
Flexible Anonymous Transactions (Flax):

Towards Privacy-Preserving and Composable

Decentralized Finance

Wei Dai*

Bain Capital Crypto
w.dai@baincapital.com

Abstract

Decentralized finance (DeFi) refers to interoperable smart contracts running on distributed
ledgers offering financial services beyond payments. Recently, there has been an explosion of
DeFi applications centered on Ethereum, with close to a hundred billion USD in total assets
deposited as of September 2021. These applications provide financial services such as asset
management, trading, and lending. The wide adoption of DeFi has raised important concerns,
and among them is the key issue of privacy—DeFi applications store account balances in the
clear, exposing financial positions to public scrutiny.

In this work, we propose a framework of anonymous and composable DeFi on public-state
smart contract platforms. First, we define a cryptographic primitive called a flexible anony-
mous transaction (Flax) system with two distinctive features: (1) transactions authenticate
additional information known as “associated data” and (2) transactions can be applied flexibly
via a parameter that is determined at processing time, e.g. during the execution time of smart
contracts. Second, we design an anonymous token standard (extending ERC20), which ad-
mits composable usage of anonymous funds by other contracts. Third, we demonstrate how the
Flax token standard can realize privacy-preserving variants of the Ethereum DeFi ecosystem of
today—we show contract designs for asset pools, decentralized exchanges, and lending, covering
the largest DeFi projects to date including Curve, Uniswap, Dai stablecoin, Aave, Compound,
and Yearn. Lastly, we provide formal security definitions for Flax and describe instantiations
from existing designs of anonymous payments such as Zerocash, RingCT, Quisquis, and Zether.

*Work done in part while at NTT Research and UC San Diego.

1

Contents

1 Introduction 3
1.1 Outline for the rest of the paper . 5

2 Flexible Anonymous Transaction Systems 6
2.1 Correctness and security . 7
2.2 Instantiations . 8

3 Flax Token Standard 9
3.1 Anonymous Token Standard and Transaction Intent 10
3.2 Blockchain design with native anonymous Flax tokens 11

4 Applications to Privacy-Preserving DeFi 12
4.1 Anonymous token-denominated funds, a.k.a pools . 12
4.2 Anonymous automated market-makers . 13
4.3 Anonymous vault-based lending . 15

5 Flax Token Standard on Ethereum-like Chains 16

6 Formal correctness and security notions 17
6.1 Comparison with previous formulations . 20

7 Instantiations of Flax 20
7.1 Flax from UTXO-based DAPs . 20
7.2 Flax from Zether . 22

7.2.1 Preliminary . 22
7.2.2 Review and Instantiating FLAX . 23
7.2.3 Security . 26

References 29

2

1 Introduction

Decentralized finance (henceforth DeFi) refers to composable smart contract applications providing
financial services beyond payments, such as trading and lending. The DeFi sector has seen extraor-
dinary growth in recent years, especially on Ethereum where protocols have close to $100 billion
total value locked (TVL1) as of September 2021 [Pul]. Ethereum DeFi (cf. [Sch21] and [WPG+21]
for good summaries) is an expansive ecosystem of heterogeneous yet interoperable smart contracts,
created and operated from a diverse set of entities. Most of the current DeFi applications span
across three distinct categories: asset management, decentralized exchanges (DEXs), and lending.
Asset management applications, such as Yearn [Yea], work similar to managed funds or exchange-
traded funds (ETFs) in traditional finance. DEXs, such as Uniswap [AZR] and Curve [Ego], allow
trading of assets without interaction with counterparties. Lending protocols such as Aave [Aav],
Compound [LH], and Dai stablecoin [Tea] allow users to deposit assets as collateral to borrow other
assets, enabling “longing” and “shorting.” Underlying these applications is a key building block for
the ecosystem—the token standard ERC20 [VB], which allows contracts to transfer tokens using a
standardized interface. There are now close to half a million distinct ERC20 tokens with more than
fifty reaching a billion USD in market capitalization [Eth]. Unsurprisingly, many concerns have
surfaced during the rise of DeFi (see [AEF+21] for a survey): scalability, contract vulnerabilities
[LCO+16, QZLG20], front running [DGK+20], legal compliance, and privacy, just to list a few.

