
Oblivious Message Retrieval

Zeyu Liu1 Eran Tromer1,2

1Columbia University
2Tel Aviv University

{zl2967,et2555}@columbia.edu

April 14, 2022

Abstract

Anonymous message delivery systems, such as private messaging services and privacy-
preserving payment systems, need a mechanism for recipients to retrieve the messages
addressed to them, without leaking metadata or letting their messages be linked. Re-
cipients could download all posted messages and scan for those addressed to them, but
communication and computation costs are excessive at scale.

We show how untrusted servers can detect messages on behalf of recipients, and summa-
rize these into a compact encrypted digest that recipients can easily decrypt. These servers
operate obliviously and do not learn anything about which messages are addressed to which
recipients. Privacy, soundness, and completeness hold even if everyone but the recipient is
adversarial and colluding (unlike in prior schemes), and are post-quantum secure.

Our starting point is an asymptotically-efficient approach, using Fully Homomorphic
Encryption and homomorphically-encoded Sparse Random Linear Codes. We then address
the concrete performance using bespoke tailoring of lattice-based cryptographic compo-
nents, alongside various algebraic and algorithmic optimizations. This reduces the digest
size to a few bits per message scanned. Concretely, the servers’ cost is ∼$1 per million
messages scanned, and the resulting digests can be decoded by recipients in under ∼20ms.
Our schemes can thus practically attain the strongest form of receiver privacy for current
applications such as privacy-preserving cryptocurrencies.

1

Contents

1 Introduction 4
1.1 Our Contributions . 5

2 Related Work 7
2.1 Fuzzy Message Detection . 7
2.2 Private Signaling . 8
2.3 Private Retrieval . 9
2.4 Other Related Work . 10

3 Constructions Overview 11
3.1 OMR1: Compact OMR from generic FHE . 11
3.2 OMR2: Practical Non-compact OMR . 12
3.3 OMR3: Practical Compact OMR . 13

4 Model and Definitions 13
4.1 System Model . 13
4.2 Threat Model (non-DoS) . 14
4.3 Oblivious Message Retrieval . 15
4.4 Oblivious Message Detection . 16

5 Preliminaries 17
5.1 Notation . 17
5.2 LWE Encryption . 17
5.3 Homomorphic Encryption . 18

5.3.1 Brakerski/Fan-Vercauteran Homomorphic Encryption 18

6 Generic OMR and OMD Using FHE 18
6.1 Oblivious Message Detection Using FHE . 19

6.1.1 Non-compact Construction of OMD . 19
6.1.2 Compact Construction of OMD . 20

6.2 Payload Retrieval using FHE . 22
6.3 Improved Retrieval Using Sparse Random Linear Coding 25

6.3.1 Defining and Constructing SRLC . 25
6.3.2 Compact OMR using SRLC . 28

7 Practical OMR 30
7.1 PVW Clue Ciphertext . 30
7.2 BFV Leveled Homomorphic Encryption . 31
7.3 A Practical OMR scheme . 34
7.4 A Practical Compact OMR Scheme . 38
7.5 Streaming Updates . 41
7.6 Reducing Space Requirements . 42
7.7 Handling Overflows . 42
7.8 Detection Key Size Reduction . 43

2

8 Denial-of-Service Resistance 43
8.1 Threat Model (DoS) . 44
8.2 Simple Attacks . 44
8.3 DoS Resistance Definition . 45
8.4 Attaining DoS-resistant OMR . 47

9 Key Unlinkability 49
9.1 Key Linkability Issues . 49
9.2 Defining Key Unlinkability . 50
9.3 Attaining Unlinkability . 51

10 Performance Evaluation 52
10.1 Methodology . 52
10.2 Evaluation Results . 52

11 Integration 55

12 Limitations and Future Work 57

Acknowledgements 58

References 59

A Summary of Constructions 65

B Additional Techniques 65
B.1 Additional Improvements to Compact Detection . 65
B.2 Alternative OMD Construction . 66
B.3 Alternative OMR Construction . 66

3

1 Introduction

End-to-end encryption of message content is well understood and widely practiced. However,
metadata about which messages were sent and received by whom, and when, can yield abundant
sensitive information via traffic analysis and deductions against auxiliary information. Protecting
metadata is thus crucial to anonymous message delivery systems [BLMG21] such as anonymous
messaging [WCGFJ12, CGBM15, Lun18], privacy-preserving analytics [BEM+17], and privacy-
preserving cryptocurrencies [Noe15, BSCG+14, BCG+20].

Yet, the problem of protecting communication metadata remains an open challenge for many
applications, especially when privacy, scalability, efficiency and decentralization are all crucial.
This challenge is well exemplified by metadata protection in privacy-preserving cryptocurrencies,
such as Zcash [BSCG+14, HBHW21] and Monero [Noe15]. These convey digital asset transaction
on a public ledger (blockchain), while keeping the contents of every transaction hidden from all
but the counterparties to the transaction (and those they elect to expose it to), using crypto-
graphic protocols utilizing encryption and zero-knowledge proofs. Moreover, the underlying ledger
is permissionless, decentralized and widely replicated, allowing anyone to send transactions over
the Internet while anonymizing their IP address via standard means such as the Tor network.
Supposedly, metadata leaks are thus eliminated.1

However, a crucial point lingers. From a receiver’s perspective, a transaction pertinent to them
could appear anywhere in the ledger. If the receiver has a full copy of the ledger (a “full node” in
blockchain parlance), then it could scan it to identify pertinent transactions, but the requisite com-
munication, storage and computation cost may far exceed the capabilities of recipients (e.g., already
today, such ledgers are many GB in size; consider, then, wallet apps running on computationally-
weak mobile devices, with little storage, using slow or expensive network connections).

How, then, can recipients efficiently detect which messages are pertinent to them, and retrieve
the content of these messages? In general, we consider a bulletin board consisting of numerous
messages, with arbitrary application-specific content (of fixed size). Each message is pertinent to a
single recipient (identified by their public address) to which it was sent, and impertinent to other
recipients. A recipient, in lieu of receiving and scanning the whole ledger (full-scan), may enlist
the help of servers, which we call detectors, that will help them detect their pertinent messages and
retrieve the content of these messages.

One approach is for the recipient to provide the detector with a “detection key” or “incoming
viewing key”, that allows the detector to check, for each bulletin board message, whether it is
pertinent to that recipient [Noe15, HBHW21]. The pertinent messages can then be stored and
forwarded to the client. Unfortunately, this exposes metadata to the detector, and thus also to
anyone who subverted or coerced the detector, whether in real time or retroactively. Furthermore,
such long-lived detection key enables devastating deanonymization attacks.2

The problem of Oblivious Message Detection (OMD) is to perform such detection without
revealing any information to the detectors about which messages are pertinent. This is done

1In reality, many of today’s blockchain privacy solutions suffer from assorted metadata leaks such as variability
in transaction record size, ill-defined cryptographic guarantees, inadequate network-level anonymization, exposure of
amounts at the interface between “shielded” and “unshielded” transaction pools, the handling of transaction fees,
and common operational mistakes. These are outside our scope.

2For example, an adversary who acquired a detection key can easily ascertain whether that key belongs to a given
person, by simulating a transaction to that person and seeing if it matches that detection key; if so, then all past and
future transaction pertinent to that recipient become linked.

4

today in Zcash via the ZIP-307 “light client” protocol [GH18], which is essentially optimized full-
scan: convert each message to a compact format which contains just enough information for the
recipient to check for pertinence, and then send all of these compacted messages to the recipient
for processing. In practice, this process can take hours even for a relatively lightly-used chain, and
is recognized as a severe usability and scalability issue.

Furthermore, the full task is Oblivious Message Retrieval (OMR), where the recipient also gets
the content (payload) of their pertinent messages. Given just detection, the recipient would still
have to retrieve every detected pertinent message by some means. Naively querying the detector
(or some other server) again leaks the pertinency metadata. This could be mitigated by using
Private Information Retrieval, mixnets, or decoy traffic, but at high cost or/or ill-defined security.
This is recognized by practitioners as an important open problem.3

These problems have been studied by two recent works, which made significant headway, but
still carry significant drawbacks. Fuzzy Message Detection (FMD) [BLMG21] is based on inducing
false-positive decoys into detection, and presents a difficult tradeoff between security (a high decoy
density is needed to foil adversarial analysis) and efficiency (these decoys all entail costs). Private
Signaling (PS) [MSS+21]4 provides full privacy only if a single detector serves all recipients in the
system, and moreover requires either trusted hardware such as Intel SGX, or a pair of servers
that are in constant communication but trusted not to collude. Furthermore, both works assume
for correctness that all senders and recipients behave honestly, and are susceptible to amplified
Denial-of-Service attacks, where an adversary can induce detector and/or recipient work that is
disproportional to the number of messages they place on the bulletin board. They also exhibit
linkability between detection queries and identities. (See further discussion below.)

We thus pose the problem: Is it feasible to achieve oblivious message retrieval (and detection)
that is fully private, DoS-resistant, unlinkable, trustless, and practical?

1.1 Our Contributions

In this paper, we propose schemes that fulfill all of the above requirements. Our approach is based
on homomorphic encryption using lattice-based cryptography.

Strong Security Definitions. We formally define the notions of Oblivious Message Retrieval
and Detection. Our definitions capture natural notions of correctness and privacy, and moreover
capture two important security notions that prior works failed to capture or achieve:

• Prior works are vulnerable to amplified Denial-of-Service attacks in the realistic threat model
where there exist malicious participants (senders or recipients) in the messaging system.
Our strengthened notion says that even if arbitrary system participants are adversarial and
colluding, they cannot induce more errors or costs than honest participants.

• Prior works are vulnerable to key-linkability attacks, which tie retrieval actions to public
identities (or to each other) since public keys are themselves reused or linkable. We achieve
a strong notion of key unlinkability, preventing these.

3E.g., Zcash developers [Hor20] deem it an “action item” that the “lightwalletd [server] learns which transactions
belong to the wallet”, and accurately described the popular mitigation of using decoy fetches as “security theatre”
that fails to achieve unlinkability.

4Private Signaling [MSS+21] is a concurrent and independent work.

5

Possibility of Compact OMR and OMD. We show that Fully Homomorphic Encryption
(FHE) can be used to achieve message retrieval and detection with full privacy against any (computationally-
bounded) adversary. Moreover, we show that FHE can be used to distill the full bulletin board
into a compact digest of size that is near-linear in the number of pertinent messages, rather than
all messages in the bulletin board.

Our approach is based on annotating messages with clues to their pertinence, having the de-
tector inspect these clues using FHE and pack the pertinent messages into a compact digest using
homomorphically-encoded sparse random linear codes, and having the recipient algebraically re-
construct the messages from the decrypted digest. The homomorphic packing and encoding stages
are reminiscent of techniques used in batch Private Stream Search [OS05] and Private Information
Retrieval [ACLS18, ALP+21], adapted and optimized to the OMR/OMD setting.

Practical OMR/OMD. Generic use of FHE is notoriously inefficient. We tackle this by a series
of optimizations to drastically improve concrete performance. Our techniques include bespoke
composition of several different lattice-based schemes (specifically PVW [PVW08] and BFV [Bra12,
FV12]) and extensions thereto, utilization of SIMD-like packed operations, using a tailored Sparse
Random Linear Code, optimization of multiplicative depth to avoid expensive bootstrapping, and
parameter tuning.

We thereby obtain several concrete schemes (summarized in Appendix A),with different trade-
offs, that achieve our security notions under standard lattice hardness assumptions (Ring-LWE).
Security is thus plausibly postquantum. DoS-resistance holds under an additional natural conjec-
ture about LWE-based encryption, or using zk-SNARKs.

Postquantum Security. Our privacy guarantees are all proven under a standard lattice hardness
assumption (Ring-LWE). Therefore, there is no known way by which future quantum computers
could retroactively deanonymize transaction recipients using the clues or keys generated in our
scheme.5

Implementation and Evaluation. We implemented our schemes as an open-source C++ library
[OMR21] and measured their concrete performance for a variety of parameters and in comparison
to prior work. Salient observations include:

• Detector-to-recipient computation: for Bitcoin-scale parameter settings, our OMR schemes
have lower detector-to-recipient communication than any other known retrieval scheme: ∼9
bits per bulletin board message for retrieval, and ∼4.5 bits/msg for just detection. For even
larger parameters, the amortized retrieval digest size drops below 1 bit/msg.6

• Recipient’s computation is faster than any other known retrieval scheme, e.g., ∼20 msec to
retrieve 50 pertinent messages out of 500,000.

• Detector’s cost for full retrieval is higher than in related schemes, but still quite practical at
∼0.065 sec/msg (∼$1.02 per million messages) on a small cloud VM. For just detection, our
scheme is faster than any other known scheme, including those based on trusted hardware.

Thus, our schemes are especially attractive when recipients are limited in bandwidth, computation
speed or energy. The one drawback is a one-time cost of uploading a detection key of size ∼129 MB
to a detector.

5Of course, privacy would still be violated if other system components, such as encryption of the message content
or the sending mechanism, are not postquantum-secure.

6By comparison, Zcash’s ZIP-307 [GH18] uses 928 bits/msg, for just detection.

6

Scheme
Privacy Soundness + completeness

Detection Retrieval Assumptions Assumptions Overflows

Full Scan [GH18] Full ECDH + Auth Enc None None

FMD1 [BLMG21] pN -msg-anonymity, fixed p = 2−i PKE

Honest S&R

None

FMD2 [BLMG21] pN -msg-anonymity, dynamic p PKE None

PS1 [MSS+21] Full N/A
Trusted Execution Environment (SGX)
+ DDH + PKE

Undetected

PS2 [MSS+21]
Partitioned
across detectors

N/A
Communicating non-colluding servers
+ Garbled Circuit
+ Unforgeable Signatures

Undetected

OMRt1 §6.3.2 Full + full-key-unlinkability FHE Detected

OMRp1 §7.3 Full + full-key-unlinkability Ring-LWE Honest S&R or Conjecture 8.4
or zk-SNARK

Detected

OMRp2 §7.4 Full + full-key-unlinkability Ring-LWE Detected

Table 1: Comparison of privacy guarantees and assumptions. Here, pN -msg-anonymity means the
recipient’s messages are hidden among decoy (false-positive) messages which are a p fraction of the
total N messages. “Partitioned across detectors” privacy means that if multiple detectors are used
for scalability, then the anonymity set is just the recipients served by the same detector. “Honest
S&R” means all senders are honest when generating clue for messages, and all receivers are honest
when generating their clue keys. PS1 can be modified for key unlinkability (cf. Section 9.3).

Cryptocurrency Integration. We discuss key design points in integrating our scheme with a
blockchain-based privacy-preserving cryptocurrency (exemplified by Zcash) including protocol and
costs aspect. We conclude that our scheme is compatible with existing protocols, and that the cost
of detection service would be ∼$1 of Cloud Computing per million messages scanned (i.e., similar
magnitude to the total monthly transaction flow in all privacy-preserving cryptocurrencies).

2 Related Work

Privacy-preserving message detection and retrieval has been studied in several prior and concurrent
works, discussed below. Tables 1 and 2 summarize functionality, privacy asymptotic aspects, and
compare them to our Oblivious Message Retrieval schemes presented in Sections 6 to 9. See
Section 10 (e.g., Table 3) for comparison of concrete performance. For reference, these tables also
include full scan, which is the straightforward linear-communication approach where the recipient
scans each message (or a relevant part thereof) in the whole bulletin board (used, e.g., in the Zcash
light wallet protocol [GH18]).

2.1 Fuzzy Message Detection

Fuzzy Message Detection (FMD) [BLMG21] addresses the message detection problem. As in our
model, senders attach clues to messages in a bulletin board, and detector servers can identify
pertinent messages using recipients’ detection key. In the following, and in Tables 1 and 2, FMD1
and FMD2 refer to Figures 3 and 4 in [BLMG21], respectively.

Privacy. The privacy notion, which we call pN -msg-anonymity, is as follows: the detector can
observe which messages were flagged as pertinent, but these are hidden among many intentional
false-positives which are indistinguishable from the truly pertinent messages. This is parametrized
by a probability 0 < p ≤ 1, such that every message is (mis)detected as pertinent with probability
p, resulting in a total of ∼pN decoys for a bulletin board of N messages. As p increases, privacy
improves but costs grow, since the recipient needs to receive, and test, all of the decoys.

7

Scheme Clue size Detector cost Recipient cost Detection communication Detection key Servers Functionality

Full scan O(1) O(N) O(N) O(N) N/A 0 Detect&Retrieve

FMD1 O(log(p−1)) O(N log(p−1)) O(pN) O(pN) O(log(p−1)) 1 Detect&Retrieve

FMD2 O(log(p−1)) O(N log(p−1)) O(pN) O(pN) O(log(p−1)) 1 Detect&Retrieve

PS1 O(1) O(Nk̄) O(k̄) O(min(k,k̄)) O(1) 1 Detect

PS2 O(1) O(Nk̄) O(k̄) O(min(k,k̄)) + s↔s: O(k̄) O(k̄) 2 Detect

OMRt1 O(log(ε−1
p)) O(N(log(k̂) log(ε−1

n) log(N) + log(1/εp))) O(k̂ log(k̂) log(ε−1
n) log(N) + k̂3) O(k̂ log(k̂) log(ε−1

n) log(N)) O(1) (∼16 MB) 1 Detect&Retrieve

OMRp1 O(log(ε−1
p)) O(N(log2(k̂) + log(ε−1

p))) O(N + log2(k̂) log(ε−1
n) + k̂3) O(N + log2(k̂) log(ε−1

n)) O(1) (∼129 MB) 1 Detect&Retrieve

OMRp2 O(log(ε−1
p)) O(N(log(k̂) log(ε−1

n) log4(N) + log(1/εp))) O(k̂ log(k̂) log(ε−1
n) log4(N) + k̂3) O(k̂ log(k̂) log(ε−1

n) log4(N)) O(1) (∼129 MB) 1 Detect&Retrieve

Table 2: Comparison of asymptotic complexity. Costs are per recipient. N is the total number of
messages (in case of PS2, sent to recipients served by that detector.) k is the number of messages
pertinent to the specific recipient, and k̄ is an upper bound on k provided by the recipient. p is the
decoy (false positive) probability of FMD (larger p ≤ 1 means better privacy). k̂ = Õ(k̄+εpN) where
εn is the false negative rate and εp is the false positive rate (which can be made polynomially small
and does not affect privacy). “s↔s” means the communication cost between two non-colluding
detector servers. Payload size and security parameter are taken as constant. Sender’s cost is
proportional to the clue size in these schemes. OMRt1 is instantiated with TFHE. OMRt1, OMRp1
and OMRp2 are instantiated with SRLC1.

Like other decoy-based privacy notions, pN -msg-anonymity introduces uncertainty into naive
analysis, but still allows many privacy-violating deductions, especially given recurring traffic, an
active adversary, or small decoy rates p [Lew21a, SPB21].7

Retrieval. FMD originally addresses only the detection problem, but it naturally extends to
retrieval by attaching the full payload for every detected message; we use this variant when we
report the performance of FMD1 and FMD2 as retrieval schemes. Alternatively, retrieval could be
done subsequently by some privacy-preserving means, such as PIR (see below).

DoS Attacks and Key Linkability. FMD does not provide soundness guarantees if clues, or
clue keys (public addresses), are generated maliciously; it is thus subject to Denial-of-Service (DoS)
attacks (see Section 8.2). It also lets detection queries be linked to each other, as well as to clue
keys, hence to public identities (see Section 9.1).

2.2 Private Signaling

Another (concurrent and independent) work is Private Signaling (PS) [MSS+21]. Their model
assumes that signals (analogous to our clues) are sent directly to servers (analogous to our de-
tectors), to which recipients subscribe with their detection keys. Servers handle these signals in a
privacy-preserving way, using one of two mechanisms.

The single-server (PS1) scheme relies on a Trusted Execution Environment (Intel SGX), running
on the detector server, to manage all keys and learn which messages are pertinent to each receiver.
This is a very strong trust assumption (especially given the many past attacks on SGX [MSS+21,
§2.2.1]), with total privacy failure if violated.

The two-server (PS2) scheme instead relies on secure multiparty computation between two
servers, using garbled circuit. The two servers jointly serve as a detector, and (shares of) signals
are sent to both of them. Privacy holds as long as these servers communicate but do not collude
nor leak their secrets. Note that in this model, if either of the servers is compromised and its

7For example, the hypothesis that an address belongs to a given user can be tested by observing whether messages
sent to that user are always, or rarely, detected as pertinent under that user’s detection key.

8

data leaks, then the other server can passively deduce the protected information (the recipient
of every message), even retroactively. Moreover, unlike some other protocols with non-colluding
servers (e.g., information-theoretic PIR), here the two servers are aware of each other’s identity and
directly communicate, making it easier to perform targeted attacks or induce collusion incentives.

Retrieval. PS addresses only the detection problem, and as for FMD, retrieval needs to be done
subsequently by other privacy-preserving means. Unlike FMD, we cannot directly add payloads in
plaintext without breaking privacy. Instead, the schemes would need to be nontrivially modified
to collect and send the payloads in a privacy-preserving way, with a likely-substantial performance
impact. We thus consider PS as a detection-only scheme in Tables 1 to 3, and exclude it from the
retrieval comparison of Fig. 3.

Scaling. Both PS schemes are described as having a single detector serving all recipients. However,
the workload of the detector is proportional to the number of recipients, limiting scalability. Thus,
to compare to our OMD scheme, we consider the scalable generalization where there are multiple
detectors, each in charge of some set of users.

For PS1, the generalization to the OMD model is straightforward: the signals can be embedded
as clues into the bulletin board messages, and each detector can process the whole bulletin board
on behalf of some set of users, preserving full privacy. If any detector’s TEE is compromised, then
privacy is violated for the recipients served by that detector.

For PS2, such scaling does not work: first, because each detector consists of two servers that
must get separate, secret shares of the signal; and second, because the detector’s cost is linear in the
number of distinct recipient IDs. Therefore, the natural generalization is to partition the network
between detectors. Each recipient is served by some detector, and publishes that detector’s ID so
senders can sent signals to that detector (server pair). Thus, the anonymity set is partitioned: each
recipient is anonymous among the users of the same detector. Table 1 reflects these generalizations.

By contrast, our constructions provide full privacy, regardless of how users are split between
detectors, and with neither trusted hardware nor non-collusion assumptions.

DoS Attacks and Key Linkability. Like FMD, PS also does not provide soundness guarantees
if clues or clue keys are generated maliciously (see Section 8.2).8 Likewise, it lets detection queries
be linked to each other, and to clue keys, hence to public identities (see Section 9.1).

Overflow. PS requires the recipient to set a bound k̄ on how many messages it will receive
during each period, in advance before the period. If more than k̄ messages arrive, the PS protocols
override old messages, with no indication of overflow. Conversely, our protocol allows k̄ to be chosen
retroactively (e.g., depending on how much time passed since the previous retrieval), and moreover
provides an explicit overflow indication to the recipient. In PS, the detector’s computational cost
grows linearly with k̄, compared to polylogarithmically in ours.

2.3 Private Retrieval

cPIR. A related problem is Private Information Retrieval (PIR) [CGKS95]; and in particular,
since we retrieve multiple messages and do not wish to assume non-colluding servers: multi-query
computational PIR (cPIR).

8The threat model in [MSS+21] acknowledges that “we only consider an adversary that aims to break the privacy
of the system. For example, corrupt sender could send a malformed location or overload the system with many signals
for a particular recipient.”

9

The state-of-the-art multi-query cPIR [ACLS18, ALP+21] assumes that the client/recipient
knows the indices of the messages to retrieve. It can therefore be used to perform retrieval after
the indices have already been detected (i.e., leverage OMD to OMR). However, concrete costs are
impractical, in both communication and computation, for applications of interest [Hor21].

Keyword cPIR. Another variant is multi-query keyword computational PIR, which allows re-
trieved messages to be specified by a label, where the label space is potentially much larger from
the index space. If these labels can be coordinated between senders and recipients in a privacy-
preserving way, then this achieves OMR. Pung [AS16] follows this approach, but requires shared
secrets among users, and requires users to participate even if they have nothing to send or receive.
It also relies on underlying CPIR, which is again expensive.

Retrieval TEE. Several works [MWS+19, WMS+19, LTHA+20] achieve privacy-preserving re-
trieval functionality using Trusted Execution Environment, such as Intel SGX. Like cPIR, these
can be used to retrieve pertinent messages after their indices have already been detected by OMD.
As for PS1 above, TEE is a strong trust assumption, with total privacy failure if violated.

Retrieval via Decoys. In practice, some existing systems implement quasi-private retrieval of
messages (after detecting the pertinent ones) by a simple ad hoc attempt to approximate PIR:
adding decoy fetches. For example, the Zcash light client prescribes that recipients should “obscure
the exact transactions of interest by downloading numerous uninteresting transactions as well”
[GH18]. As with the FMD decoys, this provides weak privacy, especially given recurring traffic or
an active adversary [Hor20].

