. Then the application
update policy might say that all subsequent updates must
be authorized using one of the existing public keys.

A natural question here is: how can the untrusted
service prove to its clients that its dictionary remains
append-only? Ideally, we would like the service’s proofs
to be publicly verifiable, meaning that any client can
verify that the entire service remains append-only. This
ensures that any client of the system can obtain a strong
security guarantee regardless of actions of other clients in
the system. In the key transparency example, this means
that when Alice verifies the service’s proof, she knows
that Bob’s key has not been subverted, even if Bob is
offline or fails to actively monitor updates to his own
key. Hence, Alice can safely encrypt sensitive data using
the public key the service returns for Bob. As a second
criteria, the proofs must be efficiently verifiable: the cost
of verifying proofs should be lower than reexecuting
requests processed by the service, both asymptotically
and concretely (this also implies that proofs should
be succinct). Satisfying the latter requirement makes
it possible for any light client to download and verify
proofs. As we discuss in §VII, prior work does not
provide a dictionary abstraction [38], do not support
public verifiability [33, 48], and/or impose significant
proving/verification overhead [22, 23, 42, 63, 64].

1There is an orthogonal but important requirement that the service
should not be able to equivocate i.e., show different versions of its
dictionary to different clients such that each version is well behaved. In
general, this is impossible to prevent with a fully untrusted service [47].
However, in prior systems [22, 48, 63] and this work, if the service
equivocates, it can be eventually detected by clients (§II, Appendix C).



In contrast, we describe Verdict, the first transparency
dictionary with publicly and efficiently verifiable proofs
of correct operation as well as modest proving overheads.
Verdict achieves this by employing SNARKs [16, 30, 31],
a cryptographic primitive that enables a prover to prove
knowledge of a witness to an NP statement by producing
a proof such that the size of the proof and the time to
verify it are both sub-linear in the size of the statement.2
Verdict employs SNARKs as follows. At the end of epoch
i, the untrusted service publishes a succinct cryptographic
commitment to Ci the current state of its dictionary.3 It
also produces a succinct SNARK proof demonstrating
that the information in Ci is a superset of that in the
dictionary committed to by Ci−1. Stated at this level,
the use of SNARKs seems like an obvious solution.

Of course, the problem with such an “obvious”
solution is well-known: the resource costs to produce
SNARK proofs are, in general, excessive. However, we
address this problem in our specific context, obtaining
orders of magnitude speedups over a naı̈ve application
of SNARKs. First, we design a SNARK-friendly data
structure (§III) that can be used to efficiently prove
the necessary append-only invariants over the untrusted
service’s state. In more detail, Verdict uses this data
structure to prove that the transparency dictionary’s set
of labels grows monotonically. Rather than directly prove
(at significant expense) that each update to a label’s value
was applied correctly, Verdict also maintains, for each
label, a provably append-only list of updates, which a
client can apply locally to arrive at the current value.

Second, we design Phalanx, a new SNARK that
leverages Verdict’s particular workload characteristics to
significantly drive down costs of the untrusted service
and of the clients (§IV). Specifically, by leveraging
the epoch-based nature of Verdict, Phalanx produces
amortized constant-sized proofs and verification times.
Furthermore, it leverages the data-parallel nature of the
statement proven in each round to substantially reduce
proof-generation costs. Phalanx may be of independent
interest to other epoch-based services.

We implement Verdict in Rust as a generic library
for constructing transparency dictionaries (§V). To
demonstrate the concrete utility of Verdict, we apply
it to our running example of key transparency, creating
Keypal, a service for translating user identities to public

2SNARKs provide an additional property called zero-knowledge,
where the verifier learns nothing about the prover’s witness beyond
what is implied by the proven statement. Verdict’s focus is on succinct
verification property of SNARKs, but with modern SNARKs (including
the one that Verdict employs), achieving zero-knowledge is “free” in
terms of additional costs to the prover, the verifier, and proof sizes.

3Informally speaking, a cryptographic commitment scheme enables
a sender to commit itself to a value by sending a short commitment
and then later reveal the value such that the commitment scheme is
binding (i.e., the sender cannot reveal a value different from what it
originally committed), and hiding (i.e., a commitment does not reveal
anything about the committed value).

keys without trusting the hosting service.
We evaluate Verdict (§VI) and compare it with three

baselines that provide the similar security properties:
AAD [63], and two variants of Merkle-Patricia trees.
Unlike AAD, Verdict incurs low overheads even for
large dictionaries with millions of labels, and unlike the
Merkle-Patricia baseline, Verdict produces efficiently-
verifiable proofs of correct operation. We also find that
our workload-specific SNARK optimizations improve
proving costs by an order of magnitude. Together, Verdict
achieves about 4 updates/sec/CPU-core and about 2
inserts/sec/CPU-core, with a per-epoch (amortized) proof
size of 651 bytes and a verification time of about 3 ms
(for a dictionary with 220 label-value tuples); Verdict can
achieve about 18–22 updates/per/sec/CPU-core and 9–
11 inserts/sec/CPU-core, with a per-epoch proof size of
290 bytes and a verification time of 161µs for the same
dictionary size at the cost of deferred guarantees (§VI).
This represents over an order of magnitude improvement
over prior state-of-the-art, general proof systems for
stateful services [40, 56, 57, 59] and over three orders
of magnitude improvement over AAD [63].

Verdict’s principal limitation is that the service still
incurs significant CPU costs to produce proofs. Less
fundamentally, although the proof-generation process
is highly parallelizable, our current implementation of
Verdict does not leverage multiple CPUs. Nevertheless,
we believe, Verdict makes transparency dictionaries with
efficiently-verifiable proofs affordable.

In summary, Verdict contributes:
1) A transparency dictionary that scales well asymp-

totically and concretely to large dictionaries.
2) A SNARK-friendly accumulator with O(log n)

proofs of membership and non-membership.
3) A SNARK that provides amortized constant-

sized proofs and verification times and that
leverages particular workload characteristics (e.g.,
computations with repeated substructure) to speed
up proof generation.

II. THE VERDICT TRANSPARENCY DICTIONARY

This section introduces the problem of building a
dictionary service that can prove its own correctness
with succinct proofs. We then provide an overview of
Verdict, a system that meets these requirements.

A. Problem Statement and Definitions
Our goal is to build Verdict, a service that exposes a

dictionary abstraction and can cryptographically prove
to its clients the correctness of every request it executes.
Specifically, the service’s state is a label-value map that
clients can query and update; i.e., clients can insert a
new label-value pair, update the value associated with
an existing label, and look up the value associated with
an existing label. By correct operation, we mean that the
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set of labels in the dictionary grows monotonically and
that the value associated with a label is only updated
according to a pre-specified application-specific policy.
We refer to this primitive as a transparency dictionary.
As a concrete application of Verdict, we construct Keypal
(§V), a public key directory that enables clients to
register their public keys under an identifier such that
the keys can be retrieved by other clients who can be
assured that the public keys they retrieve are legitimate.

Clients

c1

c2

c3

Service

`1 → ⊥
`2 → v2
...

Ci

`1 → F(F(⊥, U1,1), U1,2)

`2 → v′2 = F(v2, U2,1)

...

Ci+1

(Ci,πi)

(`1, {U1,1, U1,2}),

(`2, {U2,1})

(Ci+1,πi+1)

Lookup `2

v′2,πlookup

Figure 1: Example showing how Verdict’s service updates
its state in epoch i for some application-specific policy F. At
the end of epoch i, the service broadcasts a new commitment
Ci+1 and a proof πi+1 after incorporating requests from clients
c1 and c2. Later, client c3 can query the server to retrieve the
latest value (v′2) associated with label `2.

a) Threat Model: We assume that the service and
any subset of clients can misbehave arbitrarily. For
example, the service can misbehave when processing
requests, or show different views of its state to different
clients. Furthermore, we assume that the network can
arbitrarily duplicate, drop, or reorder messages. However,
we assume that the untrusted service and clients cannot
break cryptographic hardness assumptions. We do not
aim to protect against denial of service (an honest service
can use standard techniques, e.g., rate-limiting or proof-
of-work, to defend itself) nor to ensure liveness (although
if the service is honest and the network is reliable, then
requests from correct clients will be executed). Finally,
we do not aim to prevent all misbehavior from the
untrusted service. Indeed, there are fundamental limits:
it is impossible to prevent an untrusted service from
equivocating [47]. However, as in prior work [22, 48],
Verdict’s clients can eventually detect such equivocation
through client-side mechanisms (e.g., gossip), or by
requiring the service to disseminate its commitments
and proofs through a public blockchain (Appendix C).

More formally, a transparency dictionary is
a tuple of algorithms (Setup, ApplyUpdates,
VerifyUpdates, Lookup, VerifyLookup), with the following
semantics. We assume that dictionary D0 = ⊥ and its
commitment C0 is well-known. Below, let F denote
an application-specific predicate that takes as input a

label’s old value, a request, and outputs a new value for
the label. Let λ denote the security parameter.
• pp ← Setup(1λ, F): Returns public parameters pp
used to produce and verify proofs.
• (Dt+1, Ct+1,πt+1) ← ApplyUpdates(pp, Dt, Ct, U):
Takes as input a dictionary Dt, commitment Ct, and
a sequence of insert/update requests U. Outputs a
dictionary Dt+1, a commitment Ct+1 to Dt+1, and a
proof of valid update πt+1.
• {0, 1} ← VerifyUpdates(pp, Ct, Ct+1,πt+1): Takes as

input a pair of commitments (Ct, Ct+1), and a proof of
valid update πt+1. Outputs 1 if: (1) the set of labels in
the dictionary committed to by Ct+1 is a superset of the
set of labels in the dictionary committed to by Ct; and
(2) for each label in the dictionary committed to by
Ct+1, the associated value equals the value associated
with the label in Ct, or πt+1 proves the knowledge
of a sequence of requests (U0, . . . , U`−1) such that
F(vi, Ui) = vi+1 for 0 ≤ i < `, and where v0 is the
value associated with the label in Ct (or ⊥ if the label
did not exist in Ct) and v` is the value associated with
the label in Ct+1.
• (v,πlookup) ← Lookup(pp, Dt, Ct, label): Takes as

input a dictionary Dt, commitment Ct, and label label.
Outputs a value v, and a proof of valid lookup πlookup.
• {0, 1} ← VerifyLookup(pp, C, label, v,πlookup): Takes

as input a commitment C, a label label, a value v, and
a proof πlookup. Outputs 1 if v is the value associated
with label in C.
As in prior transparency logs [22, 33, 48, 63], the

service in a transparency dictionary operates in a
sequence of (fixed) time epochs. In each epoch, the
service collects requests submitted by clients, uses the
ApplyUpdates procedure to update its internal state
and produce a new commitment and a proof of valid
update, which it publishes to clients. Clients collect
the sequence of commitments and the associated proofs
published by the service at each time epoch and use the
VerifyUpdates to check if the service correctly updated
its state. Similarly, for lookup requests, the service uses
the Lookup procedure to produce a response along with
a proof, which the clients can verify by applying the
VerifyLookup procedure to the proof and the latest service
commitment they have received.

We formally define the properties of a transparency
dictionary in Appendix A but we summarize them here.
• Correctness. If the service is honest, clients do not
reject responses produced by the service.
• Update soundness. The set of labels in a dictionary

grows monotonically and the values are updated only
according to an application-specific policy.
• Lookup soundness. The service cannot return an in-

correct value for any label included in a commitment.
• Fork consistency. If the service equivocates at some
point in time by presenting different sequences of
commitments to different sets of clients, it cannot
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undetectably merge their views.
Additionally, we desire the following properties:
• Public verifiability. Any client can check proofs
produced by the service to verify that that the set
of labels in the dictionary maintained by the service
grows monotonically and that values are updated only
according to an application-specific policy.
• Efficient verifiability. Compared with re-executing
every request processed by the service, the cost to
verify a proof is more resource efficient (in terms
of CPU, network bandwidth, storage, etc.), both
asymptotically and concretely. This implies that proofs
produced by the service are succinct.

