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Abstract. Significantly extending the framework of (Couteau and Hartmann, Crypto 2020), we
propose a general methodology to construct NIZKs for showing that an encrypted vector χ belongs
to an algebraic set, i.e., is in the zero locus of an ideal I of a polynomial ring. In the case where I is
principal, i.e., generated by a single polynomial F , we first construct a matrix that is a “quaside-
terminantal representation” of F and then a NIZK argument to show that F (χ) = 0. This leads to
compact NIZKs for general computational structures, such as polynomial-size algebraic branching
programs. We extend the framework to the case where I is non-principal, obtaining efficient NIZKs
for R1CS, arithmetic constraint satisfaction systems, and thus for NP. As an independent result,
we explicitly describe the corresponding language of ciphertexts as an algebraic language, with
smaller parameters than in previous constructions that were based on the disjunction of algebraic
languages. This results in an efficient GL-SPHF for algebraic branching programs.
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based cryptography, SPHF, zero knowledge

1 Introduction

Zero-knowledge arguments [GMR89] are fundamental cryptographic primitives allowing one to convince a
verifier of the truth of a statement while concealing all further information. A particularly appealing type
of zero-knowledge arguments, with a wide variety of applications in cryptography, are non-interactive
zero-knowledge arguments (NIZKs) [BFM88] with a single flow from the prover to the verifier.

Early feasibility results from the 90’s established the existence of NIZKs for all NP languages (in
the common reference string model) under standard cryptographic assumptions. However, these early
constructions were inefficient. In the past decades, a major effort of the cryptographic community has
been directed towards obtaining efficient and conceptually simple NIZK argument systems for many
languages of interest. Among the celebrated successes of this line of work are the Fiat-Shamir (FS)
transform [FS87], which provides simple and efficient NIZKs but only offers heuristic security guarantees3,
and pairing-based NIZKs such as the Groth-Sahai proof system [GS08] (and its follow-ups).
The quest for efficient and conceptually simple NIZKs. The Groth-Sahai NIZK proof system was
a major breakthrough in this line of work, providing the first provably secure (under standard pairing
assumptions) and reasonably efficient NIZK for a large class of languages, capturing many concrete
languages of interest. This proof system initiated a wide variety of cryptographic applications, and its
efficiency was refined in a sequence of works [BFI+10,EG14,Ràf15,DGP+19]. Unfortunately, the efficiency
of Groth-Sahai proofs often remains unsatisfying (typically much worse than NIZKs obtained with Fiat-
Shamir), and building an optimized Groth-Sahai proof for a specific problem is an often tedious process
that requires considerable expertise. This lack of conceptual simplicity inhibits the potential for large-
scale deployment of this proof system. Therefore, we view it as one of the major open problems in
this line of work to obtain an efficient proof system where constructing an optimized proof for a given
statement does not require dedicated expertise. The Fiat-Shamir transform offers such a candidate – and
as a consequence, it has seen widescale adoption in real-world protocols – but lacks a formal proof of
security. The recent line of work on quasi-adaptive NIZKs [JR13,KW15,ALSZ20] offers simultaneously
simple, efficient, and provably secure proof systems, but these are restricted to a small class of languages
– namely, linear languages. Some recent SNARK proof systems also offer generic and efficient methods

3 There have been recent developments towards provably secure Fiat-Shamir NIZKs [CCH+19].



to handle a large class of languages given by their high-level description; however, they all rely on very
strong knowledge-of-exponent style assumptions.

The Couteau-Hartmann argument system. Very recently, Couteau and Hartmann put forth a new
framework for constructing pairing based NIZKs [CH20]. At a high level, their approach compiles a
specific interactive zero-knowledge proof into a NIZK (as does Fiat-Shamir), by embedding the challenge
in the exponent of a group equipped with an asymmetric pairing. The CH argument system enjoys several
interesting features:

– It generates compact proofs, with efficiency comparable to Fiat-Shamir arguments, with ultra-short
common reference strings (a single group element);

– It has a conceptually simple structure, since it compiles a well-known and simple interactive proof;
– It handles a relatively large class of algebraic languages [BBC+13,CC18], which are parameterized

languages of the shape LΓ ,θ = {x : ∃w,Γ (x) ·w = θ(x)}, where x is the input, w is the witness, Γ and
θ are affine maps, such that x and θ(x) are vectors and Γ (x) is a matrix. We call (θ,Γ ) the matrix
description of the language L. Since any NP language can be embedded into an algebraic language4,
this gives a proof system for all of NP.

These features make the CH argument system a competitive alternative to Fiat-Shamir and Groth-Sahai
in settings where efficiency and conceptual simplicity are desirable while maintaining provable security
under a plausible, albeit new, assumption over pairing groups. In a sense, Couteau-Hartmann achieves a
sweet spot between efficiency, generality, and underlying assumption.

Limitations of the CH argument system. The CH transformation offers attractive efficiency features,
but its core advantage is (arguably) its conceptual simplicity. As many previous works pointed out (see
e.g. [KZM+15]), what “real-world” protocol designers need is a method that can easily take a high-level
description of a language, and “automatically” generate a NIZK for this language without going through
a tedious and complex process requiring dedicated expertise. Ideally, both the process of generating the
NIZK description from the high-level language and the NIZK itself should be efficient.

With this in mind, CH provides an important step in the right direction, where producing the NIZK
for any algebraic language is a straightforward generic transformation applied to its matrix description.
However, it falls short of fully achieving the desired goal for two reasons.

First, it does not entirely remove the need for dedicated expertise from the NIZK construction; rather,
it pushes the complexity of building the NIZK to that of finding its matrix description given a higher-level
description of an algebraic language. However, it does not provide a characterization of which languages,
given via a common higher-level description, are algebraic, neither does it give a method to construct
their matrix description5.

Second, the CH-compilation produces NIZKs whose soundness reduces to an instance of the novel
ExtKerMDH family of assumptions. However, the particular assumption will only be falsifiable in the
much more restricted setting of witness-samplable algebraic languages, which essentially seem to capture
disjunctions of linear languages. Couteau and Hartmann focused on NIZKs based on the falsifiable
variant, which severely limits the class of languages captured by the framework. It is much more desirable
to base the security of all NIZKs produced by this framework on a single, plausible, well-supported
assumption: this would avoid protocol designers the hurdle of precisely assessing the security of the
specific flavor of the ExtKerMDH assumption their particular instance requires.

1.1 Our Contribution

We overcome the main limitations of the CH argument system. Our new approach, which significantly
departs from the CH methodology, allows us to produce compact NIZKs for a variety of languages, with
several appealing features.

4 The classical approach to do so for circuit satisfiability uses algebraic commitments to all values on the wire
of the circuit; then the statement “all committed values are consistent and the output is 1” is an algebraic
language.

5 While we can always embed any language in an algebraic language, this can be inefficient; the CH proof system
is efficient when the language is “natively” algebraic.
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A general framework. We provide a generic method to compute, for several important families of
languages, a different matrix description of the languages. We then construct a NIZK. We implic-
itly use the CH-compiler but in a way, different from [CH20]. We focus on the important set-
ting of commit-and-prove NIZK argument systems [Lip16,KOS18,Kiy20], i.e. languages of the form
{Com(x1), . . . ,Com(xn) | R(x1, . . . , xn)}, where R is some efficiently computable relation. Our method
allows us to automatically obtain a compact matrix description for many types of high-level relations.
New NIZKs: improved efficiency or generality. As a first byproduct, we obtain improved NIZKs for some
important statements, such as set membership (see Table 1) or the language of commitments to points on
an elliptic curve6, as well as new NIZKs for very general classes of statements, such as R1CS, arithmetic
constraint satisfaction systems (and thus for NP).
A weaker unified assumption. As the second byproduct of our formal approach, we manage to base all
NIZKs in our framework on a slightly weaker form of the extended Kernel Diffie-Hellman assumption,
which we call the CED (family of) assumption(s) (for Computational Extended Determinant assumption).
This turns out to have an important consequence: we show that all instances of our assumption can be
based on a single plausible gap assumption, which states that solving the kernel Diffie-Hellman assumption
in a group G2 (a well-known search assumption implied in particular by DDH) remains hard, even given
a CDH oracle in a different group G1. On top of it, several of our NIZKs (like the one for Boolean
Circuit-SAT) are based on a falsifiable CED assumption, while we also show that a slight modification
of the NIZK for arithmetic circuits can be also based on a falsifiable variant of CED.
New SPHFs. Eventually, as another byproduct of our methodology, we obtain constructions of Smooth
Projective Hash Functions (SPHFs) [GL03] for new languages (SPHFs were the original motivation for
introducing the notion of algebraic language, and [BBC+13] gives a generic construction of SPHFs given
the matrix description of an algebraic language), including languages describable by efficient algebraic
branching programs.

1.2 Efficiency, Generality, and Security of our NIZKs

The argument of Couteau and Hartmann [CH20] improves over (even optimized variants of) the standard
Groth-Sahai approach on essentially all known algebraic languages. Couteau and Hartmann illustrated
this by providing shorter proofs for linear languages (Diffie-Hellman tuples, membership in a linear sub-
space) and OR proofs (and more generally, membership in t out of n possibly different linear languages),
two settings with numerous important applications (to structure-preserving signatures, tightly-secure
simulation-sound NIZKs, tightly-mCCA-secure cryptosystems, ring signatures...). Our framework builds
upon the Couteau-Hartmann framework, provides a clean mathematical approach to overcoming its
main downside (which is that the matrix description of “algebraic languages” must be manually found),
and significantly generalizes it. Our framework enjoys most of the benefits of the Couteau-Hartmann
framework, such as its ultra-short common random string (a single random group element).

Efficiency. Our framework shines especially as soon as the target language becomes slightly too complex
to directly “see” from its description an appropriate and compatible matrix description C of the language;
then, we get significant efficiency improvements. We illustrate this on a natural and useful example: set
membership proofs for ElGamal ciphertext over G1 (i.e., the language of ElGamal encryptions of m ∈ S
for some public set S of size d), see Table 1. It depicts the complexity of optimized Groth-Sahai proofs,
the generic Couteau-Hartmann compilation of Maurer’s protocol (denoted CHM) by using the language
parameters (Γ ,θ) provided in [CH20], CHM NIZK for (Γ ,θ) automatically derived in the current paper
from the matrix description C, and our new NIZK. On the other hand, our modular approach provides
significantly shorter proofs. Taking e.g. d = 5, we get a proof about 25% shorter compared to Groth-
Sahai. Our approach also significantly improves in terms of computational efficiency. Moreover, since in
our approach, we need to only encrypt the data in a single group, as opposed in two groups in the case
of (asymmetric-pairing-based) Groth-Sahai, we have three times shorter commitments. In Section 8.2,
we also discuss the case of multi-dimensional set membership proofs (where, depending on the structure
of the set, our framework can lead to even more significant improvements).

6 NIZKs for this type of languages have recently found important applications in blockchain applications, such
as the zcash cryptocurrency, see [KZM+15] and https://z.cash/technology/jubjub/.
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Table 1. Comparison of set-membership proofs, i..e., NIZKs for Lpk,F , where F (X) is univariate, as in Lemmas 8,
9 and 10. The verifier’s computation is given in pairings. The Groth-Sahai computation figures are not published
and based on our own estimation; hence, we have omitted the computation cost. Note that |G2| = 2|G1| in
common settings. In CHM and new NIZK, |crs| = |G2|.

Argument |π| P comp. V comp.
Previous works

Optimized GS [Ràf15] d|G1|+ (3d+ 2)|G2| - -
CHM NIZK + [CH20] (Γ ,θ), Lemma 10 (3d− 1)|G1|+ (3d− 2)|G2| (7d− 4)e1 + (3d− 1)e2 9d− 2

New solutions
CHM NIZK + new Γ ,θ, Lemma 9 2d|G1|+ (2d− 1)|G2| (5d− 3)e1 + 4de2 7d− 1
New NIZK, Lemma 8 2d|G1|+ (2d− 1)|G2| ≤ 3de1 + (4d− 2)e2 7d− 1

Generality. Our framework also goes way beyond the class of languages naturally handled by Couteau-
Hartmann. In particular, we show that our framework directly encompasses arithmetic constraint sat-
isfaction systems (aCSPs), i.e., collections of functions F1, . . . , Fτ (called constraints) such that each
function Fi depends on at most q of its input locations.7 In particular, this efficiently captures arith-
metic circuits, hence all NP languages.8

Rank-1 constraints systems (R1CS) are well-known to be powerful, since they capture compactly many
languages of interest [GGPR13]. They have been widely used in the construction of SNARKs. aCSPs
directly extend these simple constraints to arbitrary low-degree polynomial relations. Moving away from
R1CS to more expressive constraint systems can potentially be very useful: in many applications of
NIZKs with complex languages, an important work is dedicated to finding the “best” R1CS to represent
the language. The increased flexibility of being allowed to handle more general constraints can typically
allow to achieve a significantly more efficient solution. While systematically revisiting existing works
and demonstrating that their R1CS system could be improved using aCSPs would be out of the scope
of this paper, we point out that this generalization approach was successfully applied in the past: the
work of [HKR19] described a method to go beyond R1CS in “Bulletproof style” random-oracle-based
NIZKs (this setting is incomparable to ours, as we focus on NIZKs in the standard model). They show
how to handle general quadratic constraints, and demonstrate that this leads to efficiency improvements
over Bulletproof on aggregate range proofs. Since aCSPs are even more general, handling any low-
degree polynomials, we expect that this representation could lead to significant optimizations for many
applications of NIZKs that rely on R1CS representations. However, we are aware of no previous random-
oracle-less NIZKs that can handle aCSPs natively.

Furthermore, even in scenarios where R1CS does indeed provide the best possible representation, our
framework leads to proofs more compact than Groth-Sahai. We illustrate this on Table 2 for the case of
general boolean circuits. Here, the standard GOS approach [GOS06] reduces checking each gate of the
circuit to checking R1CS equations. When comparing the cost obtained with our framework to the cost
achieved by a Groth-Sahai proof (using the optimized variant of [GSW09]), we find that our framework
leads to three times smaller commitments, 20% shorter argument, and almost a factor two reduction in
computation.

On the non-falsifiability of our assumption. When the algebraic branching program representa-
tion of the relation is multivariate, the corresponding matrix description may lead to a NIZK under a
non-falsifiable assumption. This might appear at first sight to significantly restrict the interest of our
framework: while our NIZKs are typically more efficient than Groth-Sahai, they are usually larger than
SNARKs since they grow linearly with (the algebraic branching program representation of) the rela-
tion, while SNARKs have size independent of both the relation and the witness. Hence, if we allow
non-falsifiable assumptions, wouldn’t SNARKs provide a better solution?

7 That is, for every j ∈ [1, τ ] there exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that ∀χ ∈ Fn, Fj(χ) =
f(χi1 , . . . , χiq ). Then F is satisfiable if ∀j, Fj(χ) = 0.

8 Technically, one could always take aCSPs, write them as a circuit satisfiability problem, and embed that into
an agebraic language to capture it with the Couteau-Hartmann framework; the point of our framework is that,
by capturing this powerful model directly, we can obtain much better efficiency on aCSPs.
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We discuss this apparent issue in Section 10. First, we identify a large class of important cases where
the underlying assumption becomes falsifiable; this includes Boolean circuits (and thus NP). Second, we
provide a general approach to transform any NIZK from our framework into NIZKs under a falsifiable
assumption, by replacing the underlying commitment scheme by a DLIN-based encryption scheme and
double-encrypting certain values. This comes at the cost of increasing the commitment and argument
size. Third, we argue that the gap assumption [OP01] underlying our framework is, despite its non-
falsifiability, a very natural and plausible assumption; see Section 10 for more details. In particular, gap
assumptions are generally recognized as much more desirable than knowledge of exponent assumptions.
In essence, our assumption says that uncovering structural weaknesses in a group G1 does not necessarily
imply the existence of structural weaknesses in another group G2; in particular, this assumption trivially
holds in the generic bilinear group model (where a CDH oracle in G1 provides no useful information for
breaking any assumption in G2).

Overall, we view our framework as providing a desirable middle ground between Groth-Sahai (which
leads to less efficient NIZKs, but under the standard SXDH assumption) and SNARKs (which lead to
more efficient NIZKs in general but require highly non-standard knowledge of exponent assumptions).