Private Stream Search. Private Stream Search (PSS) was introduced by Ostrovsky and Skeith
[OS05] and followups [DD07, BSW09, FR13]. It allows a client to search a keyword over a database
of documents and download the ones with such a keyword without revealing the keyword to the
server.

In terms of techniques, our use of homomorphic accumulation and linear coding is shared
also with PSS. However, in PSS, the elements being sought are plaintext words, which allows for
relatively simple protocols. In OMR, conversely, the analogues are “clues” which must be randomly
sampled and unlinkable, to hide the identity of the recipients. Therefore, we employ FHE to
compute a complicated circuit for homomorphic decryption (and amplification) before retrieval,
which creates very different cost tradeoffs, optimizations and implementation details compared to
PSS. Furthermore, the past PSS works mainly focused on optimizing the communication cost, at
the cost of very high server-server computation (e.g., [FR13], using Reed-Solomon coding, has a
server perform do computation superlinear in the number of pertinent messages, for every bulletin
message); we use different coding techniques to attain practicality in the the OMR setting.

2.4 Other Related Work

The complementary problem of maintaining sender privacy when posting on the bulletin board is
addressed by Riposte [CGBM15], Signal’s Sealed Sender [Lun18] and its improvement [MKA+21].

Alpenhorn [LZ16] addresses privacy-preserving connection establishment. As discussed in [BLMG21],
Alpenhorn essentially uses identity-based encryption and a trusted mixnet to reduce that problem
to the privacy-preserving message retrieval problem studied by this paper.

The Vuvuzela [JvdHLZZ15] mixnet offers differential privacy for sender and receiver metadata.
Rather than a bulletin board model, it assumes an online model where users to remain connected
at all times (lest their messages get dropped). It employs a cluster of servers, of which at least one

10

is assumed to be honest. Bandwidth cost is high (e.g, 30 GB/month for users and 416 TB/month
for servers [JvdHLZZ15]).

3 Constructions Overview

We provide brief, informal overviews of the constructions described in Sections 6, 7, 8.4 and 9.3.

3.1 OMR1: Compact OMR from generic FHE

As a stepping stone, Section 6 constructs an Oblivious Message Retrieval scheme OMRt1 given any
Fully Homomorphic Encryption scheme. It provides full privacy, as well as soundness and complete-
ness in the non-DoS threat model defined in Section 4.3. Moreover, this OMR is asymptotically
compact : the size of the digest, sent from detector to recipient, is quasilinear in the bound k̄ on
the number of pertinent messages being retrieved, and merely logarithmic in the total number of
messages N and the error rate. However, large constants render it impractical by itself.

Setup and sending. Assume we have an FHE scheme, for simplicity over plaintext space Z2,
such as FHEW [DM15] or TFHE [CGGI20]. Each potential recipient generates their own FHE key
pair. The FHE public key serves as their clue key, which they publish. Subsequently, to send a
message to a recipient, a sender generates a clue consisting of ` FHE ciphertexts, all encrypting 1’s
to the intended recipient’s clue key, (where ` is logarithmic in the acceptable false-positive rate).

Detection. A recipient contacts a detector and sends their detection key, which is their (reran-
domized) FHE public key, along with their chosen bound k̄ on the number of messages pertinent to
them. The detector also has the full board BB = {(x1,c1), . . . , (xN , cN)}, consisting of payload-clue
pairs.

For each (xi, ci), the detector uses the recipient’s public key to recrypt (i.e., decrypt under
FHE) all the ` ciphertexts in the clue ci. If this message is pertinent to this recipient, then all of
the ` resulting ciphertexts will encrypt 1, while if the message is impertinent, these ` ciphertexts
will encrypt random bits (this follows from semantic security). Thus, the detector evaluates the
AND of these ciphertexts to generate a pertinency indicator ciphertext PVi, which encrypts 1 if
the message is pertinent, and 0 with probability 1− 2−` otherwise. This gives a Pertinency Vector
PV, of size linear in the total number of messages N .

Compact Detection. To compress PV, the detector uses the following technique. Create d =
poly(k̄) buckets. Then, for the i-th message (i = 1, . . . ,N), add i · PVi (homorphically via a binary
circuit) to a randomly-chosen bucket (chosen via a PRG and a random seed s). Then, w.h.p, each
bucket would have either no pertinent message index added to it (so it encrypts 0), or one pertinent
message index (so it encrypts its index i). In the unlucky case, multiple pertinent messages are
added to the same bucket, causing decoding failure; thus duplicate this process several times with
fresh (pseudo)random message assignments.

The digest consists of these bucket ciphertexts, along with the seed s. The recipient simply
decrypts all buckets to learn the indices of all pertinent messages, w.h.p. unless there were more
than k̄ messages. To robustly detect overflows, the detector also keeps and sends a global counter
that calculates

∑N
i=0 PVi homomorphically via binary circuit. The recipient can decrypt this and

verify that all messages were detected.

Compact Retrieval. The detector can moreover compute ctxi = PVi · xi homomorphically (via
a binary circuit), so that ctxi encrypts xi for pertinent messages and 0 for impertinent ones. Then,

11

we use Sparse Random Linear Coding (SRLC) solution as follows. We then create m combinations
of these ctxi by adding them up with different weights (m = poly(k̄)). We pseudorandomly assign
each of the ctxi to γ different combinations (for suitable small γ), each with pseudorandom weight
wi, and compute the weighted sum (homomorphically). We then append these combinations to the
digest. For the recipient, this yields m > k equations in the k unknown pertinent messages. The
right-hand side is formed by the decrypted weighted sums, and the left-hand side is deduced from
the indices retrieved from OMD. The recipient can thus use Gaussian elimination to decode the
pertinent messages.

This establishes the asymptotic existence of compact OMR (given FHE), but is impractical in
computation cost and in clue size.

3.2 OMR2: Practical Non-compact OMR

Sections 7.1 to 7.3 and 7.5 to 7.8 proceed to perform numerous optimizations that improve commu-
nication and computation costs to practical levels, as well as security improvements. This results
in a new scheme OMRp1, whose digest complexity is not compact (for that, see OMRp2 below),
but is concretely about 9 bit/msg for typical parameters. Clue size is reduced to under 1 kB , and
the detection time is practical (see Section 10).

OMRp1 achieves full privacy, as well as soundness and completeness, under the standard Ring-
LWE hardness assumption. DoS-resistance, under the strong DoS threat model discussed in Sec-
tion 8, additionally requires a new but natural computational conjecture about Regev05 encryption
[Reg09] (i.e., LWE samples), or zk-SNARKs [Mic00, BCCT12].

OMRp1 combines the following optimizations and improvements to OMRt1 (see Fig. 2 for a
visual representation of major internal components). It omits the bucket-based packing stage of
detection, sending the (packed) PV instead.

Optimization: PVW clue encryption. While the above scheme performs a complex homo-
morphic operation on the clues, the first operation is always to homomorphically decrypt them
within the Recrypt operation. Thus, we don’t need to bear the full cost of FHE encryption for
the clues. We can use any semantically-secure key-private encryption, and in particular, we choose
PVW [PVW08], non-fully-homomorphic LWE-based encryption scheme whose decryption can be
evaluated particularly efficiently by FHE schemes such BFV [Bra12, FV12] and BGV [BGV12].

Optimization: Leveled BFV SIMD. We replace generic FHE with BFV [Bra12, FV12] leveled
HE (without the expensive Recrypt functionality), which is adequate for decrypting the PVW clues
homomorphically and processing PV as above. This requires careful design to minimize the “levels”
(i.e., multiplicative depth). Moreover, BFV supports SIMD operations on many plaintext values
packed into each ciphertext, which greatly reduces our concrete costs.

Optimization: Non-binary Plaintexts. We generalize the construction from plaintext space
Z2 to Zt for prime t ≥ 2. This has two advantages. First, it lets us attain much better concrete
bounds on false positive rate and on SRLC retrieval. And second, it allows us to match the native
arithmetic operations of BFV homomorphic operations.

Optimization: PV Packing. We use a dense bit-wise packing of PV. Each BFV ciphertext
can pack many bits, and we use each of these to represent an boolean indicator PVi for i ∈ [N].
Therefore, the digest size is linear in N but very dense: 4.5 bits per message for the representative
parameters of Section 10.

12

Optimization: Detection Key Size. The use of BFV encryption causes very large detection
keys (due to the ciphertexts and evaluation key sizes); we reduce it by packing and by omitting
inessential key components.

DoS resistance and Key Unlinkability. The above changes also make it easy to add resistance
to Denial of Service attacks (to be discussed in Sections 8 and 9). They also ensure that the detection
and clue keys cannot be linked, and can be refreshed whenever desired (Sections 8 and 9).

Streaming Detection Without k̄. The majority of the detector’s work depends only on the
board and detection key, but not on k̄. Thus, if k̄ is not known in advance (e.g., the recipient
does not in advance when is the next time it will connect to the detector to fetch a digest), then
the detector can still do most of its work proactively by processing the board messages on the fly.
When the recipient eventually shows up and reveals k̄, the detector can complete the computation
by doing the last step (computing the payload combinations) which is relatively fast, consisting
just of homomorphic additions.

Counting Pertinent Transactions. The client can obtain the exact number of pertinent mes-
sages (essentially with no extra cost), to robustly detect overflow and know what value of k̄ would
suffice for repeated retrieval.

3.3 OMR3: Practical Compact OMR

Combining the optimizations of OMRp1 with the compact bucket-based techniques of OMRt1, we
obtain OMRp2 in Section 7.4. This is a compact OMR scheme whose digest size is quasilinear in the
bound k̄ on the number of pertinent messages, and polylogarithmic in the total number of messages
N and the error rate. Its constants are mildly larger than OMRp1, making it concretely attractive
when N � 106 as seen in Section 10. It also provides full privacy, soundness and completeness in
the strong DoS threat model. OMRp2 achieves an amortized digest size of less than 1 bit per
message for sufficiently large N � k̄ (see Section 10).

4 Model and Definitions

4.1 System Model

In this section, we define the model and the problem of Oblivious Message Detection and Retrieval.
The system components and their high-level properties are as follows (see also Fig. 1).

We have a bulletin board (or board for short), denoted BB, containing N messages (e.g.,
blockchain transactions). Each message is sent from some sender and addressed to some recip-
ient, whose identities are supposed to remain private.

A message consists of a pair (xi, ci) where xi is the message payload to convey, and ci is a clue
string which helps notify the intended recipient (and only them) that the message is addressed to
them.

We denote the payload space P = {0,1}ñ for some ñ ∈ Z+, and the clue space C (typically
` number of ciphertexts in some encryption system). The whole board BB (i.e., all payloads and
clues) is public. (In applications, the payloads will typically be end-to-end encrypted.)

At any time, any potential recipient p may retrieve the messages addressed to them in BB. We
call these messages pertinent (to p), and the rest are impertinent.

13

Figure 1: System components

A server, called a detector, helps the recipient p detect which message indices in BB are pertinent
to them, or retrieve the payloads of the pertinent messages. This is done obliviously: even a
malicious detector learns nothing about which messages are pertinent. The recipient gives the
detector their detection key, and a bound k̄ on the number of pertinent messages they expect to
receive. The detector then accumulates all of the messages in BB into string M , called the digest,
and sends it to the recipient p. The digest M should be much smaller than the board BB (ideally,
proportional to k̄).

The recipient p processes M to recover all of the pertinent messages with high probability,
assuming a semi-honest detector and that the number of pertinent messages did not exceed k̄. The
false negative rate (probability that a pertinent message is not recovered from the digest) is denoted
by εn. The false positive rate (probability that an impertinent message is output by the recovery
procedure) is denoted by εp. Both εn and εp are small (e.g., under 10−6).

There may be many detectors, and each may support many recipients.
Outside our scope are application-specific aspects such as payload encryption, contact discovery

and key establishment, the privacy-preserving mechanism by which messages are posted to the
board, or how recipients subscribe with detectors. See related discussion in Sections 2 and 11.

4.2 Threat Model (non-DoS)

We assume a computationally-bounded adversary that can read all public information, including
all board messages, all public keys in the system, and all communication between the detector and
the receiver. It can also honestly generate new messages (with any payload) and post them on the
board, as well as honestly generate new clue keys and induce other parties to generate messages
addressed to those keys. For soundness and completeness, we require the detectors, senders, and
recipients to be honest but curious; they may collude by sharing information. In regard to privacy,
we let all parties in the systems be malicious and colluding (including detectors, senders, and
recipients), except of course for the sender and recipient of the message(s) whose privacy is to be
protected.

14

A stronger Denial-of-Service (DoS) threat model, which removes the honest-but-curious as-
sumption on message and clue-key generation for soundness and completeness, will be defined in
Section 8.1. Additional privacy properties, key unlinkability, will be defined in Section 9.

4.3 Oblivious Message Retrieval

Formally, we capture the notion of an Oblivious Message Retrieval (OMR) scheme as follows.

Definition 4.1 (Oblivious Message Retrieval (OMR)). An Oblivious Message Retrieval scheme
has the following PPT algorithms:

• pp← GenParams(1λ, εp, εn): takes a security parameter λ, a false positive rate εp and a false
negative rate εn, and outputs public parameters pp. pp is implicitly taken by the following
algorithms.

• (sk, pk = (pkclue, pkdetect))← KeyGen() : outputs a secret key sk and a public key pk consisting
of a clue key pkclue and a detection key pkdetect.

• c← GenClue(pkclue, x) : takes a clue key and a payload x ∈ P, and output a clue c ∈ C.

• M ← Retrieve(BB, pkdetect, k̄) : takes as input a board BB = {(x1,c1), . . . , (xN ,cN)} for some
size N , a detection key pkdetect, and an upper bound k̄ on the number of pertinent messages
addressed to that recipient; and output a digest M .

• PL← Decode(M, sk) : takes the digest M and corresponding secret key sk, and outputs either
a decoded payload list PL ⊂ Pk or an overflow indication PL = overflow.

To define completeness, soundness, and privacy, we first define the notion of board generation:

Definition 4.2 (board generation). Given pp, and N which is the number of messages: Ar-
bitrarily choose the number of recipients 1 ≤ p ≤ N , and a partition of the set [N] into
p subsets S1, . . . ,Sp representing the indices of messages addressed to each party. Also ar-
bitrarily choose unique payloads (x1, . . . ,xN). For each recipient i ∈ [p]: generate keys
(ski, pki) ← KeyGen(), and for each j ∈ Si, generate cj ← GenClue(pki, xj). Then, output the
board BB = {(x1,c1), . . . , (xN ,cN)}, the set S1, and (sk1, pk1 = (pkclue1, pkdetect1)).9

The scheme must satisfy the following properties:

• (Completeness) Let pp ← GenParams(1λ, εp, εn). Set any N = poly(λ), and 0 < k̄ ≤ N .
Let a board BB, a set S of pertinent messages, and a key pair (sk, pk = (pkclue, pkdetect))
be generated as in Definition 4.2 for any choice of p, partition and payloads therein. Let
M ← Retrieve(BB, pkdetect, k̄) and PL← Decode(M, sk). Let k = |S| (the number of pertinent
messages in S). Then either k > k̄ and PL = overflow, or

Pr[xj ∈ Pl | j ∈ S] ≥ (1− εn − negl(λ)) for all j ∈ [N] .10

9That is, S1 is the indices of messages pertinent to the recipient whose keys are sk1, pk1, which wlog is the first
recipient.

15

• (Soundness) For the same quantifiers as in Completeness:

Pr[xj ∈ Pl | j 6∈ S] ≤ (εp + negl(λ)) for all j ∈ [N] .

• (Computational privacy) For any PPT adversary A = (A1,A2): let pp← GenParams(εp, εn),
(sk, pk = (pkclue, pkdetect)) ← KeyGen() and (sk′, pk′ = (pk′clue, pk′detect)) ← KeyGen(). Let
the adversary choose a payload x and remember its state: (x,st) ← A1(pp, pk, pk′). Let
c← GenClue(pkclue, x) and c′ ← GenClue(pk′clue, x). Then:∣∣Pr[A2(st, c) = 1]− Pr[A2(st, c′) = 1]

∣∣ ≤ negl(λ) .

An OMR scheme is compact if it moreover satisfies the following:

• (Compactness) An OMR scheme is compact if for pp ← GenParams(1λ, εp, εn), (sk, pk =
(pkclue, pkdetect))← OMR.KeyGen(), for any board BB = {(x1,c1), . . . , (xN ,cN)}, letting M ←
Retrieve(BB, pkdetect, k̄), it always holds that:

|M | = poly(λ, logN) · log ε−1
p · Õ(k̄ + εpN) .

In the compactness definition, Õ(k̄+ εpN) (where Õ(x) = xpolylog(x)) accounts for the number
of messages detected as pertinent, including false positives; and the remaining factors account for
the cost of representing each such message, taking the payload size as constant.

Adaptively and Maliciously-Generated Boards. The above definition assumes that the board
generation is done honestly. This includes the adaptive case, where message recipient and contents
are chosen adaptively based on prior messages (which is covered by the universal quantification).
However, in real life, clues could be generated maliciously (e.g., not even as a valid GenClue output).
See Section 8 for discussion of real attacks that exploit this, a strengthened definition that achieves
DoS resistance, and a construction that achieves it.

Repeating Payloads. For simplicity, we considered the case that the payloads (xi)i∈[N] are
all unique (cf. Definition 4.2).11 Our OMR and OMD definitions naturally extend to the case of
duplicate payloads, whether by having PL include the index i of along with every payload xi, or
by expressing pertinence as a multiset of payload (with multiplicity). Our schemes satisfy these
generalized definitions.

4.4 Oblivious Message Detection

As a stepping stone towards OMR, we define a weaker functionality, Oblivious Message Detection
(OMD), in which the digest merely enables detection of the indices of the pertinent messages (for
the recipient whose clue key is given), but doesn’t convey the corresponding payloads. For brevity,
we specify the differences between OMD and OMR.

Instead of a function Retrieve(BB, pkdetect, k̄) that enables decoding the pertinent message pay-
loads, OMD offers a function Detect(BB, pkdetect, k̄) that enables decoding the pertinent message
indices. The completeness and soundness are changed accordingly:

10We denote [n] = {1., . . . ,n}, see Section 5.1.
11In the envisioned applications this is justified since payloads are probabilistically-encrypted ciphertexts and

randomized ZK proofs.

16

• (Completeness) Let pp ← GenParams(1λ, εp, εn). Set any N = poly(λ) and 0 < k̄ ≤ N .
Let a board BB, a set S of pertinent messages, and a key pair (sk, pk = (pkclue, pkdetect))
be generated as in Definition 4.2 for any choice of p, partition and payloads therein. Let
M ← Detect(BB, pkdetect, k̄) and PL ← Decode(M, sk). Let k = |S| (the number of pertinent
messages in S). Then either k > k̄ and PL = overflow, or

Pr[j ∈ Pl | j ∈ S] ≥ (1− εn − negl(λ)) for all j ∈ [N] .

• (Soundness) For the same quantifiers as in Completeness:

Pr[j ∈ Pl | j 6∈ S] ≤ (εp + negl(λ)) for all j ∈ [N] .

All other interfaces and definitions are the same as OMR.

5 Preliminaries

5.1 Notation

All logarithms are expressed in base 2 if not indicated otherwise. Let [n] denote the set {1., . . . ,n},
and let [n,m] denote the set {n,...,m}. We use P (. . . ; s) to denote a randomized algorithm P run-
ning with randomness s. Our big-O notation, when applied to computational and communication
complexity, absorbs the security parameter λ and payload size ñ as a constant.

When we use a pseudorandom function (PRF), we assume that its range is as implied by the
context (i.e., that the PRF’s outputs are computationally indistinguishable from uniform over that
range).

We use 〈i〉sk to denote the space of ciphertexts that decrypt to i under sk. That is, we write
ct ∈ 〈i〉sk if Dec(sk, ct) = i with all-but-negligible probability (and where the scheme is not obvious
from context, we write: 〈i〉scheme

sk).

5.2 LWE Encryption

Our constructions will be optimized by using lattice-based encryption, whose decryption algorithm
is particularly simple. We will use the PVW [PVW08] variant of Regev’s LWE-based encryption
[Reg09], defined as follows.

• ppLWE = (n, `, w, q, σ) ← PVW.GenParams(1λ, `, q, σ) : Choose a secret key dimension n,
and w = poly(λ, n, `, q). Set ciphertext modulus q, number of bits of plaintext modulus,
`, and standard deviation for Gaussian distribution for ciphertext noise generation, σ. All
parameters n,w, q, σ are chosen as in [PVW08]. ppLWE is assumed to be implicitly taken by
the following algorithms.

• (sk, pk)← PVW.KeyGen() : Choose a secret key sk← Zn×`q uniformly at random. Ranomdly

sample A ← Zn×wq and a error matrix X ∈ Z`×wq from some Gaussian distribution χσ, and

compute pk = (A,P = skTA + X).

• ct = (~a,~b) ← PVW.Enc(pk, ~m) : To encrypt a vector ~m ∈ Z`2, define a vector t = q
2 · ~m ∈ Z`q.

Choose a random vector e ← {0,1}w ∈ Zw2 uniformly at random. The ciphertext is the pair

(~a,~b) = (Ae,Pe + t) ∈ Znq × Z`q.

17

• ~m← PVW.Dec(sk, ct = (~a,~b)) : ~d = ~b− skT~a ∈ Z`q, ~m = b
~b+q/4
q/2 c ∈ Z`2

PVW is unconditionally correct (sound), and under the standard Learning With Error (LWE)
hardness assumption [Reg09, APS15] it fulfills the standard definitions of semantic security (IND-
CPA) and key privacy.

5.3 Homomorphic Encryption

Fully Homomorphic Encryption (FHE), introduced by Rivest et. al. [RAD78] and first accomplished
by Gentry in [Gen09], enables evaluation of a circuit on encrypted data, such that the resulting
ciphertext (when decrypted using the private key) is the output of the circuit on the data, but the
evaluator learns nothing about the data or the output.

Formally, an (asymmetric) FHE scheme is an encryption with PPT algorithms GenParams(1λ),
KeyGen(),Enc(pk,m),Dec(sk, c) fulfilling the standard definitions of semantic security, soundness,
and key privacy. Moreover, it has two more PPT algorithms: Eval(pk, (ct1, . . . , ctk), C),Recrypt(pk, ct).
Recrypt function is as defined in [Gen09], i.e., it decrypts homomorphically using the encrypted se-
cret key, thus yielding a fresh re-encryption of the original plaintext. These two new algorithms ful-
fill the following generalized correctness. Given a circuit C and plaintexts (m1, ...,mk), ciphertexts
(ct1, ..., cik) which are each either cti ← FHE.Enc(pk,mi) or cti ← FHE.Recrypt(pk,FHE.Enc(pk,mi)),
and letting ct′ ← FHE.Eval(pk, C,(ct1, ..., ctk)): Pr[FHE.Dec(sk, ct′) = C(m1, ...,mk)] ≥ 1− negl(λ).

We require an additional property for the FHE scheme:

Definition 5.1 (Wrong-Key Decryption). For an FHE scheme with plaintext space Zt, and t ≥ 2,
letting (sk, pk) ← FHE.KeyGen(1λ) and (sk′, pk′) ← FHE.KeyGen(1λ), ct ← FHE.Enc(pk, 1), and
m′ ← FHE.Dec(sk′,FHE.Recrypt(pk′, ct)), it holds that: Pr[m′ = 1] ≤ 1/p+ negl(λ).

5.3.1 Brakerski/Fan-Vercauteran Homomorphic Encryption

We use the Brakerski/Fan-Vercauteran homomorphic encryption scheme [Bra12, FV12], which we
refer to as the BFV scheme. Given a polynomial from the cyclotomic ring Rt = Zt[X]/(XD + 1),
the BFV scheme encrypts it into a ciphertext consisting of two polynomials, where each polynomial
is from a larger cyclotomic ring Rq = Zq[X]/(XD + 1) where q > t. We refer to t, q, and D as the
plaintext modulus, the ciphertext modulus, and the ring dimension, respectively.

Each ciphertext can pack D plaintext group elements (m1, . . . ,mD) ∈ ZDt , and “single instruc-
tion, multiple data” (SIMD) homomorphic operations can be applied to these.

BFV is unconditionally correct (sound), and under the standard Ring-LWE (RLWE) [LPR13,
Pla18] hardness assumption it fulfills the standard definitions of semantic security (IND-CPA).

Our practical schemes will use BFV as a leveled homomorphic encryption (i.e., applied to
circuits of bounded multiplicative depth), without invoking Recrypt.