B. Verdict: Architectural Overview

At its core, Verdict utilizes cryptographic
SNARKs [15, 30, 31] to prove that the untrusted
service correctly maintains its dictionary abstraction.
Generically, a SNARK allows a prover to demonstrate
that an arbitrary polynomial relation R(w, x) holds,
where w is a (possibly secret) witness, and x is a public
input. The prover produces a proof π such that the size
of π and the time to verify it are both sub-linear in the
size of the circuit that computes R.

At the end of epoch t + 1, Verdict uses SNARKs
to prove the following invariants about the dictionaries
committed to by Ct and Ct+1 (the service’s commitments
at the end of epochs t and t + 1). First, the set of labels
in the dictionary committed to by Ct+1 is a superset of
the set of the labels in the dictionary committed to by
Ct. Second, for each (`, v) in the dictionary committed
to by Ct, one of the following holds: either (`, v) exists
in the dictionary committed to by Ct+1; or there is a
sequence of operations (valid according to an application-
specific policy) such that v′ is the result of applying those
operations to v and (`, v′) is in Ct+1.

Implemented in a naı̈ve manner, the approach above
would be prohibitively expensive. First, for each value
updated, the service must prove, using an expensive
SNARK, that the operation applied on the value is
legitimate and that it faithfully executed that operation.
For example, in the context of a key directory, when
updating a public key associated with an identity, the
service must prove that it knows of a valid digitally-
signed request in the sense that the signature can be
verified using one of the non-revoked keys associated
with the identity. Verifying such cryptographic operations
via a SNARK is quite costly [26, 40, 51]. Even worse,
as described above, to prove that its O(N) dictionary is
updated correctly, the size of the circuit that the service
must prove using a SNARK is Ω(N). In other words,
even when the number of values updated in a given epoch
is far less than N, the service’s cost for each epoch is
still Ω(N). Finally, even non-cryptographic computations
are costly to prove using SNARKs.

We now discuss how Verdict addresses these issues.
Figure 2 compares Verdict’s asymptotics with prior work.

a) Validating Value Updates via Hashchains: To
reduce the service’s overhead, instead of directly proving
that the service only processes operations that are valid
according to an application-specific policy or that the
server processes those operations faithfully, Verdict
employs a simpler and cheaper alternative. In Verdict’s
transparency dictionary, the value associated with a label
is an append-only hashchain of operations, where nodes
store raw operations requested on the label, as well as the
cryptographic hash of the previous node in the chain. For
example, in the context of key transparency, a hashchain
records two types of operations: (1) adding a new key;
and (2) revoking an existing key, and each operation is
digitally signed by the client requesting the update.

A hashchain is valid if each node includes a correct
hash of the previous node, and if the result of applying
each operation complies with the application’s-specific
policy defined by F. For example, in key transparency,
each computed value vi would be a set of public keys.
F would allow any key to be added if it is the first
operation (i.e., vi = ⊥), and it would accept subsequent
operations if they are digitally signed by an unrevoked
key previously added in the hashchain.

When a client retrieves a hashchain associated with
a label, it can quickly apply operations recorded on
the hashchain to construct the current value associated
with the label, checking the validity of the cryptographic
hashes and compliance with F along the way. This design
supports a richer class of application-specific policies
without requiring the service to prove the validity of
those policies using SNARKs.

b) Succinct Commitments and Proofs via Indexed
Merkle Trees: We now discuss how Verdict commits to
a dictionary that maps labels to hashchains such that
it can efficiently produce: (i) lookup proofs, and (ii)
update proofs. In a nutshell, Verdict’s service stores its
dictionary in a commodity storage service. In addition,
it creates a “derived” dictionary that stores a map
from from the cryptographic hash of a label to the
cryptographic hash of the last node in the hashchain
associated with the label. In particular, for each (label, c)
tuple in the service’s state, the derived dictionary contains
(H(label), h), where H is a cryptographic hash function
and h is the cryptographic hash of the last node in c.

Observe that to commit to its original dictionary the
service only needs to commit to its derived dictionary.
This is because each (label,value) tuple in the derived
dictionary is cryptographically bound (via the collision-
resistance of H) to a unique tuple in the original
dictionary. More crucially, this choice ensures that the
labels and values that Verdict needs to commit are
constant-sized and in particular short (e.g., 32 bytes
each when using SHA-256 as the hash function).

To commit to a derived dictionary with `-sized labels
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space updates (per-epoch) lookups (per-op)
(life-time) prover proof size verifier prover/proof size/verifier assumption

AAD [63]? λ · N β · log3 n log n log n log2 n q-type
SEEMless [22] N β · log N β · log N β · log N log N CRHF

Verdict N β · log n log (β · log n)/k log (β · log n)/k log n SXDH
Verdict (lazy) N β · log n log (β · log n)/k β · log n/k log n DLOG
? Requires a trusted setup

Figure 2: Asymptotic costs for updates and lookups under Verdict and its baselines. β is the number of updates per epoch, n
is the maximum number of labels in the dictionary, ` is the maximum number of operations associated with a label. We let
N = n · `. Lookup responses include an additive cost of Ω(`). Verdict variants use indexed Merkle trees (§III) with different
variants of Phalanx (§IV). k denotes the number of epochs over which costs are amortized (see IV-C for details).

and values, we design a cryptographic accumulator using
“textbook” Merkle trees,4 which we refer to as indexed
Merkle trees. We provide details in Section III, but a
distinguishing aspect of indexed Merkle trees is that they
support both efficient membership proofs (i.e., proofs
for statements of the form (`, v) ∈ C, where (`, v) is a
label-value pair and C is a commitment to a dictionary)
and non-membership proofs (i.e., proofs for statements
of the form (`, v) 6∈ C). In particular, for a dictionary
of size N, it produces Oλ(1)-sized commitments (e.g.,
32 bytes when using SHA-256), and Oλ(log N)-sized
proofs of membership and non-membership.

Thus, at the end of each epoch, Verdict’s commitment
is of size Oλ(1). Furthermore, for a lookup request issued
by a client, πlookup is either a proof of membership (if
the hash of the requested label exists in the derived
dictionary) or a proof of non-membership (otherwise).
Note that the indexed Merkle tree itself is stored in a
commodity storage service, so producing a lookup proof
does not require the use of SNARKs, so the throughput
of the service for lookup operations is bound purely
by the throughput of the underlying storage service to
retrieve proofs of membership (or non-membership).

Another crucial aspect of indexed Merkle trees is that,
by leveraging proofs of non-membership, they provide
efficient, Oλ(log N), proofs of insertion and update.

c) Condensing Merkle Proofs via SNARKs: As
described above, Verdict uses Merkle proofs to reduce
the cost of proving/verifying dictionary updates from
Ω(N) to log(N). However, for an epoch that consists of β
insert/update operations, the proof length and verification
time are both Oλ(β · log N). Cost wise, this is equivalent
to requiring the service to broadcast all updates it
processes in order to prove that it maintains the desired
append-only properties. Verdict reduces both proof sizes
and verification times by employing SNARKs.

Specifically, for β > 0 insert/update operations,
the service processes each operation sequentially, and
for each operation, the service produces a new com-
mitment and an Oλ(log N)-sized proof. The untrusted
service however does not publish these intermediate
commitments nor the Oλ(log N)-sized proofs. Instead, it
employs SNARKs to prove that it knows indexed Merkle

4A cryptographic accumulator is a commitment scheme with support
for proving membership of an element against a commitment (§III).

tree proofs that a verifier would accept, thereby achieving
a proof of valid updates whose size and verification time
are both sub-linear in β · log N (Figure 2).

As discussed in Section III, our indexed Merkle trees
are carefully designed to be SNARK-friendly.

d) Accelerating SNARKs in Verdict’s Context:
Thus far, Verdict could be instantiated with any generic
SNARK system. However, despite the proof-friendly
nature of our indexed Merkle trees, the costs would
still remain high. Hence, we introduce Phalanx, a new
SNARK that leverages particular workload characteris-
tics to provide amortized constant-sized proofs and to
reduce proof generation costs (§IV provides details).

III. INDEXED MERKLE TREES

This section describes the SNARK-friendly accumu-
lator that Verdict employs to maintain state. We discuss
properties that we desire from an accumulator, limitations
of existing solutions, and our design of a Merkle-tree
variant that suffices for Verdict.

A. Requirements and Possible Instantiations

Let λ denote the security parameter, and let negl(λ)
denote a negligible function in λ. Let “PPT algorithms”
refer to probabilistic polynomial time algorithms.

Recall that a cryptographic accumulator [14] enables
a prover to commit to a collection D (e.g., a dictionary
with a set of label-value pairs) by sending a succinct
commitment C to a verifier. Such digests are binding,
meaning that it is computationally infeasible to identify
a different collection of items with the same digest. In
addition, cryptographic accumulators support succinct
proofs of membership: for any item (i.e., a label-value
tuple) x ∈ D, the prover can produce a succinct proof
π such that an honest verifier accepts π, and for any
x 6∈ D and any purported proof π produced by a PPT
algorithm, Pr[the verifier accepts π] ≤ negl(λ).

A classic example of an accumulator is a Merkle tree,
where the root of the Merkle tree commits to items
stored at leaf nodes and provides Oλ(log n)-sized proofs
of membership, where n is the size of the collection.

As we discuss in Section II-B, for Verdict, we require
accumulators with succinct proofs for membership,
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inserts, and updates. Specifically, suppose that the prover
commits to its collection D with a commitment C:

• Proof of insertion. For any x 6∈ D, the prover
can produce a new commitment C′ and prove that
x 6∈ D and C′ commits to D ∪ {x} with a succinct
proof π such that a verifier accepts π. If x ∈ D
or if C′ does not commit to D ∪ {x}, then for any
purported proof π produced by a PPT algorithm,
Pr[the verifier accepts π] ≤ negl(λ).

• Proof of update. For any x ∈ D, the prover can
produce a new commitment C′ and prove that C′
commits to D∪{F(x, x′)}−{x} with a succinct proof π
such that a verifier accepts π, where F is any function.
If C′ does not commit to D∪{F(x, x′)}−{x}, then for
any purported proof π produced by a PPT algorithm,
Pr[the verifier accepts π] ≤ negl(λ).

Note that an important building block for a proof of
insertion is a a proof of non-membership: for any x 6∈ D,
the prover can prove that x 6∈ D by producing a succinct
proof π such that the verifier accepts π, and for any
x ∈ D and any purported proof π produced by a PPT
algorithm, Pr[the verifier accepts π] ≤ negl(λ).

In addition to the above properties, we desire a cryp-
tographic accumulator where these proofs are SNARK-
friendly; i.e., where the proof verification algorithm can
be efficiently encoded in the input language of a modern
SNARK. This can be thought of as an arithmetic circuit
over a large field, although in practice most modern
SNARKs use a generalization known as R1CS. The
efficiency of this encoding matters, since, as described
in Section II-B, the Verdict service relies on SNARKs to
condense many insert/update proofs into a single succinct
proof of correct operation. To accomplish this, the service
first updates the cryptographic accumulator to produce a
sequence of insert/update proofs, one for each operation.
The service then proves that it knows a sequence of valid
proof of insert/updates using a SNARK.

We examine existing accumulators in the literature
and folklore. Figure 8 summarizes our findings, where
n is the number of items in a collection. Briefly:

• Merkle trees [17, 49] do not support succinct proofs
of non-membership nor insertion.