1.3 Technical Overview

Intuitive overview. At a high level, the Couteau-Hartmann methodology compiles a Σ-protocol for
languages of the form {x : ∃w,Γ (x) ·w = θ(x)}, where (Γ ,θ) are linear maps, into a NIZK. This leaves
open, however, the tasks of characterizing which languages admit such a representation, finding such a
representation, and when multiple representations are possible optimizing the choice of the representation.
We provide a blueprint for these tasks.

We focus on commit-and-prove languages, a large and useful class of languages. At the heart of our
techniques is a general method to convert a set of low-degree polynomial equations Fi(X) into a set of
“optimized” matrices Ci(X) such that det(Ci(X)) = Fi(X) with a specific additional structure. We call
this matrix a quasideterminantal (QDR) representation of the polynomial. Then, we directly construct
a compact NIZK proof system for a QDR, using a variant of the Couteau-Hartmann methodology. We
prove that the resulting proof system is sound under a CED assumption. Whenever Fi has a polynomial
number of roots (e.g., univariate), the corresponding CED assumption is always falsifiable.

Constructing a QDR from a polynomial is a non-trivial task that highly depends on the representation
of Fi. We provide a general framework to construct such QDRs from the algebraic branching program
(ABP [Nis91]) representation of Fi; hence, our framework is especially suited whenever the polynomials
have a compact ABP representation. ABP is a powerful model of computation, capturing in particular
all log-depth circuits, boolean branching programs, boolean formulas, logspace circuits, and many more.
Background. The rest of the technical overview requires understanding of some minimal background
from algebraic geometry, see [CLO15] for more. Let F = Zp and X = (X1, . . . , Xν). For a set F of
polynomials in F[X], let

A(F) := {χ ∈ Fν : f(χ) = 0 for all f ∈ F}

be the algebraic set defined by F . A subset A ⊆ Fν is an algebraic set if A = A(F) for some F . Given a
subset A of Fν , let I(A) be the ideal of all polynomial functions vanishing on A,

I(A) := {f ∈ F[X] : f(χ) = 0 for all χ ∈ A} .

Since each ideal of F [X] is finitely generated [CLO15], then so is I(A), and thus I(A) = ⟨F1, . . . , Fτ ⟩ for
some Fi. I is principal if it is generated by a single polynomial. All univariate ideals are principal. For
an ideal I with generating set {Fi}, A(I) := A({Fi}). We also define Z(F ) := A({F}).
Commit-and-prove NIZKs for algebraic sets. For the sake of concreteness, we focus on commit-
and-prove languages where the underlying commitment scheme is the ElGamal encryption scheme; it is
easy to extend this approach to any additively homomorphic and perfectly binding algebraic commitment
scheme. Let pk be an Elgamal public key and let A be an algebraic set. We provide a general methodology
of constructing a NIZK argument for the language

Lpk,A = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ A}
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of Elgamal-encryptions of elements of A. We define Lpk,F := Lpk,Z(F ) when we are working with a single
polynomial. Assuming I(A) = ⟨F1, . . . , Fτ ⟩, we prove that χ ∈ A by proving that Fi(χ) = 0 for each Fi.
The resulting argument system is efficient (probabilistic polynomial-time), assuming that there is

(i) an efficient algorithm (to be run only once) that finds a small generating set (F1, . . . , Fτ ) for I(A)
where τ = poly(λ), and

(ii) an efficient NIZK argument system to show that Fi(χ) = 0 for each Fi.

Note that the NIZK for showing that Fi(χ) = 0 for each i is a simple conjunction of NIZKs for showing
for each i that Fi(χ) = 0.

Now, i is a non-cryptographic problem from computational commutative algebra. The classical
Buchberger-Möller algorithm [MB82] can find efficiently a finite Gröbner basis {Fi} for all algebraic
sets A that have a finite Gröbner basis. Other methods exist, and we will only mention a few. Most
importantly, one can relate i to finding efficient arithmetic circuits and arithmetic constraint satisfaction
systems (aCSPs), see Section 8.1.9 The main technical contribution of our work (on top of the general
framework) is to propose an efficient solution to ii.
Constructing a compact proof system for F (χ) = 0. Here, we follow the next blueprint: we
construct

(iii) a small matrix C(X) (that satisfies some additional properties) of affine maps, such that
det(C(X)) = F (X), and

(iv) an efficient NIZK argument system for showing that det(C(χ)) = 0 for committed χ.

To solve iv, we build upon the new computational extended determinant assumption (CED). The CED
assumption is a relaxation of the ExtKerMDH assumption from [CH20], which itself is a natural general-
ization of the Kernel Diffie-Hellman assumption. At a high level, CED says that given a matrix in a group
G2, it is hard to find an extension of this matrix over G2, together with a large enough set of linearly
independent vectors in G1 in the kernel of the extended matrix (where (G1,G2) are groups equipped
with an asymmetric pairing). While CED is not falsifiable in general, it can be reduced to a natural gap
assumption. The latter reduction does not work with the ExtKerMDH assumption.

Our reduction to the CED assumption proceeds by identifying the matrix C, returned by the CED
adversary, with the matrix C(X) from iii. Intuitively, we construct a reduction that, knowing the Elgamal
secret key sk, extracts [(γ∥C)(χ)]1, where [χ]1 = Decsk([ct]1), such that C(χ) has full rank iff the
soundness adversary cheated, i.e., F (χ) ̸= 0. In that case, the reduction can obviously break the CED
assumption.

To ensure that the NIZK argument can be constructed, we require that C satisfies two additional
properties. Briefly,

(1) C(X) is a matrix of affine maps, (to ensure that the matrix is computable from the statement) and
(2) the first column of C(χ) is in the linear span of the remaining columns of the matrix for any χ ∈ Z(F )

(a technical condition which ensures that an honest prover can compute the argument).

We say that then C(X) is a quasideterminantal representation (QDR) of F . We also give some conditions
which make it easier to check whether a given matrix is a QDR of F .
Building NIZKs from QDRs. Assuming C(X) is a QDR of F , we propose a linear-algebraic NIZK
argument Πnizk for showing that x ∈ Lpk,F . We prove that Πnizk is sound under a CED assumption.
Importantly, CED is falsifiable if A = A(F ) has a polynomial number of elements. Otherwise, CED
is in general non-falsifiable (except in some relevant cases, see Section 10), but belongs to the class
of “inefficient-challenger” assumptions (usually considered more realistic than knowledge assumptions,
see [Pas13]). Furthermore, CED can be reduced to a single, natural gap assumption: the hardness of
breaking DDH in a group G2 given a CDH oracle in a different group G1. We refer to 10.2 for more
details.
9 There are ample examples of sets A that have small generating sets (and even small Gröbner bases), which

can be found using a variety of standard tricks and methods (e.g. increasing the dimension of the affine space
from some Fn to Fn′

, n′ > n, such that the new n′ − n “helper variables” make it possible to construct a
small Gröbner basis that consists of only small-degree polynomials). We will use such tricks in some of our
illustrations and applications.
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Constructing QDRs. The remaining, highly non-trivial, problem is to construct a QDR of F , such
that the constructed NIZK argument is efficient. In the rest of the paper, we study this problem.

First, we propose a general framework to construct NIZK arguments for Lpk,F where F (χ) can be
computed by an efficient algebraic branching program. Let Π be an ABP that computes F , with the node
set V and the edge set E, and let ℓ = |V | − 1. Given the methodology of [IK00,IK02], one can represent
Π as an ℓ × ℓ matrix IK(X), such that det(IK(X)) is equal to the output of the ABP. We show that
such IK(X) is a QDR. Thus, we obtain an efficient computationally-sound NIZK for Lpk,F under a CED
assumption.
Applications. We consider several natural applications of our framework.
Univariate polynomials. Given a univariate polynomial F (X) =

∏
(X−ξi) of degree-d, for different roots

ξi, we construct a simple matrix C(X). The resulting NIZK argument is about 30% shorter and 20%
more computationally efficient than the set membership proof that stems from [CH20, Section C]; see
the comparison in Table 1.
Commitments to points on an elliptic curve. We construct a NIZK argument to prove that the committed
point (X,Y ) belongs to the given elliptic curve Y 2 = X3 + aX + b. Such NIZK proofs are popular
in cryptocurrency applications, [BCTV14]. The construction of C(X,Y ) is motivated by a classical
algebraic-geometric (possibility) result that for any homogeneous cubic surface F (X,Y, Z), there exists
a 3× 3 matrix of affine maps that has F (X,Y, Z) as its determinant [Dic21,Bea00].
OR proofs. In Section 6.2, we look at the special case of OR proofs and study three instantiations of our
general protocol to OR arguments. We discuss the advantages and downsides of each.
Non-Principal Ideals. Importantly, in Section 8, we capture the very general scenario where I(A) has
a “nice-looking” generating set (F1, . . . , Fτ ) (i.e. τ is small and each polynomial has a small degree).
Some cryptographically important examples include arithmetic circuits, R1CS, Boolean circuits, and
arithmetic constraint satisfaction systems. Thus, we obtain efficient NIZKs for NP.

2 Preliminaries

For a matrix A ∈ Zn×n
p and i ∈ [1, n], let C(i,1) be the submatrix obtained from C by removing the ith

row and the first column.
Cryptography. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1, [1]2), where G1,
G2, and GT are three additive cyclic groups of prime order p, [1]ι is a generator of Gι for ι ∈ {1, 2, T} with
[1]T = ê([1]1, [1]2), and ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing. We
require the bilinear pairing to be Type-3 [GPS08], that is, we assume that there is no efficient isomorphism
between G1 and G2. We use the additive implicit notation of [EHK+13], that is, we write [a]ι to denote
a[1]ι for ι ∈ {1, 2, T}. We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then [A]1 • [B]2 = [C]T . We
also define

[A]2 • [B]1 := ([B]⊤1 • [A]⊤2 )
⊤ = [AB]T .

Let Pν := {[a0]1 +
∑ν

i=0[ai]1Xi : ai ∈ Zp for i ∈ [0, ν]} ⊂ G1[X] be the set of linear multivariate
polynomials over G1 in ν variables.

Algebraic languages [CC18,CH20] are parameterized languages of the shape LΓ ,θ = {x : ∃w,Γ (x) ·w =
θ(x)}, where x is the input, w is the witness, Γ and θ are affine maps, such that x and θ(x) are
vectors, and Γ (x) is a matrix. One can construct Gennaro-Lindell smooth projective hash functions
(GL-SPHFs [GL03,BBC+13,Ben16]) for all algebraic languages.

Let k ∈ {1, 2, . . .} be a small parameter related to the matrix distribution. In the case of asymmetric
pairings, usually k = 1. Let Dℓk be a probability distribution over Zℓ×k

p , where ℓ > k. We denote Dk+1,k

by Dk. We use the matrix distribution, L1, defined as the distribution over matrices ( 1
a ), where a←$Zp.

In the Elgamal encryption scheme [ElG84], the public key is pk = [1∥sk]1, and

Encpk(m; r) = (r[1]1∥m[1]1 + r[sk]1) .

To decrypt, one computes [m]1 = Decsk([c]1) ← −sk[c1]1 + [c2]1. In what follows, we denote [c]1 =
Enc(m; r) for a fixed public key pk = [1∥sk]1. Elgamal’s IND-CPA security is based on L1-KerMDH, that
is, DDH.
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The DLIN cryptosystem [BBS04] is less efficient than Elgamal, with the ciphertext consisting of 3
group elements instead of 2. However, it remains secure in the case of symmetric pairings. Its IND-CPA
security is based on L2-KerMDH, that is, DLIN [BBS04]. Briefly,

[c]ι ← Encι(χ; r1, r2) := (χ∥r1∥r2)
[

0 0 1
sk1 0 1
0 sk2 1

]
ι

= [r1sk1∥r2sk2∥χ+ r1 + r2]ι ∈ G3
ι

for public key pkι = [1∥sk1∥sk2]ι and randomiser (r1, r2). The decryption formula is [χ]ι ← −1/sk1 ·
[c1]ι − 1/sk2 · [c2]ι + [c3]ι.

The following Extended Kernel Diffie-Hellman assumption ExtKerMDH [CH20] generalizes the well-
known KerMDH assumption [MRV16]. (Appendix A.1 defines KerMDH.) We also define in parallel a
new, slightly weaker version of this assumption, CED (computational extended determinant).

Definition 1 (Dk-(ℓ − 1)-ExtKerMDH). Let ℓ, k ∈ N, and Dk be a matrix distribution. The Dk-(ℓ −
1)-ExtKerMDH assumption holds in Gι relative to Pgen, if for all PPT adversaries A, the following
probability is negligible:

Pr

[
δ ∈ Z(ℓ−1)×k

p ∧ γ ∈ Zℓ×k
p ∧ C ∈ Zℓ×ℓ

p ∧ p← Pgen(1λ), [D]ι←$Dk,
(γ∥C)

(
D
δ

)
= 0 ∧ rk(γ∥C) ≥ ℓ ([γ∥C]3−ι, [δ]ι)← A(p, [D]ι)

]
.

We define Dk-(ℓ− 1)-CED analogously, except that we change the condition rk(γ∥C) ≥ ℓ to rk(C) = ℓ.

CED is weaker than ExtKerMDH since a successful adversary has to satisfy a stronger condition (rk(C) ≥ ℓ
instead of rk(γ∥C) ≥ ℓ). Formally:

Lemma 1. Let ℓ, k, and Dk be as in Definition 1. If Dk-(ℓ− 1)-ExtKerMDH holds, then Dk-(ℓ− 1)-CED
holds.

Proof. Let A be an adversary that breaks Dk-(ℓ− 1)-CED with probability ε. We construct the following
adversary B that breaks Dk-(ℓ− 1)-ExtKerMDH:

B(p, [D]ι)

([γ∥C]3−ι, [δ]ι)← A(p, [D]ι);
return ([γ∥C]3−ι, [δ]ι);

If A succeeds, then by Definition 1, (γ∥C)
(
D
δ

)
= 0 and rk(γ) ≥ ℓ. However, if rk(γ) ≥ ℓ then also

clearly rk(γ∥C) ≥ ℓ. Thus, B succeeds with probability ≥ ε. ⊓⊔

CED suffices for the security of all NIZK arguments of the current paper. Moreover, in Section 10.2, we
reduce CED to a gap assumption. It seems that ExtKerMDH cannot be reduced to the same assumption.
Finally, CED is a natural assumption since we always care about rk(C) and not rk(γ∥C) ≥ ℓ.

Despite the general definition, in the rest of the paper (following [CH20]), we will be only concerned
with the case k = 1 and Dk = L1.
NIZK Arguments. An adaptive NIZK Π for a family of language distribution {Dp}p consists of five
probabilistic algorithms:

(1) Pgen(1λ): generates public parameters p that fix a distribution Dp.
(2) kgen(p): generates a CRS crs and a trapdoor td. For simplicity of notation, we assume that any

group parameters are implicitly included in the CRS. We often denote the sequence “p← Pgen(1λ);
(crs, td)← kgen(p)” by (p, crs, td)← kgen(1λ).

(3) P(crs, lpar, x, w): given a language description lpar ∈ Dp and a statement x with witness w, outputs
a proof π for x ∈ Llpar.

(4) V(crs, lpar, x, π). On input of a CRS, a language description lpar ∈ Dp, a statement and a proof,
accepts or rejects the proof.

(5) Sim(crs, td, lpar, x). Given a CRS, the trapdoor td, lpar ∈ Dp, and a statement x, outputs a
simulated proof for the statement x ∈ Llpar.
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Note that the CRS does not depend on the language distribution or language parameters, i.e. we
define fully adaptive NIZKs for language distributions. The following properties need to hold for a NIZK
argument.

A proof system Π for {Dp}p is perfectly complete, if

Pr

[
V(crs, lpar, x, π) = 1

(p, crs, td)←$Kcrs(1
λ); lpar ∈ Supp(Dp);

(x, w) ∈ Rlpar;π←$P(crs, lpar, x, w)

]
= 1

A proof system Π for {Dp}p is computationally sound, if for every efficient A,

Pr

[
V(crs, lpar, x, π) = 1 (p, crs, td)←$Kcrs(1

λ);
∧x /∈ Llpar lpar ∈ Supp(Dp); (x, π)← A(crs, lpar)

]
≈ 0

with the probability taken over Kcrs.
Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈ Supp(Kcrs(1

λ)), all lpar ∈
Supp(Dp) and all (x, w) ∈ Rlpar, the distributions P(crs, lpar, x, w) and Sim(crs, td, lpar, x) are identi-
cal.
Σ-Protocols. A Σ-protocol [CDS94] is a public-coin, three-move interactive proof between a prover P
and a verifier V for a relation R, where the prover sends an initial message a, the verifier responds with
a random e←$Zp and the prover concludes with a message z. Lastly, the verifier outputs 1, if it accepts
and 0 otherwise. In this work we are concerned with three properties of a Σ-protocol: completeness,
optimal soundness and honest-verifier zero-knowledge.
CH compilation. Couteau and Hartmann [CH20] compile Σ-protocols to NIZKs in the CRS model for
algebraic languages by letting [e]2 be the CRS. The basic Couteau and Hartmann compilation is for a
Σ-protocol, inspired by [Mau09], for algebraic languages. We will describe it in Section 9.