6 Generic OMR and OMD Using FHE

In this section, we discuss how to construct Oblivious Message Retrieval (OMR). We start by
constructing Oblivious Message Detection (OMD), and then extend it to OMR. This section’s

18

constructions will be based on general fully homomorphic encryption (FHE), and assume all the
clues are generated honestly.

Clueless FHE-Based OMD. Before proceeding, we observe that in principle there is a con-
ceptually straightforward approach to OMD. Presumably, the anonymous message delivery system
already has some predicate which a recipient can apply to a candidate message, together with their
secret data, to check if the message is pertinent to them (e.g., by trial decryption). Thus, we can
have the detector homomorphically evaluate that predicate under FHE on every message, given a
detection key which is the recipient’s secret data encrypted under FHE. Then, homomorphically
pack the result into a digest which contains the indices of pertinent messages, still encrypted. The
recipient merely decrypts this FHE ciphertext. This does not even require any new clues or clue
keys, since it reuses whatever means the system already has to define pertinence. Alas, for typical
protocols this would be completely impractical.12 Thus, our schemes will add dedicated clues that
are specifically crafted to be easy to process under homomorphic encryption.

Stepping-stone FHE-Based OMD. The following generic FHE-based approach serves as a
stepping stone to the improved ones, and a simple proof of theoretical possibility. It is still not
directly practical. In Section 7 and later, we improve it to achieve practicality and strengthen its
security guarantees.

6.1 Oblivious Message Detection Using FHE

6.1.1 Non-compact Construction of OMD

We start by showing how pertinent messages can be detected, with a small digest, using any key-
private public-key FHE satisfying Definition 5.1 (e.g, FHEW/TFHE [DM15, CGGI20]13). For
simplicity, assume the plaintext space is Z2.14 Our didactic starting point is a straightforward,
non-compact construction; we will then improve it to achieve compact detection and retrieval.

High-Level Idea. Each clue ci for i ∈ [N] consists of ` ciphertexts, each encrypting the constant
1 under the public key of the party this message is addressed to. The detector, serving recipient p,
will use p’s FHE public key pk to recrypt all the ciphertexts in all the clues: ci,j 7→ c′i,j for j ∈ [`].
Crucially, note that each such c′i,j will be 〈1〉sk if the message is addressed to p, and otherwise
be 1 with probability ≤ 1/2 + negl(λ) when decrypted by sk, the corresponding secret key for the
recipient p (by Definition 5.1). Thus, for each message, The detector performs an AND gate over
all c′i,j (j ∈ [`]) to get PVi (the Pertinency Vector) for all i ∈ [N]. Then the detector sends PV
vector to the recipient. The recipient decrypts each PVi using its FHE secret key, and if the result
is 1, deems the i-ith message pertinent.

Theorem 6.1. The scheme OMDt1 in Algorithm 1 is an Oblivious Message Detection scheme,
when instantiated with any fully homomorphic encryption scheme FHE.

Proof. Completeness: If a clue c = (c1, . . . ,c`) was encrypted to the clue key pk of a recipient p,
all of the FHE.Recrypt(ci, pk) will output 〈1〉sk with overwhelming probability, and thus the AND

12E.g., in Zcash, the predicate includes elliptic curve Diffie-Hellman key agreement [HBHW21, §4.17.2], which
would be very expensive under known FHE schemes.

13Key privacy for these two schemes is the same as the LWE-based Regev05 encryption on which they are based.
Similarly property in Definition 5.1 holds because their Recrypt function is simply homomorphically perform the
Regev05 decryption.

14The following naturally generalizes to plaintext space Zt for any prime t. For brevity, we kept this section focused
on Z2, which suffices for its results, and added footnotes to clarify the generalization. Section 7 will use t > 2.

19

Algorithm 1 Simple Non-compact Oblivious Message Detection

1: procedure OMDt1.GenParams(1λ, εp, εn)
2: Let ` be the smallest integer s.t 2−` ≤ εp
3: ppFHE ← FHE.GenParams()
4: return pp = (1λ, `, εp, εn, ppFHE)

5: procedure OMDt1.KeyGen
6: (FHE.sk,FHE.pk)← FHE.KeyGen(ppFHE, λ)
7: return (sk = FHE.sk, (pkclue = FHE.pk, pkdetect = FHE.pk))
8: . for key unlinkability (cf. §9.3): pkclue ← FHE.RegenPK(FHE.sk)

9: procedure OMDt1.GenClue(pkclue, εp, εn, x)
10: ci ← FHE.Enc(pkclue, 1) for all j ∈ [`]
11: return (x, c = (cj)j∈[`])

12: procedure OMDt1.Detect(BB = ((xi, ci)i∈[N]), pkdetect, k̄, εn)
13: for i = 1 to N do
14: for ci,j ∈ ci = (ci,j)j∈[`] do
15: c′i,j ← FHE.Recrypt(pkdetect, ci,j)

16: PVi ← FHE.Eval((c′i,j)j∈[`],AND)

17: return M = (PVi)i∈[N]

18: procedure OMDt1.Decode(M = (PVi)i∈[N], sk)
19: for ci,j ∈ ci = (ci,j)j∈[`] do
20: If FHE.Dec(PVj , sk) = 1: append j to PL

21: return PL

gate will output 〈1〉sk , which the detector will decode as 1, indicating a pertinent message. False
negatives are induced just by the (negligible) correctness error of the underlying FHE scheme.

Soundness: If a clue c = {ci}i∈[`] is encrypted to the clue key of a party other than p, then
FHE.Recrypt(ci, pk) will output 〈1〉sk with probability only (roughly) half by Definition 5.1. If any
of the result is 〈0〉sk , the AND gate would result in 〈0〉sk . Therefore, the decryption would be 0
with probability 1− 2−` and the soundness follows.

Privacy: Privacy is implied by the key-privacy of the underlying FHE scheme (cf. Section 5.3).
Clues contains just ciphertexts encrypted to the recipient’s clue key (i.e., FHE public key), which
are indistinguishable from those encrypted to other FHE public keys.

Complexity. The digest size is linear in the number of messages in board, |M | = O(N). The
computational complexity for the detector is O(N log(ε−1

p)), since each message has O(log(ε−1
p))

ciphertexts. The recipient computational complexity is O(N), for decrypting the digest.15

6.1.2 Compact Construction of OMD

Our next step is to achieve compactness, i.e., a digest size which depends primarily on the number
of pertinent messages k, rather than the total number of messages N . Since k itself is a private

15Here and elsewhere in this paper, we consider the security level λ and payload size ñ to be absorbed by the big-O
notation. This lets us focus on how costs scale for a given application and security level.

20

information that should not be exposed, the digest size (and detector’s computation) instead need
to depend on an upper bound k̄ on the number of pertinent messages k for the particular recipient
(see Definition 4.1). The bound k̄ is given as a parameter to the detector.16

The technique used here is reminiscent of that used in [OS05], where homomorphic opera-
tions are used to summarize “documents” according to 0/1 encryptions; in our case the the 0/1
encryptions are indirectly derived by homomorphic computation (as above), and the (implicit)
“documents” are our message indices.

High-Level Idea. We start as above, with the same clue keys, and with the detector recrypting
these and computing PVi ciphertexts which are 〈1〉sk iff the i-th message is pertinent w.h.p. The
detector then compresses the PV information as follows.

We create m buckets, for some m > k̄ (where m = O(poly(k̄)), to be fixed later). Each bucket
contains an accumulator Acci containing a value in ZN encrypted under pk, represented as a vector
of dlog(N)e ciphertexts of FHE that store the bit-wise binary encoding of the ZN element.17 A
bucket also contains a counter Ctri∈[m], where Ctri contains a value in Zk̄ encrypted under pk,
represented as a vector of dlog(k̄)e ciphertexts that contains the bit-wise binary encoding. All
buckets and counters are initialized to encryptions of zero.

To add the i-th message in the board, the detector computes PVi as in Algorithm 1, draws
a random bucket index µ ∈ [m], and homomorphically adds PVi to counter Ctrµ in Zk̄. It also
homomorphically computes PVi and adds it to the accumulator Accµ.

Finally, the detector sends all buckets and counters to the recipient. The recipient decrypts
these and checks: if the decrypted Ctrµ is 1, then bucket has a single pertinent message mapped to
it, and the decrypted Accµ gives the index of that message. If any Ctrµ decrypts to greater than 1,
indicating that several pertinent messages collided in the µ-th bucket, then the detection fails and
outputs overflow.

This method gives us a success rate of ρ =
∏k̄−1
i=1

(m−i)
m . To achieve the desired εn, we amplify by

repeating this C times with fresh buckets and counters and re-randomized assignment of messages
to buckets, such that ρC < εn. 18

Gathering Partial Information. The amplification can be optimized as follows. Even when
a set of buckets contains collisions and thus doesn’t directly decode to give all pertinent message
indices, there will likely be some buckets in the set that do yield useful information (i.e., the
corresponding counters are 〈1〉sk). If we gather all such partial information together, we may get

the full information. Then, the failure probability is < 1−
∏k̄−1
i=1 (1− (i

m)C).19

Parameter Analysis. The scheme requires choice of m and C. If we choose m = 10k̄, we

can then choose the smallest integer C such that 1 −
∏k̄−1
i=1 (1 − (i

10k̄
)C) ≤ εn. We can see that

C = O(log(k̄) log(1/εn)) by using union bound. We get similar results for any choice of m > k that
is linear in k.

Decoding k. We can let the recipient learn the actual number k of pertinent messages (even if full
decoding fails due to unresolved collisions), by adding another global counter for the total number

16If the actual number of pertinent messages k exceeds the assumed bound k̄, then retrieval may fail. The recipient
can detect such overflow and ask for the detection to be redone with a larger k̄. Our scheme gives the client the exact
number of k, as discussed below.

17For FHE over Zt, use dlogt(N)e ciphertexts per bucket.
18For example, with k̄ = 10, m = 100, and C = 15, we get a failure probability < 2−20.
19To achieve failure probability of < 2−20 for k̄ = 10, we then only need m = 50, C = 9, a threefold reduction in

digest size.

21

of pertinent messages, Ttl, represented as a vector of dlog(N)e ciphertexts of FHE containing the
bit-wise binary representation of k ∈ ZN . The detector homomorphically sums all PV’s into Ttl.

Theorem 6.2. The scheme OMDt2 in Algorithm 2 is a compact Oblivious Message Detection
scheme, when instantiated with any fully homomorphic encryption scheme FHE and a PRF f .

Proof sketch . Soundness: Follows from that of OMDt1. The detector would output an index for
which PVi /∈ 〈1〉sk only in case of incorrect FHE decryption, which has negligibly probability.

Completeness: Assume, initially, that there is no false positives. Then completeness of OMDt1
ensures that pertinent messages i have PVi = 〈1〉sk . Random assignment gives εn failure probability
given suitable parameter choice (line 6) when k ≤ k̄. Our assignments are pseudorandom, which
has negligible influence. Therefore, for k ≤ k̄, we have failure probability < εn + negl(λ). If k > k̄,
the error probability may be higher (and eventually 1 because there is insufficient room in the
digest for all pertinent messages), but the recipient learns k and is allowed to just output overflow
in this case.

Excessive false positives could break completeness by overflowing the buckets. However, the
probability of having more than N log(N)εn false positives is negligible, by soundness. Thus we
increased k̄ to k̂ ← k̄ +N log(N)εn (line 3), making the above argument apply.

Privacy: Follows from that of OMDt1, since no additional values are sent by the message sender
or recipient.20

Compactness: Communication cost is then O(k̂ log(k̂) log(ε−1
n) log(N)), where k̂ = Õ(k̄+Nεp).

mC = O(k̂ log(k̂) log(ε−1
n)) is the number of buckets as we analyzed above, and log(N) is the

number of ciphertexts in each bucket.

Complexity. The detector’s computational complexity is quasilinear in N and sublinear in k̄:
O(N(log(k̂) log(ε−1

n) log(N)+log(1/εp))). Indeed, each message requires recryption of the log(1/εp)
ciphertexts in the clue, and adding pertinent indices to buckets (C copies for each message), each
containing log(N) ciphertexts.

The recipient’s computational complexity is O(k̂ log(k̂) log(ε−1
n) + k̂3) where the first term for

decryption (thus proportional to the size of digest), and the second term is for Gaussian elimina-
tion.

This construction satisfies the asymptotic requirements of compact OMR (completeness, sound-
ness, privacy, and compactness). The above is still far from concrete practicality (see end of Sec-
tion 6), as will be addressed in Section 7.

Optimizations and Alternative Constructions. Appendices B.1 and B.2 describes an opti-
mization that resolves collisions after gathering partial information. It also describes two alternative
constructions. The first homomorphically searches for an empty bucket in which to put each new
pertinent. The second homomorphically sorts the values PVi · i, leading the pertinent messages to
the top of the sorted list, which can then be used as the digest.

6.2 Payload Retrieval using FHE

An OMD scheme, like the one above, lets the recipient learn the indices of the messages addressed
to it in the board. It would then still need to retrieve the content (or payload) of those messages,

20Note that in our model, the detector does not learn whether retrieval succeeded. Knowing the latter would reject
some hypotheses about which message combination are pertinent. We discuss this further in Section 7.7

22

Algorithm 2 Simple Compact Oblivious Message Detection

1: Procedures OMDt2.GenParams, OMDt2.KeyGen and OMDt2.GenClue are identical to OMDt1.
2: procedure OMDt2.Detect(BB = ((xi, c1)i∈[N]), pk, k̄) . Implicitly taking

pp = (`, εp, εn, ppFHE)

3: k̂ ← k̄ +N log(N)εp
4: m← 10k̂ . Asymptotically, m can be c · k for any c > 1 (see Parameter Analysis)
5: Draw a random PRF seed s
6: Let C be the smallest integer such that 1−

∏k̂−1
i=1 (1− (i

m)C) < εn
7: for o = 1 to C do
8: Initialize Acc = (Accj = (FHE.Enc(pkdetect, 0

dlog(N)e)))j∈[m]

9: Initialize Ctr = (Ctrj = (FHE.Enc(pkdetect, 0
dlog(k̂)e)))j∈[m]

10: Ttl← FHE.Eval(pk, (PVi)i∈dlog(N)e,+)
11: for i = 1 to N do
12: `← |ci|
13: for ci,j ∈ ci = (ci,j)j∈[`] do
14: c′j ← FHE.Recrypt(pk, ci,j)

15: PVi ← FHE.Eval({c′j}j∈[`],AND)
16: υ ← fs(j, o)(mod m) . pick a bucket pseudorandomly
17: tmp← FHE.Eval(PVi, j,×)
18: Accυ ← FHE.Eval(Accυ, tmp,+) over ZN . through binary circuit
19: Ctrυ ← FHE.Eval(Ctrυ, tmp,+) over Zk̂
20: Mo = (Acc,Ctr)

21: return M = (Mo)o∈[C]

22: procedure OMDt2.Decode(M = (Mo)o∈[C], sk) . Implicitly taking pp = (`, εp, εn, ppFHE)
23: k ← FHE.Dec(sk,Ttl)
24: for o = 1 to C do
25: (Acc,Ctr)←Mo

26: for i = 1 to N do
27: If FHE.Dec(sk,Ctri) = 1: add FHE.Dec(sk,Acci) to the set PL

28: If |Pl| 6= k, PL = overflow
29: return PL

23

and (in our motivating applications) do so privately without revealing which messages were of
interest. As discussed in Section 2, retrieval with current methods after obtaining the indices is
either inefficient or non-private.

We thus extend the above OMD scheme to Oblivious Message Retrieval, starting with a sim-
ple construction from generic FHE below, and improving it in Section 7. Our approach embeds
techniques from PSS [OS05, DD07, BSW09, FR13] and multi-query PIR [ACLS18, ALP+21] (see
Section 2.3) into the detector’s operation, without an extra round-trip to the client. Specifically,
we use the encrypted 0/1 pertinency bits, derived above, to extract the pertinent payloads us-
ing homomorphic multiplication; we then compress these using homomorphically-evaluated linear
codes.As discussed in Section 2.3, these techniques require substantial adaptations for efficiency in
OMD/OMR.

The generic OMR approach is detailed below, first as an inefficient construction based on generic
FHE (as a didactic stepping stone), and then with major optimizations (Section 7).

Single Pertinent Message. Our starting point is the above OMDt1 construction in Algorithm 1.
The detector’s procedure OMR.Retrieve first runs PV ← OMDt1.Detect(D, pk, k̄, εn), to obtain a
pertinency vector PV of N ciphertexts, each encrypting 1 or 0. It then proceeds as follows.

Consider first the simple scenario where, throughout the board, there is a single message xz that
is pertinent for the recipient p (but z is initially unknown). Hence, PV has a single 〈1〉sk ciphertext,
and the rest are 〈0〉sk .

Let the payload space P be represented by a tuple of FHE’s plaintext space (i.e., for P = {0,1}ñ
and the plaintext space Z2, we use ñ ciphertexts to represent each payload). In the following we
generalize the FHE.Enc, FHE.Eval, and 〈·〉sk notation to work on such tuples in the natural way,
as vector operations over Z2. For each i ∈ [N], multiply xi by PVi homomorphically to get a
ciphertext tuple x′i. Thus, x′z ∈ 〈xz〉sk , and x′i ∈ 〈0〉sk for i ∈ [N] for the rest of the ciphertext
tuples (i 6= z). Then, homomorphically sum up all the x′i to get a ciphertext tuple M ′, so that
M ′ ∈ 〈xz〉sk . The detector sends this M ′ to the recipient, who decrypts it to obtain the desired
payload xz.

Multiple Pertinent Messages via Random Linear Coding. We generalize the above to the
case of k pertinent messages, where 0 ≤ k ≤ k̄. The cap k̄ is chosen by the recipient and given to
the detector, but does not need to be known when the board messages are generated.

The above single-message scheme fails if there are multiple pertinent messages, because the
detector would output the encrypted sum of the k pertinent payloads, from which the individual
payloads cannot be (in general) recovered. However, we can have the detector compute several
encrypted combinations of the pertinent plaintexts, each one summing them with different weights,
in hope of creating a linear system that the recipient can solve.

Specifically, we will choose some m ≥ k̄ and have the detector homomorphically compute
encrypted payload m combinations Cmbj ←

∑
i∈[N](wi,j · xi) · PVi for j ∈ [m], using random

weights wi,j (i ∈ [N], j ∈ m).21 Letting PS ⊆ [N] denote the k pertinent message indices, we then
have Cmbj ∈

〈∑
i∈PSwi,j · xi

〉
sk

.
The combinations are realized as FHE ciphertext tuples big enough to represent P, with element-

wise operations, i.e., as a vector space over the field GF(t) of the plaintext space (in our case, of
binary plaintext space: ñ binary ciphertexts, with bitwise AND and XOR).

21Here multiplication is in the field GF(2), for the plaintext space Z2, so the weights are just 0 or 1. In general,
this works over GF(t) for prime t. From this point on we will require both multiplications and addition (to perform
linear algebra), and thus consider the field GF(t) instead of the group Zt.

24

The OMR digest includes the aforementioned output of OMDt1.Detect of Algorithm 2, from
which the recipient can recover PS. Moreover the recipient can know the weights wi,j (by including
the seed used to pseudorandomly generate the weights in the digest). Then the recipient can
decrypt the payload combinations and recover m equations over the variables (xi)i∈PS, of the form∑

i∈PS
wi,jxi = FHE.Dec(Cmbj) ∈

〈∑
i∈PS

wi,j · xi
〉
sk

for j ∈ [k̄] .

If |PS| = k of these equations are linearly independent, then the recipient can use Gaussian
elimination to recover these xi, i.e., the pertinent messages’ payloads.

For randomly-chosen weights, there is a chance that the system is underdetermined (rank less
than k). To make this unlikely, it suffices to choose m slightly larger than k̄. Working in the field
GF(t) (in our case t = 2), and drawing weights uniformly, the probability of getting k̄ linearly
independent equations is

∏m
i=m−k̄+1(1 − 1/ti), via [SGGC14, Lemma 1]. Therefore, m = k̄ +

dlogt(
1
εn

)e suffices. Concretely, m = k̄ + 50 for t = 2 gives failure probability ≤ 2−50.

6.3 Improved Retrieval Using Sparse Random Linear Coding

In the above attempt, the detector’s computational cost for preparing the payload combinations is
proportional to k̄ ·N . To reduce this cost, we use Sparse Random Linear Coding (SRLC) [KS07],
encoded homomorphically. SRLC is widely studied and applied to data transmission [KS07, KC16,
BJT18, TCL16, GLA17, LMT11].22

In this approach, we create weighted linear combinations as above, but we make them sparse:
each message is assigned to just a few combinations (i.e., most of the weights wi,j are chosen as
zero and the corresponding homomorphic multiplications and additions are thus skipped).

Concretely, for each message index i, the detector pseudorandomly draws a small set Asgi ⊂ [m]
of expected size o(k̄ · log(ε−1

n)), designating the combinations to which xi is assigned. It then
homomorphically adds x′i = xi · PVi to Cmbj for j ∈ Asgi.

23

We then proceed as above in Section 6.2. The resulting Cmb vector is returned to the recipient,
together with the message from OMDt2.Detect(·) from Algorithm 2 and the seed used for the
pseudorandom choices. The recipient recovers PS, hence the combination assignments, and by
decrypting Cmb it gets a linear system of m (this time, sparse) equations in k variables.

There remains to ensure that this sparse system has full rank k. This requires a suitable choice
of m and distribution of Asg,24 which turns out to be achievable with excellent parameters but
difficult to analyze. We thus encapsulate these choices into the notion of SRLC scheme, introduced
next.

6.3.1 Defining and Constructing SRLC

Tightly analyzing SRLC parameters is a longstanding, much-studied open problem [KS07, KC16,
BJT18]. We proceed to define a notion of SRLC scheme, which can be used as a black box in
our construction, and then specify two concrete schemes. SRLC1 has clean analysis using known

22State-of-the-art batch-PIR [ACLS18, ALP+21] uses different coding techniques, which rely on the client knowing
the pertinent indices a priori.

23In general, for plaintext space GF(t), for wi,j (j ∈ Asgi) we use a nonzero weight wi,j that is pseudorandomly
drawn from GF(t) \ {0}. Here, t = 2 so this is always 1.

24And for t > 2, of the distribution of weights over GF(t) \ 0.

25

bounds, and suffices for our asymptotic results. SRLC2 is simpler, faster, and smaller, but relies on
empirical estimation for completeness; it will be used in Sections 7 and 10.

Definition 6.3. An SRLC scheme consists of two algorithms

• (ppSRLC,m) ← GenParams(1λ, κ, εF, t): takes as input a security parameter λ, κ (number of
columns), εF (defective rate), and a prime number t, and outputs an SRLC public parameter
ppSRLC.

• {(j, wj)} ← GenWeights(ppSRLC): takes as input an SRLC public parameter ppSRLC, and
outputs a set of indices and weights {(j, wj)} where j ∈ [m], wj ∈ Zt \ {0}, representing a
sparse vector of length m.

that satisfy the following:

• (Completeness) For any κ ∈ Z+, and 0 < εF < 1, let (ppSRLC,m) ← GenParams(1λ, κ, εF, t),
and (Si ← GenWeights(ppSRLC))i∈[κ]. Then the matrix A ∈ Zm×κt defined by

Ai,j =

{
wj if (j, wj) ∈ Si
0 otherwise

fulfills (over the randomness of the algorithms):

Pr[rank(A) = κ] ≥ 1− εF − negl(λ) .

We construct two different SRLC algorithms as follows. The first SRLC algorithm SRLC1, given in
Algorithm 3, is meant for ease of analysis. GenWeights outputs set of indices and weights such that
the resulting matrix has independently-drawn entries, with a density of nonzeros set by GenParams.

Algorithm 3 SRLC1: Analytically-Bounded SRLC

1: procedure SRLC1.GenParams(1λ, κ, εF, t)
2: Find the smallest m such that 1−

∏κ
i=1(1− (1− 3

κ)m−i+1) ≤ εF and m ≥ 6
3: return (m, ppSRLC = (γ = 3m/κ, κ, εF, t, λ)) . γ is the expected number of nonzeros

4: procedure SRLC1.GenWeights(ppSRLC = (γ = 3m/κ, κ, εF, t, λ))
5: γ′ ← B(m, γ/m) . binomially-distributed number of nonzeros
6: S ← {}, J ← {}
7: for i = 1 to γ′ do

8: j
$←− [m] \ J . draw a new index

9: wj
$←− Zt \ {0} . draw a nonzero weight

10: S ← S ∪ {(j, wj)}
11: return S

Lemma 6.4. SRLC1 in Algorithm 3 is an SRLC scheme for any κ and εF.