• RSA accumulators [20] support Oλ(1)-sized member-
ship and insert/update proofs, but they impose Oλ(n)
costs on the prover to produce them; this is expensive,
both asymptotically and concretely. Also, they require
a trusted setup as well as big number arithmetic that
is inefficient to encode as an arithmetic circuit.

• Merkle-Patricia trees (or more generally, Sparse
Merkle trees) (e.g., [22, 25, 37, 50]) support Θ(log n)-
sized proofs of membership, non-membership, inser-
tion, and updates. However, by design, paths in these
trees are of variable length, so devising arithmetic

circuits to verify Merkle proofs introduces significant
complexity. Of course, one can use fixed-depth trees
(e.g., depth-256) to make them SNARK-friendly, but
this incurs over an order of magnitude higher costs
at our collection sizes (220–230 items).

• Like Merkle-Patricia trees, Merkle-AVL trees are
not SNARK-friendly as they require rebalancing upon
insertion of new nodes.

B. Indexed Merkle Trees
We now describe indexed Merkle trees, our SNARK-

friendly variant of “textbook” Merkle trees, with support
for efficient non-membership and insertion proofs.

An indexed Merkle tree is a standard Merkle tree in
the following way: each item in a collection is stored
at a leaf node in a Merkle tree. This ensures that
indexed Merkle trees support Oλ(1)-sized commitments,
Oλ(log n)-sized proofs of membership, and Oλ(log n)-
sized proofs of update. To support Oλ(log n)-sized proofs
of non-membership and proofs of insertion, we encode
additional metadata at each leaf node and maintain an
invariant upon insertions and updates. We now elaborate.

Suppose that a collection is a set of label-value tuples,
where each label and each value is of a fixed size w.
This is the case for Verdict’s derived dictionary (§II-B).5
WLOG, we assume that labels can be sorted (e.g., with
a bitwise ordering of labels). Unlike a textbook Merkle
tree, a leaf node in an indexed Merkle tree is of the form:
〈active, label, value, next〉, where active is a bit indicating
whether the leaf node holds a valid tuple. If active is 1,
then label and value are respectively the label and its
associated value stored at the leaf node, and next is a
label in the tree that is larger than label.

a) Verifiable Initialization: We now discuss how the
prover can initialize an empty indexed Merkle tree and
how the verifier can efficiently compute a commitment to
such an empty tree. Suppose that the indexed Merkle tree
maintained by the prover has a capacity of n ≥ 2 (i.e., it
has n leaf nodes), where each leaf node stores the same
tuple 〈0, 0w, 0w, 0w〉 (we later discuss how the prover
can double the capacity of a Merkle tree and how the
verifier can efficiently verify that). Any verifier—without
help from the prover—can compute the root of such a
tree with O(log n) hash computations. WLOG, Verdict
designates two labels as reserved: 0w and 1w. These
denote respectively the lowest and the highest values of
labels in the system. Furthermore, the prover picks a
designated leaf node (WLOG, the left-most node in the
initial Merkle tree) in the initial indexed Merkle tree and
updates it to hold the following tuple: 〈1, 0w, 0w, 1w〉. The
verifier—without help from the prover—can compute
the root of the updated Merkle tree in Oλ(log n) time.

5For other contexts, one can employ the same technique as in Verdict
to derive a new collection with fixed-sized labels and values.
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h′ =
H(h′0‖h′1)

h′0 =
H(h′00‖h⊥)

h′00 = H(
active : 1,
label : 0w,
value : 0w,
next : `)

h⊥

h′1 =
H(h10‖h⊥)

h10 = H(
active : 1,
label : `,
value : v,
next : 1w)

h⊥

h =
H(h0‖h1)

h0 =
H(h00‖h⊥)

h00 = H(
active : 1,
label : 0w,
value : 0w,
next : 1w)

h⊥

h1 =
H(h⊥‖h⊥)

h⊥ h⊥

insert label-value pair (`, v)

Figure 3: Indexed Merkle trees in action. We depict state changes from inserting a new label-value pair (`, v) to an empty
indexed Merkle tree with capacity 4. The choice of which non-active leaf node holds (`, v) is arbitrary (see the text for details).
h⊥ = H(active : 0, label : 0w, value : 0w, next : 1w). Dotted arrow indicates a leaf’s “pointer” to the next active label. In the
updated tree, to prove non-membership of `′ where `′ < `, the prover presents the leaf node h′00 and its proof of membership.

b) Invariant: A core invariant that an indexed
Merkle tree maintains is that for any “active” leaf node
N = 〈1, `, v, n〉, N.n is either: (i) 1w, or (ii) there exists
some leaf node in the tree with label N.n and there
are no active leaf nodes in the tree with labels in the
range (N.`, N.n). Observe that this invariant holds for
the indexed Merkle tree computed at the end of the
initialization step. Below, we discuss how the invariant
holds despite inserting new label-value pairs or updates
to existing label-value pairs.

c) Proof of Non-Membership: A core building block
for proof of insertion is a proof of non-membership. To
prove the absence of a particular label ` in an indexed
Merkle tree with commitment C, the prover furnishes
a proof of membership for a unique leaf node with
contents 〈1, low, v, high〉 such that low < ` < high. This
proof can be verified using commitment C. It is easy
to see that this constitutes a proof of non-membership
given the invariant stated above.

d) Maintaining the Invariant: In Verdict, there are
only two types of operations.

(1) Updates. For a leaf node N =
〈1, label, value, next〉, updating N.value. This trivially
upholds the desired invariant. The proof of update is a
proof of membership of the old leaf node against the
old commitment. Verification involves verifying the
proof of membership and then locally computing an
updated commitment using the updated leaf node.

(2) Inserts. As shown in Figure 3, to insert a new
label-value pair (`, v) into an indexed Merkle tree, the
proof of insertion is produced as follows.

• The prover identifies an “inactive” leaf node;6 i.e.,
a leaf node of the form N = 〈0, 0w, 0w, 0w〉. If this
fails, invoke the capacity doubling procedure described
below and then retry this step.

6Verdict’s service maintains a separate index of inactive leaf nodes;
the choice of which inactive leaf node to use is arbitrary. In particular,
note that leaf nodes in an indexed Merkle tree are not sorted, so if a
new label falls between two existing labels in the dictionary, the new
label can be inserted at any “inactive” leaf node in the tree.

• The prover produces a proof of non-membership of
` in the indexed Merkle tree, i.e., a unique leaf node
N? = 〈1, low, val, high〉 such that low < ` < high.

• The prover updates N? to hold the value
〈1, low, val, `〉, and produces a proof of update.

• The prover updates the previously inactive node N
to hold 〈1, `, v, high〉, and produces a proof of update.

e) Supporting Dynamic Capacity: The number of
leaf nodes of an indexed Merkle tree can be doubled
at any time such that a verifier can verify that the new
Merkle tree contains all of the data from the original
tree with Oλ(log n) computation. Specifically, given the
root r of an existing 2i-sized indexed Merkle tree, the
prover and the verifier can compute the (unique) root
of the 2i+1-sized Merkle tree as: hash(r, r′), where r′ is
the root of the Merkle tree where all leaf nodes have the
same default value of 〈0, 0w, 0w, 0w〉. Note that r′ can be
computed by the verifier using O(i) hashes. This does
not require any precomputation or amortization as the
cost is comparable to the cost of verifying a membership
proof, which is logarithmic in the size of the collection.

IV. REDUCING COSTS OF SNARKS WITH PHALANX

In a Verdict epoch with β update operations, the un-
trusted service produces β indexed Merkle update proofs.
A straightforward approach to prove the correctness of
these indexed Merkle proofs with a SNARK is to use
an arithmetic circuit (say of size C) that verifies one
update proof, replicate it β times, and then employ a
generic SNARK (e.g., Spartan [56], Xiphos [59]) on
the combined circuit. The result would be a prover that
runs in time Oλ(C · β). The per-epoch proof sizes and
verification times are Oλ(

√
C · β) when using Spartan

and Oλ(log (C · β)) when using Xiphos.
To make Verdict concretely efficient, we develop

Phalanx, a SNARK that substantially reduces resource
costs imposed by prior SNARKs. Specifically, Phalanx
produces (amortized) constant proof sizes and verifi-
cation times. Additionally, Phalanx does not require a
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trusted setup. Given these, Phalanx is of independent
interest (e.g., to other epoch-based services [40, 51]).

A. Overview of Phalanx
Phalanx targets epoch-based services where the prover

in each epoch proves the satisfiability of the same N-
sized circuit (with different witness values). In Verdict,
the circuit verifies β indexed Merkle proofs.

In more detail, Phalanx’s prover and verifier maintain
a Oλ(1)-sized running instance, which collectively repre-
sents the circuit satisfiability instances of all prior epochs
(the verifier and the prover initialize the running instance
to the first epoch’s instance). At the end of each epoch,
the prover produces an Oλ(1)-sized proof that enables
the verifier to combine the circuit satisfiability instance
of that epoch with the running instance; the verifier
incurs Oλ(1) computation to update its running instance.
At the end of each epoch, the prover also produces
an Oλ(log N)-sized proof to prove the satisfiability of
the running instance. Verifying the logarithmic-sized
proof (in addition to verifying constant-sized proofs for
all prior epochs) verifies that the circuit satisfiability
instances from all prior epochs are satisfiable.

In Verdict’s context, a client must verify constant-
sized proofs every epoch, but it need not verify the
logarithmic-sized proof in every epoch. Specifically, a
client only needs to verify the logarithmic-sized proof of
the most recent epoch before issuing lookup operations.
Furthermore, in Verdict, we observe that the running
instance is data-parallel (as the circuit verifies β indexed
Merkle proofs); Phalanx leverages this to substantially
speedup proof-generation costs.

B. Preliminaries
a) SNARKs: Recall that a SNARK is a crypto-

graphic primitive that enables a prover to demonstrate its
knowledge of a witness to an NP statement (e.g., a circuit
satisfiability instance) with a proof that can be verified
in time sub-linear (ideally, polylogarithmic) in the time
to check the NP witness; this also implies that the proof
is sub-linear in the size of the NP witness. For our
purpose, SNARKs enable proving the correct execution
of (stateful) computations, since those executions can
be represented with NP statements. See Appendix B for
a formal definition of SNARKs.

b) R1CS: Rank-1 constraint satisfiability (R1CS) is
an NP-complete language that generalizes arithmetic cir-
cuits [13, 30, 58]. R1CS is a popular target for toolchains
that compile programs in high-level languages [12, 18,
35, 40, 52, 57, 60, 65]. In more detail, let F denote
a finite field (e.g., the set {0, 1, . . . , p− 1} for a large
prime p, with addition and multiplication operations).
An R1CS instance is a tuple ((F , A, B, C, m, n, `), x),
where x ∈ F ` is the public input and output of the
instance, A, B, C ∈ Fm×m, m ≥ |x| + 1, and there are

at most n = Ω(m) non-zero entries in each matrix.
A witness W ∈ Fm−`−1 satisfies an R1CS instance
((F , A, B, C, m, n, `), x) if (A · Z) ◦ (B · Z) = C · Z,
where Z = (W, x, 1). In a nutshell, the matrices encode
the structure of an arithmetic circuit, where gates can
compute an arbitrary bilinear operation over Z. We refer
to n as the size of the R1CS instance.

c) SIMD R1CS: To capture data-parallel (or SIMD)
computations, we introduce a natural extension of R1CS
that we refer to as SIMD R1CS. Informally, SIMD R1CS
considers the same circuit (represented with matrices
A, B, C) over β witness vectors {w1, . . . , wβ} and the
corresponding input/output vectors {x1, . . . , xβ}, repre-
senting β data-parallel units. In Verdict, we additionally
require IO consistency, i.e., that the input of each data-
parallel unit is the output of the previous unit. WLOG,
we assume that for each i, |xi| is even and that the first
half of xi and the second half of xi are respectively the
input and output of the ith data-parallel unit.