DeFi and privacy. Privacy is a fundamental challenge in DeFi. Indeed, the exact financial
information of all transactions as well as the overall financial positions (assets and liabilities) of all
users are public in the current ecosystem. Non-existent privacy is one of the main downsides of DeFi
compared to traditional finance, where financial records are mostly kept confidential from public
scrutiny. Let us examine the issue of privacy in more detail. There are two notions of privacy
of interest for transactions: anonymity and confidentiality. Anonymity says that the originator
of the transaction should be hidden. Confidentiality says that the financial information of each
transaction should be hidden.

Unfortunately, confidentiality is impossible for smart-contract-based DeFi applications due to
functionality requirements [AEC21]. DeFi contract states often involve financial information that is
required for functionality, such as application reserve amounts or exchange rates. DeFi transactions
change these publicly accessible values and hence reveal the transactions values. However, what we
could hope to achieve is transaction anonymity. Indeed, the functionality of a DeFi transaction does
not depend on the transaction owner. For example, a smart contract giving interfaces for trading
token A with token B does not need information regarding the exact identity of the transaction
originator, but only the values of tokens desired to be exchanged. We remark that transaction
anonymity enhances the privacy of individuals, since the financial positions of each party cannot
be traced exactly. Hence, we use the term anonymity when referring to transactions but the term
privacy-preserving when referring to the overall system that admits anonymous transactions.

Privacy-preserving payments. There have been numerous constructions of anonymous and
confidential cryptocurrencies. ZCash, originated from the work of Zerocash [BCG+14], and Monero,
whose underlying system is called RingCT [Noe15, SALY17, YSL+20], are two widely deployed
solutions. Other constructions exist such as Quisquis [FMMO19] and Zether [BAZB20, Dia20].
These systems focus on public key, direct, and private payments2, building towards a cryptographic
abstraction called Decentralized Anonymous Payment (DAP) systems, first coined by [BCG+14].

1TVL is a measure similar to assets under management (AUM) in traditional finance.
2Other protocols deviating from public key direct payment also exist. For example, Mimblewimble [Jed, Poe,

FOS19] drops the use of public keys and requires communication between the sender and receiver.

3

There are some recent efforts to push DAPs beyond payments. Manta [CXZ21] and SwapCT
[EMP+21] extend the syntax of DAPs to add token trading. These solutions are ad-hoc, not
composable, and does not generalize to other DeFi applications.

Privacy-preserving execution of smart contracts. Another line of work aims to provide
privacy-preserving execution of smart contracts, such as Hawk [KMS+16], Arbitrum [KGC+18],
Ekiden [CZK+19], zkay [SBG+19], Zexe [BCG+20], and Kachina [KKK21]. Hawk and Ekiden rely
on additional trust assumptions. Arbitrum keeps computation and data off-chain to achieve privacy.
Zexe extends Zerocash with scripting capabilities and enables applications such as peer-to-peer asset
exchanges. Kachina and zkay provides tools for constructing general-purpose privacy-preserving
smart contracts. However, it remains to be shown whether these solutions can support composability
comparable to Ethereum DeFi. Indeed, the “UTXO”-style computational model of Zexe deviate
significantly from standard smart contracts. While zkay supports privacy-preserving tokens, the
feasibility of other DeFi applications is not demonstrated. The latest promising development of
Kachina does not yet fully support interaction between smart contracts.