26

Algorithm 4 SRLC2: Empirically Bounded SRLC

1: procedure TestRank(γ,m,λ,εF,κ,t)
2: Ctr← 0
3: for i = 1 to log(λ) log log(λ)ε−1

F do
4: Sample (Si)i∈[κ] where Si ← SRLC2.GenWeights(γ, ppSRLC = (γ,m, εF, t, λ))

5: Let A ∈ Zm×κt be

Ai,j =

{
wj if (j, wj) ∈ Si
0 otherwise

6: If rank(A) < κ: return False

7: return True
8: procedure SRLC2.GenParams(1λ, κ, εF, t)
9: γ ← 3

10: while True do
11: for m = κ, . . . , κ · γ/2 do
12: if TestRank(γ,m,λ,εF,κ,t) = True then
13: return (m, ppSRLC = (γ, κ, εF, t, λ))

14: γ ← γ + 1

15: procedure SRLC2.GenWeights(ppSRLC = (γ, κ, εF, t, λ))
16: S ← {}, J ← {}
17: for i = 1 to γ do

18: j
$←− [m] \ J . draw a new index

19: wj
$←− Zt \ {0} . draw a nonzero weight

20: S ← S ∪ {(j, wj)}
21: return S

Proof. A matrix A ∈ Zm×κt , constructed as in Definition 6.3 using SRLC1, has i.i.d. entries that are
nonzero with probability γ/m, and uniform when nonzero. The probability that such A has less
than full rank κ is upper bounded by 1−

∏κ
i=1(1− βm−i+1) as shown in [KC16, Lemma 1], where

β = max(1 − γ/m, γ/(m(t − 1))), and since we fix γ/m = 3/κ, β is always 1 − γ/m for m ≥ 6
because t ≥ 2. Line 2 thus bounds the failure probability by εF. Therefore, SRLC1 satisfies the
completeness requirement of SRLC.

Complexity. SRLC1 generates sparse vectors of length m = O(κ log2 κ log(εF)), as shown by the
following lemma.

Lemma 6.5. The value m in SRLC1 chosen by line 2 in Algorithm 3 is m = O(κ log2(κ) log(ε−1
F)),

and the value γ chosen by line 3 in Algorithm 3 is m = O(log2(κ) log(ε−1
F))

Proof. The expression used to choose m can be bounded as follows (using 0 < εF < 1 and 1 < κ):

1−
κ∏
i=1

(1− (1− 3

κ
)m−i+1) ≤ 1−

κ∏
i=1

(1− (1− 3

κ
)m−κ+1)

≤ 1− (1− κ(1− 3

κ
)m−κ+1) = 1− (1− (1− 3

κ
)m−κ+1)κ ≤ κ(1− 3

κ
)m−κ

27

Therefore, κ(1− 3
κ)m−κ ≤ ε suffices for the expression in 2 to be fulfilled. Furthermore:

κ(1− 3

κ
)m−κ ≤ εF ⇔ log(κ(1− 3

κ
)m−κ) ≤ log(εF)

⇔ log(κ) + (m− κ) log(1− 3

κ
) ≤ log(εF) ⇔ (m− κ) log(1− 3

κ
) ≤ log(εF/κ)

⇔ m− κ ≥ log(εF/κ)

log(1− 3
κ)

⇔ m ≥ log(εF/κ)

log(1− 3
κ)

+ κ =
log(ε−1κ)

− log(1− 3
κ)

+ κ

Since
log(ε−1

F κ)

− log(1− 3
κ

)
= O(κ log2(κ) log(ε−1

F)) and we choose the smallest m in line 2, we indeed get

m = O(κ log2(κ) log(ε−1
F)). By line 3, γ = 3m/κ = O(log2(κ) log(ε−1

F)).

The second SRLC algorithm SRLC2, given in Algorithm 4, has simpler GenWeights which just
outputs a fixed number γ of nonzero elements (with uniformly-random nonzero weight each). How-
ever, its completeness relies γ and m being chosen by an empirical estimate (encapsulated within
GenParams), since adequately tight analytical bounds are not known.

Lemma 6.6. SRLC2 in Algorithm 4 is an SRLC scheme for any κ and εF.

Proof. Let pγ,m denote the probability that a matrix generated as in Definition 6.3 is not full-rank,
for given γ,m. For SRLC completeness, it suffices to prove that if pγ,m > εF, then with probability
1− negl(λ), TestRank will output False and thus GenParams will not use output these γ,m.

The probability of passing TestRank is the probability that εF log(λ) log log(λ) independent
pγ,m-biased Bernoulli tests are 0. Thus, if pγ,m > εF then the probability of passing is negligible:

(1−pγ,m)n < (1−εF)n = ((1−εF)ε
−1
F)log(λ) log log(λ) = O(e− log(λ) log log(λ)) = O(λ− log log(λ)) = negl(λ).

It follows that the output of GenParams fulfills pγ,m ≤ εF + negl(λ).25

6.3.2 Compact OMR using SRLC

We proceed to fully specify an OMR scheme using SRLC, following the intuition of Section 6.2.

Theorem 6.7. The scheme OMRt1 in Algorithm 5 is a Oblivious Message Retrieval scheme, when
instantiated with any fully homomorphic encryption scheme FHE, PRFs f , and SRLC scheme
SRLC. Moreover, when instantiated with SRLC1, OMRt1 is also compact.

Proof sketch . Soundness: Soundness follows from that of Algorithm 2, and returning overflow if
the linear system is not fully determined.

Completeness: As in Theorem 6.2, assume for simplicity that there are no false positives.
Completeness of Algorithm 1 ensures that all pertinent messages xi have PVi ∈ 〈1〉sk . The

completeness in Theorem 6.2 ensures that LHS has all the pertinent messages as variables with
probability > 1− εn/2− negl(λ), given k ≤ k̄ (otherwise we output overflow and fulfill the require-
ment). The linear system will be consistent with the correct payloads, unless the FHE decryption
errors occur, which happens with negligible probability.

25Assuming GenParams runs in time poly(λ). We do not prove this directly, but GenParams.SRLC2 will be empirically
executed honestly, and the security model assumes that it is infeasible even for the adversary to run for longer than
poly(λ)).

28

Algorithm 5 OMRt1: Oblivious Message Retrieval from generic FHE

1: Procedures OMRt1.GenParams, OMRt1.KeyGen and OMRt1.GenClue are identical to OMDt1.
2: procedure OMRt1.Retrieve(BB = ((xi, ci)i∈[N]), pkdetect, k̄)
3: . Implicitly taking pp = (`, εp, εn, ppFHE)
4: Draw a random seed s
5: k̂ ← k̄ +N log(N)εp
6: (ppSRLC,m)← SRLC1.GenParams(1λ, k̂, εn/2, 2)
7: PV← OMDt1.Detect(D, pk, k̄, εn/2) (from Algorithm 1)
8: Initialize combinations (Cmbi = (FHE.Enc(pkdetect, 0

ñ)))i∈[m]

9: for i = 1 to N do
10: S ← SRLC1.GenWeights(ppSRLC)
11: for (j, wj) ∈ S do
12: tmp← FHE.Eval(pkdetect, tmp, wj ,×)
13: Cmbj ← FHE.Eval(pkdetect, tmp,Cmbj ,+)

14: CLHS← OMDt2.Detect(D, pk, k̄, εn/2)
15: return M = (s,CLHS,CRHS = (Cmbi)i∈[m], ppSRLC)

16: procedure OMRt1.Decode(M, sk) . Implicitly taking pp = (`, εp, εn, ppFHE, ppSRLC)
17: Parse (s,CLHS,CRHS, ppSRLC)←M
18: PLlhs ← OMDt2.Decode(CLHS, sk)
19: if PLlhs = overflow then
20: return overflow
21: for i = 1 to m do
22: LHSi ← 0 . As a linear combination in formal variables xi, updated iteratively below

23: for i ∈ PLlhs do
24: S ← SRLC1.GenWeights(ppSRLC; s)
25: for (j, wj) ∈ S do
26: LHSj ← LHSj + wj · xi
27: RHS← FHE.Dec(sk,CRHS)
28: return the result of solving LHS = RHS by Gaussian elimination, or overflow if failed

Moreover, the LHS of the linear system needs to be full rank. This is implied, with all but
negligible probability, by completeness of SRLC1 (Lemma 6.4). Note that although we have in-
voked GenWeights for each of the N messages in the board, at most k̂ of these (i.e., the messages
corresponding to messages detected as pertinent, including false positives) contribute columns to
the matrix. Therefore, the probability that the linear system is not full rank is bounded by εn/2.
Note that SRLC completeness is defined for κ = k̂, but it trivially follows that matrices generated
by κ′ < κ invocations of GenWeights are also of full rank κ′ with at least the same probability. Note
that the completeness of SRLC is unaffected by adversarial input, so its average-case guarantee
suffices.

Altogether, for k ≤ k̄, the failure probability is ≤ εn + negl(λ).
Privacy: Privacy directly follows from proof for Algorithm 2. There is no additional information

placed in the board or given to the detector.
Compactness: When OMRt1 is instantiated with SRLC1, the digest size isO(k̂ log(k̂) log(ε−1

n) log(N)).

29

By Lemma 6.5, we will get some m = O(k̂ log2(k̂) log(ε−1
n)) combinations for retrieval, each with

the size of payload number of ciphertexts. Since we consider the payload size to be constant,
and k̂ ≤ N , the cost is dominated by O(k̂ log(k̂) log(ε−1

n) log(N)) from Algorithm 2 for detecting
pertinent message indices.

Computational Complexity. We analyze OMRt1 complexity when instantiated SRLC1. The
computational complexity of the detector is O(N(log(k̂) log(ε−1

n) log(N) + log(1/εp))), i.e., quasi-

linear in N and sublinear in k̄. This is since γ = O(k̂ log2(k̂) log(ε−1
n) by Lemma 6.5 and therefore

dominated by computational cost in Algorithm 2, similar as compactness. As analyzed above
for communication, the cost is dominated by the cost of detection as in Algorithm 2, as γ =
O(log2(k̂) log(ε−1

n)) = O(m/k̂). The recipient’s computation complexity isO(k̂ log(k̂) log(ε−1
n) log(N)+

k̂3), for the digest decryption and Gaussian elimination respectively. Note that the computation
and communication complexity are both independent of adversarial input (except for the board
size).

Alternative Construction. An alternative construction for OMR is deferred to Appendix B.3,
since it does not extend a practical construction. Its main idea is the same as the free-bucket-search
alternative mentioned in the last paragraph of Section 6.1.2.

(Im)practicality. The above establishes the asymptotic existence of compact OMR (assuming
existence of FHE), but it is still impractical, e.g., due to the cost of the Recrypt algorithm in
state-of-the-art FHE schemes [DM15, CGGI20, Bra12, FV12, BGV12]. Moreover, the clues are
large (e.g, BFV has a minimum ciphertext size of roughly 30 kB for typical ring dimensions like 215

[PAL21, Mic20], and FHEW/TFHE needs 512 bytes per each of the ∼20 plaintext bits required in
Section 6.1.1).

7 Practical OMR

We proceed to introduce optimizations that improve communication and computation costs to
practical levels, as well as security improvements. See Section 3.2 above for an overview, and
Section 10 below for implementation and quantitative evaluation.

Our starting point is the generic FHE construction of Section 6, generalized from plaintext
space Z2 to Zt for prime t ≥ 2 (as discussed in footnotes whenever pertinent). The generalization
immediately gives us improved concrete bounds on false positive rate, and in the SRLC-based
retrieval. (Moreover, it will match the native arithmetic operations of BFV homomorphic operations
discussed below.) We then proceed to modify the scheme as follows.

7.1 PVW Clue Ciphertext

Instead of generating clues using encryption under an FHE scheme, we use a lighter-weight en-
cryption scheme which can still be homomorphically decrypted and processed by the detector.
Specifically, we use the PVW scheme [PVW08], which is a variant of the Regev05 LWE-based
encryption scheme [Reg09]. See Section 5.2 for details. The PVW decryption algorithm can be
cheaply evaluated under FHE, and moreover its ciphertext size grows slowly when multiple bits are
encrypted. Choice of PVW parameters, such as lattice dimension n and noise level σ, is discussed
below in Sections 7.3 and 10.1.

30

The switch to PVW maintains the OMD/OMR privacy requirement, since PVW is IND–CPA
and key-private: both the ciphertexts and public keys are indistinguishable, even taken together,
from uniformly-drawn field elements [Hal05][PVW08, Lemma 7.4].

FHE-Friendly Decryption. PVW.Dec can be divided into three parts: an inner product, a divi-
sion, and a rounding into Z2 as shown in Section 5.2. All these parts can be done homomorphically
with reasonable cost using FHE. We discuss in more detail later how we perform these operations.26

Reduced Clue and Key Size. Using PVW, the clue size is O(n + `) for the ` ciphertexts
(compared to O(n · `) in the original Regev05 scheme [Reg09]). Moreover, to reduce the public key
size, instead of explicitly including the random matrix A in the clue key, we generate the matrix
pseudorandomly from a random seed sA and inclue sA in the clue key. This does not affect security
or correctness [Reg09].

7.2 BFV Leveled Homomorphic Encryption

In the detection and retrieval algorithm, we also replace the general FHE with leveled HE, i.e.,
homomorphic encryption restricted to evaluation of arithmetic circuits with predetermined mul-
tiplicative depth. This suffices since, as shown below, the multiplicative depth can be kept low
and moreover, after the switch to PVW encryption, we do not need the Recrypt functionality
(which is expensive and increases the scheme’s overall parameters). Specifically, we use the BFV
[Bra12, FV12] leveled HE scheme (see Section 5.3.1).

The recipient now also generates a BFV key pair, and adds the BFV public key to the detection
key, which now contains the BFV public key, and the PVW secret key PVW.sk encrypted under
BFV public key. The detector uses these to homomorphically decrypt the PVW ciphertexts in the
clue, resulting in PVi which are 〈0〉BFVsk or 〈1〉BFVsk . It then proceed to process these into a digest as
in Section 6, using BFV homomorphic operations, all with plaintext space GF(t).

One advantage of this choice is that BFV supports packing and SIMD operations: each BFV
ciphertext has D plaintext slots, each of which can convey an element of Zt, for some plaintext
modulus t and a parameter D; we can compute over these D elements simultaenously the same
homomorphic operation (see Section 5.3.1).

When computing PV, we can thus operate on D separate messages {(xi,ci)} at a time, in parallel
via SIMD. For simplicity, consider first the ` = 1 case, i.e., single bit encrypted in each clue (we
later add amplify soundness analogously to Section 6.1.1.) We take D PVW ciphertexts at a time
(each containing n + 1 elements of Zt) and perform D-parallel SIMD homomorphic computation
on these, to essentially attain a packed version of OMDt1.Detect, i.e., produce one PV ciphertext
whose i-th slot encrypts 1 if the i-th message among the D is pertinent, or 0 otherwise. For ` > 1,
we can repeat this procedure with ` different PVW secret keys encrypted as BFV ciphertexts.

Specifically, the detector performs the following steps to homomorphically perform PVW.Dec
(described intuitively here, and precisely in Algorithm 6). Note that for simplicity when decrypting
homomorphically using BFV, we redefine our clues to be PVW encryptions of 0 instead of 1 as
above (i.e. PVW.Dec(skp′ ,GenClue(pkp,·)) = 0 iff p = p′ w.h.p.).

• Inner Product (InnerProd). The detector performs the first step of PVW.Dec: inner product
of the clue’s PVW ciphertext with PVW.sk (that is provided by the recipient under BFV

26Other asymmetric encryption schemes would cause heavier FHE computation for the detector, but may offer
smaller clue sizes.

31

encryption). This homomorphic operation is linear (the clue is known and thus handled as a
constant), and thus cheap.

• Range checking (RangeCheck) For a range [−r, r] and plaintext element u ∈ Zt, this maps u
to 0 if u ∈ [−r, r], otherwise to 1. We implement this homomorphically using [INZ21, Equation
2] as follows, using the Paterson-Stockmeyer algorithm [PS73] to minimize multiplicative
depth. To evaluate the function

f(x) =

{
1 if t− r ≤ x ≤ r
0 otherwise

we can evaluate the following polynomial over Zt:

RCr(X) = fr(0)−
t−1∑
i=0

Xi
t−1∑
a=0

fr(a)at−1−i . (1)

We thus calculate u′ ← RCr(u) homomorphically, so u′ ∈ 〈1〉BFVsk iff u ∈ [−r, r] (which is the
case for pertinent messages with high probability). An exact implementation of PVW.Dec
would require r = t/4 (by definition of PVW in Section 5.2), but this can be relaxed to reduce
the false postiive rate. Since the error distribution is a Gaussian with standard deviation

√
wσ,

the resulting decryption failure probability (and thus false-negative rate) is ≤ erf(r/
√

2wσ).
We can bound this false negative rate at, e.g., < 2−40 by setting r = 7.2

√
wσ.

• PV Unpacking (PVUnpack). Because we used SIMD evaluation, the above steps result
in a single ciphertext ct whose D slots encode u′ ∈ {0,1} values of D different messages.
This already suffices as a digest (decrypting it lets the recipient find out which messages
are pertinent), but to maintain a clean interface and allow further improvements below, we
proceed to unpack ct’s slots into separate D ciphertexts (PVi)i∈[D]. This is done, for each
i ∈ [D], by multiplying ct by Ii (where Ii is a plaintext vector 1 in slot i and 0 in the rest), and
then spreading the i-th slot to all slots by repeatedly rotating and summing (see [HHCP18]).

Between RangeCheck and PVUnpack, we flip the sign of u′ (u′ ← 1−u′) so that after all these steps,
we get PVi ciphertexts encrypting 1 in all slots for the pertinent messages, and 0 in all slots for
impertinent messages with some false positive rate. Similarly to Section 6, we proceed as follows.

Soundness Amplification. The above incurs false positives when decryption of impertinent
messages happens to result in 0 ∈ Zt. Analogously to in Section 6.1.1, we reduce this false positive
rate by having the sender encrypt ` 0’s to the recipient’s clue key (in this case: all in a single
`-bit PVW ciphertext); and having the detector check homomorphically whether all ` resulting
inner products fall within the range [−r,r], by multiplying the ` outputs of range checking. Note
that here, the probability of a clue ciphertext decrypting to 0 (so that the range-checked output is
PV ∈ 〈1〉BFVsk) for impertinent messages is p = 1 − (2r + 1)/q ≥ 1/2, rather than 1/2 as in the Z2

case.27 Therefore, using ` ciphertexts, we get εp of p`.28

27This holds because that for an honestly generated PVW secret key sk, the matrix multiplication between sk and
PVW ciphertexts encrypted under a different secret key gives a distribution that is statistically close to an uniformly
random distribution in Z`q.

28This decision predicate (AND of the range check on all ` inner products) is suboptimal. The error rate could be

32

Algorithm 6 Homomorphic Decryption Auxiliary Functions

1: procedure InnerProd(ppBFV, pkBFV, ctpvwSK, pln = (plni)i∈[n+`])
2: Parse ctpvwSK = (ctj)j∈[`] = ((ct1, . . . , ctn)j)j∈[`]

3: for i = 1 to ` do
4: resi = BFV.Eval(pkBFV, cti, (plnj)j∈[n],inner product)
5: resi = BFV.Eval(pkBFV, plnn+i, resi, Sub)

6: return res = (resi)i∈[`]

7: procedure RangeCheck(pkBFV, ct = (cti)i∈[`], r)
8: Parse ct = (cti)i∈[`]

9: for i = 1 to ` do
10: resi ← BFV.Eval(pkBFV, cti,RC) . RC as defined in Eq. (1)

11: return res = (resi)i∈[`]

12: procedure PVUnpack(ppBFV, pkBFV, ct)
13: for i = 1 to D do
14: tmp = (0, . . . ,1, . . . ,0) where tmpi = 1
15: resi = BFV.Eval(pkBFV, ct, tmp,×)
16: for j = 1 to log(D) do
17: cttmp ← BFV.Eval(pkBFV, resi,Rotate(j))
18: . Rotate(j) means rotating the plaintext vector to right by j slots.
19: resi ← BFV.Eval(pkBFV, cttmp,+)

20: return res = (resi)i∈[D]

Applying all of the above, we obtain and OMD scheme analogous to Algorithm 1, but based on
PVW clues and BFV scheme instead of generic FHE, thereby improving efficiency and size. The
same technique applies to Algorithm 2, for more efficient compact detection.

Finally, compress the detection digest by one of two means. (The full resulting algorithms
appear later in this section.)

Deterministic Digest Compression. Each BFV ciphertext can pack D elements of Zt, each
of which can represent blog(t)c bits of plaintext information. We pack the single-bit pertinency
indicators into these bits, homomorphically (starting with the above representation, where each
bit occupies a whole slot in the digest, or a whole ciphertext after PV unpacking). To achieve this
dense packing, for the ith message we homomorphically add 2` to slot j, where j · blog(t)c+ ` = i
and j ∈ [D], ` ∈ [blog(t)c], given Dblog(t)c ≥ N . This naturally extends to N > Dblog(t)c by
adding more ciphertexts. This makes near-optimal use of the plaintext space; and in terms of the
ciphertext size (and thus digest size), utilization remains high: roughly 4.5 bits per message, for
the representative parameters of Section 10.

The recipient can sum up all these bits to get the exact number of pertinent messages, and thus
robustly detects overflow.

reduced by Bayesian deduction on the inner products before range check. Specifically: compute the log-likelihood
of each ciphertext’s inner product being observed for a true positive vs. negative; sum these log-likelihoods; and
threshold the result. However, this computation (or a useful approximation thereof) would increase multiplicative
depth and thus BFV costs.

33

Randomized Digest Compression. Alternatively, we can use the bucket-based probabilistic
method of Section 6.1.2 to achieve an compact digest, and moreover, we can compress D accumu-
lators into one ciphertext to fully utilize all D slots in each ciphertext. In particular, we can achieve
an amortized digest size of less than 1 bit per messsage, including retrieval, for sufficiently large
N � k̄ (e.g., N = 10,000,000, k̄ = 50). See details in Algorithm 8 and performance in Section 10.2.

For this method, we need further care for the recipient to precisely count the number of pertinent
messages and thus detect overflow. We could use the summation of individual bucket counters to
get k, but this may still overflow if the number of pertinent messages is huge, since each slot is
computed homomorphically in the plaintext space Zt (e.g. if k & tD, where tD > 1012 for typical
parameters).

If the above parameters are exceeded, we can still avoid undetected decoding failures by keep-
ing a global counter that can represent values in [N] without overflow. This can be realized using
dlogt(N)e ciphertexts that representing the counter in t-ary, and the correspoding big-integer ad-
ditions are done via homomorphic evaluation. This is expensive under BFV and not needed in our
parameter regime.

OMD via Deterministic Digest Compression. We can use deterministic digest compression
to construct a non-compact OMD, which we call OMDp1. The advantage of this method is that it
does not need PVUnpack: for the i-th message, OMDp1 encrypts 2i/D and multiply with PVi using
SIMD (so perform D of them in parallel), and adds the result together. Therefore, it greatly reduces
the detector running time. Since it is a simplified version of OMRp1, we omit the pseudocode. (See
Appendix A for a summary of all the schemes introduced in this paper.)

7.3 A Practical OMR scheme

Fig. 2 portrays the high-level components of the resulting scheme, and their invocation of different
encryption schemes.

By combining all of the above detection optimizations, and adding message retrieval analogously
to Section 6.3.2, we have a practical OMR scheme OMRp1, as given in Algorithm 7. Here we use
the aforementioned Deterministic Digest Compression, which is simpler than compact (randomized)
detection, and offers better concrete digest size and detection time for some parameter choices of
interest (cf. Section 10).

34

Figure 2: Main components of our scheme based on PVW and BFV.

Setting Parameters. The parameters to decide are BFV parameters D, t (which then imply
the remaining parameters in ppBFV [ACC+18]), the LWE parameters n,w, `, q, σ (we fix q = t), and
the range r. The choice should satisfy the following criteria (given the security parameter λ, false
positive rate εp and false negative rage εn):

1. PVW encryption using n,q,σ is semantically secure.

2. BFV encryption using t,D is semantic secure.

3. Moreover, this BFV parametrization should allow the homomorphic computation of the cir-
cuit described in algorithm OMRp1.Retrieve, with failure probability negl(λ) implied by the
correctness of BFV [ACC+18].

4. ` · (1 − erf(r/(
√

2wσ))) < εn/2 . Here, erf(r/(
√

2wσ) is the probability a PVW ciphertext in
the pertinent message to be decrypted to 0 (i.e., the inner product is in [−r, r]), as it the
sum of at most LWE w samples and thus distributed as a Gaussian with standard deviation√
wσ. A false negative happens if any of the ` ciphertexts does not decrypt to 0, and we take

a union bound over these events.