3 Quasideterminantal Representations

Next, we define quasideterminantal representations (QDRs) C(X) of a polynomial F (X). We prove a
technical lemma in Section 3.1 which shows how one can check whether a concrete matrix C(X) is a
QDR of F . We use this definition in Section 4, where, given a QDR C(X), we define the NIZK argument
for the associated language Lpk,F (defined in Eq. (1)), and prove its security.

We first define the class of languages we are interested in. Initially, we are interested in the case
where A = A({F}) for a single polynomial F . Fix p← Pgen(1λ). For a fixed Elgamal public key pk, let
lpar := (pk, F ). (Implicitly, lpar also contains p.) Let [ct]1 = Enc([χ]1; r) = (Enc([χi]1; ri))i. We use
freely the notation F (Dec([ct]1)) = F ([χ]1) = [F (χ)]1. In Section 4, we describe a general technique that
results both in efficient NIZK arguments for languages

Lpk,F = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ Z(F )} . (1)

For example, if F (X) = X2 −X, then Lpk,F corresponds to the language of all Elgamal encryptions of
Boolean values under the fixed public key pk.
Intuition. To motivate the definition of QDRs, we first explain the intuition behind the new NIZK
argument. Recall from Definition 1 that an adversary breaks the L1-(ℓ − 1)-CED assumption if, given
[D]2 = [ 1e ]2 ←$L1 (i.e., e←$Zp), he returns ([γ∥C]1 ∈ Gℓ×(ℓ+1)

1 , [δ]2 ∈ G(ℓ−1)×1
2 ), such that rk(C) ≥ ℓ

and
γ +C( e

δ ) = 0. (2)

Following [CH20], in our arguments [e]2 (i.e., [D]2) is given in the CRS and [δ]2 is chosen by the
prover. More precisely, the prover sends Enc([γ∥C]1) and [δ]2 (together with some elements that make
it possible to verify that Eq. (2) holds using encrypted values) to the verifier.

The matrix C must have full rank whenever the prover cheats, i.e. F (χ) ̸= 0. We achieve this by
requiring that det(C(X)) = F (X). Then, rk(C) = ℓ.

We guarantee that C is efficiently computable by requiring that C(X) is a matrix of affine maps,
and [C]1 = [C(χ)]1 for [χ]1 = Dec([ct]1). This also minimizes communication since each element of
Enc([C(χ)]1) can be recomputed from Enc([χ]1) by using the homomorphic properties of Elgamal.

9



On the other hand, assume that the prover is not honest (i.e., det(C(χ)) = F (χ) ̸= 0) but managed
to compute Enc([γ]1) and [δ]2 accepted by the verifier. Assume that the reduction knows sk (the language
trapdoor). Then, the reduction obtains [χ]1 by decryption and recomputes [C(χ)]1. Since det(C(χ)) ̸= 0
but the verifier accepts (i.e., Eq. (2)), then one can break the CED assumption by returning [(γ∥C)(χ)]1
and [δ]2.

3.1 Definition

We now define quasideterminantal representations (QDRs) C(X) of polynomial F . QDRs are related to
the well-known notion of determinantal representation from algebraic geometry, see Appendix B.1 for a
discussion.

Definition 2 (Quasideterminantal Representation (QDR)). Let F (X) ∈ Zp[X] be a ν-variate
polynomial. Let ℓ ≥ 1 be an integer. A matrix C(X) = (Cij(X)) ∈ Zp[X]ℓ×ℓ is a QDR of F , if the
following requirements hold. Here, C(X) = (h∥T )(X), where h(X) is a column vector.

Affine map: For each i and j, Cij(X) =
∑ν

k=1 PkijXk + Qij, for public Pkij , Qij ∈ Zp, is an affine
map.

F -rank: det(C(X)) = F (X).
First column dependence: For any χ ∈ Z(F ), h(χ) ∈ colspace(T (χ)).

The quasideterminantal complexity qdc(F ) of F is the smallest QDR size of F . (Clearly, qdc(F ) ≥
deg(F ).)

For example, C(X) =
(

0 X
X−1 1−X

)
is a QDR of F (X) = X(X−1). The first column dependence property

follows since
(

0
χ−1

)
=
( χ
1−χ

)
w iff (χ,w) = (0,−1) or (χ,w) = (1, 0), i.e., χ ∈ Z(F ). On the other hand,

C(X) =
(
X 0
0 X−1

)
is not a QDR (of the same F ) since ( χ0 ) =

(
0

χ−1

)
w iff (χ,w) = (0, 0).

The first column dependence property is nicely connected to a computational requirement we need
for our NIZK. However, it can be difficult to check whether a given matrix satisfies this condition. We
now give two alternative conditions that imply the first column dependence property, and which are
easier to check.

Lemma 2. Suppose a matrix C satisfies the affine map and F -rank properties. If it in addition satisfies
one of the following properties, it also satisfies the first column dependence property.

(1) High right rank: For any χ ∈ Zν
p, rk(T (χ)) = ℓ− 1.

(2) Invertible right-submatrix: there exists i, s.t. det(C(i,1)(χ)) ̸= 0 for any χ.

Proof. (1). Consider any χ ∈ Z(F ). By the F -rank property, det(C(χ)) = 0 and thus rk(C(χ)) ≤ ℓ− 1.
Suppose h(χ) ̸∈ colspace(T (χ)). Then rk(C(χ)) > rk(T (χ)). By the high right rank property, ℓ − 1 ≥
rk(C(χ)) > rk(T (χ)) = ℓ− 1, which is a contradiction. Thus, h(χ) ∈ colspace(T (χ)).

(2). From the invertible right-submatrix property, rk(C(i,1)(χ)) = ℓ− 1, and thus rk(T (χ)) = ℓ− 1.
⊓⊔

E.g., any matrix C(X) that contains non-zero elements on its upper 1-diagonal and only 0’s above the
upper 1-diagonal is automatically a QDR of F (X) := det(C(X)). See Sections 5 and 6 for more.

3.2 Corollaries

The affine map property is needed since we use a homomorphic cryptosystem which makes it possible to
compute

Enc([Cij(χ)]1) =

ν∑
k=1

PkijEnc([χk]1) +QijEnc([1]1)

given only Enc([χ]1). The F -rank property follows directly from the definition of CED. The first column
dependence property, guarantees that the QDR C(X) satisfies the following two properties, required
later:
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comp1(p,χ,C(X)):

Write C(χ) = (h∥T )(χ);y←$Zℓ−1
p ;

γ ← T (χ)y; st← (p,χ,C(X);y);
return ([γ]1, st);

comp2(st, ψ(e)):

Write C(χ) = (h∥T )(χ);
Compute w such that T (χ)w = h(χ);
ψ(δ)← −(wψ(e) + ψ(y)); return ψ(δ);

Fig. 1. compi algorithms assuming h(χ) ∈ colspace(T (χ)). Here, ψ = id in the case of the Σ-protocol, and
ψ = [·]2 in the case of the NIZK argument.

Efficient prover: There exist two PPT algorithms that we later explicitly use in the new NIZK ar-
gument (see Fig. 2) for Lpk,F . First, comp1(p,χ,C(X)), that computes [γ]1 and a state st. Sec-
ond, comp2(st, [e]2), that computes [δ]2. We require that if F (χ) = 0, then ([γ]1, [δ]2) satisfy
Eq. (2). We denote the sequential process ([γ]1, st) ← comp1(p,χ,C(X)), [δ]2 ← comp2(st, [e]2)
by ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X)).

Zero-knowledge: For ([γ]1, [δ]2) ← comp(p, [e]2,χ,C(X)), δ is uniformly random. This requirement
is needed for the zero-knowledge property of the resulting NIZK argument.

To be able to construct an efficientΣ-protocol for Lpk,F , we need to replace the efficient prover assumption
with the following assumption.

Efficient prover over integers: as the “efficient prover” requirement, but one uses e everywhere in-
stead of [e]2, and δ instead of [δ]2.

In all our instantiations, the two variations of comp are related as follows: comp(p, [e]2,χ,C(X)) is the
same as comp(p, e,χ,C(X)) but applies an additional [·]2 to some of the variables.

Remark 1. We will explicitly need the independence of [γ]1 from [e]2 for Σ-protocols and thus for CH-
compilation. It is not a priori clear if it is needed for NIZK arguments in general. However, if γ = f(e)
for some non-constant affine map f , then one cannot efficiently compute [γ]1 given only [e]2, since we
rely on type-III pairings and those two values belong to different source groups. Thus, independence of
[γ]1 from [e]2 seems inherent in the case of type-III pairings.

Lemma 3. Assume F is as in Definition 2 and that C(X) is a QDR of F . Then

(1) C has the efficient-prover property.
(2) C has the zero-knowledge property.

Proof. Recalling C(X) = (h∥T )(X), we rewrite Eq. (2) as

γ + h(X)e+ T (X)δ = 0 . (3)

Assume C(X) is a QDR of F . From the first column dependence property, we get that for any
χ ∈ Z(F ), there exists a w, such that T (χ)w = h(χ). Thus for such χ, Eq. (3) holds iff

γ + T (χ)(we+ δ) = γ + T (χ)we+ T (χ)δ = 0 .

This gives rise to the following algorithm to compute γ and δ. In comp1, one samples y←$Zℓ−1
p , and

outputs γ ← T (χ)y. In comp2, one solves T (χ)w = h(χ) for w, and sets δ ← −(we + y). Clearly, γ
and δ satisfy Eq. (2), and γ is computed independently of e. Thus, the efficient prover property holds.
Since y is uniformly random, so is δ = −(we+ y). Hence, the zero-knowledge property is satisfied. We
depict the algorithms in Fig. 1. ⊓⊔

Finally, we show that any matrix which satisfies the efficient prover property as well as the affine
map and F -rank properties must satisfy the first column dependence property. Thus, the latter property
is actually needed.

Lemma 4. Let C(X) be a matrix that satisfies the affine map, F -rank and efficient prover properties.
Then C satisfies the first column dependence property.
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kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X));
ϱ←$Zℓ

p; [ctγ ]1 ← Enc([γ]1;ϱ) ∈ Gℓ×2
1 ;

[z]2 ← ϱ[1]2 + (
∑ν

k=1 rkP k) [
e
δ ]2 ∈ Gℓ

2.
Return π ← ([ctγ ]1, [δ, z]2) ∈ Gℓ×2

1 ×G2ℓ−1
2 .

V(crs, lpar, x = [ct]1, π): check [Iℓ]2 • [ctγ ]1+
∑ν

k=1 (P k [
e
δ ]2 • [ctk]1) =? (−Q [ eδ ]2)• [0∥1]1+[z]2 •

pk.

Sim(crs, td, lpar, x = [ct]1): δ←$Zℓ−1
p ;

z←$Zℓ
p; [ctγ ]1 ← Enc(−Q( e

δ )[1]1; z)−
∑ν

k=1 P k(
e
δ )[ctk]1;

Return π ← ([ctγ ]1, [δ, z]2) ∈ Gℓ×2
1 ×G2ℓ−1

2 .

Fig. 2. The new NIZK argument Πnizk for Lpk,F .

Proof. Fix p,χ, and C(X) = (h∥T )(X), and let compi be any (potentially inefficient) algorithms that
output ([γ]1, [δ]2), such that [γ]1 does not depend on e. Consider any ([γ]1, st) ← comp1(p,χ,C(X)).
For any e and the given st, let [δe]2 ← comp2(st; [e]2). Suppose that γ does not depend on e. Fix any
e ̸= e′. Since Eq. (2) and thus Eq. (3) holds for both e (and thus δ = δe) and e′ (and thus δ = δe′),

h(χ)(e− e′) + T (χ)(δe − δe′) = 0 .

Thus, h(χ) = T (χ)((δe − δe′)/(e
′ − e)), and thus h(χ) ∈ colspace(T (χ)). ⊓⊔

4 Argument for Algebraic Set of Principal Ideal

Fix p← Pgen(1λ) and define Dp := {lpar = (pk, F )}, where

(1) pk is an Elgamal public key for encrypting in G1, and
(2) F is a polynomial with qdc(F ) = poly(λ), i.e., there exists a poly(λ)-size QDR C(X) of F . (In

Sections 5 and 6, we will show that such QDRs exist for many F -s.)

Before going on, recall that Cij(X) =
∑ν

k=1 PkijXk + Qij for public Pkij and Qij . To simplify
notation, we will use vector/matrix format, by writing

C(X) =

ν∑
k=1

P kXk +Q .

As always, we denote Enc([a]1; r) := (Enc([ai]1; ri))i. We often omit χ in notation like [C(χ)]1, and just
write [C]1.

4.1 Protocol Description

Let Lpk,F be defined as in Eq. (1). The new Σ-protocol and NIZK argument for Lpk,F are based on the
same underlying idea. Since the new NIZK is a CH-compilation of the Σ-protocol, it suffices to describe
intuition behind the NIZK.

In the new NIZK argument (see Fig. 2), P uses comp1 to compute [γ]1 (together with state st),
encrypts [γ]1 by using fresh randomness ϱ, and then uses comp2 (given crs = [e]2) to compute [δ]2. If
P is honest, then by the definition of QDRs of F , Eq. (2) holds, i.e., γ + C(χ)( e

δ ) = 0. The latter is
equivalent to γ + (

∑
k P kχk)(

e
δ ) = −Q( e

δ ). V needs to be able to check that the last equation holds,
while given only an encryption of [γ]1. To help V to do that, P sends a vector of randomizers [z]2 to V as
helper elements that help to “cancel out” the randomizers used by the prover to encrypt [γ]1 and [χ]1.

The new NIZK argument is given in Fig. 2.
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4.2 Efficiency

Next, we estimate of the efficiency of the NIZK argument. Note that if we use the comp algorithm
given in Fig. 1, we see that the algorithm computes w and y such that [δ]2 = −(w[e]2 + y[1]2). This
lets us write [ eδ ]2 =

(
1

−w

)
[e]2 +

(
0

−y

)
[1]2. This allows us to compute [z]2 as (

∑ν
k=1 rkP k)

(
1

−w

)
[e]2 +

(ϱ+
∑ν

k=1 rkP k)
(

0
−y

)
[1]2, which can be done with 2ℓ exponentiations in G2. This leads to the following

lemma. Its proof follows by direct observation.

Lemma 5. Consider Πnizk with QDR C. Define TP (C) := |{(i, j) : ∃k, Pkij ̸= 0}|, and TQ(C) :=
|{(i, j) : Qij ̸= 0}|. Let c be the time needed to run comp, eι is the time of an exponentiation in Gι, and
p is the time of a pairing. Then

(1) the prover’s computation is dominated by c+ 2ℓ · e1 + 2ℓ · e2,
(2) the verifier’s computation is dominated by (TP (C) + TQ(C)) · e2 + 2(2 + ν)ℓ · p,
(3) the communication is 2ℓ elements of G1 and 2ℓ− 1 elements of G2.

For the argument to be efficient, we need comp to be efficient (according to Section 3.1, it must be
efficient to solve the system T (χ)w = h(χ) for w, where C(X) = (h∥T )(X)), and the matrices P k and
Q have to be sparse.

In Section 5, we propose a way to construct C(X) that satisfies these restrictions for any F (X) that
can be computed by a polynomial-size ABP. In Section 6, we study other interesting cases.

The estimate in Lemma 5 is often over-conservative. For example, let δ′ = ( e
δ ). If Pkij1 = Pkij2 =: P ′

for j1 ̸= j2, then the verifier has to perform one exponentiation P ′([δ′j1 ]2 + [δ′j2 ]2) instead of two. The
same holds when Qij1 = Qij2 for some j1 ̸= j2. Moreover, when the exponent is a small constant (in the
extreme case, 1 or −1), then one does not have to perform a full-exponentiation.