Mixers and their short-comings. Sitting between privacy-preserving payments and privacy-
preserving computation is a concept called a mixer (also known as a tumbler). They are, in the most
general form, privacy-preserving payment systems where transactions can give “public” outputs,
where funds are “un-shielded” and transferred to a regular blockchain account, which can then be
used to interact with the existing blockchain ecosystem arbitrarily. Some notable mixers include
CoinJoin [Max] (for Bitcoin), Möbius [MM18], and Tornado Cash [PSS] (for Ethereum). In fact,
mixers such as Tornado Cash already enable the creation of ephemeral and anonymous accounts
to interact with existing Ethereum DeFi protocols that grant users a good level of anonymity.
However, doing so is opt-in, ad-hoc, and cumbersome for the user.

To elaborate, assuming a user has some assets in a mixer such as Tornado Cash, the user could
(1) withdraw their asset into a new Ethereum address, (2) do the necessary DeFi transactions from
the newly created address before (3) consolidating the output assets back to the mixer. Such work-
flows are indeed possible and provide anonymity aimed for in our work, at the expense of multiple
complex steps that require explicit action from the user. We ask whether the above workflow can be
re-designed so that the sequence of three operations are (a) done without temporary addresses, yet
(b) support arbitrarily complex, possibly multi-stage, smart-contract interactions between un-shield
and re-shield. Achieving this allows us to use such a “mixer” as a blockchain-native and anonymous
token standard (counterpart to ERC20) that is built-in instead of opt-in.

Towards privacy-preserving and composable DeFi. A privacy-preserving DeFi ecosystem
should also allow composability, enabling smart contracts to utilize the functionality of each other.
Moreover, an ideal design should allow migration of existing DeFi applications. Similar to how
ERC20 is central to DeFi, we believe that the key is an anonymous token standard. In particular,
we ask:

Can we design anonymous token standards, similar to ERC20?

We answer this question affirmatively, showing that with slight modifications to existing syntax
and constructions of DAPs, as well as careful design of an anonymous token standard with smart-
contract platform support, we can replicate the Ethereum DeFi ecosystem in a privacy-preserving
manner. We move on to highlight two key design challenges.

Design challenge one: anonymous authorization of token use. ERC20 utilizes the notion
of “allowance” for users to authorize contracts to use their tokens. For example, a user may in-
voke “TokenContract.approve(SpenderContract, amount)” to approve the usage of upto “amount”
tokens (issued by TokenContract) to be used by SpenderContract. TokenContract keeps track of

4

the allowance table between spenders and users to make sure that all spendings are previously
authorized. Replicating this mechanism directly to anonymized accounts is problematic. Indeed,
Zether designs a “locking” mechanism that is directly parallel to the notion of “allowance”. An
account can lock all of their tokens to a contract, restricting usage of their tokens to exactly one
contract. However, unlike the transparent allowance system of ERC20, “locking” on Zether locks
the entire anonymity set of the transaction. We want an authorization mechanism without the use
of temporary addresses or the need for locking.

Our solution is a new mechanism that differs from the allowance-based spending of ERC20.
In particular, we let transactions authorize “intents”, which are smart-contract invocations with
partially-fixed parameters. Looking ahead, spend transactions in our work are called “debit trans-
actions”, which authorize their exact call intent via a partial smart contract call. Token contracts
must then verify the correct execution of the call intents before processing any spend transactions.

Design challenge two: “flexible” output amount. There are two features of output assets
from DeFi interactions of concern: (1) the exact amount of output assets of a DeFi interaction
depends on global contract states at execution time of the transaction, which are unknown to the
user at transaction preparation time (e.g. a trade in Uniswap), and (2) a DeFi interaction can
result in possible future output assets for the user that are processed at an arbitrary time in the
future depending on contract logic (e.g. a debt repayment in a Dai stablecoin vault).

Our work proposes the notion of flexible credit transactions to facilitate the above two features.
To support the first feature, it is easy to rely on the additive homomorphic property of the value
commitment of DAPs (often ElGamal encryption) to allow the exact value change to be determined
at execution time. To realize the second feature, we need to allow credit transactions, which are
transactions that only increase the balances of users, to be valid in any future time once they are
generated. This again comes essentially for free for existing DAPs.