5. ((2r + 1)/t)` < εp, where (2r + 1)/t is the probably that a impertinent clue ciphertext is
decrypted into 0 (if this happens for all ` ciphertexts in the clue, we get a false positive),
and r ≤ t/2, where the LWE parameter σ depends on t and λ, and w depends on t (see
[APS15, Pla18, PVW08]).29 [APS15, Pla18, PVW08]

29In practice, the first item can be instead replaced by
(
1−`(erf(r/(

√
2w′σ))·erf(w

′−w/2√
2w/12

))
)
< εn/2 such that w′ < w

and minimizes r. For the more easily understandable analysis in our paper, we do not use this directly. erf
(w′−w/2√

2w/12

)
should be replaced with 1 if w′ = w, as its a discrete distribution approximated by a normal distribution.

35

Algorithm 7 OMRp1: Practical Oblivious Message Retrieval

Let fs(x) be a PRF. Let BFV and PVW be as defined above.

1: procedure OMRp1.GenParams(1λ, εp, εn)
2: Choose ppBFV = (D, t, . . .), ppPVW = (n,w, `, q, σ), and range r . See Setting parameters in §7.3
3: return pp = (1λ, εn, εp, ppBFV, ppPVW, r, `) . Provided implicitly below

4: procedure OMRp1.KeyGen
5: (skPVW, pkPVW)← PVW.KeyGen()
6: (skBFV, pkBFV)← BFV.KeyGen()
7: ctpvwSK ← BFV.Enc(pkBFV, skPVW)
8: return (sk = (skBFV), pk = (pkclue = pkPVW, pkdetect = (pkBFV, ctpvwSK)))

9: procedure OMRp1.GenClue(pkclue, x)

10: ~b← (0, . . . , 0) ∈ Z`t
11: c← PVW.Enc(pkclue,

~b) . Recall: clue c ∈ Zn×`t
12: return c
13: procedure OMRp1.Retrieve(BB, pkdetect, k̄)
14: . Phase 1: Initialization
15: Draw a random seed s = (sf , sh)
16: Parse BB = {(x1, c1), . . . , (xN , cN)} and pkdetect = (pkBFV, ctpvwSK)
17: Let C ← N/(D · log(t))
18: Initialize (Acci = BFV.Enc(pkBFV, (0, . . . , 0)))i∈[C] . D zeros
19: . Phase 2: detection in batches of D messages
20: for i = 1 to N/D do . Assume wlog that D divides N
21: Parse each clue as ciD+i′ = ((ci′,κ))κ∈[n+`] ∈ Zn+`

q for i′ ∈ [D]
22: Let c̄κ = (ci′,κ)i′∈[D] for κ ∈ [n+ `] . c̄κ lists the κ-th element of every PVW clue in this batch
23: α1 ← InnerProd(ppBFV, pkBFV, ctpvwSK, (c̄κ)κ∈[n+`])
24: α2 ← RangeCheck(ppBFV, pkBFV, α1, r)

25: α3 =
∏`−1
i=0(1− α2[i])

26: . For OMDp1, stop here and return all α3’s after finishing the loop.
27: (PVi′)i′∈((i−1)D,iD] ← PVUnpack(ppBFV, pkBFV, α3)
28: for i′ = 1 to D do
29: y ← b ((i−1)D+i′)

(C·D) c, z ← b ((i−1)D+i′) mod (C·D)
D c, ω ← ((i− 1)D + i′) mod t

30: Accy[z]← Accy[z] + 2ω . Homomorphic slot-wise addition

31: . Phase 3: Finalization
32: k̂ ← k̄ +N log(N)εp, (ppSRLC,m)← SRLC.GenParams(1λ, k̂, εn/2, t)
33: . In practice (ppSRLC,m) is preprocesssed and tabulated and therefore becomes O(1)
34: Initialize combinations {Cmb = BFV.Enc(pk, 0)}k∈[m]

35: for i = 1 to N do
36: S ← SRLC.GenWeights(ppSRLC)
37: for (j, wj) ∈ S do
38: Cmbj = Cmbj + PVi · xi · wj . by homomorphic addition and scalar multiplication

39: return M = (s, (Accy)y∈[C], (Cmbk)k∈[m], ppSRLC)

40: procedure OMRp1.Decode(M, sk)
41: Parse M = (s, (Accy)y∈[C], (Cmbk)k∈[m], ppSRLC) . C = |(Acc)|,m = |(B)|
42: (tmpy)y∈[C] ← BFV.Dec(pk, (Accy)y∈[C]) where C = |(Acc)| , k ← 0
43: for i = 1 to C do
44: for j = 1 to D do
45: for k = 1 to blog(t)c do
46: if tmpi[j]’s k

th bit = 1 then
47: Append ((i− 1)Dblog(t)c+ (j − 1)blog(t)c+ k) to PLlhs
48: k ← k + 1
49: If k > k̄, return overflow
50: for i ∈ PLlhs do
51: S ← SRLC.GenWeights(ppSRLC)
52: for (j, wj) ∈ S do
53: LHSj ← LHSj + wj · xi
54: RHS← BFV.Dec(sk, (Cmbk)k∈[m]))
55: return the result of solving LHS = RHS by Gaussian elimination, or overflow if failed

36

Note that, for given error parameters, these requirements can always be satisfied using suffi-
ciently large t, since other parameters that depend on t only grows as o(t). Concretely, Section 10.1
proposes a set of parameters satisfying these requirements. Our parameter suggestions also provide
practical efficiency as shown in Section 10.2.30

Theorem 7.1. The scheme OMRp1 in Algorithm 7 is an OMR scheme, assuming security of PVW
encryption (Section 5.3), security of BFV leveled HE (Section 5.3.1), when instantiated with PRF
f and an SRLC scheme SRLC.

Proof sketch . Completeness: Note that the false positive samples has negligible effect as in Theo-
rem 6.2. Therefore, we assumes there is no false positives in our proof for simplicity.

A pertinent message payload xi is successfully retrieved if:

1. Its clue’s PVW ciphertext decrypts correctly using the range [−r,r].

2. The detector’s homomorphic evaluation, decrypted by the recipient, does not err. This is
implied (up to negligible error) by the correctness of BFV.

3. Gaussian elimination succeeds (the equations are linearly independent)

Note that we use deterministic index retrieval: if conditions 1 and 2 are fulfilled, we can obtain
the index i automatically, so the detection does not bring extra failure probability.

Condition 1 holds with probability εn because we have chosen range r to have (`·(1−erf(r√
2wσ

))) <

εn/2. This is achievable for any εn > negl(λ), as r = t/4 (i.e. the decryption range being [−t/4, t/4]
for zero) gives failure probability of negl(λ) given the correctness of the underlying PVW scheme.

Condition 3 holds with probability 1 − εn/2 − negl(λ) similarly to Theorem 6.7: by the com-
pleteness of SRLC, the linear system has rank k (for k ≤ k̄); and by the soundness of BFV, it is
consistent.

Therefore, the total failure probability is < εn + negl(λ) as required.
Soundness: False positives occur when for all ` parts of the PVW ciphertext in a clue, their

inner products with pvwSK key fall into range ±r. This has probability ((2r+ 1)/t)` ≤ εp. Indeed,

for a PVW ciphertext (~a,~b) honestly encrypted under a key that is different (and independently
and honestly generated) from pvwSK (generated uniformly randomly from Znt), ~b − pvwSKT~a is
statistically close to a uniformly random distribution in Z`t. The correctness of BFV introduces
only negligible false positive rate.

Privacy: Analogously to Section 7.1, privacy follows from the key privacy of the PVW scheme
used to generate clues (which is implied by LWE hardness, in turn implied by the assumed Ring-
LWE hardness), and the semantic security of BFV encryption used by the detector (which is implied
by Ring-LWE hardness).

Asymptotic Complexity. When OMRp1 is instantiated with SRLC1, the asymptotic complexity
is as follows. The digest size is O(N + log2(k̂) log(ε−1

n)) where the first term comes from the index
retrieval and the second term comes from the number of combinations for payloads, but as k̂ ≤ N ,
the cost is O(N + log2(k̂) log(ε−1

n)), which is not compact (though the constants are small). The
computational complexity for the detector is O(N(log2(k̂) + log(1/εp))), as each message needs

30Note that r and ` are only used in Retrieve, so the detector can change these to improve efficiency if a recipient
says that larger εn and εp are adequate. For simplicity, we do not include this flexibility in the pseudocode.

37

log(1/εp) PVW ciphertexts as clues, and we have γ = log2(k̂) log(ε−1
n) when instantiated with

SRLC1 implied by Lemma 6.5. The recipient needs to decrypt the digest and thus have O(N +
log2(k̂) log(ε−1

n) + k̂3) computation complexity, to decrypt the O(N + log2(k̂) log(ε−1
n)) ciphertexts

and then perform Gaussian elimination.
When OMRp1 is instantiated with SRLC2, the complexity is difficult to analysis. However, the

computation and communication costs can be easily tested using empirical analysis under deter-
mined parameters, and our empirical analysis shows that SRLC2 gives excellent concrete parameters
(see Section 10.1).

Variable-Length Payloads. Another extension is allowing payloads of varying size (e.g., media
messages). Our scheme is easily extended. The sender attaches a single clue to each message,
regardless of length. The detector then divides each messages into segments of some fixed size
(while padding the last segment, and adding a message identifier and a segment sequence number
to enable reassembly), and then invokes the above scheme while reusing the message’s clue for
every segment of the message. The recipient, after decoding all segments of all pertinent messages,
reassembles them. Privacy, soundness, and completeness are obviously maintained, except that k̄
is now a bound on the total number of segments in pertinent messages, rather than number of
pertinent messages.

Modulus Switching. Clue size can be reduced using LWE modulus switching with randomized
rounding as shown in [DM15], if we set PVW secret keys to be ternary or binary (i.e., each secret key
element is drawn from {−1,0,1} or {0,1}). In GenClue, every sender first uses the default q (which
is typically large enough to guarantee r to be small, such that εp can be satisfied with a relatively
small `) to generate a PVW ciphertext, and then performs a modulus reduction from q to q′ where
q′ � q, and then the original LWE noise is roughly scaled down by q′/q, and the effective new
Gaussian noise has standard deviation of O(

√
||S||) where ||S|| is the norm of the secret key. Then,

the detector can use BFV to homomorphically compute the inner product between this modulus-
reduced ciphertext and the secret key with a large BFV plaintext modulus (e.g., t > 2(||S||+ 1)q′),
which then results in some number uq′ + e for pertinent messages, where −||S|| < u < ||S|| is an
integer. The detector then performs a range check operation for every possible u homomorphically.
Note that under carefully chosen q, q′, ||S||, the new error can be much smaller than the error
from public-key-based encryption directly using q′, and therefore maintains a small ` to satisfy
εp (recall that the detector running time is linear in `). We do not include this optimization in
our main constructions and implementation, since the use of low-weight secret keys interferes with
DoS-resistance (see Section 8.2).

7.4 A Practical Compact OMR Scheme

While OMRp1 above is practically efficient for many parameters of interest (cf. Section 10), its
asymptotic digest size is still O(N). An alternative approach achieves compactness, i.e., a digest
size that grows only mildly with N when k̄ is fixed and εp is small (cf. Definition 4.1). This can
be achieved by using the Randomized Digest Compression approach of Section 7.2. The resulting
practical and compact OMR algorithm, OMRp2, is given in Algorithm 8

Theorem 7.2. The scheme OMRp2 in OMRp2 in Algorithm 8 is a OMR scheme for N < D · t/2,
assuming security of LWE encryption (Section 5.3) and security of BFV leveled HE (Section 5.3.1),
when instantiated with PRF f and an SRLC scheme SRLC. Moreover when instantiated with
SRLC1, OMRp2 is also compact.

38

Algorithm 8 OMRp2: Practical Compact Oblivious Message Retrieval

1: procedure OMRp2.GenParams(1λ, εp, εn)
2: Choose ppBFV = (D, t, . . .), ppPVW = (n,w, `, q, σ), and range r with one change:
3: Replace item 3 with ` · (1− erf(r/(

√
2wσ))) < εn/4 . See Setting parameters

4: return pp = (1λ, εn, εp, ppBFV, ppPVW, r) . Provided implicitly below
5: procedure OMRp2.KeyGen
6: (skpvw, pkpvw)← LWE.KeyGen()
7: (skBFV, pkBFV)← BFV.KeyGen()
8: ctpvwSK ← BFV.Enc(pkBFV, skpvw)
9: return (sk = (skBFV), pk = (pkclue = pkpvw, pkdetect = (pkBFV, ctpvwSK)))

10: procedure OMRp2.GenClue(pkclue, x)
11: ~m← (0, . . . , 0) ∈ Z`t
12: c← LWE.Enc(pkclue, ~m) . Recall: clue c ∈ Zn×`t
13: return c
14: procedure OMRp2.Retrieve(BB, pkdetect, k̄)
15: . Phase 1: Initialization
16: Draw a random seed s = (sf , sh)
17: Parse BB = {(x1, c1), . . . , (xN , cN)} and pkdetect = (pkBFV, ctpvwSK)
18: Let C ← N/(D · log(t))
19: Initialize (Acci = BFV.Enc(pkBFV, (0, . . . , 0)))i∈[C] . D zeros
20: . Phase 2: detection in batches of D messages

21: d← d10k̄/De ·D C is smallest such that 1−
∏k̄−1
i=1 (1− (i

d
)C) < εn/4

22: d′ is the smallest integer such that d′D · exp(− N(2d′−1)2

(2d′+1)d′D
) ≤ εn/4

23: d← max(d, d′D)
24: Initialize (Acclhs,z ← (BFV.Enc(pkBFV, (0, . . . , 0))w)w∈[logtN])z∈C
25: . d zeros, encrypted into d̂ accumulators, consisting of logtN ciphertexts each with D zeros
26: Initialize (CtrlhsCtr,z ← BFV.Enc(pkBFV, (0, . . . , 0)))z∈C
27: for i = 1 to N/D do . Assume wlog that D divides N
28: Parse each clue as ciD+i′ = ((ci′,κ))κ∈[n+`] ∈ Zn+`

q for i′ ∈ [D]
29: Let c̄κ = (ci′,κ)i′∈[D] for κ ∈ [n+ `] . c̄κ lists the κ-th element of every PVW clue in this

batch
30: α1 ← InnerProd(ppBFV, pkBFV, ctpvwSK, (c̄κ)κ∈[n+`])
31: α2 ← RangeCheck(ppBFV, pkBFV, α1, r)

32: α3 =
∏`−1
i=0(1− α2[i])

33: (PVi′)i′∈((i−1)D,iD] ← PVUnpack(ppBFV, pkBFV, α3)

34: for i = 1 to N do
35: j, k ← fsf (i) . j ∈ [C], k ∈ [d̂ ·D]
36: Acclhs,j[k] = Acclhs,j[k] + i · PVi . t-ary addition
37: Ctrlhs,j[k] = Ctrlhs,j[k] + 1 · PVi . Slot-wise addition, done homomorphically
38: . Phase 3: Finalization
39: k̂ ← k̄ +N log(N)εp
40: (ppSRLC,m)← SRLC.GenParams(1λ, k̂, εn/4, t)
41: . In practice (ppSRLC,m) is preprocesssed and tabulated and therefore becomes O(1)
42: Initialize combinations {Cmb = BFV.Enc(pk, 0)}k∈[m]

43: for i = 1 to N do
44: S ← SRLC.GenWeights(ppSRLC)
45: for (j, wj) ∈ S do
46: Cmbj = Cmbj + PVi · xi · wj . by homomorphic addition and scalar multiplication
47: return M = (s, (Acclhs,i)i∈[C·d/D], (Ctrlhs,i)i∈[C·d/D], (Cmbk)k∈[m], ppSRLC)

48: procedure OMRp2.Decode(M, sk)
49: Similar to OMRt1.Decode in Algorithm 5, except that instead of a global counter Ttl, it uses

summation of individual counters. 39

Proof sketch . Completeness: Note that the false positive samples has negligible effect as in Theo-
rem 6.2. Therefore, we assumes there are no false positives in our proof for simplicity.

A pertinent message is successfully retrieved if:

1. The clue’s PVW ciphertext decrypts correctly using the range [−r,r].

2. The detector’s homomorphic evaluation, decrypted by the recipient, does not err. This is
implied (up to negligible error) by the correctness of BFV.

3. Gaussian elimination succeeds (the equations are linearly independent)

4. No accumulator counter overflow (at most t − 1 pertinent messages are mapped into each
accumulator Acci)

5. The index is correctly retrieved through randomized index retrieval (assuming no overflow on
counters.)

The first three conditions are similar as in Theorem 7.1, which adds up to error probability
2εn/4 + negl(λ) (same as proof for Theorem 7.1). Condition 5 is satisfied with probability εn/4 by
parameter choice in line 21.

For condition 4: note that we have d = d′D buckets, each expected to be assigned at most
N/d messages, as the number of messages that are detected as pertinent is trivially bounded by N .
But bucket counters may overflow, i.e., get incremented by more than t assigned messages that are
detected as pertinent (whether true positives or false positives). We bound this overflow probability
as follows.

Pr[X ≥ t] < Pr[X ≥ 2N/D] (since N < Dt/2))

= Pr[X ≥ 2(N/D)]

= Pr[X ≥ 2(N/d)(d/D)]

≤ exp(− δ2

2 + δ

N

d
) (by Chernoff bound, where δ = 2(d/D)− 1 = 2d′ − 1)

≤ exp(−(2d′ − 1)2

2d′ + 1

t/2

d′
)

By the union bound, the probability of none of the d buckets overflowing is d exp(− (2d′−1)2

2d′+1
t/2
d′) <

εn/4, where d = O(log(ε−1
n)). Therefore, for N < Dt/2, the condition at line 22 gives us a failure

probability < εn/4.
Therefore, all five conditions together have a failure probability of εn + negl(λ) for k ≤ k̄
Soundness and Privacy: Follows exactly from Theorem 7.1.
Compactness: As we can see D ·t = O(N), and therefore the digest size grows with O(polylogN).

More specifically, it is O(k̂ log(k̂) log(ε−1
n) log4(N)), as we need O(log(N)) accumulators for each

Acc, and digest size grows with log(t) for each level of multiplication, D = O(log2(t)) because it
grows with log(plaintext space) and number of multiplication levels (which also grows with O(log(t))
due to RangeCheck). Therefore, we obtain log4(N) instead of log(N) as in Algorithm 5, but the
rest are the same with the same analysis. And the updated k̂ = Õ(k̄ + εpN).

40

Computational Complexity. When OMRp2 is instantiated with SRLC1, its asymptotic com-
plexity is as follows. The computational complexity for the detector is similarly computed as in
Algorithm 5: O(N(log(k̂) log(ε−1

n) log4(N) + log(1/εp))) when instantiated with SRLC1. The recip-

ient’s complexity is O(k̂ log(k̂) log(ε−1
n) log4(N) + k̂3), where the first term is the size of the digest

that needs to be decrypted, and the second term is the Gaussian elimination.
Similarly to OMRp1 above, if OMRp2 is instantiated with SRLC2, then the complexity is difficult

to analysis, but can be tested empirically and yields excellent results.
In the expected parameter regime k̄ � N < tD/2 and k � N , OMRp2 can be more concretely

efficient than the OMRp1, despite its additional complexity (cf. Section 10). Note, however, that
as discussed in Section 7.2, for sufficiently large N (e.g., N � tD), the adversary may overflow
counters by inducing an abnormally large number of pertinent messages (e.g., k ≥ tD), in which
case we need to use homomorphic big-integer counters, which worsens the concrete parameters.

7.5 Streaming Updates

If the board is large (e.g., millions of messages to be retrieved), then it would be preferable for
the detector to process messages on-the-fly as they arrive, and be ready to serve the digest at low
additional cost (and latency) when the recipient shows up . Moreover, we wish this processing to
be doable even before knowing the number N of total messages and the bound k̄ on number of
pertinent messages, because the recipient may connect at unpredictable times and wish to catch
up on all messages posted in the interim.

Our scheme has these properties, and to exploit them, the detector can break up OMR.Retrieve
into several phases as annotated in Algorithm 7. After the initialization phase (lines 14–18), the
messages can be processed in a streaming fashion for detection phase (lines 19–30), even though k̄
(and the resulting m) are not yet known.

In the finalization phase (lines 31–39), the detector gets k̄ and completes the computation
by adding the payloads to their assigned combination ciphertexts. The finalization phase is much
faster than the message processing phase, since it involves only relatively-inexpensive homomorphic
operations (additions and scalar-by-ciphertext multiplications).

Seed Secrecy. If we assume that the board messages are not honestly generated, completeness
of this scheme depends on the board messages being generated independently from the random
seed s (otherwise, an adversary can cause decoding failures by crafting pertinent messages that
predictably collide into the same slot(s), or whose weights predictably induce underdefined systems
of equations). In a monolothic execution of OMR.Retrieve as in Algorithm 7, this is assured simply
because s is randomly drawn after the board is given.

In streaming mode, we can instead assume that the detector keeps its seed s secret inbetween
initialization and finalization (subsequent leakage is harmless). If this assumption is violated, then
an adversary may indeed cause decoding failure; the recipient would detect this, and can then
request a detection service from another detector discussed later in Section 7.7.

Alternatively, the detector can handle messages in batches of some size Ñ , choosing a fresh
seed for each batch after it is received. All N/Ñ seeds are then included in the digest, to allow
the recipient to reproduce the slot assignments and weights. In practice, using 128-bit PRF seeds
would insignificantly increase the digest size, if we naturally choose Ñ = D to fully utilize the BFV
SIMD (where D ≥ 32768 in our case).

41

7.6 Reducing Space Requirements

If the streaming update is never needed, we can slightly adjust Algorithm 7 (and similar to Al-
gorithm 8), by performing PVUnpack on the fly to reduce memory. Instead of extracting all of
PV = (PV1, . . . ,PVN) at line 27, we can first process m1 by computing PV1, doing its index
accumulation and linear combination of payloads, and then discarding m1, PV1 and the other in-
termediate values. We then proceed to similarly processes m2, . . . ,mN . This greatly reduces the
memory consumption, as each unpacked PV is a BFV ciphertext of size at least 60 kB.

If streaming updates are used, naively we need to store all the PV’s together with its corre-
sponding payload (or scan the board twice), since in Algorithm 7, phase 1 and 2 (lines 14–30) deal
only with detection of clues, and phase 3 (lines 31–39) deals with retrieval of payloads. This PV
requires large storage, which can be reduced by either of the following.

First, we can just save the packed PV’s generated from line Algorithm 7. This is reduced storage,
at the cost of slowing down phase 3 (since we need to finish the process after line Algorithm 7 and
before phase 3).

Second, we can fix a generous ¯̄k which caps k̄ (i.e., receivers can still choose their pertinent
message bound k̄ on the fly, but it can only be k̄ ≤ ¯̄k). Then, the detector can proceed and finish
OMR.Retrieve with ¯̄k, and save the result. When getting k̄ from the recipient, it can just “fold” the
existing (too numerous) combinations prepared for ¯̄k, by adding them into (fewer) combinations
needed for k̄ (see parameters at line 32). The folding is done by homomorphic additions of the
BFV ciphertexts.

7.7 Handling Overflows

Retrieval may fail in case the number k of messages deemed pertinent overflows the bound k̄:
whether because of adversarial action, or because the recipient became unexpectedly popular.
The possibility is inherent, since information-theoretically, a compact digest for a given k̄ cannot
represent k � k̄ messages.31 However, the recipient can robustly detect this case (OMD.Decode
outputs overflow) and act on it.

When an overflow is thus detected, the recipient can send another retrieval query to the detector,
with a larger bound k̄. However, this may create an information leak: the detector, observing the
repeated query, could deduce that this particular recipient is popular (has many pertinent messages)
among the processed set of messages, and thus deduce information about the recipient’s identity
or message traffic. To prevent the linkability of the two queries, the recipient could try to issue
the second query from a fresh network connection using a different IP address (e.g., using a new
Tor connection), but the repeated detection key would still be noticed. Likewise, the recipient may
attempt to use two independent detection servers, but the two may still collude (or be observed)
and notice the reoccuring detection key. As discussed in Section 9, it is possible to avoid this
leakage thorough the full-key-unlinkability property of these constructions.

Counting Queries. Instead of repeating retrieval queries with enlarged k̄, the recipient can
register to two servers: the first to do lightweight detection (without retrieval) just to obtain the
count of pertinent messages k, and the second to do full retrieval using k̄ = k (or some noisy version
thereof to hide the exact k). The first query can be further compacted by having the detector send
just the sum of the PVi’s (computed in batches of size t to avoid counter overflows).

31Overflow could also occur because of an excessive number of false positives in PV, but this is capped by the
soundness analysis, and we increase k̄ to k̂ to compensate for it.

42

7.8 Detection Key Size Reduction

The detection key includes the BFV ciphertexts ctpvwSK encrypting skpvw, and the BFV public
keys (including encryption key, relinearization key, and rotation keys as in [Lai, §5.6] for rotation
operations as in [SV14, BGV12, LPR13]). Their size is O(1), but concretely quite large (cf. Sec-
tion 10.2).32 We can reduce it in several ways.