4.3 Security of the NIZK Argument

Theorem 1. Let {Dp}p be the family of language distributions, where Dp = {lpar = (pk, F )} as before.
Here, F (X) is a ν-variate polynomial of degree d, where ν, d ∈ poly(λ). Let C(X) ∈ Zp[X]ℓ×ℓ be a QDR
of F . The NIZK argument Πnizk for {Dp}p from Fig. 2 is perfectly complete and perfectly zero-knowledge.
It is computationally (adaptive) sound under the L1-(ℓ− 1)-CED assumption in G2 relative to Pgen.

Proof. Completeness: To see that the NIZK argument is complete, transform the verification equation
as follows:

[Iℓ]2 • [ctγ ]1 +
ν∑

k=1

(P k [
e
δ ]2 • [ctk]1) =

? (−Q [ eδ ]2) • [0∥1]1 + [z]2 • pk ⇐⇒

[ctγ ]1 +
ν∑

k=1

P k(
e
δ )[ctk]1 =? Enc([−Q( e

δ )]1; z) ⇐⇒

Enc([γ]1;ϱ) +
ν∑

k=1

P k(
e
δ )Enc([χk]1; rk) =

? Enc([−Q( e
δ )]1; z) ⇐⇒

Enc

(
[γ +C(χ)( e

δ )]1;ϱ+

(
ν∑

k=1

rkP k

)
( e
δ )− z

)
=? Enc([0]1;0)

which holds since the prover is honest and due to the definition of z.
Perfect zero-knowledge: Fix any λ, (p, td) ∈ Supp(Kcrs(1

λ)) and compute crs = [td]2. Then fix
lpar ∈ Supp(Dp) and (x, w) ∈ Rlpar. In the honest prover’s algorithm, since ϱ is uniformly random, then
also z is uniformly random. By the zero-knowledge property (see Section 3.2), δ output by an honest
prover is uniformly random. On the other hand, Sim (see Fig. 2) also samples uniformly random δ and z.
Finally, in both the prover’s and simulator’s case, [ctγ ]1 is the unique value that makes the verifier accept
the argument π. Hence, the distributions of the prover and the simulator are perfectly indistinguishable.

Computational soundness. Let A be a soundness adversary that, for honestly generated crs and
any lpar ∈ Supp(Dp) (including C), breaks Πnizk in time τ and with probability ε. We construct the
following L1-(ℓ− 1)-CED adversary B. (See Definition 1 for the definition of CED.)
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The CED challenger creates p ← Pgen(1λ), [D]2 = [ 1e ]2 ←$L1 and sends (p, [D]2) to B. B runs
(crs, td) ← Kcrs(p). B runs the setup algorithm of Elgamal to compute a random secret key sk and
public key pk from the correct distribution. B fixes any F such that lpar = (pk, F ) ∈ Supp(Dp), and
sends crs = [e]2 and lpar to A. Let C be a fixed poly(λ)-size QDR of F .

Assume that A returns an accepting input-argument pair (x = [ct]1, π), such that x ̸∈ Llpar, i.e.,
[χ]1 ← Dec([ct]1) is such that F (χ) ̸= 0. B uses sk to decrypt [ct]1 to [χ]1 and [ctγ ]1 to [γ]1. B recomputes
[C(χ)]1 ←

∑
P k[χk]1 +Q. B returns [γ∥C(χ)]1 and [δ]2 to the CED challenger.

Since A is successful, the verification equation in Fig. 2 holds, and thus also the following “decryption”
of the verification equation holds:

[Iℓ]2 • [γ]1 +
ν∑

k=1

(P k [
e
δ ]2 • [χk]1) = (−Q [ eδ ]2) • [1]1 .

Thus, γ + C(χ)( e
δ ) = 0, i.e., Eq. (2) holds. Since det(C(χ)) = F (χ) ̸= 0, C has full rank. Thus, B

breaks CED. ⊓⊔

5 Efficient Instantiation Based on ABP

In this section we construct QDRs, that we denote by IK(X), for any polynomial F that can be efficiently
computed by algebraic branching programs (ABPs, [Nis91,BG99]). This results in NIZKs for the class of
languages Lpk,F , where F is only restricted to have a small ABP. However, in many cases, the resulting
matrix IK(X) is not optimal, and this will be seen in Section 7.1. Thus, following sections consider
alternative construction techniques of such matrices.

5.1 Preliminaries: Algebraic Branching Programs

A branching program is defined by a directed acyclic graph (V,E), two special vertices s, t ∈ V , and a
labeling function ϕ. An algebraic branching program (ABP, [Nis91,BG99]) over a finite field Fp computes
a function F : Fν

p → Fp. Here, ϕ assigns to each edge in E a fixed affine (possibly, constant) function in
input variables, and F (X) is the sum over all s − t paths (i.e., paths from s to t) of the product of all
the values along the path.

Algebraic branching programs capture a large class of functions, including in particular all log-depth
circuits, boolean branching programs, boolean formulas, logspace circuits, and many more. For some
type of computations, they are known to provide a relatively compact representation, which makes them
especially useful. See [IK00,IK02,IW14] and the references therein.

Ishai and Kushilevitz [IK00,IK02] related ABPs to matrix determinants as follows.

Proposition 1. [IK02, Lemma 1] Given an ABP abp = (V,E, s, t, ϕ) computing F : Fν
p → Fp, we can

efficiently (and deterministically) compute a function IK(χ) mapping an input χ ∈ Fν
p to a matrix from

Fℓ×ℓ
p , where ℓ = |V | − 1, such that:

1. det(IK(χ)) = F (χ),
2. each entry of IK(χ) is an affine map in a single variable χi,
3. IK(χ) contains only −1’s in the upper 1-diagonal (the diagonal above the main diagonal) and 0’s

above the upper 1-diagonal.

Specifically, IK is obtained by transposing the matrix you get by removing the column corresponding to s
and the row corresponding to t in the matrix adj(X)− I, where adj(X) is the adjacency matrix for abp.

Note that the matrix IK is transposed compared to what is found in [IK02, Lemma 1], to ensure consis-
tency with the notation from the CED assumption.

5.2 NIZK for Algebraic Branching Programs

Lemma 6. Let abp = (V,E, s, t, ϕ) be an ABP that computes a ν-variate polynomial F (X). Then IK(X)
is a QDR of F with ℓ = |V | − 1.
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s a1 · · · ad−1 t
X − ξ1 X − ξ2 X − ξd−1 X − ξd IKpath(X) =

(X−ξ1 −1 0 ... 0
0 X−ξ2 −1 ... 0
... ... ... ... ...
0 0 0 ... −1
0 0 0 ... X−ξd

)

Fig. 3. The ABP abpdpath(X, ξ) for F (X) =
∏d

i=1(X − ξi) and IKpath(X)

Proof. Items 1 and 2 of Proposition 1 state directly that the affine map and reducibility properties of
Definition 2 hold. From 3 of Proposition 1, it follows that IK(X)(ℓ,1) is an upper triangular matrix where
the diagonal which only consists of −1’s. Clearly, det(IK(χ)(ℓ,1)) ̸= 0 for any χ; thus, it follows from
Lemma 2 that the first column dependence property is also satisfied. The claim ℓ = |V |−1 is obvious. ⊓⊔

In particular, qdc(F ) ≤ |V | − 1.
Efficiency of comp. We next specialize the general compi algorithms given in Fig. 1 to ABP. For this,
we just have to write down how to efficiently do the next two steps:

(1) Compute γ = T (χ)y. Due to the shape of IK(χ) and thus of T (χ), one can clearly compute γ as
γi ←

∑i−1
j=1 Tij(χ)yj−1 − yi for each i ∈ [1, ℓ].

(2) Solve T (χ)w = h(χ) for w. Let T ∗ be the matrix obtained from T (χ) by omitting its last row,
and similarly let h∗ be the vector obtained from h(χ) by omitting its last element. One finds w

by solving T ∗w = h∗ by forward substitution, as follows: wi ←
∑i−1

j=1 Tij(χ)wj − hi(χ) for each
i ∈ [1, ℓ− 1].

Lemma 7. Let N(v) be the neighbourhood of a node v in the underlying ABP. Assuming C(X) = IK(X),
the computational complexity of comp is dominated by 2(|E| − |N(s)|) − |N(t)| field multiplications, ℓ
exponentiations in G1, and 2(ℓ− 1) exponentiations in G2.

Proof. Clearly, computing γ requires at most |E|−|N(s)| field multiplications, and computing w requires
at most |E|− |N(s)|− |N(t)| field multiplications. Finally, in the case of the NIZK argument, computing
[γ]1 requires ℓ exponentiations in G1, and computing [δ]2 requires 2(ℓ− 1) exponentations in G2. ⊓⊔

6 Applications

6.1 Univariate F (Set-Membership Proof)

Consider an algebraic set A ∈ Zp of size poly(λ), generated by τ univariate polynomials F1, . . . , Fτ ∈
Zp[X]. As before, we aim to prove that an Elgamal-encrypted χ satisfies χ ∈ A, i.e., Fi(χ) = 0 for all i.
In the univariate case, all ideals are principal [CLO15, Section 1.5], and thus any ideal can be written as
I = ⟨F ⟩ for some F . Thus, A = A(F ) for F ← gcd(F1, . . . , Fτ ) [CLO15, Section 1.5].

Moreover, I(A(F )) = I(Fred) [CLO15, Section 1.5], where Fred has the same roots as F but all with
multiplicity one. That is, if F (X) =

∏
(X − ξi)

bi , for bi ≥ 1 and mutually different ξi, then Fred =∏
(X − ξi). This reduced polynomial Fred can be efficiently computed as Fred = F/ gcd(F, F ′), [CLO15,

Section 1.5]. Since we are constructiong NIZKs for algebraic sets, in this section, we will assume that
F (X) = Fred(X) =

∏
(X−ξi) for mutually different roots ξi. (This will be the case if we assume A = {ξi}

for polynomially many ξi.) Thus, it suffices to prove that F (χ) = 0, where F is a reduced polynomial.
As before, for efficiency reasons, we assume that F has degree poly(λ).

We now apply the ABP-based protocol to a univariate reduced polynomial F . We depict the ABP
abpdpath(X, ξ) in Fig. 3. The ABP consists of a single path of length d with edges labelled by values X−ξi.
Clearly, abpdpath(X, ξ) computes F (X). The corresponding matrix IKpath(X) is also given in Fig. 3.

Fig. 4 depicts the resulting set-membership NIZK argument that X ∈ {ξi}.

Lemma 8. Let F (X) be a univariate reduced polynomial. The ABP-based NIZK argument for Lpk,F has
prover’s computation of at most 3d exponentiations in G1 and 4d − 2 exponentiations in G2, verifier’s
computation of 7d− 1 pairings and at most d exponentiations in G2, and communication of 2d elements
of G1 and 2d− 1 elements of G2.

Proof. Prover: First, we write down the concrete formulas for the comp algorithm from Fig. 1.
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kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2, χ,C(X));
ϱ←$Zd

p; [ctγ ]1 ← Enc([γ]1;ϱ) ∈ Gd×2
1 ; [z]2 ← ϱ[1]2 + r [ eδ ]2 ∈ Gd

2;
return π ← ([ctγ ]1, [δ, z]2).

V(crs, lpar, x = [ct]1, π): check [Id]2 • [ctγ ]1 + [ eδ ]2 • [ct]1 +Q [ eδ ]2 • [0∥1]1 =? [z]2 • pk.

Sim(crs, td, lpar, x = [ct]1): δ←$Zd−1
p ; z←$Zd

p; [ctγ ]1 ← Enc(−Q( e
δ )[1]1; z) − ( e

δ ) · [ct]1; return
π ← ([ctγ ]1, [δ, z]2).

Fig. 4. The NIZK argument for Lpk,F , where F (X) is a monic univariate polynomial with qdc(F ) = d.

1. Computation of γ = T (χ)y: one sets γ1 ← −y1, γi ← (χ − ξi)yi−1 − yi for i ∈ [2, d − 1], and
γd ← (χ− ξd)yd−1. (d− 1 field operations.)
[γ]1 can then be computed by using at most d exponentiations in G1. However, if either (a) χ = ξd
or (b) χ− ξi is small for all i, then d− 1 exponentiations suffice.

2. Solving T (χ)w = h(χ) for w: wi ← −
∏i

j=1(χ− ξj) for i ∈ [1, d− 1].
This allows us compute [δ]2 in the following way: Define [ai]2 := wi[e]2. We can recursively compute
[ai]2 as [a1]2 = (χ−ξ1)[e]2 and [ai]2 = (χ−ξi)[ai−1]2, and so computing each [ai]2 requires at most 1
exponentiation. Note that if χ = ξj , then [aj ]2 = [0]2 and thus requires no exponentiations. Further,
each [ai]2 = [0]2 for each i ≥ j, which then also do not require exponentiations.
We finally compute [δi]2 = [ai]2 + [yi]2, which gives us a total of at most 2d − 2 exponentiations in
G2, and we only achieve this bound if χ = ξd,

Since field operations are cheap, comp is dominated by at most d exponentiations in G1 to compute [γ]1
and 2d−2 exponentiations in G2 (up to d−2 of which can have a small exponent χ−ξi) to compute [δ]2.
In addition, the prover performs 2d exponentiations in G1 to compute [ctγ ]1 and 2d exponentiations in
G2 to compute [z]2. Thus, the prover performs 3d (3d − 1 if χ = ξd) in G1 and 4d − 2 exponentiations
in G2.

Verifier: We first note that Q [ eδ ]2 = −ξ ◦ [ eδ ]2 − [ δ0 ]2 ∈ Gd
2. Thus,

[ eδ ]2 • [ct]1 +Q [ eδ ]2 • [0∥1]1 = [ eδ ]2 • [ct]1 − (ξ ◦ [ eδ ]2 + [ δ0 ]2) • [0∥1]1 = [κ]T − [ δ0 ]2 • [0∥1]1 ,

where [κi]T = [( e
δ )i]2•([ct]1 − ξi ◦ [0∥1]1). Here, ( e

δ )i is the ith coefficient of the vector ( e
δ ). Thus, Q [ eδ ]2

can be computed in 3d− 1 pairings. Thus, the verifier’s total computation is 7d− 1 pairings. Note that
the verifier executes at most d exponentiations; however, this number is smaller if the exponents are
small. Moreover, one can usually precompute all values [ξi]1.

Communication: 2d group elements to transfer the ciphertexts [ctγ ]1, d − 1 group elements to
transfer [δ]2, and d group elements to transfer the randomizers [z]2, 4d− 1 group elements in total. ⊓⊔

6.2 Special Case: OR Arguments

In an OR argument, the language is Lpk,X(X−1), that we will just denote by L{0,1}, assuming that
pk is understood from the context. The case of OR arguments is of particular interest because of its
wide applications in many different scenarios. Indeed, one of the most direct applications of [CH20] is
a new OR proof with the argument consisting of 7 group elements. Due to the importance of L{0,1}, in
Appendix C.1, we will detail three example NIZK arguments that are all based on CED-matrices. The
first argument is based on abp2path, and the other two arguments are based on known Σ-protocols from
the literature. Interestingly, the third example is not based on ABPs; the added discussion clarifies some
benefits of using the ABP-based approach.

6.3 Elliptic Curve Points

In Fig. 5, we depict an ABP and IK(X,Y ) for the bivariate function F (X,Y ) = X3 + aX + b− Y 2 (i.e.,
one checks if (X,Y ) belongs to the elliptic curve Y 2 = X3 + aX + b). In Section 7.1, we will propose
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X X2

s F (X)

Y

X

X

Y

Xa

b

−Y
IK(X,Y ) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

Fig. 5. ABP example for F (X,Y ) = X3 + aX + b− Y 2.

a non-ABP-based QDR for the same task. ABPs for hyperelliptic curves Y 2 +H(X)Y = f(X) (where
deg(H) ≤ g and deg f = 2g + 1) of genus g can be constructed analogously.

NIZK arguments that committed (X,Y ) belongs to the curve are interesting in practice since one
often needs to prove in zero-knowledge that a verifier of some pairing-based protocol accepts. Such a
situation was studied in [BCTV14], who proposed to use cycles of elliptic curves, such that the number
of points on one curve is equal to the size of the field of definition of the next, in a cyclic way. Using
the NIZK, resulting from the example of the current subsection, one can use a bilinear group with group
order p to prove that the encrypted coordinates belong to an elliptic curve where the finite field has size
p.
Different normal form. Motivated by [PSV12], we also consider the following less common normal
form for an elliptic curve, F (X,Y ) = (X + aY )(X + bY )(X + cY ) − X, for mutually different a, b, c.
Then, one can construct the following ABP-based 3× 3 QDR:(X+aY −1 0

0 X+bY −1
−X 0 X+cY

)
.