More formally, a SIMD R1CS instance is a tuple
φ = ((F , A, B, C, m, n, `,β), x), where A, B, C ∈ Fm×m

each of which has at most n = Ω(m) non-zero values,
public input/output x ∈ F `. A witness (W, x), where W ∈
F (m−`−1)×β (each column of W is a purported witness
for a separate data-parallel unit) and x ∈ F ` × β (each
column of x is a purported input/output for a separate
data-parallel unit), satisfies φ if (A · Z) ◦ (B · Z) = C · Z,
where Z = (W, x,~1)>, and

xi[`/2 :] = xi+1[: `/2] for all 1 ≤ i ≤ β − 1
x1[: `/2] = x[: `/2]

xβ [`/2 :] = x[`/2 :].
(1)

WLOG, we assume that β, m, and n are powers of 2,
and ` is even.

C. Constant Proof Sizes and Verification Times

Phalanx builds on recent work [36] that enables the
prover and the verifier to combine two N-sized R1CS
instances into a single N-sized instance with an Oλ(1)-
sized proof, such that the prover only needs to prove
the validity of the combined instance. Such a protocol is
referred to as a folding scheme and is used to construct
recursive SNARKs. We extend prior work [36] to design
a folding scheme for SIMD R1CS. Specifically, in each
Verdict epoch, Phalanx’s prover and verifier fold a SIMD
R1CS instance (encoding the statement proven in the
epoch) into a running instance. Below, we describe
details of Phalanx’s folding procedure.

a) A Folding Scheme for SIMD R1CS: Consider
a SIMD R1CS instance φ = ((F , A, B, C, m, n, `,β), x).
While it is unclear how to fold two such instances in
general, it is possible to fold two SIMD R1CS instances
with the same structure (i.e., the same A, B, C matrices)
by first “relaxing” the instance. Specifically, we define a
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“slack” matrix E = ~0m×β and scalar u = 1 and transform
the satisfiability check into checking

AZ ◦ BZ = u · CZ + E, (2)

where Z = (W, x, u)>.
Now, given two instances φ1 = (x1, E1, u1), and

φ2 = (x2, E2, u2) defined over the same matrices A, B, C
with corresponding witnesses (W1, x1) and (W2, x2), the
verifier can fold them into a new instance φ by randomly
sampling r ∈ F and taking a random linear combination:

φ← (x1 + r · x2, E1 + r · T + r2 · E2, u1 + r · u2)

(W, x)← (W1 + r ·W2, x1 + r · x2)

where T ← AZ1 ◦BZ2 + AZ2 ◦BZ1− u1CZ2− u2CZ1 for
Z1 ← (W1, x1, u1) and Z2 ← (W2, x2, u2).

With textbook algebra, it is easy to show that (W, x)
satisfies check (2) with respect to φ if (W1, x1) and
(W2, x2) satisfy check (2) with respect to φ1 and φ2
respectively. Conversely, as with most batching tech-
niques, soundness holds due to the randomness of the
linear combination, which ensures with high probability
that if (W, x) satisfies check (2) with respect to φ then
(W1, x1) and (W2, x2) also satisfy check (2). The same
reasoning holds for IO consistency i.e., if matrices x1 and
x2 both satisfy their respective IO consistency checks
with respect to x1 and x2, then a folded input

x← x1 + r · x2

for some randomly sampled r ←R F , also satisfies the
IO consistency check with respect to x. Conversely, if
x satisfies the IO consistency check, then it must hold
with high probability that both x1 and x2 also satisfy the
input consistency check with respect to x1 and x2.

For efficiency, the prover treats (E1, E2, W1, W2, x1, x2)
as the witness and provides additively homomorphic
commitments to these values as part of the instance. The
prover also provides a commitment to T , instead of send-
ing it directly. Then, instead of computing (linearly sized)
E, W, and x, the verifier homomorphically computes
commitments to E, W, and x as part of the new instance.
Because the folding scheme is public coin,7 we make it
non-interactive via the Fiat-Shamir transform [28]. If the
commitments are constant-sized (as is the case with our
choice, see §IV-E), then Phalanx achieves (per epoch)
constant-sized proofs and verification times.

b) Bootstrapping and Inter-Epoch IO Consistency.:
At initialization, the running instance in Phalanx is the
SIMD R1CS of the first Verdict epoch, relaxed by using
default values of u and E (i.e., u = 1 and E = ~0m×β).
For epoch i (i ≥ 2), the prover and the verifier use the
folding scheme described above to fold the SIMD R1CS
instance of epoch i with the running instance. Note that
the the instance that is folded into the running instance

7An interactive protocol is public coin if the verifier’s challenges
are chosen uniformly at random.

is a SIMD R1CS instance, so it is first relaxed by using
the default values of u and E.

In addition to the running instance, the verifier
maintains ylast ∈ F `/2, which represents the output
of the last SIMD R1CS instance that was folded. At
initialization, ylast = x[`/2 :], where x is the public
input/output of the SIMD R1CS of the first Verdict epoch
(the verifier additionally checks that x[: `/2] holds the
well-known initial input e.g., in Verdict, x[: `/2] must
hold the Merkle root of an empty indexed Merkle tree
of a pre-defined size). In epoch i (where i ≥ 2), the
verifier checks that ylast = φ.x[: `/2], where φ is the
SIMD R1CS instance of epoch i, and then after running
the folding procedure, it updates ylast to φ.x[`/2 :].

D. Proving the Satisfiability of Running Instance

The previous subsection describes how Phalanx’s
prover and verifier fold a SIMD R1CS instance (of each
epoch) into a running instance. We now describe how
the prover produces a succinct proof of the satisfiability
of the running instance in each epoch. To accomplish
this, Phalanx relies on techniques from Spartan [56].

As background, Spartan [56] combines the sum-
check protocol [44] with polynomial commitments [34]
to obtain a SNARK. Alternatively, Spartan [56] can
be viewed as combining a public-coin polynomial
interactive oracle proof (IOP) [19] for R1CS with
polynomial commitments [41]. A polynomial IOP is
an interactive proof [32] where in each round the prover
sends a polynomial as an oracle and the verifier may
request an evaluation of the polynomial at a point in its
domain. A public-coin polynomial IOP can be compiled
into a public-coin interactive argument of knowledge
using a polynomial commitment scheme.8 The resulting
interactive argument can then be turned into a SNARK
in the random oracle model [28]. We refer the reader
to prior work [41, 56, 59, 62] for details. Thaler [62]
in particular provides detailed background as well as
descriptions of several SNARKs, including Spartan.

Our main contribution is to provide a polynomial IOP
for (relaxed) SIMD R1CS, adapting the polynomial IOP
for R1CS from Spartan. To create a new polynomial
IOP for relaxed SIMD R1CS, we first encode a relaxed
SIMD R1CS instance as a set of polynomials. For this,
we first interpret matrices and vectors as functions that
map bits to elements of F . For example, a vector V
of length m over F can be viewed as function with
signature: {0, 1}log m → F . We then take multilinear
extensions of these functions. A multilinear extension of
a function is the unique multilinear polynomial whose
evaluations match that of the function over the domain of

8Instead of sending a polynomial, the prover sends a commitment
to its polynomial, and when the verifier requests an evaluation of the
polynomial, the prover sends an evaluation along with a proof that
the evaluation is consistent with the prior commitment.
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the function. For example, a multilinear extension of the
aforementioned V viewed as a function is a polynomial
Ṽ : F log m → F , where Ṽ(i) = V(i) for all i ∈ {0, 1}log m.

Let Ã, B̃, C̃, represent the multilinear extensions
of A, B, C respectively. Consider a purported witness
(W, E, x) ∈ (Fm−`−1×β , Fm×β , F `×β). Let W̃, Ẽ, x̃
denote the corresponding multilinear extensions, and
let Z̃ denote the multilinear extension of matrix Z =
(W, x,~1)>. As part of the running instance, Phalanx’s
prover and verifier hold x, u, and commitments W, E,
and x to the prover’s witness W̃, Ẽ, and x̃ respectively.

Given these polynomials, we define a polynomial F
that evaluates to zero iff a given SIMD R1CS instance
is satisfiable. Let s = log m and c = logβ.

F(k, i) =

( ∑
j∈{0,1}s

Ã(i, j) · Z̃(k, j)
)
·( ∑

j∈{0,1}s

B̃(i, j) · Z̃(k, j)
)
−

u·
( ∑

j∈{0,1}s

C̃(i, j) · Z̃(k, j)
)

+ Ẽ(k, i)

(3)

Lemma 1. If (W, x, E) is a satisfying
assignment to a relaxed SIMD R1CS instance
((F , A, B, C, m, n, `,β), (x, E, u, W)), then F(k, i) = 0 for
all k ∈ {0, 1}c and i ∈ {0, 1}s.

It is unclear how the prover can prove that F evaluates
to zero over the Boolean hypercube defined by k and i,
so we instead define a multilinear polynomial Q:

Q(t1, t2) =
∑

k∈{0,1}c

∑
i∈{0,1}s

F(k, i) · ẽq((k, i), (t1, t2))

where ẽq is the multilinear extension of the function
eq defined as follows: ∀x, y over the domain of eq,
eq(i, j) = 1 if i = j and 0 otherwise.

Due to the multilinearity of Q and the observation
that if Z is a satisfying witness, then Q(k, i) = 0 for all
k ∈ {0, 1}c and i ∈ {0, 1}s, we have that Q is the zero
polynomial iff Z is a satisfying witness. Therefore, it is
sufficient for the prover to prove Q(τ1, τ2) = 0, where
τ1, τ2 ←R F are chosen by the verifier. Furthermore,
the instance to be proven is in a form suitable for the
application of the sum-check protocol [44]: an interactive
proof system for proving T =

∑
i∈{0,1}s G(i), where G is

an s-variate multivariate polynomial over F and T ∈ F .
Phalanx’s interactive argument proceeds as follows:
1) The verifier sends (τ1, τ2)←R F c × F s.
2) The prover and the verifier use the sum-check pro-

tocol to reduce the task of checking Q(τ1, τ2) = 0
to checking F(rk, ri) = e, where (rk, ri) ∈ F c+s

are chosen by the verifier over the course of the
sum-check protocol and e ∈ F .

3) The prover and the verifier use the sum-check
protocol to reduce the task of checking F(rk, ri) =
e to checking claimed evaluations of Ã, B̃, C̃ at
(ri, rj), Ẽ(rk, ri), and Z̃(rk, rj), where rj ∈ F s is
once again sampled by the verifier during the sum-
check protocol. The first three are evaluated by the
verifier locally (or by using a (sparse) polynomial
commitment scheme [56]).9 The prover proves
evaluations of Ẽ, W̃, and x̃. Below, we show how
the verifier can efficiently evaluate Z̃(rk, rj) using
an evaluation of W̃ and x̃.

a) Computing Z̃(rk, rj): WLOG, assume that for
each k, |W[k]| = |x[k]| + 1 = m/2. For all 0 ≤ k < β
and 0 ≤ j < m, we have

Zk·m+j =

{
x[k · m/2 + j/2], if j < m/2
W[k · m/2 + j/2], otherwise

(4)

Let b be the binary representation of (k ·m + j). We use
b[i] to refer to the bit i of b with b[0] corresponding to the
MSB. Then by equation (4), we have that ∀b ∈ {0, 1}c+s

Z[b] =


x[b[0, 1, . . . , (c− 1), (c + 1), . . . , (c + s)]],

if b[c] = 0.
W[b[0, 1, . . . , (c− 1), (c + 1), . . . , (c + s)]],

otherwise.