1.1 Outline for the rest of the paper

Pin-pointing the right cryptographic abstraction. We propose FLexible Anonymous trans-
action (tX), or Flax for short (Section 2). Flax is an extension to the previous abstraction of
DAPs with two distinct additions. First, we add associated data to transactions, which allows
transactions to specify and authenticate their intended usage. Second, we add flexible debit and
credit transactions, which can take an additional parameter at processing time, deferring the exact
value change to be determined at the execution time of smart contracts.

Anonymous token standard. We use Flax to design a token standard (Section 3), which serves
as the fabric of privacy-preserving DeFi3. Roughly, the Flax token standard is an extension to
ERC20 with an additional mechanism to allow atomic authorization of token use and smart-contract
executions. In particular, Flax transactions authenticate their intended usage, i.e. initiating
contract calls and arguments, in their associated data, which is then verified by the token contract
at processing time.

DeFi showcase. In Section 4, utilizing the Flax token standard, we discuss designs for asset
pools, decentralized exchanges, and lending. In particular, we show how pillars of Ethereum DeFi
such as Yearn [Yea], Uniswap [AZR], Curve [Ego], Dai stablecoin [Tea], Aave [Aav], and Compound
[LH], can migrate from ERC20 to the Flax token standard with little changes.

Flax in Ethereum compatibility mode. While the design blueprint in Section 3 and Section 4
require a redesign of the smart-contract platform to support full anonymous usage, we outline

3Flax fiber is used in the making of linen, a fabric known for its “strength, coolness, and luster,” according to the
Merriam-Webster dictionary [MWD].

5

how Flax token standard can be made compatible with the existing Ethereum infrastructure in
Section 5.

Security and instantiations. We provide code-based security definitions for Flax in Section 6.
In Section 7.1, we discuss instantiations of Flax from Zerocash, RingCT, and Quisquis. In Sec-
tion 7.2, we give a detailed construction FlaxZether from Zether and provide a concrete-security
treatment.

2 Flexible Anonymous Transaction Systems

In this section, we introduce our main cryptographic building block—FLexible Anonymous trans-
action (tX) system, or Flax for short. Flax is a cryptographic system providing interfaces for
maintaining account balances as well as generation and processing of transactions to update account
balances.

Flax extends the syntax and functionality of DAPs, or Decentralized Anonymous Payments,
first coined and studied by Zerocash [BCG+14], as well as follow-up works [FMMO19, BAZB20,
Dia20, YSL+20, FOS19]. Flax transactions enjoy a set of additional properties, which we detail in
this section, that enables them to serve as the crucial fabric of composable financial smart contracts.

A transaction system Flax consists of a parameter generation algorithm ParamGen, ledger
algorithms Setup, Process as well as user algorithms Kg, Read, CreateTx. A parameter param is
sampled from ParamGen and fixed globally.4 We assume that all algorithms have access to param.
Throughout, we fix an integer MAX representing the maximum value allowed in a transaction
system (e.g. MAX = 232 − 1). Ledger algorithms behave as follows.

I st←$ Setup(lid) takes input a ledger identifier lid ∈ {0, 1}∗ and returns an initial state.
We assume that the ledger identifier is stored as st.lid.

I st′/⊥←$ Process(st, tx). Algorithm Process takes input the ledger state st, a transaction
tx, and applies the transaction tx to the current state st to return a new ledger state st′.
It returns ⊥ unless tx is well-formed.

User algorithms behave as follows.

I (pk, sk)←$ KeyGen(), generates a key pair.

I bal/⊥ ← Read(st, sk), returns the account balance bal ∈ [0,MAX].

I ctx/dtx/ttx/⊥←$ CreateTx(st, sk, (pk, amt), val, AD), generates a transaction. This algo-
rithm creates three distinct types of transactions depending on the input structure, which
consists of a ledger state st, a sender secret key sk, a receiver public key pk (possibly ⊥), a
to-be-hidden transfer amount amt ∈ [0,MAX], a publicly-declared value val ∈ [−MAX,MAX],
and some associated data AD ∈ {0, 1}∗.