7 On Bivariate Case

Dickson [Dic21] proved that for any degree-d bivariate polynomial F (X), there exists a d×dmatrix C(X)
of affine maps that has F (X) as its determinant. Plaumann et al. [PSV12] described efficient algorithms
for finding C(X) for some families of polynomials F ; in their case, C(X) is usually symmetric and
can satisfy some other additional requirement like semidefiniteness. Since the ABP-based approach often
blow ups the dimension of the matrix, we will next use the results of [Dic21,PSV12] to construct a
d × d matrix C(X). However, the resulting matrix is usually not a QDR, which results in additional
complications. We provide several concrete examples in the case F (X,Y ) describes an elliptic curve.
Plaumann et al. [PSV12] provided also examples for the case d ∈ {4, 5}, noting however that finding a
determinantal representation of F becomes very time-consuming for d ≥ 5. In Appendix D.3, we will
provide an example for d = 5. We refer to [PSV12] for algorithms and general discussion.

7.1 Optimized Solutions for Elliptic Curves

Let F (X,Y ) = X3 + aX + b − Y 2 be a polynomial that describes an elliptic curve. In Section 6.3,
we described a small ABP for checking that (X,Y ) ∈ E(Zp), where E(Zp) : F (X,Y ) = 0. However,
this resulted in a 4 × 4 matrix IK(X,Y ). Next, we construct 3 × 3 matrices, of correct determinant,
for two different choices of F . In general, there are several inequivalent linear symmetric determinantal
representations of F , [PSV12]. In both cases, we chose the matrix by inspection.
Case F (X,Y ) = X3 + aX + b − Y 2 for a ̸= 0. In Appendix D.1, we show that in case there exists a
3 × 3 determinantal representation that is not a QDR, and discuss the possible issues that arise when
one tries to use our NIZK argument in such a case.
Case F (X,Y ) = X3 + b− Y 2. We will tackle this case in Appendix D.2.

8 Handling Non-Principal Ideals

Next, we extend the new framework to constructing a NIZK argument that an Elgamal-encrypted χ
satisfies χ ∈ A for any algebraic set A = A(I). Namely, assume that I(A) has a known generating
set (F1, . . . , Fτ ) for some τ . We prove that χ ∈ A by proving that Fi(χ) = 0 for each Fi. Thus,
Dp = {(pk,A)}, where I(A) = ⟨F1, . . . , Fτ ⟩ and each Fi has qdc(Fi) = poly(λ).
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The argument system can be implemented in polynomial time and space, assuming that (1) we know
a generating set with small τ = poly(λ) and with small-degree polynomials, (2) for each Fi, we know a
small QDR Ci(X) of Fi, and (3) we can construct an efficient NIZK argument system for showing that
det(Ci(X)) = 0. The previous sections already tackled the last two issues. In this section, we study issue
(1). However, the issues are related. In particular, steps (2) and (3) are most efficient for specific type of
polynomials Fi, and when solving (1), we have to take this into account.

8.1 NIZK for NP

Next, we use the described methodology to implement arithmetic circuits, and then extend it to R1CS (a
linear-algebraic version of QAP [GGPR13]) and aCSPs (arithmetic constraint satisfaction systems), i.e,
constraint systems where each constraint is a small-degree constant that depends on some small number
of inputs. We also show how to directly use our techniques to implement the Groth-Sahai-Ostrovsky
constraint system [GOS06] that have efficient reductions to corresponding circuits. Interestingly, this
seems to result in the first known pairing-based (random-oracle-less) NIZK for general aCSPs; although
see [Sze20] for a recent use of aCSPs to construct SNARKs.
Arithmetic circuits. Let C be an arithmetic circuit over Zp, with n gates (including input gates) and
m wires. We construct an algebraic set AC = (χ1, . . . , χn) ∈ Zn

p , such that χ ∈ AC iff C(χ) = 0, as
follows. First, χ corresponds to the vector of wire values. As in the case of QAP [GGPR13], we assume
that each gate is a weighted multiplication gate that computes

Fi :

∑
j

uijχij

∑
j

vijχij

 7→ χi

for public uij , vij , and ij , where for the sake of efficiency, the sum is taken over a constant number of
values.

1. First, each χi corresponds to the value of the output wire of ith gate, with χj , j ≤ m0 corresponding
to the inputs of the circuit. We also assume that the last few wire values correspond to the output
values of the circuit.

2. Second, for each gate i > m0, we introduce the polynomial Fi(χ) = χi − (
∑
uijχij )(

∑
vijχij ).

Then AC = {(χ1, . . . , χm) : Fi(χ) = 0 for all i > m0}. To construct a NIZK for showing χ ∈ AC, we do
as before:

(1) We let the prover Elgamal-encrypt χ.
(2) We show that Fi(χ) = 0 for all i by using the NIZK argument from Section 4.

Note that each polynomial in this case is quadratic, and thus one can construct a 2× 2 QDR

C(χ) =
(∑

uijχij
−1

−χi
∑

vijχij

)
.

According to [GS08], the Groth-Sahai proof for this task has commitment length (2m+1)(|G1|+ |G2|)
and argument length (2m + 2n + 2)(|G1| + |G2|). The new NIZK has commitment length 2m|G1| and
argument length n(4|G1|+3|G2|). Assuming m ≈ n and |G2| = 2|G1|, the new NIZK has 3 times shorter
commitments/encrypts and 20% shorter proofs. The new NIZK has approximately 1.5–2 times smaller
prover’s and verifier’s computation. Since the computation in [GS08] can probably be optimized, we have
not included complete comparison.
Extension: R1CS. In R1CS (rank-1 constraint system [GGPR13]), one has n constraints
(
∑
uijχi)(

∑
vijχi) =

∑
wijχi in m variables χi, for arbitrary public matrices U = (uij), V = (vij),

and W = (wij). There is clearly a simple reduction from arithmetic circuits to R1CS. The described
solution for arithmetic circuits can be used to construct a NIZK argument system for R1CS, by defining
Fi(χ) = (

∑
uijχi)(

∑
vijχi)−

∑
wijχi and

C(χ) =
( ∑

uijχij
−1

−
∑

wijχij

∑
vijχij

)
.
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Table 2. Comparison of falsifiable NIZKs for Boolean circuit satisfiability: the Groth-Sahai proof, as optimized
by Ghadafi et al. [GSW09], and the new NIZK from Section 8.1. Here, |Gι| is the length of one element from Gι

Protocol |crs| |com| |π| P comp. V comp.

Groth-Sahai [GSW09] 4(|G1|+ |G2|) 2(m+ 1)(|G1|+ |G2|) (6m+ 2n+ 2)(|G1|+ |G2|) (12m+ 4n+ 4)(e1 + e2) 16(2m+ n)p

New, Section 8.1 |G2| 2m · |G1| (m+ n)(4|G1|+ 3|G2|) (m+ n)(5e1 + 4e2) 13(m+ n)p

Extension: Arithmetic Constraint Satisfaction Problems (aCSPs). Fix F = Zq. Recall that for
a q ≥ 1, a q-aCSP instance F over F is a collection of functions F1, . . . , Fτ (called constraints) such
that each function Fi depends on at most q of its input locations. That is, for every j ∈ [1, τ ] there
exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that Fj(χ) = f(χi1 , . . . , χiq ) for every χ ∈ Fn. Then F is
satisfiable if Fj(χ) = 0 for each j.

One can extend R1CS to q-aCSP for small constant q, assuming that Fj are (small-degree) polynomials
for which one can construct poly-size QDRs. Intuitively, F is the generating set for some polynomial
ideal I = I(A), and thus the examples of this subsection fall under our general methodology. One can
possibly use some general techniques (see Section 8.2 for some examples) to minimize the generating sets
so as to obtain more efficient NIZKs.
Specialization: Boolean Circuits. By using techniques from [GOS06], one can construct a NIZK for
any Boolean circuit that, w.l.o.g., consists of only NAND gates. Intuitively, one does this by showing that
each wire value is Boolean, and then showing that each NAND gate is followed correctly. The latter can
be shown by showing that a certain linear combination of the input and output wires of the NAND gate
is Boolean. Thus, here one only uses polynomials of type fi(χ) = A(χ)2 −A(χ), where A(χ) =

∑
aijχj

for some coefficients aij .
In Table 2, we compare the resulting NIZK with the optimized Groth-Sahai proof for Boolean circuits

by Ghadafi et al. [GSW09]. Here, m is the number of wires and n is the number of gates. In the case of the
AES circuit described in [GSW09], m = 33880 and n = 34136. Assuming |G2| = 2|G1| and e2 = 2e1, we
get that the NIZK of [GSW09] has commitment length 203283|G1|, argument length 814662|G1|, prover’s
computation 1629324e1, and verifier’s computation 1630336p. The new NIZK has commitment length
67760|G1|, argument length 680160|G1|, and prover’s computation 884208e1, and verifier’s computation
884208p. Hence, the new NIZK has 3 times shorter commitments, 20% shorter arguments, and 1.84 times
smaller prover’s and verifier’s computation.

8.2 Various Examples

Next, we give very generic background on generating sets and after that, we give some examples of the
cases when it pays off directly to work with aCSPs (and not just arithmetic circuits) and then use the
described methodology to construct the NIZK. We emphasize that one does not need a Gröbner basis
and thus sometimes there exist smaller generating sets. In fact, there exist many alternative methods for
constructing efficient aCSPs not directly related to generating sets at all; and the Gröbner basis technique
is just one of them — albeit one that is strongly related to our general emphasis on polynomial ideals.
As we see from the examples, the efficiency of NIZK depends on a delicate balance between the size of
the generating set and the degree of the polynomials in that set. Really, it follows from Lemma 5 that if
the generating set contains polynomials Fi for which QDRs have sizes ℓi, then the resulting NIZK has
communication complexity (2

∑
ℓi)(|G1|+ |G2|)− τ |G2|.

Basic Background on Generating Sets. Generating sets of an ideal can have vastly different cardi-
nality. For example, Z is generated by either {1} or by the set of all primes. Since a Gröbner basis [Buc65]
is, in particular, a generating set, one convenient way of finding a generating set is by using a Gröbner
basis algorithm; however, such algorithms assume that one already knows a generating set. Fortunately,
the Buchberger-Möller algorithm [MB82] (as say implemented by CoCoA10) can compute a Gröbner basis
for I(A), given any finite set A.
Worst-Case Multi-Dimensional Set-Membership Proof. We performed an exhaustive computer
search to come up with an example of a 3-dimensional set of five points that has the least efficient NIZK

10 http://cocoa.dima.unige.it/
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argument in our framework. One of the examples we found11 is

A = {(2, 5, 1), (2, 4, 2), (2, 5, 3), (1, 2, 4), (3, 1, 5)} .

In this case, we found a reduced degree-lexicographic Gröbner basis
(y − z − 2)(y + z − 6),

1

18
(6x(3y − 5)− 37y + (z − 4)z + 68),

1

9

(
9x2 − 33x+ y − (z − 4)z + 22

)
,
1

3
(−12x+ 5y + z(z(3z − 23) + 53)− 34)


that consists of three quadratic and one cubic polynomials. Clearly, here, each degree-d polynomial has
an optimal-size d× d QDR. In the only non-trivial case (the cubic polynomial), one can use the matrix

C4(x, y, z) =

(
z 1 0

53/3 23/3−z −4
x−5y/12+17/6 0 −z

)
.

Thus, one can construct a NIZK argument with communication of 2(2 + 2 + 2 + 3) = 18 elements of G1

and 18 − 4 = 14 elements of G2. Since, usually, elements of G2 are twice as long as elements of G1, it
means that, in the worst case, such a NIZK argument will only be 4.6 times longer than a single OR
proof. This is also the upper bound on the NIZK communication according to our exhaustive search,
further discussion would be outside the scope of the current paper.

The most efficient known alternative seems to add (structure-preserving) signatures (SPSs) of 5
points to the CRS, letting the prover encrypt a signature of the chosen point, and then proving that the
encrypted value is a valid signature of some point. (See, e.g., [RKP09].) This alternative has both a much
larger CRS and worse concrete complexity compared to our NIZK argument. Moreover, it assumes that
the underlying signature scheme is unforgeable.
Range proofs. In Appendix C.2, we will show how to use our techniques to construct range proofs, i.e.,
proofs that the committed value χ belongs to some interval [0, N ]. Couteau and Hartmann’s approach
can be used to propose range proofs of efficiency Θ(logN) by using the binary decomposition of χ. In
Appendix C.2, we note that the use of the NIZK from Section 6.1 helps us to obtain a NIZK with better
verifier’s computation.

9 Back to Algebraic Languages

The well-known methodology of diverse vector spaces (DVSs, [BBC+13,Ben16]) has been used to suc-
cessfully create efficient smooth projective hash functions (SPHFs) for algebraic languages. Moreover,
by now several constructions of NIZKs based on such SPHFs are known, [ABP15,CH20]. For all such
constructions, the first step is to construct language parameters Γ and θ (see Section 2). Unfortunately,
existing constructions of the language parameters are all somewhat ad hoc.

Next, we improve on the situation by proposing a methodology to construct (Γ ,θ) for any Lpk,A,
where A is any algebraic set for which Section 8 results in an efficient NIZK. We start the process from a
QDR Ci of Fi, where ⟨F1, . . . , Fτ ⟩ is some generating set of I(A), and output concrete parameters (Γ ,θ).
The problem of constructing such Ci was already tackled in the current paper, with many examples
(including the case when Ci is based on an ABP). As the end result, we construct explicit language
parameters (Γ ,θ) for a variety of languages where no such small parameters were known before. Moreover,
even in the simple case of univariate polynomials, where previous solutions were known [BBC+13,CH20],
the new parameters are smaller than before.

We consider various NIZKs that one can construct for given (Γ ,θ). For every fixed (Γ ,θ), the NIZK
from Section 4 is more efficient than the QA-NIZK of [ABP15] and usually more efficient than the
CHM NIZK of [CH20]. Finally, we briefly discuss resulting GL-SPHFs [GL03] based on the new language
parameters.
Preliminaries. We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol and the resulting NIZK
in Appendix F.1. There, we will also state the efficiency of their construction as a function of (Γ ,θ). We
also restate Theorem 18 from [CH20] about the security of the CHM NIZK.
11 In the case of many other sets, the NIZK will be much more efficient. We will provide one concrete example in

Appendix E.1.
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9.1 On Algebraic Languages for Elgamal Ciphertexts

Next, we derive language parameters Γ and θ for an arbitrary Lpk,F , such that θ(x) ∈ colspaceΓ (x) iff
x ∈ Lpk,F . In the case where I(A) = ⟨F1, . . . , Fτ ⟩ is not a principal ideal, one can then “concatenate” all
τ parameters Γ (x) and θ(x).

We start the derivation from the equation T (χ)w = h(χ) in Fig. 1. To simplify notation, let E(χ; r) :=
Enc([χ]1; r)

⊤ ∈ G2
1 be a transposed ciphertext. Let E(T (χ)) (resp., E(h(χ))) denote an element-wise

(transposed) encryption of T (χ) (resp., h(χ)), where χi is encrypted by using randomizer ri (that is, χi

is “replaced” by [cti]⊤1 ) and constants are encrypted by using the randomizer 0. We define [Γ (x)]1 and
[θ(x)]1 as follows:

[Γ (x)]1 = (E(T (χ))∥E(0d×d; Id)) ∈ G2d×(2d−1)
2 , [θ(x)]1 = E(h(χ)) ∈ G2d

2 . (4)

Thus, [Γ ]1w
∗ = [θ]1 is an “encrypted” version of T (χ)w = h(χ), where [Γ ]1 contains additional columns

and w∗ contains additional rows (compared to w) to take into account the randomizers used to encrypt
χi. Note that E(C(χ)) = E(

∑
P kχk +Q;

∑
P krk).

Example 1. Let F (X) = (X − 0)(X − 1), and thus d = 2. Recall that then C(χ) =
( χ −1
0 χ−1

)
and thus

T (χ) =
( −1
χ−1

)
and h(χ) = ( χ0 ). Since Enc([0]1; 1) = [1∥sk]1 and Enc([0]1; 0) = [0∥0]1, Eq. (4) results in

[Γ ]1 =

(
E(−1; 0) E(0; 1) E(0; 0)
E(χ− 1; r) E(0; 0) E(0; 1)

)
=


0 1 0
−1 sk 0
ct1 0 1

ct2 − 1 0 sk


1

∈ G4×3
1 , [θ]1 =

[
ct1
ct2
0
0

]
1

.