Thus, for the multilinear extensions of Z, W and x:

Z̃(r) =(1− r[c]) · x̃(r[0, . . . , (c− 1), (c + 1) . . .])+

r[c] · W̃(r[0 . . . (c− 1), (c + 1) . . .])

Thus, the prover sends an evaluation of W̃ and x̃ at point
r′ = r[0, . . . , (c− 1), (c + 1), . . .] along with a proof of
correct evaluation. This aids the verifier with completing
the final step of the interactive argument depicted above.

b) Proving IO Consistency Checks: The prover can
send x and the verifier can check: (1) x is consistent
with the commitment x it holds as part of the running
instance; (2) x satisfies the desired IO consistency; and
(3) x is consistent with the public input/output x in the
running instance. However, this incurs O(β) proof sizes
and verifier times. Instead, Phalanx does the following:
At the time of folding, instead of committing to x, the
prover commits to a “deduplicated version” of x (which
obviates the need to prove check (2)). The prover then
uses a simplified Spartan to prove the knowledge of x
such that checks (1) and (3) hold; the prover also proves
the evaluation of the multilinear extension of x necessary
to compute Z̃(rk, rj) described above. The proof sizes are
log(β) and verification times requires O(β) finite field
operations. Using sparse polynomial commitments from
Spartan [56], the verification times can also be made

9Even in the case the verifier evaluates these polynomials locally,
the cost is O(n) and is independent of β, whereas without a sparse
polynomial commitment scheme, Spartan would require O(n ·β) time.
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O(logβ) cryptographic operations; however, doing so
provides benefits only when β is large (e.g., β > 215).

E. Phalanx’s Commitment Scheme and Phalanx (Lazy)

Phalanx needs a polynomial commitment scheme.
For this, Phalanx uses Dory [39], which results in
the following asymptotics. Phalanx produces Oλ(1)-
sized proofs and verification times for each Verdict
epoch (§IV-C). Furthermore, for proving the running
instance (§IV-D) with β data-parallel units each of size
c, Phalanx produces Oλ(log (c · β))-sized proofs that
can be verified in Oλ(log (c · β)) time.

Another commitment scheme choice is Hyrax-PC [66].
With this choice, Phalanx provides Oλ(1)-sized proofs
and verification times for each Verdict epoch (§IV-C). It
also produces Oλ(log (c · β))-sized proofs for proving a
running instance. However, with this choice, the cost of
verifying the proof for the running instance is Oλ(c · β),
which is high. So, they can be verified only infrequently.
Given this, we refer to this variant of Phalanx as “Phalanx
(lazy)” since it provides deferred guarantees i.e., the
guarantees hold only when clients, in some future epoch,
check a succinct proof produced by the prover.

Finally, one might wonder if one needs Phalanx (lazy)
since Phalanx provides better flexibility and asymptotics.
We find that Phalanx (lazy)’s prover is ≈5× faster than
Phalanx’s at the cost of providing deferred guarantees.

V. IMPLEMENTATION AND APPLICATIONS

We implement Verdict in about 7,400 lines of Rust.
This consists of an implementation of the Verdict service,
which uses Redis [7] to store its state (a map from labels
to append-only hashchains and an indexed Merkle tree
that in turn stores a derived dictionary), and a client
library that exposes VerifyUpdates and VerifyLookup
procedures to verify proofs produced by the service. This
is about 3,600 lines of Rust. We implement Phalanx as
a library by extending libSpartan [8] and Xiphos [59]
with about 6,000 lines of Rust.

Implementing Verdict requires constructing a SIMD
R1CS instance that verifies a batch of indexed Merkle
proofs. However, libSpartan provides only a low-level
API that accepts R1CS matrices, which is unusable for
more complex applications such as Verdict. We address
this by leveraging bellman [1, 2], which provides R1CS
“gadgets” for hash functions and other primitives that
can be composed and extended to build higher-level
apps. Specifically, we implement an adapter that lets a
programmer compose and use existing bellman gadgets
with libSpartan; this is about 1,000 lines of Rust. For
the hash function in Verdict’s SIMD R1CS, we use
MiMC [9], a SNARK-friendly hash function.

a) Application: Key Transparency: As a concrete
application of Verdict, we design Keypal, a public-key
directory, where the service’s state is a label-value map in
which labels are client identifiers (e.g., email addresses)
and values are the set of public keys associated with the
identifier. Keypal supports four types of requests from
clients: (1) register a new id and associate an initial key,
(2) add a new key to an existing id, (3) revoke a key
associated with an existing id, and (4) look up the set
of keys associated with an existing key. For adding or
revoking keys, Keypal uses a simple policy that such
requests must be digitally signed by one of the existing,
unrevoked keys associated with the identity. Keypal’s
implementation uses Ed25519 signatures [6].

VI. EXPERIMENTAL EVALUATION

Our principal experimental questions are:

• How does Verdict compare with prior work?

• How do Verdict’s techniques improve its costs?

We run our experiments on Azure Standard F64s v2
(64 vCPUs, 2.70 GHz Intel(R) Xeon(R) Platinum 8168,
128 GB RAM) running Ubuntu 18.04. However, we only
one utilize one CPU core in our experiments.

To summarize our results, Verdict’s lookup proofs (a
few thousands of bytes) are shorter than its baselines
and their verification is fast (a few milliseconds of CPU-
time). Producing succinct proofs for updates with Verdict
takes at most a few minutes (on a single CPU core) even
when the service needs to apply thousands of updates
on dictionaries with a million labels. Additionally,
we find that Verdict’s techniques improve over the
proving costs of Spartan [56] by an order of magnitude.
Together, Verdict achieves about 4 updates/sec/CPU-
core and about 2 inserts/sec/CPU-core, with a per-epoch
(amortized) proof size of 651 bytes and a verification
time of about 3 ms (for a dictionary with 220 label-
value tuples); for the same workload, Verdict (lazy)
achieves about 18–22 updates/per/sec/CPU-core and 9–
11 inserts/sec/CPU-core, with a per-epoch proof size of
290 bytes and a verification time of 161µs at the cost of
deferred guarantees. This is over an order of magnitude
improvement over prior state-of-the-art, general proof
systems for stateful services [40, 57].

A. Comparison with Prior Work
We compare Verdict and Verdict (lazy) with three

baselines and use Keypal as the concrete application.
First, AAD [63], a prior transparency dictionary, with

asymptotic and security properties similar to Verdict.
Unlike Verdict, it requires a trusted setup. Second, a naive
baseline in which the service organizes its dictionary in
a Merkle-Patricia tree. In epoch t, the prover sends a
commitment Ct to its updated state and the following:
for each update, the label, the new value, the old value
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Figure 4: Proof sizes and verification times for lookups, with varying number of labels in a dictionary. Results for naive++ and
Verdict (lazy) are the same as the results for naive and Verdict respectively, so we do not depict them.

(if it exists), and a membership proof. The verifier uses
the membership proof to verify that the old value (or its
absence) is consistent with Ct−1 and the new value is
consistent with Ct. Third, naive++, an optimized version
of the naive baseline in which the service applies a batch
of updates at once, and instead of producing a separate
proof for each update, it merges the individual proofs
and deduplicates them when possible.

Note that naive and naive++ are more efficient than
prior work such as SEEMless [22], which additionally
protects privacy, so the service cannot directly send
Merkle proofs to clients and hence incurs additional ex-
pense. Similarly, other privately-verifiable works [33, 48]
when transformed to produce publicly-verifiable proofs
would incur more expense than naive and naive++.

We are interested in the performance of two operations:
(1) lookups, and (2) a batch of inserts/updates. For
lookups, our evaluation metrics are: (a) the size of a
lookup proof; and (b) the verifier’s cost of verifying
a lookup proof. For updates, our metrics are: (a) the
prover’s cost of processing a batch of updates and
producing an update proof; (b) the size of an update
proof; and (c) the verifier’s cost to verify an update proof.
We do not focus on the cost of producing a lookup proof
since in Verdict and the naive baselines, the cost is based
purely on the performance of the underlying storage
system used to maintain state (recall that in Verdict, a
lookup proof is produced by retrieving appropriate nodes
in an indexed Merkle tree stored in a commodity storage
service). Verdict supports thousands of lookup requests
per second on a commodity VM, and it can be scaled
up with standard systems techniques.

To measure the performance of AAD [63], we use its
C++ implementation [4]. Unfortunately, it only supports
small dictionaries (e.g., 8,192 label-value tuples); for
larger dictionaries, the prover time is several hours or
more, so we use results from smaller experiments and
the authors’ cost models to extrapolate its costs for larger
dictionary sizes. Furthermore, we assume that there is
only one value associated with the requested label as the
lookup proof sizes and verification times grow with the
number of operations associated with the requested label.
For updates/inserts, AAD’s performance depends on the
number of trees in the forest that comprises the directory,
so for a desired dictionary size, we measure the cost

of doubling the dictionary and compute the amortized
per-operation cost (this is optimistic for AAD).

For the naive baselines, we report costs based on
microbenchmarks and cost models. We assume that the
Merkle-Patricia trees use SHA-256 for the hash function.

a) Results for Lookups: Figure 4 depicts our results.
First, Verdict provides the shortest lookup proofs. Verdict
has 28–29× smaller proofs than AAD. Proofs in the
naive baseline are ≈2.5× larger than Verdict’s proofs
because each membership proof in a Merkle-Patricia
tree contains more data in intermediate nodes.

Second, Verdict’s lookup proof verification times are
not the fastest, but they are fast: 2.5–5 ms for Verdict
and tens of microseconds for the naive baselines. This
is because the naive baselines use SHA-256, whereas
Verdict uses a SNARK-friendly hash function, which is
more expensive on x86. However, Verdict’s verification
times are more than 80× cheaper than AAD’s.

b) Results for Inserts/Updates: We experiment with
Verdict and its baselines using β = 128 with varying
number of labels in the dictionary. To demonstrate
scalability, we also experiment with varying batch sizes
for a dictionary with 224 labels. For the latter large-scale
experiments, we use a different VM with larger RAM,
which is an Azure Standard E64-16ds v4 with 504 GB
RAM (we use only one CPU core and its performance is
identical to that of the VM listed earlier); also, Verdict
uses < 50% of the available memory in all experiments

Figure 5 depicts our results. We find the following.
Verdict’s per-epoch constant-sized proofs are 651

bytes and take about 3 ms to verify. Verdict’s logarithmic-
sized proofs for the running instance are 26–32 KB for
a dictionary with 224 labels, when the batch size varies
from β = 27 to β = 213; verifying these proofs takes
44 ms for β = 128 and 77 ms for β = 213.

Recall that Verdict’s clients only need to verify the
logarithmic-sized proof of the most recent epoch (before
issuing lookup operations). However, we find that, for
a dictionary of size 224, even if clients check these
proofs in every epoch, Verdict’s clients are more efficient
than the ones of naive and naive++ (which employ a
fast hash function) as long as β ≥ 210. Furthermore,
at this configuration, Verdict’s proof size is over an
order of magnitude shorter. Specifically, it is ≈30 KB
whereas naive’s proof size is ≈2.4 MB and naive++’s
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Figure 6: Prover time, proof sizes, and verifier time under Phalanx and its baseline Spartan [56] for a SIMD R1CS instance
with varying number of insert/update operations on a dictionary with 220 labels (see the text for details).

proof size is ≈1.4 MB. Verdict’s logarithmic-sized proofs
are concretely larger than AAD’s, but Verdict’s clients
can incur lower amortized proof sizes and verification
times (e.g., if clients verify these logarithmic-sized proofs
after 14 epochs when the batch size is 213). For prover
times, Verdict is slower than both naive and naive++, but
Verdict is faster than AAD by 2–3 orders of magnitude.