First, all of the aforementioned components are RLWE ciphertexts of the form (~a,~b), generated
by the recipient who knows the corresponding RLWE secret key, and who can thus choose a
pseudorandom ~a that is represented as a short PRG seed, thereby halving the ciphertext size.33

Second, we pack the n · ` elements of ctpvwSK into ` BFV ciphertexts, and modify the InnerProd
accordingly, as follows. For the simplest case of ` = 1 and PVW secret key sk ∈ Znq where n divides
D (or padded to such): in the BFV ciphertext ct encrypting sk, the i-th slot encrypts ski mod n for
i ∈ [D]. Homomorphically compute cti, which is ct with its slots rotated to the left i times, for
i ∈ [0, n − 1]. For D clues at a time, denote the i-th clue by (~ai,~bi). Homomorphically compute
cti′ ← cti · (~aj [j + i mod n])j∈[n] and ct′ ←

∑n−1
i=0 cti′. Now, ct′ encrypts the result of (PVW.sk)T~ai

in its i-th slot. This trivially extends to ` > 1 by repeating this process ` times. Note that the
rotation, multiplication, and summation can be done sequentially (i.e., rotate by 1, multiply, and
then sum to ct′ for one iteration at a time), so we only need to have one ciphertext in memory at
a time.

Third, the detection key size is dominated by the row rotation keys used for the homomorphic
evaluation of slot rotations. In Algorithm 7 and Algorithm 8, we use keys for all rotation-by-power-
of-2, but since this happens near the end of the homomorphic evaluation, we minimize their size
by creating rotation keys that support only 3 more multiplicative levels. A top-level rotation key
is included just for rotation by 1, as needed by previous optimization.

The detection key also needs to be stored by the detector, so the above also reduces the stor-
age/memory requirements (especially if decompression is done on-the-fly and amortized across
many messages and cores).

8 Denial-of-Service Resistance

Thus far we have assumed, as in prior works, that all clues in the board are generated honestly by
the prescribed GenClue algorithm, using various honestly-generated clue keys. However, this may
be violated in reality. Clues may be generated incorrectly, or even maliciously, especially if anyone
is allowed to add messages to the board (as in blockchain applications).

In a Denial of Service (DoS) attack on an OMR or OMD scheme, the adversary can maliciously
generate any of the clues ci ∈ C in board messages, in an attempt to induce false positives or
false negatives in the subsequent detection/retrieval. The adversary could simply use this power to
create pertinent messages for some recipient, thus trying to induce an overflow for that recipient (by
exceeding their k̄); this is inevitable and handled in Section 7.7. But the bigger danger is amplified
DoS : it could also be the case that even a single maliciously-crafted clue, placed in the board, will
cause catastrophic failure (e.g., causing many recipients to overflow or miss pertinent messages)

32The digest size is independent of N and k̄. Naively, it grows as log-logarithmically with εp and εn due to the
multiplicative depth of the evaluated circuit, but asymptotically we can cap this growth using BFV bootstrapping
[CH18, KDE+21].

33This is SEAL’s seeded secret-key encryption mode, see https://github.com/microsoft/SEAL/blob/main/

native/examples/6_serialization.cpp.

43

https://github.com/microsoft/SEAL/blob/main/native/examples/6_serialization.cpp
https://github.com/microsoft/SEAL/blob/main/native/examples/6_serialization.cpp

or soundness (e.g., causing many recipients to misdetect messages as pertinent). Furthermore, the
adversary may also take the role of a recipient in the system, and publish a maliciously-crafted clue
key, thereby inducing honest senders to unwittingly generate harmful clues.

As shown next, the above attacks are possible in natural and prior schemes, but our OMRp1
and OMRp2 schemes are resilient to these.

8.1 Threat Model (DoS)

In the DoS threat model, the computationally bounded adversary has all the power as defined in
Section 4.2. Additionally, it is allowed to generate any (perhaps malformed) clues and post them on
the board, as well as generate any (perhaps malformed) clue keys for other senders to use. Thus, for
correctness and soundness, we assume only that the detector is honest but curious. Other parties
are malicious. As before, for privacy, everyone but the message’s sender and recipient are assumed
malicious and colluding.

8.2 Simple Attacks

Attack on the Simple FHE Scheme. Consider the generic FHE-based scheme of Algorithm 5,
instantiated with FHEW or TFHE (the technique may be extended differently depending on
schemes). Then, a malicious sender can generate a wildcard ciphertext that decrypts to 1 for
almost any honesty-generated key pair. By setting all the ` clue ciphertexts to wildcard cipher-
texts, the adversary will cause the message including this clue to be detected as pertinent for almost
all recipients, and if there are many such messages, then these recipients would all overflow.

Specifically, recall that FHEW and TFHE use a low-weight secret key sk; for simplicity as-
sume it is binary: sk ∈ {0,1}n ⊂ Znq (the argument generalizes to ternary etc.). Then one wild-
card ciphertext is ct = (~a, b), where ~a = 0n and b = 0, which always decrypts to 0 under any
FHEW/TFHE public key. Another wildcard ciphertext is ct = (~a, b), where ~a = (1, . . . ,1) ∈ Znq
and b = n/2 + q/2 ∈ Zq, which is very likely to decrypt to 0.34 This generalizes.

Worse yet, even if all the senders are generating their clues honestly, a DoS attack can be
initiated by a malicious receiver. Such a receiver can publish a clue key that is all-zero, and induce
any sender to send some message to that clue key. The resulting clue will be all zero (since the
sender’s GenClue honestly combines clue-key elements), which is one of the aforementioned wildcard
ciphertexts.

Fuzzy Message Detection. The FMD schemes of [BLMG21] are similarly vulnerable, as also
observed in [Lew21b, commit e19b99112e] for some choices of clues (all zeros or all ones). In
addition, for some other choices of underlying asymmetric key encryption, for example, FHEW and
TFHE (which fulfill the CPA security requirements of these FMD schemes), the above wildcard
ciphertext attack carries over. These attacks may be generalized and therefore the mitigation
is non-trivial. These clue would cause messages to be misperceived as pertinent by almost all
recipients, thereby increasing their communication and computation cost.

34The Hamming weight of sk, and thus 〈~a, sk〉, has a mean of n/2 and standard deviation
√
n/12. Thus, it holds

that 〈~a, sk〉 − b ∈ q/2 ± q/4 with probability ≈ erf(q/4√
2n/12

) over sk, in which case the decryption result is 1. For

example, with the common parameters n = q = 512 [PAL21], the probability of decrypting to 1 is ≈ 1 − 10−53, so
even for ` = 20 ciphertexts per clue, all will decrypt to 1 with probability > 1− 10−51.

44

Private Signaling. The Private Signaling scheme of [MSS+21] is also vulnerable to DoS attacks.
The single-server scheme is vulnerable to wildcard ciphertext attacks, which can overflow recipients
as above. Moreover, their model, where signals are sent to servers rather than placed on the board,
opens an additional DoS attack vector. For instance, a malicious sender can send many pertinent-
looking signals to a server (or, in the two-servers scheme, to a server pair) without putting anything
on the board, and therefore cause extra work for the server(s) to overflow the message accumulator
for recipients.35

8.3 DoS Resistance Definition

We introduce a formal definition of DoS resistance, strengthening the OMR definition of Section 4.3.
Recall that there, Definition 4.1provides soundness and completeness guarantees only when the clues
in the board are honestly generated, using clue keys which are themselves honestly generated. In
that case, there is a natural ground-truth notion of pertinent messages, defined by which clue key
pkclue each clue was generated for; hence soundness and completeness are defined in reference to
that ground truth.

Now, however, we wish to capture a stronger notion, where clues may be maliciously generated
and may not obviously correspond to any specific clue key (e.g., consider the wildcard ciphertext
above). We thus require the existence of an indicator predicate I(c,pkclue) that serves as a ground
truth for whether a given clue c is pertinent to a given user specified by their clue key pkclue. This
predicate, which may not be efficiently computable, should give the natural answer for honestly-
generated clues. For otherwise-generated clues, the indicator may answer arbitrarily, except that
it must still make up its mind, i.e., not claim more than one honest recipient as the intended one,
except with small probability. This collision resistance property means that, while a malicious
sender can (inevitably) craft a message that is be considered pertinent by one user, it is difficult to
spam multiple users with a single message.

Soundness and completeness are then redefined w.r.t the indicator I, as below. Note that to
facilitate tight analysis, the completeness (false negative rate) bound εn in the definition is broken
up into two components: the rate εi at which the indicator fails to detect truly pertinent messages
(which may be non-negligible because a indicator with high thresholds may help achieve collision
resistance), and the rate εn − εi at which the scheme fails to retrieve messages flagged by the
indicator (which may be on-negligible because of error sources in the concrete scheme).

Definition 8.1 (DoS-resistant OMR). Let OMR be an OMR scheme for error rates εn, εp (as in
Definition 4.1). An indicator with an indicator false negative rate εi ≤ εn for OMR is a function
b ← I(pp, x, c, pkclue, sk) on a public parameter pp, a message (x, c), a clue key pkclue, and its
corresponding secret key sk, outputs b ∈ {0,1}, such that:

35In the SGX-based single-server scheme, this could be prevented by placing signals publicly within the board. In
the GC-based two-server scheme, the signal shares must not be publicly revealed, but the commitments thereto can
be put on the board. This requires adding information (“clues”) to the board, as in our OMD/OMR model.
Alternatively, the servers can check the board, and ignore signals that do not correspond to new board messages.
But this works well only if a single SGX-based server (or a GC-based server pair) handles all users; otherwise, an
attacker can put one new message on the board, and then send signals to every server (or server pair) purporting to
pertain to that message, while equivocating by sending different signals, so that every server detects that message as
pertinent for one of its own users. Moreover, this mitigation does not apply to the two-server (GC) based solution,
as the signals sent to each server needs to be kept private.

45

• (Indicator completeness) For pp← GenParams(1λ, εp, εn), honest-generated key pair (sk, pk =
(pkclue,·))← KeyGen(), for any payload x, and honest-generated clue c← OMR.GenClue(pkclue, x),
it holds that

Pr[I(pp, x, c, pkclue, sk) = 1] ≥ 1− εi − negl(λ) .

• (Collision resistance) For any PPT adversary A, let pp← GenParams(1λ, εp, εn), two honest-
generated key pairs (sk, pk = (pkclue, ·)) ← OMR.KeyGen() and (sk′, pk′ = (pk′clue, ·)) ←
OMR.KeyGen(), and adversarially-generated (x,c) ← A(pk, pk′), for b ← I(pp, x, c, pkclue, sk)
and b′ ← I(pp, x, c, pk′clue, sk′), it holds that

Pr[b = 1 ∧ b′ = 1] ≤ εp + negl(λ) .

An OMR scheme OMR is DoS-resistant for εn and εp if there exists an indicator I with an indica-
tor false negative rate εi for OMR such that for any PPT adversaryA, for pp← GenParams(1λ, εp, εn),
(sk, pk = (pkclue, pkdetect)) ← OMR.KeyGen(), and adversarially-generated board BB ← A(pp,pk)
where BB = ((x1,c1), . . . , (xN ,cN)) and (xi)i∈[N] are unique, for any 0 < k̄ ≤ N , letting M ←
Retrieve(D, pkdetect, k̄), PL← Decode(M, sk):

• (DoS-completeness) Let k =
∑N

i=0 I(pp, xi, ci, pkclue, sk). Then either k > k̄ and PL =
overflow, or Pr[xj ∈ PL | I(pp, x, c, pkclue, sk) = 1] ≥ 1− (εn − εi)− negl(λ) for all j ∈ [N].

• (DoS-soundness) Pr[xj ∈ PL | I(pp, x, c, pkclue, sk) = 0] ≤ negl(λ) for all j ∈ [N].

Note that DoS-completeness implies the (weaker) completeness of Definition 4.1 with the same
false negative rate εn, and DoS-soundness implies the (weaker) soundness of Definition 4.1 with
false positive rate εp + εn. Completeness is trivial, and soundness is given by the following lemma:

Lemma 8.2. Any tuple of algorithms OMR that is εp-DoS-sound by Definition 8.1 is (εp+εn)-sound
by Definition 4.1.

Proof. Let pp ← GenParams(1λ, εp, εn). Let a board BB, a set S of pertinent messages, and a key
pair (sk, pk = (pkclue, pkdetect)) be generated as in Definition 4.2 for any choice of p, partition and
payloads therein.

If j /∈ S, then, for (xj , cj) there exist a different public key pk′ such that c was honestly generated
as c ← GenClue(pk′clue, x) by Definition 4.2. By indicator completeness, Pr[I(pp, x, c, pk′clue, sk′) =
1] ≥ 1− εn− negl(λ), an therefore by collision resistance, Pr[I(pp, x, c, pkclue, sk) = 1] ≤ εp(1− εi) +
εi +negl(λ) ≤ εp +(1−εp)εi +negl(λ) < εn +εp +negl(λ). Therefore, Pr[xj ∈ PL] ≤ εn +εp +negl(λ),
which satisfies the soundness definition in Definition 4.1.

DoS-resistant Oblivious Message Detection. The OMD definition can be strengthened anal-
ogously.

Generic ZK Solution? A natural attempt to upgrade any OMR scheme to become DoS-resistant
is to accompany each clue with a zk-SNARK proof [Mic00, BCCT12] that the clue was correctly
generated (from a clue key that was also correctly generated, using recursively composed ZKPs
[Val08, BCCT13]). However, this is not in general adequate, because a malicious sender (or clue
key generator) could skew the randomness fed into GenClue (or KeyGen) to induce soundness or
completeness failures that would have low probability in the honest case.

46

8.4 Attaining DoS-resistant OMR

The OMRp1 scheme of Section 7 already satisfies DoS resistance (for εp = poly(λ), with a minor
change, under the natural computational assumption stated below). Intuitively, this is because
PVW encryption has the property that a ciphertext that decrypts to 0 can be generated by adding
up columns of the public key, but if the ciphertext is efficiently generated in any other way (e.g.,
from a different public key, or “out of the blue”), then its decryption is close to uniformly random.

Patched OMRp1. The exception to the above intuition is trivial ciphertexts (i.e., adding up
none of the public-key columns), so we redefine the clue space as {(~a,~b) ∈ Zn+`

q : ~a 6= 0n}. Accord-
ingly, we change OMRp1.Retrieve (at line 15) to reject clues where ~a = 0n. Moreover, we change
OMRp1.GenClue such that if generates a clue with ~a = 0n, it retries with fresh randomness (and
aborts after λ attempts).

Theorem 8.3. For any εp = poly(λ), Algorithm 7 (patched as above) is a DoS-resistant Oblivious
Message Retrieval scheme, when instantiated with any PRF f , assuming the hardness of Ring-LWE
and Conjecture 8.4 below.

The requisite Conjecture 8.4 , stated below, is a new but natural conjecture about the behavior
of Regev05 encryption (i.e., LWE samples). Crucially, it is needed only to prove the DoS-resistance
of soundness and completeness. Privacy, as well as non-DoS soundness and completeness, rely only
on the standard Ring-LWE assumption (cf. Theorem 7.1).

Proof sketch . We now prove that our construction satisfies DoS Resistance of OMR according to
our definition 8.1.

First, an indicator is constructed as follows. After taking clue c = (~ua, ~ub) ∈ C, it computes
~u = ~ub − skT~ua. Then, it returns 1 iff for all ui ∈ ~u, ui ∈ [−r, r], and outputs 0 otherwise. This
is complete because if a clue c ← GenClue(pkclue, x), clue c encrypts 0` and each of the ` elements
has a Gaussian noise with standard deviation of

√
wσ. Then, as ` · (1 − erf(r/(

√
2wσ))) ≤ εn/2,

the indicator completeness is satisfied with εi = εn/2. Indicator collision resistance follows from
Conjecture 8.4 and Lemma 8.5 below.

Note that OMRp1.Retrieve performs the same computation as the above indicator, but under
BFV homomorphic evaluation. Thus, DoS-soundness is trivial: for any clue ci, i ∈ [N], such that
I(pp, xi, ci, pkclue, sk) = 0, we have PVi ∈ 〈0〉BFVsk (with only negligible probability of BFV failure),
and thus the message will not be added to PL.

Similarly, for DoS-completeness: for any clue ci, i ∈ [N], such that I(pp, xi, ci, pkclue, sk) = 1, we
have PVi ∈ 〈1〉BFVsk (with negligible error probability due to BFV failure). If k < k̄, the only other
source of getting PL = overflow is from our SRLC method, and as shown at line 32, it holds enough
combinations to make the retrieval failure bounded by εn/2+negl(λ) = εn−εi +negl(λ). (Note that
the completeness of SRLC is unaffected by adversarial input, so its average-case guarantee suffices.)
For k > k̄, our deterministic counter gives k and outputs overflow accordingly.

Lastly, OMRp1.GenClue is still PPT despite resampling with fresh randomness when the gen-
erated clue has ~a = 0n. For any honestly generated clue key pk, by [PVW08, Lemma 7.4],
(~a,~b) ← PVW.Enc(pk,~0) has ~a in a distribution statistically indistinguishable from the uniform
distribution in Znq , thus ~a = ~0 with probability ≤ q−n + negl(λ). The probability that all λ trails

has clue output as ~a = 0n is thus n−λ·q + negl(λ) = negl(λ).

Snake-Eye Conjecture. To argue that the above indicator is collision resistant, we will rely on the
following natural conjecture about LWE-based encryption. Phrased in terms of the Regev05 [Reg09]

47

encryption scheme (which is identical to PVW for ` = 1), it says: it is infeasible, given two honestly-
generated Regev05 public keys, to find a nontrivial ciphertext that decrypts to 0 under both of
the corresponding secret keys (we call such a ciphertext a snake-eye), except with a negligible
advantage over trivial (i.e., 1/2 + negl, attained by just encrypting 0 to the first key). Moreover,
when Regev05 decryption is changed to use the range ±r instead of ±q/4, for any 1 ≤ r < q/4,
then no adversary can find a snake-eye with probability better than the trivial (2r + 1)/q + negl.
Formally stated:

Conjecture 8.4 (Regev05 is snake-eye resistant). For any PPT algorithm A, for Regev05 en-
cryption with modulus q and remaining parameters for which semantic security holds, for any
1 ≤ r < q/4, for key pairs (sk, pk) ← KeyGen(1λ) and (sk′, pk′) ← KeyGen(1λ), for ciphertext
(~a, b)← A(pk, pk′, r), it holds that

Pr

[
|〈~a, sk 〉+ b| ≤ r
∧ |〈~a, sk′〉+ b| ≤ r ∧ ~a 6= ~0

]
≤ (2r + 1)/q + negl(λ) .

Snake-eye resistance is not generically implied by semantic security of the encryption scheme,
nor by key privacy.36 However, Conjecture 8.4 can be proven under the standard (homogeneous)
Short Integer Solution (SIS) hardness assumption [Ajt96] combined with a natural generalization of
the Knowledge of Knapsack of Noisy Inner Products assumption [BCCT12]. Alternatively the latter
assumption can be replaced by a zk-SNARK proof [Mic00, BCCT12], appended to the ciphertext,
of the statement “(~a,b) was constructed as a linear combination of public-key vectors”.37

Snake-eye resistance naturally generalizes to PVW encryption, saying that for PVW with plain-
text space Z`q, the probability of producing a snake-eye (a ciphertext that decrypts to all-zero-vectors
under two given public keys) shrinks exponentially in `. For small ` (which suffices for us), this
follows from Conjecture 8.4 by a hybrid argument with sampling rejection:

Lemma 8.5 (PVW is snake-eye resistant). Under Conjecture 8.4 , for any PPT adversary A, for
PVW encryption with modulus q and plaintext space Z`2, and r such that ((2r + 1)/q)−` = poly(λ)
and remaining parameters for which semantic security hold, for any 1 ≤ r < q/4, for key pairs
(sk, pk)← PVW.KeyGen() and (sk′, pk′)← PVW.KeyGen(), for ciphertext c = (~a,~b)← A(pk, pk′, r),
letting ~m← skTA+~b and ~m′ ← sk′T~a+~b, it holds that:

Pr
[
(∀i ∈ [`] : |mi| ≤ r ∧ |m′i| ≤ r) ∧ ~a 6= ~0

]
≤ ((2r + 1)/q)` + negl(λ) . (2)

Proof sketch . By induction on `. The base case ` = 1 is identical to Conjecture 8.4 .
Suppose the lemma holds for some ` but not for ` + 1. Then there exists a PPT algorithm A

such that for ciphertext c = (~a,~b) ← A(pk, pk′, r), letting ~m ← skTA +~b and ~m′ ← sk′T~a +~b, it

36Any such secure encryption can be “spoiled” by adding a special ciphertext that always decrypts to zero but is
never generated by Enc, thereby maintaining security but breaking snake-eye resistance.

37Using the Groth16 scheme [Gro16], the size of this proof is 192 bytes [HBHW21, §5.4.9.2] per clue regardless of
`, and in Zcash the statement can be merged into pre-existing zk-SNARK proofs in the same transaction [HBHW21].

48

holds that:

((2r + 1)/q)`+1 + nonnegl(λ)

<Pr
[
(∀i ∈ [`+ 1] : |mi| ≤ r ∧ |m′i| ≤ r) ∧ ~a 6= ~0

]
(Eq. (2) does not hold for `+ 1)

= Pr
[(

(∀i ∈ [`] : |mi| ≤ r ∧ |m′i| ≤ r) ∧ ~a 6= ~0
)

︸ ︷︷ ︸
A`

∧
(
|m`+1| ≤ r ∧ |m′`+1| ≤ r

)
︸ ︷︷ ︸

B`+1

]
= Pr [A` ∧B`+1] = Pr[A`] · Pr[B`+1|A`]
≤
(
((2r + 1)/q)` + negl(λ)

)
· Pr[B`+1|A`] (Eq. (2) holds for `)

It follows that Pr[B`+1|A`] > (2r+1)/q+nonnegl(λ). We will use this to construct a PPT algorithm
A′ that violates Conjecture 8.4 .

The algorithm A′, given a challenge (pk∗ ∈ Z(n+1)×w, pk′∗ ∈ Z(n+1)×w), creates a snake-eye
ciphertext as follows. Let pkn ∈ Zn×w denote the first n rows of pk∗ (i.e., the vector parts of each
of the w LWE sample in pk∗). Generate ` new PVW secret keys sk = (ski)i∈[`]. Let pk denote pk∗

extended with ` new rows, containing skTpkn, inserted before the last row (so that pk looks like a
PVW public key for plaintext space Z`+1

2). Let sk′, pk′n and pk′ be defined analogously from pk′∗.

Then, run c = (~a,~b) ← A(pk, pk′). Compute ~m = skTA +~b and ~m′ = sk′T~a +~b. If condition A`
(defined above) holds, output c = (~a, b`+1); otherwise repeat with freshly drawn sk, sk′.

Note that the distribution of (pk,pk′,sk,sk′) induced by A′ is identical to what A expects above,
and thus here too, Pr[A`] > ((2r + 1)/q)`+1, so the expected number of iterations is poly(λ) as
((2r+ 1)/q)−` = poly(λ). Similarly, here too Pr[B`+1|A`] > (2r+ 1)/q+ nonnegl(λ), and thus once
A′ terminates, event B`+1 also holds with that probability, in which case c is a snake-eye ciphertext
for the challenge (pk,pk∗), contradicting Conjecture 8.4 .

This immediately implies the indicator collision resistance property above.
Analogously, OMRp2 in Algorithm 8 is likewise a DoS-resistant OMR after patching the clue

space.

9 Key Unlinkability

9.1 Key Linkability Issues

The security notions discussed thus far, and in prior works, omit another privacy consideration:
linkability of the detection and clue keys. This occurs in several senses:

Detection-Key to Clue-Key Linkability. Recall that the clue key may be publicly associated
with the recipient’s identity (e.g., a private messaging address may be shared; or a cryptocurrency
payment address, augmented with the clue key as in Section 11, may be publicly posted). Thus,
if the detection key is the same as the clue key, or otherwise linkable to it, then the recipient is
effectively disclosing their identity to the detector, and thereby perhaps to the whole world (since in
our threat models, detectors may be unwilling or unable to keep secrets). Consequentially, recipients
may be inadvertently broadcasting the time when they go online to check for new messages, along
with their choice of pertinent-message bound k̄, and (in the absence of adequate network-level
anonymity) IP address — all tied to their identity.

49

Detection-Key to Detection-Key Linkability. Another privacy concern is that multiple de-
tection queries may be linkable to each other, thus allowing traffic analysis of detection queries.