A variation of this [Γ ,θ]1 was given in [BBC+13,CH20]. To motivate Theorem 2, note that w∗
1 = w = −χ

is a solution of T (χ)w∗
1 = h(χ). Setting ŵ := (w∗

2∥w∗
3)

⊤ = r
(

1
−w∗

1

)
= r

(
1
χ

)
results in Γw∗ − θ =

(0∥0∥0∥ − χ(χ− 1))⊤, which is equal to 04 iff χ ∈ {0, 1}.

Theorem 2. Lpk,F = LΓ ,θ.

Proof. (1) Assume x = Enc(χ) ∈ Lpk,F . By the first column dependence property of Definition 2,
there exists w such that T (χ)w = h(χ), i.e., C(χ)

(
1

−w

)
= 0. To show that x ∈ LΓ ,θ, we need to

construct w∗ such that θ = Γw∗. First, we set w∗
i ← wi for i ≤ d− 1. This guarantees that Dec([θ]1) =

Dec([Γ ]1)w
∗. Next, we have to set the remaining coefficients of w∗

i so that also the randomizers in
(E(T )∥E(0d×d; Id))w

∗ = E(h) match. Denoting ŵ = (w∗
d, . . . , w

∗
2d−1)

⊤, this is achieved by setting ŵ ←
(
∑

P krk)
(

1
−w

)
. Really, then

(E(T )∥E(0d×d; Id))w
∗ − E(h(χ)) =E (C) (−1

w ) + E(0d×d; Id)ŵ

=E
(
C;
∑

P krk

)
(−1

w ) + E(0d; ŵ)

=E
(
0d;
(∑

P krk

)
(−1

w ) +
(∑

P krk

) (
1

−w

))
=E(0d;0d) .

(2) Assume that x = Enc(χ) ∈ LΓ ,θ, and thus [θ]1 ∈ colspace([Γ ]1). Let w∗ be such that θ = Γw∗.
After entry-wise decrypting, we get Γ ∗ = (T (χ)∥0)w∗ = h(χ). Let w = (w∗

1 , . . . , w
∗
d)

⊤. Hence, T (χ)w =
h(χ), which means that C(χ)(−1

w ) = 0. If x ̸∈ Lpk,F then det(C(χ)) ̸= 0. Since −1 is non-zero, this is
a contradiction. ⊓⊔

In Appendix F.2, we will give two more (lengthy) examples to illustrate how w∗ is chosen.
Handling Non-Principal Ideals. Assume I(A) has a generating set (F1, . . . , Fτ ) for τ > 1, and that
for each Fi, we have constructed the language parameter Γ i,θi. We can then construct the language
parameter for Lpk,A by using the well-known concatenation operation, setting

Γ =
(

Γ 1 ... 0
... ... ...
0 ... Γ τ

)
and θ =

(
θ1
...
θτ

)
.

On the Couteau-Hartmann Disjunction. In Appendix F.3, we describe the Couteau-Hartmann
disjunction that results in Γ of size (3d − 1) × (3d − 2) and compare it to Eq. (4). For the sake of
completeness, we also reprove the efficiency of the CHM NIZK from [CH20].
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9.2 Efficiency of Set-Membership NIZKs: Comparisons

In Table 1 we give a concrete efficiency comparison in the case of set-membership. This is motivated by
the fact that this is probably the most complex language for which [CH20] provides a concrete NIZK with
which we can compare our results. Because of the still large dimensions of Γ , using the CHM Σ-protocol
as in [CH20] for LΓ ,θ = Lpk,F has quite a big overhead. Thus, the NIZK in Lemma 8 is quite a bit more
efficient. However, it compares favorably to [CH20]. In the following lemma, we state its efficiency.

Lemma 9. Let F be a univariate degree-d polynomial and let C(X) be the abppath-based QDR of F from
Section 6.1. Let [Γ ]1 be constructed as in Eq. (4). Then, the CHM NIZK argument requires (5d− 3)e1 +
4de2 from the prover, 7d− 1 pairings from the verifier, and 4d− 1 group elements.

Proof. In this proof, we use the notation of Lemma 5. Note that

TΓ = {|(i, j)| : Tij ̸= 0}+ {|(i, j)| s.t. j > 1 : Pkij ̸= 0 for some k}+ 2 · ℓ

and
Tθ = {|(i, j)| : hij ̸= 0}+ {|i| : Pki1 ̸= 0 for some k} .

For a general C, the efficiency estimate follows from Proposition 2 and the above formulas for TΓ and
Tθ. Hence, we only give concrete estimates for the case of univariate F .

The prover can compute [Γ (x)]1r in TΓ = 5d− 3 exponentiations in G1, and [d]2 in 2n = 2 · 2d = 4d
exponentiations in G2. The verifier executes TΓ = 5d− 3 pairings to compute [Γ ]1 • [d]2, Tθ = 2 pairings
to compute [θ(x)]1 • [e]2, and n = 2d pairings to compute [a]1 • [1]2, in total 7d− 1 pairings. ⊓⊔

Note that the computation of the language parameters Γ ,θ induces some cost. However, this com-
putation is usually done once in advance. It is also not expensive, both in the case of the new NIZK and
the CHM NIZK [CH20] requiring one to compute [ξi]1 for each root ξi.

9.3 GL-SPHFs for Algebraic Sets

We give an example of GL-SPHFs (Gennaro-Lindell smooth projective hash functions, [GL03]) based
on the new lpar = (Γ ,θ). We refer the reader to [CS02,BBC+13,Ben16] for a formal definition of GL-
SPHFs. Briefly, recall that an SPHF is defined for a language parameter lpar and associated language
Llpar. A SPHF consists of an algorithm hashkg(lpar) to generate the private hashing key hk, an algorithm
projkg(lpar, hk) to generate a public projection key hp from hk, and two different hashing algorithms:
hash(lpar, hk, x) that constructs an hash H, given the input x and hk, and projhash(lpar, hp, x, w) that
constructs a projection hash pH, given the input x and its witness w. It is required that (1) H = pH when
x ∈ Llpar, and that (2) H looks random when x ̸∈ Llpar, given (lpar, hp, x).

In the GL-SPHFs [GL03], lpar and the projection key hp can depend on x, while in other types
of SPHFs, x is only chosen after lpar and hp are fixed. In the “DVS-based” constructions of SPHFs
of [BBC+13], one starts with [Γ ]1 ∈ Gn×t

1 and [θ]1 ∈ Gn
1 that may or may not depend on x = [Γ ]1w.

One samples a random hk = α←$Zn
p , and sets hp ← α⊤[Γ ]1. For x = [Γ ]1w, one computes pH =

projhash(lpar, hp, x, w)← hp · w and H = hash(lpar, hk, x)← hk · x.
For any A(I) for which the NIZK of Section 4 is efficient, one can also construct an efficient SPHF

by constructing Γ and θ as in Eq. (4).

Example 2 (GL-SPHF for the language of elliptic curve points.). Let A = {(X,Y ) : Y 2 = X3 + aX + b}
as in Section 6.3. Then, one can use lpar = (Γ ,θ) from Example 4 to define hk←$Z8

p, hp← α⊤[Γ ]1 =(
α3ct11 + α4ct12 + aα8 − α2, α7ct11 + α8ct12 − α4,−α7ct21 − α8ct22 − α6,

α1 + α2sk, α3 + α4sk, α5 + α6sk, α7 + α8sk

)⊤

,

and, in the case x ∈ Llpar, pH = H = [α⊤Γ w]1 =χ1 (−α3ct11 − aα8 + α4χ1 + α2)− χ1 (α7χ1ct11 + ct12 (α8χ1 + α4))+

χ2 (α7ct21 + α8ct22 + α6) + r1 (α1 + χ1 (α3 + χ1 (α7 + α8sk) + α4sk) + α2sk)+

r2 (α5 − χ2 (α7 + α8sk) + α6sk)


1

.
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10 On Falsifiability of CED

In the current paper, we significantly expand the class of languages for which the Couteau-Hartmann
framework allows for the construction of efficient NIZKs. However, for many of these languages, the
underlying variant of the CED assumption is not falsifiable in the sense of Naor [Nao03]. At first sight,
even though the Couteau-Hartmann framework leads to particularly compact NIZKs, relying on a non-
falsifiable assumption seems to limit the interest of the result severely: if one is willing to rely on non-
falsifiable in the first place, then there are countless pairing-based SNARGs and SNARKs which will
achieve much more compact proofs [Gro10,Lip12,GGPR13] (albeit the prover cost will be much higher
in general).

Next, we discuss the falsifiability of the CED assumption. In Section 10.1, we study the falsifiable
CED case, by clarifying for which languages there exist (algebraic) polynomial-time algorithms to check
F (χ) = 0. In particular, we point out that for many examples of the current paper, the CED assumption
is already falsifiable. After that, we concentrate on the cases when this is not so.

In Section 10.2, we show that despite their unfalsifiability, CED assumptions are fundamentally differ-
ent in nature from knowledge-of-exponent assumptions (which underlie the security of existing SNARK
candidates [Gro10,Lip12,GGPR13]). We will prove that CED assumptions are implied by a new but
natural gap assumption [OP01] that KerMDH stays secure in G2 even given a CDH oracle in G1.

In Section 10.3, we modify our NIZKs to make the CED assumption falsifiable by letting the prover
additionally encrypt input elements in G2. If the polynomial F is quadratic, then the soundness reduction
can use them to check whether the prover’s inputs belong to the language or not, thus making CED
falsifiable. Since each gate of an arithmetic circuit is a quadratic polynomial, one can construct a NIZK
for arithmetic circuits under a falsifiable assumption. The reason why we do not start with this solution is
the added cost. First, the additional elements make the argument longer. Second, as probably expected,
one cannot use Elgamal but has to use the less efficient DLIN cryptosystem [BBS04].

Thus, if CED is falsifiable, then one can use an Elgamal-based solution. Otherwise, one has a security-
efficiency tradeoff: one can either rely on a non-falsifiable gap-assumption or use a slightly less efficient
DLIN-based falsifiable NIZK.

10.1 On Languages for Which CED Is Falsifiable

The CED assumption is falsifiable if there exists an efficient verification algorithm Vf , such that given
an arbitrary ciphertext tuple x = [ct1, . . . , ctν ]1 and an sk-dependent trapdoor T, Vf(p, pk, x,T) can
efficiently check whether Decsk([ct1, . . . , ctν ]1) ∈ Lpk,F . As in the rest of the paper, we take T = sk.
Thus, given a ciphertext tuple [ct]1, Vf can use sk to decrypt it and obtain the plaintext [χ]1. Vf then
forms the QDR [C(χ)]1 from [χ]1. If F (χ) ̸= 0 (that is, x ̸∈ Lpk,F ), then [C(χ)]1 has full rank. Otherwise,
it has rank < ℓ. Thus, if F (X) is such that it is possible to check efficiently whether F (χ) = 0, given
[χ]1, we can construct an efficient falsifiability check Vf . (Note that this approach is different from
Couteau-Hartmann, who required T to be a matrix.)

First, if |A| = poly(λ), then Vf just checks if [χ]1 is equal to [a]1 for any a ∈ A. Thus, the NIZK for the
univariate case in Section 6.1 and the NIZK for boolean circuits in Section 8.1 rely on a falsifiable CED
assumption. (This assumes that all polynomials have degree poly(λ), and the circuits are polynomial-
size.) In general, the NIZK in the case of non-principal ideal, Section 8, is based on falsifiable CED iff
A(I) has polynomial size.

The outliers are the cases of principal ideals of multivariate polynomials (since then |A(I)| can be
exponential as in the set of points (X,Y ) on an elliptic curve) and some instances of non-principal ideals
where |A(I)| is super-polynomial. In the latter case, we can clarify the situation further. Namely, given a
generating set ⟨F1, . . . , Fτ ⟩, by Bézout’s theorem, A(I) has at most size

∏
degFi. Assuming each degFi

is poly(λ),
∏

degFi is super-polynomial if τ = ω(1). Thus, constant-size set-membership arguments in
Section 8.2 or aCSPs for constant-size arithmetic circuits in Section 8.1 are based on falsifiable CED.
However, range proofs and superconstant-size arithmetic circuits are based on non-falsifiable CED.

The super-polynomial size of A(I) does not mean that efficient Vf does not exist. E.g., assume
Fj(X) =

∏
i(Xi− sj) for each j. The ideal ⟨Fj⟩, for a single j, has exponential size. However, given [χ]1,

one can check if Fj(χ) = 0 by checking if χi = sj for some j. This can be generalized to the case Fj is a
product of affine multivariate polynomials

∑
aikXk + bik. Clearly, F (χ) = 0 iff one of its affine factors

is equal to 0. So, Vf can check if there exists an i such that
∑
aik[χk]1 + bik[1]1 = [0]1. Generalizing
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this, one can efficiently establish whether [C]1 is full-rank if the Leibniz formula for the determinant,
det(C) =

∑
σ∈Sn

(sgn(σ)
∏n

i=1 Ci,σi
), contains only one non-zero addend.

On the other hand, since Vf has only access to [χ]1, there is not much hope that the CED assumption
is falsifiable if F is a product of irreducible polynomials, such that at least one of them has a total degree
greater than one, unless we add some additional, carefully chosen, elements to the proof for this purpose.
In the general case, this is not efficient, but the number of additional needed elements might not be
prohibitive for some applications.

Finally, the falsifiability of CED depends only on the polynomial F and not on the specific C. One
could find two different CED-matrices Ci for F , such that the first one results in a more efficient NIZK
argument, but the second one has a specific structure enabling one to construct efficient Vf .

10.2 CED as a Gap Assumption

We show that CED follows from a new gap assumption, which states that given p← Pgen(1λ), even if one
finds some structural properties in G1 that allows breaking CDH over this group, this does in general not
guarantee an efficient algorithm for solving KerMDH [MRV16] over the other group G2. More formally:

Definition 3. Assume that the (exponential-time) oracle O([x, y]1) outputs [xy]1. Dℓ−1,k-CDHG1
̸⇒

KerMDHG2
holds relative to Pgen, if ∀ PPT A,

Pr
[
p← Pgen(1λ);D←$Dℓ−1,k; [c]3−ι ← AO(p, [D]ι) : D

⊤c = 0k ∧ c ̸= 0ℓ−1

]
≈λ 0 .

Theorem 3. Let ℓ − 1, k ∈ N. If the Dk-CDHG1
̸⇒KerMDHG2

assumption holds relative to Pgen, then
Dk-(ℓ− 1)-CED holds in G1 relative to Pgen.

Proof (of Theorem 3). Let A be an CED adversary, as in Definition 1, that succeeds with a non-negligible
probability εA. We construct the following CDHG1̸

⇒KerMDHG2
adversary B.

B receives p ← Pgen(1λ) and [D]2 ← Dk, and feeds them to A. Assume A is successful. B obtains
([γ∥C]1, [δ]2)← A(p, [D]2), where γ ∈ Zℓ×k

p , C ∈ Zℓ×ℓ
p , and δ ∈ Z(ℓ−1)×k

p . Write

(γ∥C) =
(
XL XR
vL vR

)
,

where XR ∈ Z(ℓ−1)×(ℓ−1)
p and say vL ∈ Z1×(k+1)

p . Since A is successful, we get rk(C) ≥ ℓ and thus XR

is invertible. Next, A’s winning condition (γ∥C)
(
D
δ

)
= 0 rewrites to

XL ·D +XR · δ = 0 , vL ·D + vR · δ = 0 ,

which gives, when XR is invertible, D⊤c = 0, where

c← (uL − uR ·X−1
R ·XL)

⊤ ∈ Zk+1
p .

Since12 rk(C) ≥ ℓ, we get c ̸= 0. Using Gaussian elimination, one can compute c by an arithmetic circuit
over Zp. Thus, B can compute [c]1 from [γ∥C]1 with the help of O that allows it to multiply exponents
over G1. B returns [c]1 to the challenger. Clearly, B breaks KerMDH with probability εA. ⊓⊔

Note that in particular, this re-proves the result of [CH20] that CED is secure in the generic bilinear
group model (since a CDH oracle in G1 does not help to break any assumption in G2 in the generic
bilinear group model).

10.3 DLIN-Based NIZK Based on Falsifiable CED

While constructing a Sub-ZK QA-NIZK, [ALSZ20] had to check efficiently if C is invertible, given only
[C]1. We will next study whether we can apply their technique. It is not straightforward to apply it since
their case is somewhat different: there, C is a k × k (in particular, k ∈ {1, 2}) public matrix sampled

12 Note that this is the point where we need to use CED instead of ExtKerMDH since we cannot deduce c ̸= 0
from rk(γ∥C) ≥ ℓ.
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from Dk and then given as a part of the CRS. In our case, C can have an arbitrary poly(λ) dimension,
and it is reconstructed from the input to the NIZK argument.