Verdict (lazy) produces shorter per-epoch proofs than
Verdict: proofs are 290 bytes and verification times are
161µs. However, generating proofs for running instances
is over 3× slower than in Verdict (e.g., for dictionaries
with 224 labels and β = 128 Verdict (lazy) takes takes
303 s whereas Verdict takes 69 s). Finally, verifying
these proofs is slower than in Verdict by over an order
of magnitude: for the aforementioned workload, the
verifier under Verdict (lazy) takes 29s. So, unlike Verdict,
Verdict (lazy) needs hundreds of epochs to achieve faster
verification times than the naive baselines.

c) Storage Costs: Compared to a baseline that
stores only a dictionary, Verdict incurs ≈2× overhead
from maintaining an indexed Merkle tree. This overhead
is similar to those of naive and naive++, but much smaller
than AAD, Merkle2, CONIKS, or SEEMless. Concretely,

for a dictionary with 220 labels, Verdict uses 128 MB
to store the indexed Merkle tree. Moreover, Verdict
maintains a hashchain for each label. Each node in the
chain is 167 bytes and contains an operation (49 bytes),
a signature (78 bytes), and the hash of the previous node
(40 bytes). Finally, for the service to produce proofs,
it stores SNARK parameters. Phalanx’s parameters are
smaller than Phalanx (lazy)’s parameters, both asymptoti-
cally and concretely. Concretely, for a dictionary with 224

labels and β = 1024, the parameters are about 103 MB
under Phalanx and 2 GB under Phalanx (lazy).

B. Improvements From Verdict’s Techniques

a) Benefits of Phalanx’s polynomial IOP for SIMD
R1CS: We consider a SIMD R1CS instance where each
sub-circuit performs one update/insert operation on a
dictionary with 220 labels. We measure the performance
of Phalanx with a varying number of update/insert
operations, and our performance metrics are: (1) the
prover time, (2) the proof size, and (3) the verifier time.
Our baseline is Spartan [56]. To focus performance
on the polynomial IOP, we configure Phalanx to use
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Phalanx (eager) Phalanx

Prover time 72 s 168 s
Proof size (per-epoch) 26 KB 651 bytes
Verifier time (per-epoch) 44 ms 3.4 ms
Proof size (fixed) N/A 26 KB
Verifier time (fixed) N/A 44 ms

Figure 7: Performance of Phalanx (eager) and Phalanx for
proving a batch of 128 insert/update operations on a dictionary
with 224 labels. See the text for details.

the same polynomial commitment scheme as Spartan,
which is Hyrax-PC configured to produce Oλ(

√
m)-sized

commitments for m-sized multilinear polynomials.
Figure 6 depicts our results. We find that Phalanx is

more efficient than Spartan, with Phalanx’s prover faster
by over an order of magnitude compared to Spartan. Prior
to this work, Spartan offers the fastest zkSNARK [56], so
for SIMD computations, Phalanx has the fastest prover.

b) Cost and benefits of Phalanx’s folding scheme:
To evaluate the benefits of Phalanx’s folding scheme,
we consider a variant of Phalanx that proves SIMD
R1CS instances but does not employ Verdict’s folding
scheme. We refer to this variant as “Phalanx (eager)”.
Asymptotically, for an N-sized SIMD R1CS, the prover
times are Oλ(N) under both Phalanx and Phalanx
(eager); the proof sizes and verifier times are Oλ(log N)
under Phalanx (eager) whereas they are Oλ(1) under
Phalanx. For proving running instances, Phalanx however
produces Oλ(log N)-sized proofs that take Oλ(log N)
time to verify, but this cost can be amortized across
epochs at each client’s discretion (§IV-E).

Figure 7 depicts our results for applying a batch of
128 inserts/updates on a dictionary with 224 labels (the
relative results for other dictionary sizes and batch sizes
are similar). Since Phalanx must commit to an additional
vector T (§IV-C), its prover incurs higher costs than
Phalanx (eager) by about 2.3×. In exchange, the per-
epoch verifier time and proof sizes are both lower by
over an order of magnitude under Phalanx compared
with Phalanx (eager). Even when accounting for fixed
costs incurred by Phalanx, Phalanx still incurs lower
verifier costs and proof sizes than Phalanx (eager) as
long as the fixed costs are amortized over ≥ 2 epochs.

VII. RELATED WORK

Many prior works provide a transparency dictionary.
However, they do not satisfy all of our requirements (§I).
For example, CONIKS [48], does not provide public ver-
ifiability. Specifically, whenever the untrusted CONIKS
service processes a batch of updates, it produces a
separate privately-verifiable proof for each client. Very
recently, Merkle2 [33] improves on CONIKS by partially
proving the append-only property with a publicly-
verifiable proof. However, it still produces a privately-
verifiable proof for each update submitted by a client.
It is possible to combine all the privately-verifiable

proofs produced by the untrusted service to construct
a publicly-verifiable proof. However, such a proof is
neither succinct nor efficiently-verifiable. SEEMless [22]
provides publicly verifiable proofs, but it does not satisfy
efficient verifiability. Similarly, keybase [3] maintains a
key directory and periodically publishes a commitment to
its state on a public blockchain. However, it does not pro-
vide efficient verifiability. AAD [63] produces publicly-
verifiable proofs with efficient verifiability. However, it
requires a trusted setup10 and imposes high concrete
costs on the service to produce proofs (§VI). Finally,
recent, concurrent works [23, 64] explore the use of
SNARKs to reduce costs for clients of transparency
dictionaries. However, these solutions incur high prover
costs to produce proofs, and they require a trusted setup.

In verifiable state machines (VSMs), an untrusted
service proves the correct execution of state machine
transitions using SNARKs [57]. Due to their generality,
VSMs imply transparency dictionaries. However, existing
work does not optimize core ingredients to efficiently
realize a transparency dictionary. Specifically, several
works [18, 29] compose Merkle trees with SNARKs,
but they target general computation. Spice [40, 57]
composes a multiset-based data structure with SNARKs.
However, it must treat both reads and writes in a uniform
manner, so the high cost of SNARKs is incurred for
both reads and writes. Whereas, in Verdict, reads do
not require the use of SNARKs. Similarly, Ozdemir
et al. [51] compose RSA accumulators with SNARKs.
However, as discussed in Section III, RSA accumulators
require Oλ(n) computation for the service to respond
to a lookup operation over an n-sized dictionary. Also,
RSA accumulators require a trusted setup.

A large body of work offers untrusted storage sys-
tems [27, 43, 45, 47, 53]. However, they target scenarios
where a small number of clients collectively read and
write data stored at the service. Furthermore, they require
clients to effectively execute all updates processed by the
service. In Orochi [61], a service executes requests and
produces a log such that anyone can verify whether the
service behaved correctly. Unfortunately, this amounts
to reexecuting all the requests. Concerto [11] is a
verifiable key-value store. However, Concerto’s verifier
must replay all operations executed by an untrusted
service. Hence, it does not provide efficient verifiability.
Furthermore, verification requires periodically scanning
the entire state maintained by the service. Byzantine fault-
tolerant systems [21, 46, 67] can provide a transparency
dictionary. However, they do not provide cryptographic
proofs and require threshold assumptions.

While Verdict shares some of its tools with
blockchains, it differs from them in several respects. First,

10Trusted setup means that a party (or a group of parties of which
at least one is honest) is trusted by all clients. That party produces
public parameters for a proof system using a secret trapdoor. However,
anyone with the knowledge of the trapdoor can forge false proofs.
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blockchains employ a single global hashchain to order
blocks of transactions, whereas Verdict uses a hashchain
for each user to order updates. Second, while blockchains
can be used to build a transparency dictionary [5, 55]
(e.g., Microsoft’s ION [5] records operations submitted
by users in Bitcoin’s blockchain), to retrieve the latest
public key associated with a particular identity, a client
must effectively reexecute all operations in the order they
are recorded on the blockchain. In contrast, with Verdict,
an untrusted service provides a response to a lookup
along with a proof. Verdict’s service can equivocate and
expose different sequences of commitments to different
clients, but this can be prevented by having the service
use a blockchain to disseminate a single sequence of
commitments to clients (note that the use of blockchain
still does not require Verdict’s clients to reexecute all
operations processed by the system).

Persistent authenticated dictionaries (PADS) [10, 24,
54] provide specialized data-structures such as skip-lists
and red-black trees. PADs provide succinct proofs for
each operation (logarithmic in the size of the state).
However, to prove that a batch of updates were executed
correctly, the proof size grows linearly with the number
of updates, similar to the two naive baselines that we
consider in Section VI. In contrast, Verdict uses SNARKs
to produce a succinct proof for a batch of updates.

VIII. SUMMARY AND CONCLUSION

This paper asks: can we build a service that provides a
dictionary abstraction and produces efficiently-verifiable
cryptographic proofs of its correct operation? Our system,
Verdict, meets these requirements and scales well to large
dictionaries. To achieve this, Verdict incorporates a novel
synthesis of existing and new techniques in SNARKs and
cryptographic accumulators. Finally, we believe Verdict
represents a novel application of SNARKs to build real-
world services, such as public key directories, that can
prove their own correctness.

REFERENCES

[1] “Bellman,” https://github.com/zkcrypto/bellman.
[2] “Bellman-bignat,”

https://github.com/alex-ozdemir/bellman-bignat.
[3] “keybase,” https://keybase.io/.
[4] “libaad,” https://github.com/alinush/libaad-ccs2019.
[5] “Microsoft ION,”

https://github.com/decentralized-identity/ion.
[6] “A pure-Rust implementation of group operations on

Ristretto and Curve25519,” https:
//github.com/dalek-cryptography/curve25519-dalek.

[7] “Redis,” https://redis.io.
[8] “Spartan: High-speed zkSNARKs without trusted setup,”

https://github.com/Microsoft/Spartan.
[9] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and

T. Tiessen, “MiMC: Efficient encryption and
cryptographic hashing with minimal multiplicative
complexity,” in ASIACRYPT, 2016.

[10] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia,
“Persistent authenticated dictionaries and their
applications,” in International Conference on
Information Security, 2001, pp. 379–393.

[11] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann,
P. Meng, V. Pandey, and R. Ramamurthy, “Concerto: A
high concurrency key-value store with integrity,” in
SIGMOD, 2017.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer,
“Fast reductions from RAMs to delegatable succinct
constraint satisfaction problems: Extended abstract,” in
ITCS, 2013.

[13] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner,
M. Virza, and N. P. Ward, “Aurora: Transparent succinct
arguments for R1CS,” in EUROCRYPT, 2019.

[14] J. C. Benaloh and M. de Mare, “One-way accumulators:
A decentralized alternative to digital sinatures (extended
abstract),” in EUROCRYPT, 1994.

[15] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer,
“From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back
again,” in ITCS, 2012.

[16] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and
R. Ostrovsky, “Succinct non-interactive arguments via
linear interactive proofs,” in TCC, 2013.

[17] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Naor, “Checking the correctness of memories,” in
FOCS, 1991.

[18] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J.
Blumberg, and M. Walfish, “Verifying computations
with state,” in SOSP, 2013.

[19] B. Bunz, B. Fisch, and A. Szepieniec, “Transparent
SNARKs from DARK compilers,” ePrint Report
2019/1229, 2019.

[20] J. Camenisch and A. Lysyanskaya, “Dynamic
accumulators and application to efficient revocation of
anonymous credentials,” in CRYPTO, 2002.