Clue-Key to Clue-Key Linkability. Recipients may wish to publish several addresses that
are unlinkable, but (secretly) correspond to a single secret key which controls all of them (e.g.,
“diversified address” in Zcash [HBHW21]). This seems incompatible with the simple detection
model discussed so far: if all of these addresses carry the same clue key, then they become trivially
linkable by that; whereas if they carry fresh clue keys, then the messages pertinent to each have to
be retrieved separately, with corresponding growth in cost.

Linkability in Prior Work. In FMD [BLMG21], the detection keys and clue keys are a key pair
in an asymmetric encryption scheme (i.e., pkdetect = sk and pkclue = pk, where (sk, pk)← KeyGen)),
and therefore can be linked. Moreover, linkability is inherent to the FMD model: given pkclue and
pkdetect, one can simple check whether clues generated using pkclue are always or rarely detected
using pkdetect.

Both PS schemes [MSS+21] likewise link the detection key to the clue key. In PS2, the model
assumes that recipients have a public identifying number Ri serving as the clue key, and this Ri
is also (implicitly) provided to the detector in every retrieval by that recipient [MSS+21, Fig. 10,
Procedure RECEIVE]. In PS1, there is likewise a persistent identifier Ri known to the receiver at
every interaction (and used, e.g., to identify the TEE session eid i and associated ~Li). The clue key
in PS1 is not Ri itself but an RSA-OAEP public key pki; yet pki is seen by detector and associated
with Ri during registration [MSS+21, Fig. 9, procedure Setup, Server line 2].

In both FMD and PS, the detection key and clue key are fixed for each recipient, and therefore
the latter linkability issues also hold.

9.2 Defining Key Unlinkability

We can extend the definitions of OMR and OMD, in both the non-DoS (Sections 4.3 and 4.4) and
DoS (Section 8.3) variants, to require that the related clue and detection keys are computationally
indistinguishable from unrelated ones:

Definition 9.1. An OMR or OMD is detection-to-clue-key-unlinkable if for any PPT adver-
sary A, letting pp ← GenParams(εp, εn), (sk, pk = (pkclue, pkdetect)) ← KeyGen() and (sk′, pk′ =
(pk′clue, pk′detect))← KeyGen(), it holds that (pkclue, pkdetect) ≡c (pkclue, pk′detect).

A stronger notion addresses the latter two linkability issues as well. It lets the recipient generate
new clue keys and/or detection keys, that work just as well as the original ones, yet are unlinkable.
Defined informally for brevity:

Definition 9.2. An OMR or OMD scheme is full-key-unlinkable if it provides two additional
algorithms:

• A detection-key regeneration algorithm pk∗detect ← RegenDetectKey(sk) which a recipient can
use to sample a new detection key matching their existing secret key.

• A detection-key regeneration algorithm pk∗clue ← RegenClueKey(sk) which a recipient can use
to sample a new clue key matching their existing secret key.

such that:

50

• (Soundness and completeness for resampled keys) Messages sent to (re)sampled clue keys
are detected by the (re)sampled detection key of the same sk, with error rates bounded
analogously to those of the initial pkclue and pkdetect.

• (Full key privacy) It is computationally infeasible to distinguish (a) a list of clue keys and
detection keys all (re)generated with the same secret key, from (b) a list of freshly-drawn clue
keys and detection keys.

9.3 Attaining Unlinkability

Key Unlinkability in OMRp1 and OMRp2. The OMRp1 and OMRp2 schemes are detection-
to-clue-key-unlinkable, by the semantic security of BFV (applied to ctlweSK in pkdetect). Moreover,
they are full-key-unlinkable, via the following key regeneration algorithms.

To resample detection keys, recall that in these schemes, the detection key contains two parts:
the BFV public key pkBFV, which can be resampled from scratch; and the ciphertext BFV.Enc(pkBFV,
PVW.sk), which is indistinguishable from BFV.Enc(pkBFV, 0) by semantic security of BFV. Thus,
RegenDetectKey is defined as simply re-executing lines 6 to 8 of Algorithm 7. To resample clue
keys, recall that in these schemes, the clue key is a PVW public key. PVW encryption naturally
supports a RegenPK algorithm that resamples a public key with respect to a given secret key, such
that it is indistinguishable from an unrelated public key.38 Thus, RegenClueKey simply invokes
PVW.RegenPK(sk).

Attaining Key Unlinkability for Other Schemes. Our OMRt1 scheme, as described above,
trivially exhibits linkability (since pkclue = pkdetect). This can be patched to achieve detection-to-
clue-key-unlinkability if the underlying FHE scheme supports resampling public keys, i.e., provides
a RegenPK with the aforementioned properties. This is satisfied, e.g., by the aforementioned FHE
schemes: FHEW [DM15] and TFHE [CGGI20]. Thus, to achieve detection-to-clue-key-unlinkability
for Algorithm 1, change line 7 to define pkclue ← FHE.RegenPK(FHE.sk). Moreover, full-key-
unlinkability can be achieved by defining both RegenDetectKey and RegenClueKey as invoking
FHE.RegenPK(FHE.sk).

PS1 can be modified to achieve detection-to-clue-key unlinkability, as well as RegenClueKey, by
changing its PKE to one that (unlike RSA-OAEP) supports resampling public keys, and using this
to resample clue keys, analogously to the above. Regenerating detection keys, in this case, requires
the recipient to re-register with the server [MSS+21, Fig. 9, procedure Setup] using the same sk
(and trust the TEE to not link it to the previous registration that used that sk, which is visible to
the TEE). Also, the TEE program [MSS+21, Fig. 8] needs to be modified to not output a linkable
pk, and an additional procedure needs to be added to de-register old sessions in order to cease
invoking the TEE on these for every new message.

It is not obvious how to achieve full-key-unlinkability, or even the weaker detection-to-clue-key-
unlinkablity, for PS2, FMD1, or FMD2.

38That is: for this encryption scheme, there exists a PPT public-key-regeneration algorithm RegenPK such that for
(sk, pk)← KeyGen(), (sk′, pk′)← KeyGen() and pk∗ ← RegenPK(sk) it holds that (pk,pk′) ≡c (pk,pk∗); and moreover
correctness holds with respect to the key pair (sk,pk∗). In the case of PVW, PVW.RegenPK generates fresh LWE
samples from the same distribution as in the original public key.

51

10 Performance Evaluation

10.1 Methodology

We implemented the OMRp1 scheme of Section 7.3 (and OMDp1 is a simplified version of OMRp1),
and the OMRp2 scheme of Section 7.4 instantiated with SRLC2, in a C++ library (released as open
source). We used the PALISADE library [PAL21] for PVW encryption, and the SEAL library
[Mic20] with Intel-HEXL acceleration [BKS+21] for the BFV scheme. We benchmarked these
schemes on several parameter settings, on a Google Compute Cloud c2-standard-4 instance type
(4 hyperthreads of an Intel Xeon 3.10 GHz CPU with 16GB RAM). This section reports the results,
in comparison to prior and concurrent works.

Application Parameters. As baseline parameters, we chose the following as representative of
a high-traffic cryptocurrency application. The total number of messages is set to N = 500,000
(roughly the number of Bitcoin payments per day39), and the cap on the number of pertinent mes-
sage per recipient is set to k̄ = 50 (which, if exceeded, requires repeated retrieval; see Section 7.7).
We also show scaling for larger N and k̄. We set a false positive rate εp = 2−21 (including decryption
failure) and a false negative rate εn = 2−30.

The payload size is 612 bytes, as in Zcash (see Section 11).

Internal Parameters. For the PVW encryption, we used PALISADE’s implementation
[PAL21] with parameters n = 450, q = 65537, σ = 1.3, w = 16000, ` = 4, for a 120-bits security
level according to [APS15, Pla18] and the up-to-date LWE-estimator [CLV+]. For the BFV scheme,
we used SEAL [Mic20] with D = 215, logQ = 790, t = 6553740, for a security level of > 128
bits according to [APS15, Pla18] and the up-to-date LWE-estimator [CLV+].41 We set the LWE
decryption range r = 850, and instantiate with SRLC2 and for simplicity, we fix γ = 5, m = 100
(and thereby directly set γ in ppSRLC and m in line 32 in Algorithm 7 and line 40 in Algorithm 8
without calling GenParams), which by empirical tests suffices to achieve εn � 2−30 for k̂ = dk̄ +
N log(N)εpe = 55 (empirical tests described in SRLC2.GenParams.TestRank with λ = 80, εF = 2−31).
The resulting multiplicative level is ∼23. Since each BFV ciphertext can pack D · blog pc = 219 bits,
the digest contains just two BFV ciphertexts: one for the combinations (m · 612 = 61,200 bytes)
and one for the PV vector (N = 500,000 bits).

For OMRp2 we set two additional parameters (cf. Sections 6.1.2 and 7.4). The number of
accumulators for index retrieval is set to d̂ = 1 (as each BFV ciphertext supports D = 215 slots, so
D > 10k̂). Each accumulator has two ciphertexts, as we need to represent a number in N = 500,000,
as each ciphertext can represent 216 +1 in each slot, so to represent a number > 216 +1 but smaller
than (216 + 1)2, we need two ciphertexts. The number of bucket sets is C = 5 as discussed in
Section 6.1.2, contributing� 2−40 failure probability to εn. This suffices because the pseudorandom
mapping is chosen honestly and independently of the clues. Overall, the OMRp2 digest with our
parameter setting is then 16 BFV ciphertexts (including one for payload retrieval).

10.2 Evaluation Results

Representative Costs. Table 3 summarizes the main cost metrics and functionality/security
attributes of our scheme, compared to related ones, for the above parameters. (See also Table 1 for

39https://www.blockchain.com/charts/n-payments, retrieved 2021-08-16
40For OMDp1, our circuit has 2 fewer levels, so we use logQ = 730 bits.
41logQ is BFV parameter to support ∼23 levels of multiplication.

52

https://www.blockchain.com/charts/n-payments

Detection schemes Retrieval schemes (including detection)
ZIP-307

[GH18, Ele]
PS1

[MSS+21]
PS2

[MSS+21]
OMDp1

§7.2
Zcash full
scan [Ele]

FMD1
[BLMG21] / [Lew21b]

FMD2
[BLMG21]

OMRp1
§7.3

OMRp2
§7.4

Communication (bytes/msg) 116 � 1 � 1 + 3M s↔s 0.56 612 42 5.3 1.13 9.03

Detector computation
time (sec/msg)

1 thread N/A 0.06 0.25 0.021 N/A 0.011 / 0.00020 0.043 0.145 0.155
2 threads 0.01 0.075 0.085
4 threads 0.0099 0.065 0.72

Recipient computation
total time (sec)

1 thread 70 � 10−3 � 10−3 0.005 61 2.1 0.29 0.02 0.063

Clue size (bytes) N/A 32 32 956 N/A 68 / 64.5 318,530 956 956

Clue key size (bytes) N/A 32 N/A 133 k N/A 1.5 k 1 k 133 k 133 k

Detection key size (bytes) N/A 64 920 99 M N/A 768 512 129 M 129 M

Retrieval privacy Full Full
Partitioned

across
detectors

Full Full
pN -msg-

anonymity
p = 2−5

pN -msg-
anonymity
p = 2−8

Full Full

Env. assumptions for
privacy

None TEE (SGX)
Non-colluding

servers
None None None None None None

Env. assumptions for
Soundness+completeness

None Honest S&R Honest S&R None None Honest S&R Honest S&R None None

Table 3: Comparison of cost metrics, functionality and security attributes. Costs are per mes-
sage, per recipient. Notation is as in Tables 1 and 2. The bulletin contains N = 500,000 mes-
sages, of which k = k̄ = 50 are pertinent to the recipient. For OMDp1, OMRp1, and OMRp2,
we benchmarked 2-thread and 4-thread running time.42 For FMD1, the detector’s computation
time is given for both the original implementation [BLMG21] and an optimized re-implementation
[Lew21b]. The FMD algorithms in retrieval mode (i.e, for every detected message, the payload is
attached.For PS1/PS2, we used the times from [MSS+21, §9.2] (Intel Xeon Platinum 8259CL CPU
at 2.5GHz), and some costs are via private communication from their authors. If FMD1/FMD2
are used just for detection, the costs are essentially unchanged except that communication is ≤ 1.

additional functional/security attributes and Table 2 for asymptotic costs,).
We see that in both communication and recipient computation, OMRp1 is better than any other

scheme with retrieval functionality, thereby making it attractive for recipients that are limited in
bandwidth, computation speed, or energy. Furthermore, OMRp1/OMRp2 provide the strongest
form of security, and under the least assumptions, matched only by simple linear scans (full-scan
for retrieval, or ZIP-307 for detection) whose communication and recipient computation costs are
higher by by orders of magnitude.

Retrieval Scaling with #Messages. Fig. 3 evaluates how the recipient’s total cost of retrieval
scales with increasing bulletin size N , keeping the number of messages intended for the recipient k̄
constant. Only retrieval schemes are included.

As can be seen, our scheme OMRp1 outperforms all prior constructions starting , in both digest
size (for N ≥ 2 · 105) and recipient computation time (for N ≥ 8 · 104).

For N > 8 · 106, our compact OMR scheme OMRp2 takes the lead and achieves an amortized
digest size of less than 1 bit per message. In general, the crossover point grows with k (due to
the growing number of buckets in OMRp2), so OMRp2 outperforms when N is large but k is small.

The knee in the OMRp1 running time reflects the transition from running time being dominated
by Gaussian elimination (which depends on k̄, fixed here) to dominated by decryption (which is
linear in N). The knee in the OMRp1 digest size reflects a minimum digest size: a single (packed)
BFV ciphertext representing 500,000 messages.

The detector computation time in OMRp1 and OMRp2 is worse than for FMD and (obviously)

42We have also run 4-thread benchmarks on GCP instance with the same CPU but with 8 hyperthreads. The result
is then 0.063 for OMRp1, and 0.071 for OMRp2. The running time difference is mainly due to that the 4-hyperthread
GCP instance typically allocates only two physical cores to our VM.

53

(a) Digest size vs. number of messages. (b) Total recipient computation time vs. number of mes-
sages.

Figure 3: Retrieval cost comparison (total digest size and recipient computation) for k̄ = 50.

N k̄ = 50 k̄ = 100 k̄ = 150
500,000 549.316 20 823.974 27 1098.632 36

1,000,000 823.975 22 1098.632 29 1647.949 38
2,000,000 1373.291 26 1647.949 33 1922.607 41

Table 4: Digest size (kB) | Recipient running time (ms) in OMRp1 retrieval. N is the number of
total messages and k̄ is the bound on the number of pertinent messages.

full-scan. It is essentially linear in N for all schemes in this parameter range, and thus follows from
Table 3.43

OMRp1 dependence on N and k̄. Table 4 shows how cost changes when varying both the total
number of messages N and the pertinent message bound k̄. Only (total) digest size and receiver
computation are listed, since these vary with N and k̄. Note that as N grows, with constant k̄, the
amortized per-message digest size shrinks. Due to the packing in the underlying BFV encryption,
N is effectively rounded up to a multiple of 500,000; we thus list just such multiples.

For mere detection with OMRp1 (omitting its retrieval part), the digest size is 4.5 bits/msg for
all of these parameter choices.

Detection Key. The detection key size is 129 MB, using the size-reduction techniques of
Section 7.8.44 This includes the BFV encryption key, the BFV evaluation key, and the BFV
encryption of skLWE. The BFV encryption key takes 3.3 MB, and likewise the encryption of skpvw
(packed into ` BFV ciphertext). Size is dominated by the BFV evaluation key, which includes
one full-level relinearization key and one full-level rotation key, 50 MB each and some low-level

43In particular, for OMRp1 and OMRp2 we fixed γ = 5,m = 2k̄ which suffices for εn < 2−30 in all these cases, as
well as the PVW and BFV parameters.

44Without these optimizations, the detection key size is ∼13.5 GB.

54

rotation keys totally ∼13 MB, for a total of ∼129 MB. Note that the detection key does not need
to be kept secret; it can be sent to the detector via an insecure channel, authenticated by a simple
hash. After the one-time cost of transmission, it can then be used to detect an arbitrary number
of messages.

Memory Use. For simplicity, our implementation stores the detection key and all intermediate
results in RAM, for a total memory use of ∼3.5 GB per thread (i.e., dominated by thread-local
variables). 45

Streaming Finalization Cost. Using the streaming approach of Section 7.5, we can reduce
the response time to recipients, by doing most (> 95%) of the detectors’ work in advance. For
OMRp1, the finalization step (lines 31–39 in Algorithm 7) is only ∼0.0021 second per message,
single-threaded. It can be further reduced to ∼0.00035 second per message, single-threaded, since
we have fixed γ (meaning the scalar multiplication of line 53 in Algorithm 7 can be done in advance
of finalization). Similar results hold for OMRp2.

11 Integration

We proceed to discuss systems aspect of integrating OMR in real-world applications. For concrete-
ness, we consider integration of OMRp1 or OMRp2 with the Zcash cryptocurrency [HBHW21] to
solve the problem of receiver metadata leakage [Hor20] from its light wallet protocol [GH18]. This
prospective integration illustrates several hurdles and how they can be resolved. We use the same
scheme parameters and benchmark data as in Section 10.

Payload Size. In Zcash, each transaction can contain multiple payments, each addressed to
some recipient, and represented as an output description. The recipient needs 612 bytes of data to
ascertain whether the transaction is addressed to it, decrypt its associated data and human-readable
memo, and be able to spend it.46 These 612 bytes are the message payloads for our OMR. (A single
BFV ciphertext in the digest can pack 107 such payloads with the parameters of Section 10.2).

Clue Key Distribution. In our OMR approach (as for FMD [BLMG21] and single-server PS
[MSS+21]), senders need to obtain the prospective recipient’s clue key in order to generate clues.
It is natural to consider the clue key to be an extension of the recipient’s public address, shared
by the same trusted channels. Zcash’s Unified Addresses mechanism [HWH+21] indeed allows
such data to be included with public addresses in a backwards-compatible way, and payment URIs
[SC12, NH20] can be similarly extended. The clue key size of 133 kB (induced by the PVW public
key) has usability issues: it is too large for standard QR codes, or for full display on small screens,
although it is still easy to compare such addresses manually.47

Alternatively, the Unified Address can contain a short URL from which the clue key can be
fetched (and which can point, e.g., to the recipient’s secure web server, a Tor hidden service, or

45The memory working set can be reduced as follows. Recall that the processing of every message, via homomorphic
evaluation, uses the aforementioned evaluation key components in a fixed sequence. We can thus reschedule the
execution to process large batches of messages in lockstep, keeping just a couple of currently-needed key components
in memory, and swapping them from storage to memory in sequence.

46We consider Zcash shielded transactions, and specifically the output descriptions in the Zcash Sapling protocol
[HBHW21, §4.5 §4.19 §7.4]. The required fields are the 32-byte ephemeral public key epk and 580-byte ciphertext
Cenc (whose decryption encodes additional values).

47E.g., by comparing a truncated prefix, thanks to address hardening [HWH+21].

55

IPFS). More generally, one can on any general-purpose registry or key-value storage system with
suitable privacy and availability guarantees.

Zcash diversified addresses [HBHW21] can be accompanied by different clue keys while pre-
serving address unlinkability, using the full-key-unlinkability property of OMRp1/OMRp2(i.e., the
RegenClueKey procedure of Section 9.3). This means that incoming payments, sent to any of the
user’s (perhaps numerous) diversified addresses, can be both retrieved and spent using a single key
tuple.

Clue Embedding. Clues of size 956 bytes need to be attached to every payload. This is compa-
rable to the roughly 1.3 kB of data (on average) already placed on-chain per such payment.48

It would be the cleanest to extend the transaction format with a dedicated clue field. There
are also several methods to embed the information in the existing transaction format. First, we
can embed OP RETURN data in the Bitcoin-like scripting language that Zcash supports. Second, we
can create dummy output descriptions with 0 monetary value, and populate their memo ciphertext
with arbitrary data (580 bytes each). Either way, the sender would packetize and encode each
clue into multiple OP RETURN records or memo ciphertext in the same transaction; and the detector
would detect these and reassemble them into clues.49

It is also possible to propagate the clues on the blockchain’s peer-to-peer broadcast network
but not on the blockchain ledger, analogously to Bitcoin’s SegWit; detectors would record the clues
from the peer-to-peer network.

Another alternative, as for clue keys, is to rely on a general-purpose key-value storage system
with suitable privacy and availability guarantees, where the key is a transaction ID (or Zcash note
commitment), and the value is the corresponding clue(s). Finally, clues can be sent off-chain directly
to the detector(s), as in Private Signaling model [MSS+21], though this seems less appropriate for a
decentralized blockchain, and creates additional traffic analysis considerations as well as DoS issues
(cf. Section 8.2).

Detection Latency. Detectors, in this system, needs to see all blockchain data (as well as peer-
to-peer broadcasts, if using the aforementioned SegWit-like approach). Interaction with recipients
can happen in a couple of ways.

In the single-shot model, the recipient makes a stateless query to the detector: it provides a
detection key, a range of blocks to scan, and a bound k̄ on the number of pertinent messages; and
asks the detector to digest those blocks with respect to that key. The detector runs all of the
Retrieve algorithm. Response latency is high: about 0.145 sec per message (cf. Table 3).

The subscribe and finalize model utilizes the streaming variant of Section 7.5. The recipient
provides a detection key and asks to subscribe to ongoing (and perhaps some past) transactions. The

48948 bytes per payment (output), plus 384 bytes per associated spend (of which there are 0.83 per payment on
average), plus 95 bytes transaction header [HBHW21]. That assumes Zcash Canopy transactions, with only Sapling
transfers, and less than 253 outputs and spends. The difference between 948 and the aforementioned 612 bytes is due
to fields, such as zero-knowledge proofs, which are present on-chain but do not need to be retrieved by a recipient
that trusts chain validity.

49Alternatively, if using the embedding into dummy output descriptions, the clue fragments can be made indistin-
guishable from the true ciphertexts of normal output descriptions. This means it would be impossible for anyone (but
the recipient) to ascertain whether a transaction even carries clues, or just happens to make many payments. Like-
wise, this would increase the anonymity set for regular payments. Such indistinguishability is easily achieved: due to
hardness of LWE, the clues are indistinguishable from uniformly random Z216+1 elements, and thus merely needs to
be compressed by arithmetic encoding and padded with uniform bits. The detector would then treat any transaction
(with sufficiently many output descriptions) as if it carried a clue; and if it doesn’t, then OMR DoS-soundness implies
not much harm is done.

56

server starts processing these transactions, doing most of the computation (i.e., homomorphically
computing the PV ciphertexts). Later, the recipient shows up and asks the server to finalize
the results and pack them into a digest, with respect to some k̄. Neither the finalization time nor
message bound k̄ need be known in advance. This reduces finalization to 0.00035 core-seconds/msg.

Detection Cost. The computational cost for detectors is ∼$1.02 per million payments scanned
(for each recipient served), using commodity cloud computing.50 This implies $0.02/month detec-
tion cost for Zcash’s current shielded payments usage, or $1.66/month for the current usage rate of
Monero (the highest-volume privacy-enhanced cryptocurrency). In the hypothetical case where all
of Bitcoin’s payments were instead done as Zcash shielded payments, detection cost would grow to
$15.3/month.

Since we deal with a cryptocurrency, the recipient can directly and pay the server for this work,
and moreover do so anonymously.

12 Limitations and Future Work

Our results have several limitations and open questions.

Size of Clue and Clue Key. Our 1 kB clue, while comparable to existing system costs, does
add significant overhead (in Zcash, it nearly doubles the transaction size). The 133 kB clue size is
unwieldy to distribute. Both stem from the underlying LWE-based PVW encryption. Can these
be made smaller, while maintaining a practical detection cost?51

Detection Cost. The current computational cost of detection, at $1.02 per million payments
scanned, is acceptable for some current blockchains such as Zcash and Monero. However, lower
costs are desirable for operation at full Bitcoin scale, or for massive private messaging applications
such as Signal or WhatsApp. Acceleration via GPU, FPGA or ASIC can improve costs by orders of
magnitude [RCK+21, ABPA+21], and it is likely that further algorithmic improvements are possible
in our approach. It may also be possible to amortize detection costs across many recipients.

Detection Key Size. Our BFV-based schemes (OMRp1 and OMRp2) requires recipient to send
large detection keys (∼129 MB) to the detectors that serve them. This is a practical hurdle, both in
communication (though an insecure channel suffices) and in detector storage. Conversely, OMRt1
instantiated with TFHE reduces detection key size to ∼16 MB, but with much slower detection.
Combining the best of the two is an open problem.

DoS-Resistance from Standard Assumptions. Our proof of DoS resistance relies on a new
computational hardness conjecture (Conjecture 8.4). Can that conjecture, or a different construc-
tion, be proven based on standard assumptions? (Privacy already only on the standard RLWE
hardness assumption, even in the DoS threat model.)