To explain the technique of [ALSZ20], consider the case [C]1 ∈ G2×2
1 . [ALSZ20] added to the CRS cer-

tain additional elements in G2 (namely, [C11, C12]2), such that it became possible to check publicly (by us-
ing pairings) whether detC = 0 by checking whether [C11]1•[1]2 = [1]1•[C11]2, [C12]1•[1]2 = [1]1•[C12]2,
and [C22]1 • [C11]2 = [C21]1 • [C12]2. One cost of publishing the additional elements in [ALSZ20] was that
it changed the assumption they used from KerMDH to the less standard SKerMDH assumption [GHR15].
As we see next, we have to use the DLIN cryptosystem [BBS04] instead of the Elgamal cryptosystem.
However, as a result, we will obtain a NIZK for any F , computable by a poly-size arithmetic circuit,
sound under a falsifiable CED assumption. Another benefit of it is to demonstrate that our framework is
not restricted to Elgamal encryptions.

Next, we show how to construct a NIZK, based on a falsifiable CED assumption, for the polynomial
F (X,Y ) = X2 − Y . We ask the prover to also encrypt X in G2. In the soundness reduction, a CED-
adversary uses the latter, after decryption, to check whether [X]1 • [X]2 = [Y ]1 • [1]2. We must ensure
that the verifier only accepts the proof if [X]2 is correct, i.e., [X]1 • [1]2 = [1]1 • [X]2. Since Elgamal
is not secure given symmetric pairings, we cannot use the secret key or the same randomness in both
groups. Hence, we use the DLIN encryption scheme. Given sk = (sk1, sk2) and pkι = [1∥sk1∥sk2]ι, we
define lpar := (pk1, pk2, F ). Then, Llpar := {([ct1, ct2]1, [ct1]2)}, where

[ct1]ι = Encι(X; r1, r2) = [r1sk1∥r2sk2∥X + r1 + r2]ι

and
[ct2]1 = Enc1(Y ; r3, r4) = [r3sk1∥r4sk2∥Y + r3 + r4]1 .

We prove that [ct1, ct2]1 are encryptions of X and Y such that X2 = Y , by using the QDR C(X,Y ) =(
X −1
−Y X

)
. The use of the DLIN encryption scheme just affects the efficiency and the communication size

of the protocol. In addition, one can check that [ct1]1 and [ct1]2 encrypt the same X in two different
groups by checking that [ct1]1 • [1]2 = [1]1 • [ct1]2.

Since the DLIN encryption is doubly-homomorphic like Elgamal, then the argument of Section 4.1
stays essentially the same, with Elgamal encryptions replaced by DLIN encryptions, and the dimensions
of randomizers and ciphertexts increasing slightly. In the soundness proof, given that the prover also
outputs Enc2(X; r1, r2), the constructed CED adversary obtains plaintexts [X,Y ]1, [Z]2 and, then can
efficiently verify if the statement X2 = Y holds.

Combining this idea with the rest of our framework, we can construct a NIZK for any language of
DLIN-encryptions for any F , based on a falsifiable CED assumption. This is since one can check that
F = 0 by checking that an arithmetic circuit evaluates to 0, and each gate of an arithmetic circuit
evaluates a quadratic function. For example, to prove that Y 2 = X3 + aX + b, one can encrypt Y , Y ′,
X, X ′, and X ′′, and then prove that Y ′ = Y 2, X ′ = X2, X ′′ = XX ′, and Y ′ = X ′′ + aX + b.
Acknowledgment. Geoffroy Couteau was partially supported by the ANR SCENE.
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A More on Section 2

A.1 Matrix Assumptions

The following assumptions are, while relatively recently formalized, very standard. In particular, MDDH
generalizes DDH and KerMDH generalizes CDH. See [EHK+13,GHR15,MRV16] for more discussion.

Let ι ∈ {1, 2}. Dℓ,k-MDDHGι (Matrix Decisional Diffie-Hellman, [EHK+13]) holds relative to Pgen,
if ∀ PPT A, Advmddh

A,Pgen,Gι,Dℓ,k
(λ) := |ε0A(λ)− ε1A(λ)| ≈λ 0, where

εbA(λ) := Pr

[
A(p, [A,y]ι) = 1

p← Pgen(1λ);A←$Dℓ,k; w←$Zk
p;

if b = 0 then y←$Zℓ
p else y ← Aw fi

]
.
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Table 3. The efficiency of new NIZK arguments for L{0,1}. The communication is given as (g1, g2, z), where gι
is the number of Gι elements (ι = 1 in the Σ-protocols) and z is the number of Zp elements. The computation
is given as (e1, e2, p), where eι is the number of exponentiations in Gι and p is the number of pairings.

Scheme |crs| |π| P comp V comp Assumpt.

Π∨
simple, Π

∨
cg, Π∨

cds (0, 1, 0) (4, 3, 0) (5, 4, 0) (0, 0, 13) CED

Dℓ,k-KerMDHGι (Kernel Diffie-Hellman, [MRV16]) holds relative to Pgen, if ∀ PPT A,
Advkermdh

A,Dℓ,k,ι,Pgen(λ) :=

Pr
[
A⊤c = 0k ∧ c ̸= 0ℓ p← Pgen(1λ);A←$Dℓ,k; [c]3−ι ← A(p, [A]ι)

]
≈λ 0 .

Dℓ,k-SKerMDH (Split Kernel Diffie-Hellman, [GHR15]) holds relative to Pgen, if ∀ PPT A,

Advskermdh
A,Dℓ,k,Pgen(λ) := Pr

[
A⊤(c1 − c2) = 0k ∧ p← Pgen(1λ);A←$Dℓ,k;

c1 − c2 ̸= 0ℓ ([c1]1, [c2]2)← A(p, [A]1, [A]2)

]
≈λ 0 .

According to Lemma 4 of [MRV16], in a bilinear group, if Dℓ,k-MDDH holds then also Dℓ,k-KerMDH
holds. According to Lemma 1 of [GHR15], if Dℓ,k-KerMDH holds in generic symmetric bilinear groups
then Dℓ,k-SKerMDH holds in generic asymmetric bilinear groups.

B More on Section 3

B.1 Determinantal Representations

The following problem is well-studied in algebraic geometry, [Har92,Dol10]. Given a homogeneous poly-
nomial f(X0, . . . , Xn) of degree-d find a d× d matrix C(X) = (Lij(X)) with affine maps as its entries
such that

f(X) = det(Lij(X)) .

The resulting equation det(C(X)) = F (X) is known as F ’s determinantal representation.
More generally, one considers ℓ × ℓ matrices C(X) with the same property. In this case, the deter-

minantal complexity dc(F ) of the polynomial F is the minimal size of any determinantal representation
of F . Clearly, dc(F ) ≥ deg(F ).

All plane curves and cubic surfaces have determinantal complexity equal to their degree, [Dic21].
Dickson [Dic21] also proved a general theorem about the impossibility of determinantal representations
of size deg(F ) for general polynomials F . See [Dic21,Bea00] for more information. Moreover, efficient al-
gorithms for finding determinantal representations, if they exist, have only been proposed lately [PSV12];
see also Section 8.

QDRs, as defined in Definition 2, additionally have the first column dependence property, which is
not required for determinantal representations. Not every determinantal relation is a QDR (see Section 7
for some examples) and thus it is plausible that in general, qdc(F ) > dc(F ).

C More on Section 6

C.1 On OR Proofs

Π∨
simple and Π∨

cg. The NIZK argument Π∨
simple (see Fig. 7) for L{0,1} follows from the approach in

Section 6.1, by using abp2path.
On the other hand, Π∨

cg (see Fig. 7) follows from the approach in Section 6.1, given the ABP in
Fig. 6 (right). It is based roughly on the Chaidos-Groth Σ-protocol from [CG15], which itself is based
on checking whether X · X = X. We depict the ABPs and corresponding matrices IK(X) in in Fig. 6.
The correctness of both arguments follows from the fact that the solution of T (χ)w = h(χ) is w = −χ.

As seen from Fig. 7, in both Π∨
simple and Π∨

cg, the prover’s computation is dominated by 5 exponen-
tiations in G1 (to compute [γ]1; 5 is sufficient since γ2 ∈ {−γ1, 0, γ1}) and 4 exponentiations in G2 (one
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IKpath(X) =
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X −1
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X
IKcg15(X) =

(
X −1
−X X

)
Fig. 6. The matrices for the ABP-based simple (ABP abp2path(X, {0, 1}), left) and the ABP-based Chaidos-Groth
(right) argument for f(X) = X2 −X = X(X − 1) and the corresponding matrices.

kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x, w): y←$Zp; γ ←
( −1
χ−1

)
y ; γ ←

(−1
χ

)
y ; γ ←

( χ
1−χ

)
y ;

ϱ←$Z2
p; [ctγ ]1 ← Enc([γ]1;ϱ);

w ← −χ ; w ← χ− 1 ; [δ]2 ← −(w[e]2 + y[1]2); [z]2 ← ϱ[1]2 + r [ eδ ]2;
return π = ([ctγ ]1, [δ, z]2).

V(crs, lpar, x, π): check [I2]2 • [ctγ ]1 + [ eδ ]2 • [ct]1 +Q [ eδ ]2 • [0∥1]1 =? [z]2 • pk;

Fig. 7. Π∨
simple (contains boxed entries), Π∨

cg (contains dashed boxed entries), and Π∨
cds (contains dotted boxed

entries)

to compute y[1]2 as part of the computation of [δ]2; 3 to compute [z]2 as ( r
rχ )[e]2 + (ϱ +

(
0

−ry

)
)[1]2).

The argument length is 4 elements of G1 and 3 elements of G2.
The verifier’s computation is dominated by 13 pairings. In the case of Π∨

simple, this follows from
Q [ eδ ]2 = −

[
δ
δ

]
2
; thus, [0∥1]1 •Q [ eδ ]2 = −[0∥1]1 •

[
δ
δ

]
2

can be computed in 1 pairing. In the case of Π∨
cg,

it follows from Q [ eδ ]2 = − [ δ0 ]2; thus, [0∥1]1 •Q [ eδ ]2 = −[0∥1]1 • [ δ0 ]2 can be computed in 1 pairing.
Π∨

cds. From the outset, the famous Cramer-Damgård-Schoenmakers (CDS) Σ-protocol from [CDS94]
looks quite different. The idea behind CDS is that to prove that χ ∈ {0, 1}, one follows the prover’s
algorithm in the true branch (resulting in transcript (aχ, eχ, zχ)) and the simulator’s algorithm in the
other branch (resulting in transcript (a3−χ, e3−χ, z3−χ)). To make sure that at least one branch is correctly
computed, the prover chooses ei such that e1 + e2 = e, where e is the verifier’s second message. Couteau
and Hartmann [CH20] described a CH-compilation of the CDS protocol.

Somewhat unexpectedly, one can use our generic framework also here, by defining the QDR
Ccds(X) =

(
0 X

X−1 1−X

)
. However, Ccds(X) does not belong to the class of matrices considered by Ishai

and Kushilevitz, [IK00,IK02] and thus not correspond to an ABP.
In Fig. 7, we also depict the new NIZK argument Π∨

cds that applies Figs. 1 and 2 to Ccds(X). The
property of CDS that the simulated branch depends on χ carries over since one samples γ2−χ←$Zp and
sets γ1−χ ← 0; i.e., the index i of the non-random γi depends on χ. Intuitively, the prover simulates the
branch 2− χ. The reason behind it is that det(C(1,1)(χ)) ̸= 0 if χ = 0 and det(C(1,2)(χ)) ̸= 0 if χ = 1.

As a small optimization, [z]2 can computed as follows:

(1) [z]2 = ϱ[1]2 + r
[ e
(1−χ)e−y

]
2
= r
( ϱ1
ϱ2−ry

)
[ 1 ]2 + r [ ee ]2, if χ = 0,

(2) [z]2 =
( ϱ1
ϱ2−ry

)
[1]2 + r [ e0 ]2, if χ = 1.

In both cases, the prover spends 3 exponentiations in G2. Thus, the prover’s computation is dominated
by 5e1 + 4e2.

To see the verifier accepts note that here Q [ eδ ]2 =
[

0
δ−e

]
2
. In particular, [ eδ ]2• [ct]1+Q [ eδ ]2• [0∥1]1 =

[ eδ ]2 • [ct]1 +
[

0
δ−e

]
2
• [0∥1]1 can be computed in 5 pairings. In total, the verifier executes 13 pairings.

C.2 Range Proof

The following example both has a long cryptographic pedigree and can be used to simply explain
how to expand our framework. In a range proof, the task is to prove that the encrypted value be-
longs to a fixed range [0, N ]. Many range proofs have been proposed in the cryptographic litera-
ture, [Bou00,LAN03,Lip03,CCs08,RKP09,CLs10,CLZ12,DGP+19], due to their many applications and
non-trivial constructions. It is possible that the Couteau-Hartmann compilation works directly with some

30



Table 4. Complexities in the range proof. Every entry should be multiplied by log2N .

P comp in (e1, e2) V comp in p Comm. in (|G1|, |G2|)

General ( 3d−1
log2 d ,

3d−1
log2 d )

7d−1
log2 d ( 2d

log2 d ,
(2d−1)
log2 d )

d = 2 (also [CH20]) (5, 5) 13 (4, 3)
d = 3 (5.05, 5.05) 12.62 (3.79, 3.15)

of the existing Σ-protocol-based range proofs like [LAN03]. We will next show how to use our frame-
work to obtain a proof with Θ(logN) communication. Write η = ⌊log2N⌋. In this case, just setting
AN = {x : 0 ≤ x ≤ N} results in an inefficient NIZK argument, since GS(AN ) = {

∏N
i=0(x− i)} contains

a polynomial F of linear-in-N degree N+1. (Since F is univariate, one can use the solution of Section 6.1
in this case.)

One can instead use a different generating set of smaller-degree polynomials. Assuming N = 2η − 1,
a well-known idea in range proofs is to extend x to binary digits xi, and to prove separately that each
xi is Boolean. In the case N + 1 is not a power of two, one can use an idea from [LAN03]. Namely, let
bj :=

⌊
(N + 2j)/2j+1

⌋
, where j ∈ [0, η]. Then, χ ∈ [0, N ] iff χ =

∑η
j=0 bjχj for some χj ∈ {0, 1} [LAN03].

To translate this idea to our framework, we introduce additional indeterminates and write

A′
N =

(x, x0, . . . , xη) : x =

η∑
j=0

bjxj ∧ (bj ∈ {0, 1} for all j)

 .

Note that in the terms of algebraic geometry, A′
N is a variety in the affine space Zη+2

p , such that AN is
its projection to the affine space Zp.

Clearly,

GB(A′
N ) =

X2
η −Xη, . . . , X

2
0 −X0, X −

η∑
j=0

bjXj


is a (lexicographic) Gröbner basis for A′

N that consists of one linear and η quadratic polynomials. Thus,
the resulting NIZK argument has communication complexity Θ(η) = Θ(logN). A similar trick is useful
in also other settings.

We can base range proofs on d-ary digits, for d ≥ 2, using an ABP-based univariate NIZK to show
that each Xj ∈ {0, . . . , d−1}. One has to execute ⌊logdN⌋ basic NIZK proofs. The resulting range proof
has complexities depicted in Table 4. (The complexities are such due to the fact that in this case, all
values χ− ξi are small.) In particular, the verifier’s computation (which is the most important measure
in many applications) is minimized when d = 3.

As in the case of the multi-dimensional set-membership proof, an alternative is to use signature-based
solutions [RKP09,DGP+19] that offer somewhat better proof size Θ(N/ logN)(|G1| + |G2|). However,
also here these solutions have a longer CRS size and require that the underlying signature scheme is
unforgeable. We leave it as an open question how to combine the protocols of the current paper with
signatures.

D More on Section 7

D.1 Elliptic Curve Points, Case F (X,Y ) = X3 + aX + b − Y 2 for a ̸= 0

By inspection, we found the following 3× 3 matrix, where13 s =
√
−b/a:

C(X,Y ) =
(

Y −s X
X −1 s
a X Y

)
. (5)

13 Hence, this assumes that there exists a square root of −b/a modulo p, i.e., that there exists c such that
ac2 = −b, which is true for (p + 1)/2 values of b. If b is not one of those values, one can by inspection find a
different matrix. Alternatively, one can use the ABP-based solution from Section 6.3.
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Clearly, detC(X,Y ) = F (X,Y ). However, C is not a QDR. We will explain next what does it mean in
the concrete case.