[21] M. Castro and B. Liskov, “Practical Byzantine fault
tolerance and proactive recovery,” vol. 20, no. 4, pp.
398–461, Nov. 2002.

[22] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai,
“Seemless: Secure end-to-end encrypted messaging with
less trust,” in CCS, 2019.

[23] W. Chen, A. Chiesa, E. Dauterman, and N. P. Ward,
“Reducing participation costs via incremental verification
for ledger systems,” Cryptology ePrint Archive, Report
2020/1522, 2020.

[24] S. A. Crosby and D. S. Wallach, “Super-efficient
aggregating history-independent persistent authenticated
dictionaries,” in European Symposium on Research in
Computer Security, 2009, pp. 671–688.

[25] R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse
Merkle trees: Caching strategies and secure
(non-)membership proofs,” Cryptology ePrint Archive,
Report 2016/683, 2016.

[26] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and
B. Parno, “Cinderella: Turning shabby X.509 certificates
into elegant anonymous credentials with the magic of
verifiable computation,” in S&P, 2016.

[27] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten, “SPORC: group collaboration using untrusted
cloud resources,” in OSDI, 2010.

15

https://github.com/zkcrypto/bellman
https://github.com/alex-ozdemir/bellman-bignat
https://keybase.io/
https://github.com/decentralized-identity/ion
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek
https://redis.io
https://github.com/Microsoft/Spartan


[28] A. Fiat and A. Shamir, “How to prove yourself:
Practical solutions to identification and signature
problems,” in CRYPTO, 1986, pp. 186–194.

[29] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss,
O. Ohrimenko, and B. Parno, “Hash first, argue later:
Adaptive verifiable computations on outsourced data,” in
CCS, 2016.

[30] R. Gennaro, C. Gentry, B. Parno, and M. Raykova,
“Quadratic span programs and succinct NIZKs without
PCPs,” in EUROCRYPT, 2013.

[31] C. Gentry and D. Wichs, “Separating succinct
non-interactive arguments from all falsifiable
assumptions,” in STOC, 2011, pp. 99–108.

[32] S. Goldwasser, S. Micali, and C. Rackoff, “The
knowledge complexity of interactive proof-systems,” in
STOC, 1985.

[33] Y. Hu, K. Hooshmand, H. Kalidhindi, S. J. Yang, and
R. A. Popa, “Merkle2: A low-latency transparency log
system,” Cryptology ePrint Archive, Report 2021/453,
2021.

[34] A. Kate, G. M. Zaverucha, and I. Goldberg,
“Constant-size commitments to polynomials and their
applications,” in ASIACRYPT, 2010, pp. 177–194.

[35] A. Kosba, C. Papamanthou, and E. Shi, “xJsnark: A
framework for efficient verifiable computation,” in S&P,
2018.

[36] A. Kothapalli, S. Setty, and I. Tzialla, “Nova: Recursive
zero-knowledge arguments from folding schemes,”
Cryptology ePrint Archive, Report 2021/370, 2021.

[37] B. Laurie and E. Kasper, “Revocation transparency,”
2013, www.links.org/files/RevocationTransparency.pdf.

[38] B. Laurie, “Certificate transparency,” p. 40–46, Sep.
2014.

[39] J. Lee, “Dory: Efficient, transparent arguments for
generalised inner products and polynomial
commitments,” Cryptology ePrint Archive, Report
2020/1274, 2020.

[40] J. Lee, K. Nikitin, and S. Setty, “Replicated state
machines without replicated execution,” in S&P, 2020.

[41] J. Lee, S. Setty, J. Thaler, and R. Wahby, “Linear-time
and post-quantum zero-knowledge snarks for r1cs,”
Cryptology ePrint Archive, Report 2021/030, 2021.

[42] D. Leung, Y. Gilad, S. Gorbunov, L. Reyzin, and
N. Zeldovich, “Aardvark: A concurrent authenticated
dictionary with short proofs,” Cryptology ePrint Archive,
Report 2020/975, 2020.

[43] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure
untrusted data repository (SUNDR),” in OSDI, 2004.

[44] C. Lund, L. Fortnow, H. Karloff, and N. Nisan,
“Algebraic methods for interactive proof systems,” in
FOCS, Oct. 1990.

[45] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish, “Depot: Cloud storage with
minimal trust,” vol. 29, no. 4, Dec. 2011.

[46] D. Mazières, “The Stellar consensus protocol: A
federated model of Internet-level consensus,” Stellar
Development Foundation, Tech. Rep., 2016.

[47] D. Mazières and D. Shasha, “Building secure file
systems out of Byzantine storage,” in PODC, 2002, p.
108–117.

[48] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten,
and M. J. Freedman, “CONIKS: bringing key

transparency to end users,” in USENIX Security, 2015.
[49] R. C. Merkle, “A digital signature based on a

conventional encryption function,” in CRYPTO, 1988.
[50] A. Oprea and K. D. Bowers, “Authentic time-stamps for

archival storage,” 2009.
[51] A. Ozdemir, R. S. Wahby, and D. Boneh, “Scaling

verifiable computation using efficient set accumulators,”
in USENIX Security, 2020.

[52] B. Parno, C. Gentry, J. Howell, and M. Raykova,
“Pinocchio: Nearly practical verifiable computation,” in
S&P, May 2013.

[53] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and
L. Zhuang, “Enabling security in cloud storage SLAs
with CloudProof,” 2011.

[54] T. Pulls and R. Peeters, “Balloon: A forward-secure
append-only persistent authenticated data structure,” in
European Symposium on Research in Computer Security,
2015, pp. 622–641.

[55] D. Reed, J. Law, and D. Hardman, “The technical
foundations of Sovrin,” The Sovrin Foundation, Tech.
Rep., 2016.

[56] S. Setty, “Spartan: Efficient and general-purpose
zkSNARKs without trusted setup,” in CRYPTO, 2020.

[57] S. Setty, S. Angel, T. Gupta, and J. Lee, “Proving the
correct execution of concurrent services in
zero-knowledge,” in OSDI, Oct. 2018.

[58] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno,
and M. Walfish, “Resolving the conflict between
generality and plausibility in verified computation,” in
EuroSys, Apr. 2013.

[59] S. Setty and J. Lee, “Quarks: Quadruple-efficient
transparent zkSNARKs,” Cryptology ePrint Archive,
Report 2020/1275, 2020.

[60] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg,
and M. Walfish, “Taking proof-based verified
computation a few steps closer to practicality,” in
USENIX Security, Aug. 2012.

[61] C. Tan, L. Yu, J. B. Leners, and M. Walfish, “The
efficient server audit problem, deduplicated re-execution,
and the Web,” in SOSP, 2017.

[62] J. Thaler, “Proofs, arguments, and zero-knowledge,”
http://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK.html, 2020.

[63] A. Tomescu, V. Bhupatiraju, D. Papadopoulos,
C. Papamanthou, N. Triandopoulos, and S. Devadas,
“Transparency logs via append-only authenticated
dictionaries,” in CCS, 2019.

[64] N. Tyagi, B. Fisch, J. Bonneau, and S. Tessaro,
“Client-auditable verifiable registries,” Cryptology ePrint
Archive, Report 2021/627, 2021.

[65] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and
M. Walfish, “Efficient RAM and control flow in
verifiable outsourced computation,” in NDSS, 2015.

[66] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and
M. Walfish, “Doubly-efficient zkSNARKs without
trusted setup,” in S&P, 2018.

[67] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, “HotStuff: BFT consensus with linearity
and responsiveness,” in PODC, 2019.

16

www.links.org/files/RevocationTransparency.pdf
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html


APPENDIX

A. Formal Properties of a Transparency Dictionary
We formally define the correctness and soundness

properties of a transparency dictionary. In the definitions,
we assume that both the initially empty dictionary
D0 = ⊥ and its commitment C0 are well-known. A
transparency dictionary satisfies the following properties.
• Update Completeness. Informally, clients do not
reject update proofs produced by an honest service.
Formally, for any epoch t, and sequence of update
operations U1, . . . , Ut, and application-specific update
policy F, the following probability is 1:

Pr

 pp← Setup(1λ, F)
∀i < t :

(Di+1, Ci+1,πi+1)← ApplyUpdates(pp, Di, Ci, Ui)
VerifyUpdates(pp, Ci, Ci+1,πi+1) = 1


• Update Knowledge Soundness. Informally, the set

of labels in a dictionary grows monotonically, and the
values are updated only according to an application-
specific policy. Formally, for any application-specific
update policy F and any PPT adversary A, there exists
an extractor E , such that for any epoch t the following
probability is negl(λ):

Pr


pp← Setup(1λ, F)

({Ci,πi}1≤i≤t, v,πlookup, label)← A(pp, ρ)
({Ui}1≤i≤k−1)← E(pp, ρ) for some k ≤ t
∀i < k : vi+1 ← F(vi, Ui) where v1 = ⊥

∀i < t : VerifyUpdates(pp, Ci, Ci+1,πi+1) = 1
VerifyLookup(pp, Ct, label, v,πlookup) = 1

v 6= vk


where ρ denotes the input randomness for adversary
A.
• Lookup Completeness. Informally, if the service is
honest, then clients accept lookup proofs. Formally,
for any application-specific update policy F, epoch t,
label label, and sequence of requests U1, . . . , Ut, the
following probability is 1:

Pr


pp← Setup(1λ, F)

∀i < t :
(Di+1,πi+1)← ApplyUpdates(pp, Di, Ci, Ui)

(v,πlookup)← Lookup(pp, Dt, Ct, label)
VerifyLookup(pp, Ct, label, v,πlookup) = 1


• Lookup Soundness. Informally, the service cannot
return an incorrect value for any label included in
a given commitment. Formally, for any application-
specific update policy F, any PPT adversary A, and
epoch t, the following probability is negligible in λ:

Pr


pp← Setup(1λ, F)

({Ci,πi}1≤i≤t, v, v′,πlookup,π′lookup, label)← A(pp)
∀i < t :

VerifyUpdates(pp, Ci, Ci+1,πi+1) = 1
VerifyLookup(pp, Ct, label, v,πlookup) = 1
VerifyLookup(pp, Ct, label, v′,π′lookup) = 1

v′ 6= v



• Fork consistency. Informally, if the service equiv-
ocates at some time t by presenting two different
commitments to different sets of clients, it cannot forge
a proof that merges the two different commitments.
Formally, for any application-specific update policy
F, any PPT adversary A and epoch t the following
probability is negligible in λ:

Pr


pp← Setup(1λ, F)

({Ci,πi, C′i ,π′i}1≤i<t, )← A(pp)
∀i < t : VerifyUpdates(pp, Ci, Ci+1,πi+1) = 1
∀i < t : VerifyUpdates(pp, C′i , C′i+1,π′i+1) = 1

∃i < t : Ci 6= C′i
Ct = C′t



B. Formal Properties of a zkSNARK

To make our proofs self contained, we briefly recall
SNARK-related definitions.