Malicious Detectors. Our soundness and completeness properties assume that the detector
behaves honestly (though privacy does not). Recipients who doubt that can consult with multiple

50At 0.065 seconds/msg, using all 4 vCPUs of a GCP c2-standard-4 preemptible compute instance billed at
$0.051/hour. For the finalization (0.00035 sec/msg single-core / 0.00018 sec/msg four-core), we assume a non-
preemptible instance ($0.168/hour with sustained use discount) to ensure availability. Communication cost is negli-
gible: <$10−9/msg egress.

51Clue size can be losslessly compressed by 6%, since we currently represent Z216+1 elements using 17 bits, while
essentially 16 bits (amortized) would suffice using arithmetic encoding or local base encoding [DPT10]. Clue keys
can be shrunk by using Regev05 instead of PVW, but at the cost of enlarging clues. Clues can be shrunk, or even
eliminated (cf. Section 6), but at high cost in detection time in our approach.

57

detectors and hope at least one is honest. Still, it would be preferable to eradicate all honesty as-
sumptions. In principle, zk-SNARK proofs [Mic00, BCCT12] can be used to prove that the detector
behaved correctly, but applied generically (on top of an already-expensive FHE computation) the
cost would be prohibitive. On the soundness side, application-specific techniques can attest that
transactions are verified and mined into a blockchain (e.g., FlyClient [BKLZ20] for Proof-of-Work,
and Plumo [GGJ+20] for Proof-of-Stake). Integration of these techniques with OMR, and ensuring
completeness for malicious detectors, remain unexplored.

Error Rates. Our schemes have a small but nonzero false-negative rate, due to the LWE-based
encryption. Also, our DoS resistance only holds for polynomially-small false-positive rates εp =
poly(λ), not negligible ones. Practically this does not seem like a great concern, since the parameters
of Section 10.2 already achieve false positive rate εp = 2−21 and false negative rate εn = 2−30; but
it’s preferably to reduce these errors further.

Group OMR. Some applications allow messages to be addressed to groups of recipient. These can
benefit from a generalization of OMR that allows clues that are detected as pertinent by multiple
recipients, ideally without leaking the number of recipients.

Hybrid OMR+FMD. OMR can be combined with FMD [BLMG21] for a flexible cost/privacy
tradeoff. For example, first apply FMD with a high decoy rate of p = 1/4, to let the detector rule
out 75% of the messages; and then apply OMR to the rest for a near-×4 cost reduction.

Integrations. There remains to realize the integration of our OMR schemes into existing and
future systems (e.g., as discussed in Section 11), and to explore the new functional and performance
requirements that emerge therefrom.

Acknowledgements

We are grateful to Daniele Micciancio for suggesting suitable FHE schemes for Section 6; to
Ran Canetti, Oded Regev and Noah Stephens-Davidowitz for observations on Conjecture 8.4; to
Matthew Green, Jack Grigg, Daira Hopwood, Taylor Hornby and Madarz Virza for ideas and ob-
servations regarding Zcash integration in Section 11; to István András Seres and Varun Madathil
for assistance in quantitative evaluation of [MSS+21] and comparisons to our work; to Miranda
Christ for excellent editorial suggestions; and to Wei Dai for assistance in generating level-specific
rotation keys using SEAL library.

This material is based upon work supported by DARPA under Contract No. HR001120C00;
the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing
Research under award number DE-SC-0001234, the Columbia-IBM center for Blockchain and Data
Transparency; and JPMorgan Chase & Co. Any opinions, views, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the United States Government, DARPA, DOE, JPMorgan Chase & Co. or its affiliates,
or other sponsors.

58

References

[ABPA+21] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli, and
Kurt Rohloff. Implementation and performance evaluation of RNS variants of the
bfv homomorphic encryption scheme. IEEE Transactions on Emerging Topics in
Computing, 2021.

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikun-
tanathan. Homomorphic encryption security standard. Technical report, Homomor-
phicEncryption.org, Nov 2018.

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with com-
pressed queries and amortized query processing. In 2018 IEEE S&P, pages 962–979.
IEEE Computer Society Press, May 21–23, 2018.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
ACM Symposium on Theory of Computing, STOC ’96, page 99–108. ACM, 1996.

[AKS83] M. Ajtai, Janos Komlos, and E. Szemeredi. Sorting in clogn parallel steps. Combi-
natorica, 01 1983.

[ALP+21] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. Communication–computation trade-offs in PIR. In
(USENIX Security 21), pages 1811–1828. USENIX, August 2021.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, pages 169–203, 2015.

[AS16] Sebastian Angel and Srinath Setty. Unobservable communication over fully untrusted
infrastructure. In (OSDI 16), pages 551–569. USENIX, November 2016.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In ITCS’12, page 326–349. ACM, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive com-
position and bootstrapping for snarks and proof-carrying data. In STOC ’13, pages
111–120, 2013.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. In 2020 IEEE S&P
(SP), pages 947–964, 2020.

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. Prochlo: Strong privacy for analytics in the crowd. In SOSP, pages 441–459,
2017.

59

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In ITCS 2012, pages 309–325. ACM,
January 8–10, 2012.

[BJT18] Suzie Brown, Oliver Johnson, and Andrea Tassi. Reliability of broadcast communi-
cations under sparse random linear network coding. IEEE Transactions on Vehicular
Technology, 67(5):4677–4682, 2018.

[BKLZ20] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light
clients for cryptocurrencies. In 2020 IEEE S&P (SP), pages 928–946, 2020.

[BKS+21] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, Vinodh Gopal, et al.
Intel HEXL (release 1.2). https://github.com/intel/hexl, September 2021.

[BLMG21] Gabrielle Beck, Julia Len, Ian Miers, and Matthew Green. Fuzzy message detection.
The ACM Conference on Computer and Communications Security (CCS) 2021, 2021.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In CRYPTO 2012, LNCS, pages 868–886. Springer, Heidelberg,
Germany, August 19–23, 2012.

[BSCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE S&P, pages 459–474, 2014.

[BSW09] John Bethencourt, Dawn Xiaodong Song, and Brent Waters. New techniques for
private stream searching. ACM Trans. Inf. Syst. Secur., 12:16:1–16:32, 2009.

[CGBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous
messaging system handling millions of users. In 2015 IEEE S&P, pages 321–338,
2015.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. Journal of Cryptology, pages
34–91, January 2020.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private in-
formation retrieval. In 36th FOCS, pages 41–50. IEEE Computer Society Press,
October 23–25, 1995.

[CH18] Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved
fhe bootstrapping. In Advances in Cryptology – EUROCRYPT 2018, Cham, 2018.
Springer.

[CLV+] Benjamin Curtis, Cedric Lefebvre, Fernando Virdia, Florian Göpfert, James Owen,
Léo Ducas, Markus Schmidt, Martin Albrecht, Rachel Player, and Sam Scott. Secu-
rity estimates for the learning with errors problem. URL: https://bitbucket.org/
malb/lwe-estimator/src/master/.

[DD07] George Danezis and Claudia Diaz. Space-efficient private search with applications
to rateless codes. In FC’07, page 148–162. Springer, 2007.

60

https://github.com/intel/hexl
https://bitbucket.org/malb/lwe-estimator/src/master/
https://bitbucket.org/malb/lwe-estimator/src/master/

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption
in less than a second. In EUROCRYPT 2015, Part I, LNCS, pages 617–640. Springer,
Heidelberg, Germany, April 26–30, 2015.

[DPT10] Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing base without losing
space. In ACM Symposium on Theory of Computing, STOC ’10, page 593–602. ACM,
2010.

[EGNS15] Nitesh Emmadi, Praveen Gauravaram, Harika Narumanchi, and Habeeb Syed. Up-
dates on sorting of fully homomorphic encrypted data. In 2015 ICCCRI, pages 19–24,
2015.

[Ele] Electric Coin Company. Zcash Rust crates. https://github.com/zcash/

librustzcash. Commit hash: 99d877e22d58610dc43021b831a28286ef353a89.

[FR13] Matthieu Finiasz and Kannan Ramchandran. Private stream search at almost the
same communication cost as a regular search. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, pages 372–389, Berlin, Heidelberg, 2013.
Springer.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/2012/
144.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Sympo-
sium on Theory of Computing, STOC ’09, page 169–178. ACM, 2009.

[GGJ+20] Ariel Gabizon, Kobi Gurkan, Philipp Jovanovic, Georgios Konstantopoulos, Asa
Oines, Marek Olszewski, Michael Straka, Eran Tromer, , and Psi Vesely. Plumo:
Towards scalable interoperable blockchains using ultra light validation systems.
3rd ZKProof Standardization Workshop, 2020. URL: https://docs.zkproof.org/
pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf.

[GH18] Jack Grigg and Daira Hopwood. Zcash improvement proposal 307: Light client
protocol for payment detection. https://zips.z.cash/zip-0307, September 2018.

[GLA17] Pablo Garrido, Daniel E. Lucani, and Ramón Agüero. Markov chain model for the
decoding probability of sparse network coding. IEEE Transactions on Communica-
tions, 65(4):1675–1685, 2017.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology – EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016.

[Hal05] Shai Halevi. A sufficient condition for key-privacy. Cryptology ePrint Archive, Report
2005/005, 2005.

[HBHW21] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash Protocol
Specification Version 2021.2.14. https://github.com/zcash/zips/blob/master/

protocol/protocol.pdf, 2021.

61

https://github.com/zcash/librustzcash
https://github.com/zcash/librustzcash
https://ia.cr/2012/144
https://ia.cr/2012/144
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://zips.z.cash/zip-0307
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

[HHCP18] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Efficient logis-
tic regression on large encrypted data. Cryptology ePrint Archive, Report 2018/662,
2018.

[Hor20] Taylor Hornby. Fixing privacy problems in the Zcash light wallet pro-
tocol. https://defuse.ca/downloads/Fixing%20Privacy%20Problems%20in%

20the%20Zcash%20Light%20Wallet%20Protocol.pdf, Oct 2020.

[Hor21] Taylor Hornby. Zip 314 - privacy upgrades to the zcash light client
protocol, Mar 2021. URL: https://forum.zcashcommunity.com/t/

zip-314-privacy-upgrades-to-the-zcash-light-client-protocol/38868.

[HWH+21] Daira Hopwood, Nathan Wilcox, Taylor Hornby, Jack Grigg, Sean Bowe, Kris Nut-
tycombe, and Ying Tong Lai. Zcash improvement proposal 316: Unified addresses
and unified viewing keys. https://zips.z.cash/zip-0316, April 2021.

[INZ21] Ilia Iliashenko, Christophe Nègre, and Vincent Zucca. Integer functions suitable
for homomorphic encryption over finite fields. Cryptology ePrint Archive, Report
2021/1335, 2021. To appear in WAHC 2021.

[JvdHLZZ15] Jelle Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In SOSP, page
137–152. ACM, 2015.

[KC16] Amjad Saeed Khan and Ioannis Chatzigeorgiou. Improved bounds on the decoding
failure probability of network coding over multi-source multi-relay networks. IEEE
Communications Letters, 20(10):2035–2038, 2016.

[KDE+21] Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan
Ghang, and Donghoon Yoo. General bootstrapping approach for rlwe-based homo-
morphic encryption. Cryptology ePrint Archive, Report 2021/691, 2021.

[KS07] Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable
and testable. In FOCS’07, 2007.

[Lai] Kim Laine. Simple encrypted arithmetic library 2.3.1. https://www.microsoft.

com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf. Microsoft
Research, Redmond, WA.

[Lew21a] Sarah Jamie Lewis. Discreet log #1: Anonymity, bandwidth and
Fuzzytags, Feb 2021. URL: https://openprivacy.ca/discreet-log/

01-anonymity-bandwidth-and-fuzzytags/.

[Lew21b] Sarah Jamie Lewis. fuzzytags, 2021. URL: https://git.openprivacy.ca/

openprivacy/fuzzytags.git.

[LMT11] Xiaolin Li, Wai Ho Mow, and Fai-Lung Tsang. Singularity probability analysis for
sparse random linear network coding. In 2011 ICC, pages 1–5, 2011.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 2013.

62

https://defuse.ca/downloads/Fixing%20Privacy%20Problems%20in%20the%20Zcash%20Light%20Wallet%20Protocol.pdf
https://defuse.ca/downloads/Fixing%20Privacy%20Problems%20in%20the%20Zcash%20Light%20Wallet%20Protocol.pdf
https://forum.zcashcommunity.com/t/zip-314-privacy-upgrades-to-the-zcash-light-client-protocol/38868
https://forum.zcashcommunity.com/t/zip-314-privacy-upgrades-to-the-zcash-light-client-protocol/38868
https://zips.z.cash/zip-0316
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://openprivacy.ca/discreet-log/01-anonymity-bandwidth-and-fuzzytags/
https://openprivacy.ca/discreet-log/01-anonymity-bandwidth-and-fuzzytags/
https://git.openprivacy.ca/openprivacy/fuzzytags.git
https://git.openprivacy.ca/openprivacy/fuzzytags.git

[LTHA+20] Duc Le, Lizzy Tengana Hurtado, Adil Ahmad, Mohsen Minaei, Byoungyoung Lee,
and Aniket Kate. A tale of two trees: One writes, and other reads. Privacy Enhancing
Technologies, pages 519–536, 04 2020.

[Lun18] Joshua Lund. Technology preview: Sealed sender for signal. https://signal.org/
blog/sealed-sender/, Oct. 2018.

[LZ16] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure communi-
cation without leaking metadata. In OSDI 16, pages 571–586. USENIX, November
2016.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, (4):1253–
1298, 2000. Preliminary version appeared in FOCS ’94.

[Mic20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November
2020. Microsoft Research, Redmond, WA.

[MKA+21] Ian Martiny, Gabriel Kaptchuk, Adam Aviv, Dan Roche, and Eric Wustrow. Im-
proving signal’s sealed sender. In NDSS 2022, 01 2021. NDSS 2022.

[MSS+21] Varun Madathil, Alessandra Scafuro, István András Seres, Omer Shlomovits, and
Denis Varlakov. Private signaling. Cryptology ePrint Archive, Report 2021/853
(20210624:145011), 2021.

[MWS+19] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, and
Srdjan Capkun. BITE: Bitcoin lightweight client privacy using trusted execution. In
(USENIX Security 19), pages 783–800. USENIX, August 2019.

[NH20] Kris Nuttycombe and Daira Hopwood. Zcash improvement proposal 321: Payment
request URIs. https://zips.z.cash/zip-0321, August 2020.

[Noe15] Shen Noether. Ring signature confidential transactions for monero. IACR Cryptology
ePrint Archive, 2015:1098, 2015.

[OMR21] Oblivious message retrieval implementation. https://github.com/ZeyuThomasLiu/
ObliviousMessageRetrieval, December 2021.

[OS05] Rafail Ostrovsky and William E. Skeith. Private searching on streaming data. In
CRYPTO, 2005.

[PAL21] PALISADE lattice cryptography library (release 11.2). https://palisade-crypto.
org/, June 2021.

[Pla18] Rachel Player. Parameter selection in lattice-based cryptography. PhD thesis, Royal
Holloway, University of London, 2018.

[PS73] Mike Paterson and Larry Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput., pages 60–66, 03 1973.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In CRYPTO 2008, LNCS, pages 554–571.
Springer, Heidelberg, Germany, 2008.

63

https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://github.com/Microsoft/SEAL
https://zips.z.cash/zip-0321
https://github.com/ZeyuThomasLiu/ObliviousMessageRetrieval
https://github.com/ZeyuThomasLiu/ObliviousMessageRetrieval
https://palisade-crypto.org/
https://palisade-crypto.org/

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, pages 169–179, 1978.

[RCK+21] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T. Lee, Hsien-Hsin S. Lee,
Gu-Yeon Wei, and David Brooks. Cheetah: Optimizing and accelerating homomor-
phic encryption for private inference. In 2021 IEEE HPCA, pages 26–39, 2021.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, September 2009.

[SC12] Nils Schneider and Matt Corallo. Bitcoin improvement proposal 21: URI scheme.
https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki, January
2012.

[SGGC14] Daniel Salmond, Alex J. Grant, Ian Grivell, and Terence Chan. On the rank of
random matrices over finite fields. CoRR, 2014. URL: http://arxiv.org/abs/

1404.3250, arXiv:1404.3250.

[SPB21] István András Seres, Balázs Pejó, and Péter Burcsi. The effect of false positives:
Why fuzzy message detection leads to fuzzy privacy guarantees? Cryptology ePrint
Archive, Report 2021/1180, 2021. https://ia.cr/2021/1180.

[SV14] N. Smart and F. Vercauteren. Fully homomorphic simd operations. Designs, Codes
and Cryptography, 71:57–81, 2014.

[TCL16] Andrea Tassi, Ioannis Chatzigeorgiou, and Daniel Lucani. Analysis and optimiza-
tion of sparse random linear network coding for reliable multicast services. IEEE
Transactions on Communications, pages 285–299, 01 2016.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In TCC, TCC ’08, pages 1–18, 2008.

[WCGFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dis-
sent in numbers: Making strong anonymity scale. In OSDI 12, pages 179–182.
USENIX, October 2012.

[WMS+19] Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and Srdjan
Capkun. Zlite: Lightweight clients for shielded Zcash transactions using trusted
execution. In Financial Cryptography and Data Security 2019, LNCS, pages 179–
198. Springer, 2019.

64

https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
http://arxiv.org/abs/1404.3250
http://arxiv.org/abs/1404.3250
http://arxiv.org/abs/1404.3250
https://ia.cr/2021/1180

A Summary of Constructions

Scheme Where discussed Pseudocode Functionality Compact Approach

OMDt1 Section 6.1.1 Algorithm 1 Detection No Theoretical (generic FHE)

OMDt2 Section 6.1.2 Algorithm 2 Detection Yes Theoretical (generic FHE + bucket-based accumulation)

OMRt1 Section 6.3.2 Algorithm 5 Retrieval Yes Theoretical (OMDt2 + SRLC1)

OMDp1 Section 7.2 Simplified Algorithm 7 Detection No Practical (BFV + PVW + deterministic index retrieval)

OMRp1 Section 7.3 Algorithm 7 Retrieval No Practical (OMDp1 + SRLC2)

OMRp2 Section 7.4 Algorithm 8 Retrieval Yes Practical (BFV + PVW + randomized index retrieval + SRLC2)

Table 5: Summary of all the schemes introduced in the paper.

Table 5 provides a summary of all the schemes introduced in this paper.

B Additional Techniques

B.1 Additional Improvements to Compact Detection

The improvements described in this section are imilar to techniques in [DD07]. They are not
included in the implementation [OMR21] and reported performance Section 10.

Unit Propagation. A further optimization is to try to resolve collisions by an iterative algo-
rithm that makes a deduction from information already recovered. Every time we recover a new
pertinent message from a non-empty collision-free bucket, we can deduce what other buckets that
message was mapped to by the PRF f . For each such bucket, we can remove the message from
that bucket (by subtracting the message index j from that bucket, and subtracting 1 from the
corresponding counter). This may leave some buckets with a single pertinent message, i.e., make
them non-colliding, from which a new message can be recovered, and so on. We call this process
unit propagation. The number of such iterations (until either success or getting stuck) is trivially
bounded by C ·m.

Subset-sum Resolution. Another improvement comes from looking at buckets with a collision
(e.g., containing the sum of multiple pertinent message indices), and trying to deduce what set of
indices they could contain, as a subset-sum problem.52 In the general case, this is a computationally
hard subset-sum problem; but the constants here are small.

Additionally, unit propagation and subset-sum resolution can be combined in turn (i.e. first do
self resolving and then unit proporgation and then self resolving, and so on until finishes or no new
information appears). With our empirical test, for k = 10, and N = 1000 (self-resolving needs N),
m = 30, C = 2 is more than enough for failure probability � 2−21 (we tested for 223 trails and no
trail fails,) which is about 1/25 space as the naive method. We leave the failure probability and
computational cost bound calculation and deployment of these two techniques for future works.
For this work, we stop at gathering partial information.

One thing we would like to note is that these techniques are both introduced in [DD07]. However,
they do not have a theoretical bound, so we do not use these techniques directly in our main
construction.

52For example, suppose message indices {7,12,35} are all mapped by f into the first bucket of the first copy.
Suppose moreover that the buckets decrypts to 19 and the corresponding counter decrypts to 2 (i.e., there are two
pertinent messages added to the bucket). We can deduce that these are {7,12}.

65

B.2 Alternative OMD Construction

For the alternative method, we provide OMD with O(k̄ log(N)) digests. We do not use it in our
main construction because it cannot be extended to our practical construction.

Free-bucket-search Method. We use k̄ buckets (each with size log(N) ciphertexts as above). We
also use k̄ counters, each encrypting one bit: initially 〈0〉sk , and changed to 〈1〉sk once one or more
pertinent messages have been added to the bucket. For each message mj , we have CIDj ← PVj · j.
Then, we iterate through every bucket Acci and try to add CIDj to Acci if it is empty (i.e. Ctri = 0).
This is done homomophically. After addition, since it’s based on FHE, we do not know the content
of Acci. We do homomophic OR gate for all the bits for Acci and record the result in Ctri (i.e,
the counter records whether the bucket is still empty.) Then, if Ctri is changed from the Ctrbeforei

before the addition, we zero out CID (done by CID← CID · (Ctri XOR Ctrbeforei)). This means that
if the counter Ctri changed, CID is already correctly recorded in Acci and should be zeros for the
rest of buckets even though they are also empty. This obviously only have communication cost
O(k̄ log(N)). The computational cost is then O(k̄ log(N)N) with multiplicative depth k̄ log(N).

Homomorphic Sorting Method. Another way is that we first get all indices CID ← PVj · j,
and then use FHE to sort then. Then, we give back the first k̄ of then back to the recipient, and
also give back the summation of PV to indicate the real k. This also gives us a communication
cost of O(k̄ · log(N)). The computational cost is then O(N log2(N)) with multiplicative depth
O(log2(N) log(`)) as shown in [EGNS15] for implemented algorithms, where ` in our case is N . If
we use AKS sorting network as shown in [AKS83], we may get better results asymptotically like
O(N log2(N)) and O(log(N) log(`)).

B.3 Alternative OMR Construction

The alternative OMR construction is very similar to the alternative construction for OMD. After we
get PV’s, we multiply PV by (xi)’s, which result in 〈xi〉sk or 〈0〉sk . We can then initialize k̄ buckets
and check if each bucket is empty. Then, if empty, we add the PVi ·xi and zero out the result. These
can all be done homomorphically as above, so we omit the details. For this construction, we don’t
need to initialize additional buckets for indices detection, which implies that this construction does
not imply OMD directly as before. The resulting communication cost is then O(k̄) assuming xi
has some constant payload size. The computational cost for the detector is then is then O(k̄ ·N).

66

	Abstract
	Contents
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	2.1 Fuzzy Message Detection
	2.2 Private Signaling
	2.3 Private Retrieval
	2.4 Other Related Work

	3 Constructions Overview
	3.1 OMR1: Compact OMR from generic FHE
	3.2 OMR2: Practical Non-compact OMR
	3.3 OMR3: Practical Compact OMR

	4 Model and Definitions
	4.1 System Model
	4.2 Threat Model (non-DoS)
	4.3 Oblivious Message Retrieval
	4.4 Oblivious Message Detection

	5 Preliminaries
	5.1 Notation
	5.2 LWE Encryption
	5.3 Homomorphic Encryption
	5.3.1 Brakerski/Fan-Vercauteran Homomorphic Encryption

	6 Generic OMR and OMD Using FHE
	6.1 Oblivious Message Detection Using FHE
	6.1.1 Non-compact Construction of OMD
	6.1.2 Compact Construction of OMD

	6.2 Payload Retrieval using FHE
	6.3 Improved Retrieval Using Sparse Random Linear Coding
	6.3.1 Defining and Constructing SRLC
	6.3.2 Compact OMR using SRLC

	7 Practical OMR
	7.1 PVW Clue Ciphertext
	7.2 BFV Leveled Homomorphic Encryption
	7.3 A Practical OMR scheme
	7.4 A Practical Compact OMR Scheme
	7.5 Streaming Updates
	7.6 Reducing Space Requirements
	7.7 Handling Overflows
	7.8 Detection Key Size Reduction

	8 Denial-of-Service Resistance
	8.1 Threat Model (DoS)
	8.2 Simple Attacks
	8.3 DoS Resistance Definition
	8.4 Attaining DoS-resistant OMR

	9 Key Unlinkability
	9.1 Key Linkability Issues
	9.2 Defining Key Unlinkability
	9.3 Attaining Unlinkability

	10 Performance Evaluation
	10.1 Methodology
	10.2 Evaluation Results

	11 Integration
	12 Limitations and Future Work
	Acknowledgements
	References
	A Summary of Constructions
	B Additional Techniques
	B.1 Additional Improvements to Compact Detection
	B.2 Alternative OMD Construction
	B.3 Alternative OMR Construction