Solving Eq. (2) together with F (X,Y ) = 0 gives us the following formulas to replace into Fig. 1
depending on which minor of C is non-zero:

w ←


(

a(sY−X2)
a(Y−sX)

)
/(aX + b) if b+ aX ̸= 0 ,(

as−XY
a+X2

)
/(sX + Y ) if sX + Y ̸= 0 ,(

aX−Y 2

as+XY

)
/(sY +X2) if sY +X2 ̸= 0 .

Since Y 2 = X3 + aX + b, one can use formulas like X3 + b = Y 2 − aX to modify the expressions.
In particular, the three given expressions for w are equivalent if the three denominators sX + Y =
−det(C(1,1)), sY +X2 = −det(C(2,1)), and aX + b = adet(C(3,1)) are all non-zero.

Solving F (X,Y ) = 0 and det(C(i,1)) = 0 gives that the ith expression for w holds except in either
3, 4, or 2 points. Since there is only one point (X,Y ) = (−b/a, bs/a) where all F (X,Y ) = 0 and
det(C(i,1)) = 0 hold, it means one can compute w in all but a single point.

Thus, we can construct a NIZK argument, with ℓ = 3, assuming that there exists a square root of
−b/a modulo p. Moreover, it cannot be applied in the special case (X,Y ) = (−b/a, bs/a). Thus, strictly
speaking, the resulting NIZK is not for Lpk,F but for a different language, and this outlines the need of
QDRs. However, the resulting argument could be still interesting in the case when in the honest case,
(X,Y ) has some restrictions.

D.2 Elliptic Curve Points, Case F (X,Y ) = X3 + b − Y 2

Consider the following less common normal form for an elliptic curve,

F (X,Y ) = (X + aY )(X + bY )(X + cY )−X ,

for mutually different a, b, c; w.l.o.g., let b ̸= 0. By inspection, we found the following matrix:

C⊤(X,Y ) =

(
X 0 −1

Y+s X+s 1
−sX+Y+s2 Y X

)
,

where s = b1/3 (assuming b has a cubic root). Then,

w ←


(

Y/(s+X)+1
−X

)
if s+X ̸= 0 ,(

(s2−sX+X2+Y )/Y
−X

)
if Y ̸= 0 ,(

−s2+2sX+(X−1)Y

−sX2+b+Y (X−Y )

)
/(X(s+X)− Y ) if X(s+X)− Y ̸= 0 .

None of these formulas succeeds if all F (X,Y ) = s+X = Y = X(s+X)−Y = 0, which can only happen
if (X,Y ) = (−s, 0).

D.3 Fifth-Degree Example

Next, we give a fifth-degree example directly from [PSV12]:

F (X,Y ) =X5 + 3X4Y − 2X4 − 5X3Y 2 − 12X3 − 15X2Y 3 + 10X2Y 2 − 28X2Y + 14X2+

4XY 4 − 6XY 2 − 12XY + 26X + 12Y 5 − 8Y 4 − 32Y 3 + 16Y 2 + 48Y − 24 ,

and

C(X,Y ) =

X+Y 0 0 0 0
0 X+2Y 0 0 0
0 0 X−Y 0 0
0 0 0 X−2Y 0
0 0 0 0 X+3Y−2

+

(
0 2 1 0 0
2 0 0 0 1
1 0 0 2 1
0 0 2 0 −1
0 1 1 −1 0

)
.

As noted in [PSV12], this is just one of 33280 possible solutions for the latter (integer) matrix. In this
case, one can write 5 different formulas for χ1, depending on which submatrix C(I,1)(X,Y ) has a non-
zero determinant. One can check that there are four points for which all these submatrices have a zero
determinant.

Note that there is no obvious small-dimensional ABP-based solution in this case.
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E More on Section 8

E.1 Another Multi-Dimensional Set-Membership Proof

To demonstrate that one does not always need a set-membership proof of the worst-case size, we will
next work out an example for the following set

A = {(2, 1, 2), (1, 4, 2), (3, 1, 3), (1, 2, 3)} ⊂ Z3
p .

By using CoCoA, we found the following lexicographic Gröbner basis

GBlex(I) =

{
(z − 3)(z − 2), (y − 1)(y + 2z − 8), x+

1

3
(5y − 8)z − 3y + 3

}
of size 3. (The corresponding degree-lexicographic and degree-reverse-lexicographic Gröbner bases have
size 6.) By following our methodology, to show that χ ∈ A, we show that Fi(χ) = 0 for each Fi ∈
GBlex(I). More precisely:

– We show that (z − 3)(z − 2) = 0, by using C1 =
(
z−2 −1
0 z−3

)
.

– We show that (y − 1)(y + 2z − 8) = 0, by using C2 =
( y−1 −1

0 y+2z−8

)
.

– We show that 3x+ y(5z − 9)− 8z + 9 = 0, by using C3 =
(

y −1
3x−8z+9 5z−9

)
.

Thus, one needs 3 NIZK arguments for quadratic polynomials (ℓ = 2). By Lemma 5, the NIZK argument
for A has thus communication of 3 · 2 · 2 = 12 elements of G1 and 3(2 · 2− 1) = 9 elements of G2.

As in all examples in Section 8.2, we used Gröbner-basis techniques to find a small aPCS for A.
Clearly, any arithmetic circuit for checking that χ ∈ A has size larger than 3. In particular, in this
concrete case, it seems that one needs to use the full power of aPCS.

An alternative generating set, that is not a Gröbner basis, is

GS(I) = {(x− 1)(y − 1), (x− 3)(y − 2)(z − 2), (x− 2)(y − 4)(z − 3)}

of size 3. While GS is tidier, the argument for GS(A) is slightly less efficient since two of the polyno-
mials are cubic. Thus, here, one can construct three QDRs of size 2, 3, and 3. The resulting NIZK has
communication of 2 · 2 + 2 · 2 · 3 = 16 elements of G1 and (2 · 2− 1) + 2 · (2 · 3− 1) = 13 elements of G2.

F More on Section 9

F.1 CHM NIZK

We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol and the resulting NIZK, see Fig. 8. For
further reference, we state the following results. We refer to Appendix A and [CH20] for unexplained
notions and notation.

Proposition 2 (Efficiency of the CHM Σ-Protocol and CH Compilation). Assume [Γ ]1 ∈ Gn×t
1

and [θ]1 ∈ Gn
1 . Let TΓ := {|(i, j)| : Γij ̸= 0} and Tθ := {|i| : θi ̸= 0}. In the CHM Σ-protocol, the prover

executes TΓ ≤ nt exponentiations and the verifier executes TΓ + Tθ + n ≤ nt + n exponentiations; the
communication is n group elements and t+1 integers. In the compiled protocol, the prover executes TΓ ≤
nt exponentiations in G1 and 2n exponentiations in G2, and the verifier executes TΓ + Tθ + n ≤ nt+2n
pairings; the communication is n|G1|+ t|G2|.

Proposition 3 (Couteau-Hartmann). Consider the NIZK argument ΠC
Σ , described in Fig. 8, for any

algebraic language distribution Dlpar outputting pairs lpar = [Γ ,θ]1 ∈ Pn×t
ν × Pn

ν .

1. It is sound under the L1-t-CED assumption in G2 relative to Pgen.
2. If the language distribution is witness-sampleable with trapdoors Tlpar ∈ Zn×n

p , then ΠC
Σ is sound

under the falsifiable L1-t-CED assumption in G2 relative to Pgen.
3. If the language distribution is m-trapdoor reducible, then ΠC

Σ is sound under the falsifiable L1-(t−m)-
CED assumption in G2 relative to Pgen.

Note that [CH20] proved the soundness under KerMDH assumptions, but it is easy to see that the
soundness also holds under CED assumptions.
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P(lpar = [Γ ,θ]1; [x]1, w) V([Γ ,θ]1; [x]1)

r←$Zt
p

[a]1 ← [Γ (x)]1r [a]1

e←$Zpe

d← ew+ r d

[Γ (x)]1d
?
= [θ(x)]1e+ [a]1

P(lpar = [Γ ,θ]1, crs = [e]2; [x]1, w) V(lpar = [Γ ,θ]1, crs = [e]2; [x]1)

r←$Zt
p

[a]1 ← [Γ (x)]1r
[d]2 ← [e]2w+ r[1]2 ([a]1, [d]2)

[Γ (x)]1 • [d]2
?
= [θ(x)]1 • [e]2 + [a]1 • [1]2

Fig. 8. The CHM Σ-protocol for algebraic languages LΓ ,θ (above) and its Couteau-Hartmann compilation ΠC
Σ

(below)

F.2 More Examples

To simplify parsing, we have omitted the use of bracket notation in examples, writing say 0 instead of
[0]1.

Example 3. Let F (X) =
∏4

i=1(X − ξi). Then

[Γ ]1 =



0 0 0 1 0 0 0
−1 0 0 sk 0 0 0
ct1 0 0 0 1 0 0

ct2 − ξ2 −1 0 0 sk 0 0
0 ct1 0 0 0 1 0
0 ct2 − ξ3 −1 0 0 sk 0
0 0 ct1 0 0 0 1
0 0 ct2 − ξ4 0 0 0 sk


∈ Z8×7

p , [θ]1 =


ct1

ct2−ξ1
0
0
0
0
0
0

 .

In this case, w1 = −(χ− ξ1), w2 = −(χ− ξ1)(χ− ξ2), w3 = −(χ− ξ1)(χ− ξ2)(χ− ξ3), and ŵ = r
(

1
−w

)
=

r(1∥χ− ξ1∥(χ− ξ1)(χ− ξ2)∥(χ− ξ1)(χ− ξ2)(χ− ξ3)).

Example 4 (Elliptic curve.). Let F (X,Y ) = X3 + aX + b− Y 2 and

C(X,Y ) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)
be as in Fig. 5. Then for [ct1]1 = Enc(χ1; r1) and [ct2]1 = Enc(χ2; r2),

[Γ ]1 =



0 0 0 1 0 0 0
−1 0 0 sk 0 0 0
ct11 0 0 0 1 0 0
ct12 −1 0 0 sk 0 0
0 0 0 0 0 1 0
0 0 −1 0 0 sk 0
0 ct11 −ct21 0 0 0 1
a ct12 −ct22 0 0 0 sk


, [θ]1 =


ct11
ct12
0
0

ct21
ct21
0
b

 .

In this case, w⊤ = (w∗
1∥ . . . ∥w∗

3) = (−χ1∥ − χ2
1∥ − χ2), and

ŵ =

(
w∗

4
...
w∗

7

)
=

((
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

)
· r1 +

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 −1

)
· r2
)
·
(

1
−w

)
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=

( r1 0 0 0
0 r1 0 0
r2 0 0 0
0 0 r1 −r2

)
·

(
1
χ1

χ2
1

χ2

)
=

( r1
r1χ1
r2

r1χ
2
1−r2χ2

)
.

Clearly,

Γ ·w∗ =

 −χ1E(−1;0)+r1E(0;1)
−χ1E(χ1;r1)−χ2

1E(−1;0)+r1χ1E(0;1)
−χ2E(−1;0)+r2E(0;1)

−χ1E(a;0)−χ2
1E(χ1;r1)−χ2E(−χ2;−r2)+(r1χ

2
1−r2χ2)E(0;1)


=

 E(χ1;r1)

E(−χ2
1;−r1χ1)+E(χ2

1;0)+E(0;r1χ1)
E(χ2;0)+E(0;r2)

E(−aχ1;0)+E(−χ3
1;−r1χ

2
1)+E(χ2

2;r2χ2)+E(0;r1χ2
1−r2χ2)


=

 E(χ1;r1)
E(0;0)

E(χ2;r2)

E(χ2
2−aχ1−χ3

1;0)

 (∗)
=

( E(χ1;r1)
E(0;0)

E(χ2;r2)
E(b;0)

)
= E(h(χ)) ,

where (∗) holds iff F (χ) = 0.

F.3 CHM NIZK based on Couteau-Hartmann Disjunction

On the Couteau-Hartmann Disjunction. Next, we describe the Couteau-Hartmann disjunction that
results in Γ of size (3d− 1)× (3d− 2) and compare it to Eq. (4).

In Appendix C of [CH20], the authors describe a method of constructing the parameters [Γ ]1 and
[θ]1 of LΓ ,θ for the disjunction of two algebraic languages LΓ i,θi , i ∈ {0, 1}. That is, x ∈ LΓ ,θ iff LΓ i,θi

for at least one i. Briefly, they define

Γ :=

 01×M1 1 01×M0 1
0N0×M1 0N0 Γ 0 θ0

Γ 1 θ1 0N1×M0
0N1

 , θ :=

(
−1

0N0+N1

)
(6)

Thus, a disjunction from matrices [Γ i]1 of size Ni ×Mi ends up with a matrix [Γ ]1 of size (N1 +N2 +
1)× (M1+M2+2). In the honest case, a valid witness is either (w⊤

0 ,−1, 0, 0)⊤ or (0, 0,w⊤
1 ,−1)⊤, where

wi is a valid witness corresponding to the ith disjunct.
We will demonstrate how it differs from our parametrization for the two examples given above.
First, when F (X) = X − ξ and thus [ct]1 = [r[1]1∥r[sk]1 + ξ[1]1]1, then C = (χ− ξ) and thus

[Γ ]1 =

(
[1]1
[sk]1

)
∈ G2×1

1 , [θ]1 =
(

ct1
ct2−[ξ]1

)
,

with w = r. Applying the disjunction of Eq. (6) to it for two different values of ξi and ciphertexts [cti]1,
i ∈ {1, 2}, we get (omitting the bracket notation)

Γ =

 0 1 0 1
0 0 1 ct1,1
0 0 sk ct1,2−ξ1
1 ct1,1 0 0
sk ct1,2−ξ2 0 0

 ∈ Z5×4
p ,θ =

(−1
0
0
0
0

)
,

with w = (r1,−1, 0, 0)⊤ or w = (0, 0, r2,−1)⊤. This should be compared with 4×3 matrix Γ of [BBC+13]
(see also Example 1). Going one step forward, for d = 4, the Couteau-Hartmann disjunction results in a
matrix of size (2 · 5+ 1)× (2 · 4+ 2) = 11× 10, which should compared with the matrix Γ of Example 3
that has size 8× 7. In the general case d = 2c for some c ≥ 1, the resulting matrix has dimensions

(3d− 1)× (3d− 2) .

As noted before, the new solution results in matrices of size 2d× (2d− 1).
Efficiency. For the sake of completeness, we reprove the following lemma, also given in [CH20]. Note
that w has zero elements which means that the computation of [d]2 by the prover is more efficient than
by the general result Proposition 2.
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Lemma 10. Let d = 2c, and assume in recursion Γ 0 and Γ 1 always have equal dimensions. The CH
compiled NIZK argument, as in Fig. 8, corresponding to Γ of this subsection as in Eq. (6), requires
(7d − 4)e1 + (3d − 1)e2 from the prover, (9d − 2)p from the verifier, and the communication is (3d −
1)|G1|+ (3d− 2)|G2|.

Proof. Prover’s computation. The prover needs to compute [Γ (x)]1r and [e]2w+ r[1]2.
If d = 1 then the multiplication [Γ (x)]1r can be executed in T1 = 2 exponentiations. If d = 2 then it

takes T2 = 10 exponentiations. Assume that for fixed d ≥ 2, the multiplication takes Td exponentiations.
Then, T2d can be executed in 2Td + 4 exponentiations. Solving this recurrence relation gives that Td =
7d− 4 in G1.

On top of this, the prover computes [d]2 ← [e]2w + r[1]2. If d = 1 then this can be executed in 2
exponentiations. At each recursion step, w will still have one non-small element and r will have dimension
3d− 2. Thus, this takes 1 + (3d− 2) = 3d− 1 exponentiations in G2.

Verifier’s computation. Since Γ has 6d − 2 non-zero elements, the verifier has to execute 6d − 2
pairings to compute [Γ ]1 • [d]2. In addition, she has to execute 1 pairing to compute [θ(x)]1 • [e]2, and
n = 3d− 1 pairings to compute [a]1 • [1]2, in total 9d− 2 pairings.

Communication. n|G1|+ t|G2| = (3d− 1)|G1|+ (3d− 2)|G2|. ⊓⊔
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