A zero-knowledge succinct non-interactive argument
of knowledge (zkSNARK [15, 31]) for a circuit R has
the following semantics
• (pp, vp) ← Setup(1λ,R): Returns prover parame-
ters pp and verifier parameters vp used to produce
and verify proofs respectively for circuit R, where λ
is the security parameter.
• π ← Prove(pp, x, w): Takes as input IO x and secret
witness w and returns a proof π that R(x, w) = 1.
• {0, 1} ← Verify(vp, x,π): Takes as input IO x and

proof π and returns 1 if π attests that the prover knows
secret w such that R(x, w) = 1.

and satisfies the following properties:
• Completeness. Informally, a verifier does not reject
an honest proof. Formally, for IO x, and witness w
such that R(x, w) = 1 the following probability is 1:

Pr

 (pp, vp)← Setup(1λ,R)
π ← Prove(pp, x, w)
Verify(vp, x,π) = 1


• Soundness. Informally, if there exists no valid
witness, then the prover cannot produce an accepting
proof. Formally, for circuit R, and IO x, if there exists
no w such that R(x, w) = 1, then for any probabilistic
polynomial time (PPT) adversary A, the following
probability is negl(λ):

Pr

 (pp, vp)← Setup(1λ,R)
π′ ← A(pp, vp, x)

Verify(vp, x,π′) = 1


• Knowledge Soundness. Informally, if a prover
produces an accepting proof, then it must know
a valid witness. Formally, for any circuit R, and
PPT adversary A, there exists PPT E such that the
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membership non-membership/insert/update
instantiation prover proof size verifier prover proof size verifier SNARK friendly?

Merkle trees O(log n) O(log n) O(log n) O(n) O(n) O(n) 3
RSA accumulators O(n) O(1) O(1) O(n) O(1) O(1) 7
Merkle-Patricia trees Θ(log n) Θ(log n) Θ(log n) Θ(log n) Θ(log n) Θ(log n) 7
Merkle-AVL trees O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) 7

Indexed Merkle trees O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) 3

Figure 8: Comparison of asymptotic costs of Merkle proofs of membership, non-membership, inserts, and updates under different
instantiations of cryptographic accumulators, where n denotes the number of items in the committed collection.

following probability is negl(λ):

Pr

 (pp, vp)← Setup(1λ,R)
(π′, x′)← A(pp, vp, ρ)
w← E(pp, vp,π′, x′, ρ)

Verify(vp, x′,π′) = 1 and R(x′, w) 6= 1


where ρ is the input randomness for A.
• Zero Knowledge. Informally, the prover does not

reveal any information about its witness in the proof.
Formally, for circuit R and (pp, vp)← Setup(1λ,R),
there exists a PPT simulator S such that for all PPT V∗
with input randomness ρ, and IO x and witness w such
that R(x, w) = 1, Prove(pp, x, w) is computationally
indistinguishable from S(pp, vp, x, ρ).
• Succinctness. For circuit R and for any proof π

output by Prove, |π| is sublinear in |R|.

C. Proofs of Verdict’s Properties
Verdict’s update and lookup completeness follows in

a straightforward manner from its construction. Below,
we prove the soundness properties.

Lemma 2. Verdict is a transparency dictionary that
satisfies update knowledge soundness.

Proof: For security parameter λ and for some
application-specific update policy F, let pp ←
Setup(1λ, F). Suppose that PPT adversary A on input
pp and some randomness ρ outputs

{Ci,πi}1≤i≤t, v,πlookup, label

for some epoch t such that

VerifyUpdates(pp, Ci, Ci+1,πi+1) = 1 for all i < t (5)

and

VerifyLookup(pp, Ct, label, v,πlookup) = 1. (6)

We must show that there exists PPT extractor E that on
input pp and ρ, outputs for some k ≤ t

U1, . . . , Uk−1

such that for vi+1 ← F(vi, Ui), where v1 ← ⊥, we have
that v = vk with probability 1 − negl(λ). Intuitively,
this would mean that the extractor has been able to
extract a valid sequence of updates that, starting from

the empty dictionary, result in value v (thus proving
the adversary’s knowledge of such a sequence). To
show this, we will first show that E can extract some
sequence of requests by the knowledge soundness of
the underlying SNARK. Next, we will show that the
sequence of requests provided in πlookup (and the final
resulting value), is valid with respect to the application
specific update policy. Finally, we will show that the
requests extracted by E must be equal to the requests
provided in πlookup by the binding property of the indexed
Merkle tree, thus showing that E has indeed extracted a
valid sequence of requests.

We start by showing that E can extract some sequence
of requests: Because Equation 5 holds by the knowledge
soundness of the underlying SNARK, for label H(label),
the adversary knows a sequence of values U′1, . . . , U′k′−1
for some k′ < t such that

h′i+1 ← H(U′i , h′i)

for all i < k′ − 1 (where h1 = ⊥) such that the indexed
Merkle tree with root Ct contains h′k′ under H(label).
Thus, E can extract these U′i for all i < t.

Next, we show that the sequence of requests provided
in πlookup must be valid: Because Equation 6 holds, the
included hashchain must be well-formed with probability
1−negl(λ). In particular, the hashchain contains values
U1, . . . , Uk−1 for some k < t such that

hi+1 ← H(Ui, hi)

for all i < k − 1 such that h1 = ⊥ and the indexed
Merkle tree with root Ct contains hk under label H(label).
Additionally, because Equation 6 holds, we must have
that

vi+1 ← F(Ui, vi)

for all i < k, where v1 = ⊥, and that

vk = v. (7)

Now, we show that the requests extracted by E must
be equal to the requests provided in πlookup: Because
Equation 5 holds, the insert invariant of the indexed
Merkle tree must hold with probability 1− negl(λ). In
particular, the label H(label) can only be inserted once
under a single leaf node. But from the above reasoning
we know that the indexed Merkle tree with root Ct must
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Figure 9: In addition to the results of Figure 5, we include results of Verdict (eager). See the text for details.

contain hk under label H(label), and must contain h′k′
under label H(label). By the binding property of indexed
Merkle trees, this implies that hk = h′k′ . Therefore, by
the binding property of H, we must have that k = k′
and moreover that U′i = Ui for all i < k with probability
1− negl(λ). Thus we must have

vi+1 = F(U′i , vi)

for all i < k. Recalling equation 7, we have that vk = v.
Thus, the material extracted by E is valid with probability
1− negl(λ).

Lemma 3. Verdict is a transparency dictionary that
satisfies lookup soundness.

Proof: For security parameter λ and for some
application-specific update policy F, let pp ←
Setup(1λ, F). Suppose that PPT adversary A on input
pp outputs

{Ci,πi}1≤i≤t, v, v′,πlookup,π′lookup, label (8)

such that

VerifyUpdates(pp, Ci, Ci+1,πi+1) = 1 for all i < t (9)

and

VerifyLookup(pp, Ct, v, label,πlookup) = 1 (10)
VerifyLookup(pp, Ct, v′, label,π′lookup) = 1. (11)

We must show that v′ = v with probability 1− negl(λ).
To do so, we will show that the sequence of requests
provided in πlookup must be equal to the sequence of
requests provided in π′lookup due to the binding property
of indexed Merkle trees.

We first consider the sequence of requests provided
in πlookup: Because Equation 10 holds, the hashchain

included in πlookup contains requests U1, . . . , Uk−1 for
some k < t such that

hi+1 ← H(Ui, hi)

vi+1 ← F(Ui, vi)

for all i < k − 1 such that

h1 = ⊥ (12)
v1 = ⊥ (13)
vk = v (14)

and that the indexed Merkle tree with root Ct contains
hk under label H(label).

Symmetrically, we consider the sequence of re-
quests provided in π′lookup: Because Equation 11 holds,
the hashchain included in π′lookup contains requests
U′1, . . . , U′k−1 for some k′ < t such that

h′i+1 ← H(U′i , h′i)
v′i+1 ← F(U′i , v′i)

for all i < k′ − 1 such that

h′1 = ⊥ (15)
v′1 = ⊥ (16)
v′k′ = v′ (17)

and that the indexed Merkle tree with root Ct contains
h′k′ under label H(label).

Now, we show that the requests provided in πlookup
must be equal to the requests provided in π′lookup: Be-
cause Equation 9 holds, the insert invariant of the indexed
Merkle tree must hold with probability 1− negl(λ). In
particular, the label H(label) can only be inserted once
under a single leaf node. But from the above reasoning,
we know that the indexed Merkle tree with root Ct must
contain hk under label H(label), and must contain h′k′
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under label H(label). By the binding property of indexed
Merkle trees, this implies that hk = h′k′ with probability
1− negl(λ). Therefore, by the binding property of H,
we must have that k = k′ and moreover that U′i = Ui for
all i < k with probability 1−negl(λ). By Equations 14
and 17, this implies that v = v′.

a) Achieving Fork Consistency: Thus far, Verdict
ensures that the service is only appending updates, and
that it returns valid lookup results. However, these checks
do not prevent the service from presenting clients with a
stale view of its current state (e.g., an older state that does
not include recent key updates). To mitigate this issue,
clients must achieve consensus on the most recent state
commitment. This can be done by requiring the service to
publish the most recent state commitment to a distributed
ledger (such as a Blockchain). Alternatively clients can
discover inconsistent views via a gossip protocol, or
a direct consensus protocol if the client pool is small
enough.

While this prevents the service from forking the
clients’ views indefinitely, it does not prevent the service
from quietly forking the clients views for a brief period
and later merging the views by replaying updates from
both forks. We prevent this in a straightforward way:
We require the service to include in its published
commitment Ci not only the root of the Indexed Merkle
tree but also a hash hi that is ⊥ for i = 0 and
H(Ci−1) otherwise where H is a collision resistant hash
function. We also extend VerifyUpdates to check that
Ci.hi = H(Ci−1);

Lemma 4. Verdict is a transparency dictionary that
satisfies fork consistency.

Proof: Denote Ci.hi as hi and C′i .hi as h′i Since for
all j < t,

VerifyUpdates(pp, Cj, Cj+1,πj) = 1 (18)

and

VerifyUpdates(pp, C′j , Cj+1,πj+1) = 1 (19)

it is sufficient to show that in order for the adversary to
produce Ct = C′t and Ci 6= C′i for some i < t, it needs to
find a collision for the hash function H.

Equations 18 and 19 imply that for all j ≤ t,

hj = H(Cj−1)

and
h′j = H(C′j−1)

. If there exists some i < t for which Ci 6= C′i but
Ct = C′t there exists some k ∈ (i, t) s.t. Ck 6= C′k and
Ck+1 = C′k+1. The latter implies that hk+1 = h′k+1 and,
thus, H(Ck) = H(C′k) as requested.

D. Performance of Verdict (eager)
Recall that Verdict (eager) is a variant of Verdict that

proves a SIMD R1CS instance in each epoch immedi-
ately. Figure 9 depicts the performance of Verdict (eager)
relative to Verdict, Verdict (lazy) and the baselines.
Verdict (eager) depicted here uses Phalanx with Hyrax-
PC that produces Oλ(

√
n)-sized commitments for n-

sized polynomials, so in each Verdict epoch it produces
Oλ(

√
β log n)-sized proofs and incurs Oλ(

√
β log n)

verification time, where n is the number of labels in
a dictionary and β is the batch size. Verdict (eager) has
similar proving times as Verdict (lazy), so it is 5× faster
than Verdict. However, it produces larger proofs than
both Verdict and Verdict (lazy) (by at least two orders
of magnitude) and its verifier is slower than the one
of Verdict and Verdict (lazy) (by at least an order of
magnitude) even for small dictionary sizes and batch
sizes. So, we believe Verdict and Verdict (lazy) are more
attractive than this variant. Nevertheless, Verdict (eager)
provides shorter proofs than both naive and naive++ (for
dictionaries with n ≥ 212 labels). Furthermore, Verdict
(eager) provides a faster verifier than naive (e.g., for a
dictionary with n = 224 labels and β ≥ 210) and naive++
(e.g., for a dictionary with n = 224 labels and β ≥ 213).

Additionally, there is a Verdict (eager) variant that uses
Dory [40]. Its prover performance is faster by at most
2× over Verdict, and its proof sizes and verifier times are
similar, both asymptotically and concretely, to Verdict’s
proof sizes and verifier times for the running instance.
So, we believe Verdict is better than this variant.
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