. When pk = ⊥ and val = 1, the output is a credit transaction ctx, with ctx.val = 1.
Credit transactions can take an additional argument k ∈ [0,MAX] at processing time,
denoting the exact amount that the ledger credits to the transaction owner (holder of
sk).

4In applications, param is sampled and fixed by standards or protocol designers. In security proofs, it is sampled
by the security game.

6

. When pk = ⊥ and val < 0, the output in this case is a debit transaction dtx, with
dtx.val = val. A debit transaction debits (subtracts) upto val tokens for the account
associated with secret key sk. If the balance of sk is less than −val, then an error value
⊥ is returned. Debit transactions can take a parameter k ∈ [val, 0] (defaults to val) at
processing time, denoted dtx[k], specifying the exact value to be debited.

. Otherwise, when pk is specified, the output transaction is a transfer transaction, ttx.
The transaction ttx should change the originator account (of sk) by −amt + val, and
the recipient account (of pk) by amt, resulting in a net change of val. If the balance of
sk is less than amt − val, then an error value ⊥ is returned. The transfer transaction
does not take additional parameters at processing time.

We write CreateCreditTx(st, sk, AD), CreateDebitTx(st, sk, val, AD) to emphasize the exact
type of transaction being generated. We use the notation tx to refer to any transaction, and
notations ttx, dtx, ctx to refer to the particular types of transactions. We remark that we do not
aim to hide transactions types in Flax. To reiterate, debit and credit transactions are flexible, or
parametrizable, transactions. For example, dtx[k] and ctx[k] are transactions debiting and credit
k tokens, respectively. For these transactions, the default parameter is assumed to be k = tx.val.

We usually assign many values to associated data, and for convenience we assume that AD is
a key-value map, and that their values are accessible as properties of the generated transaction.
For example, suppose we set AD := {Key : Value}. Then, for any transaction tx generated honestly
using AD, it will hold that tx.Key is Value. We disallow val being used as a key in AD, since val is
already a property of transactions.

Differences from DAPs. The syntax of Flax contains two distinctive differences from pre-
vious formalizations of DAPs. The first difference is that we add associated data that must be
authenticated by the secret-key holder of the transactions. This allows us to have users specify
the “intended” usage of transactions. Looking ahead, AD is crucial in ensuring non-malleability of
smart contract calls. The second difference is that Flax adds flexible debit and credit transactions,
allow us to realize the functionality of “slippage” for DeFi transactions.5

2.1 Correctness and security

We describe the desired correctness and security properties of Flax informally here. Formal
definitions, in the style of code-based games, as well as detailed discussions on differences from
previous formulations, are given in Appendix 6.

Correctness. Correctness asks that users can generate valid credit transactions at any time
as well as debit and transfer transactions if they have enough balance. Specifically, a user can
run CreateCreditTx regardless of their balance in the current ledger state, and the resulting
transactions ctx can be processed for any ledger state, i.e. Process(st, ctx[k]) returns a valid
state for any st and k ∈ [0,MAX]. If a user has balance k in a ledger state st, i.e. Read(st, sk) = k,
then he should be able to run CreateTx that removes values up to k.

Consistency. Consistency provides security for the ledger, guaranteeing that tx.val declares ex-
actly the net value change incurred if tx is to be processed. Specifically, the notion asks that
maliciously generated transactions correctly declare their net value change. Looking ahead, con-
sistency is usually ensured by the soundness of a proof system.

5We note that slippage, or more generally transaction order malleability, is a double-edge sword. A transaction
can be “front-run” [DGK+20] with high slippage.

7

Flax
from

Ledger User Authentication

Setup |st| Read Privacy Mechanism Structure size

Zerocash Trusted O(m) O(|st|) Full SNARK O(c · log(m))
RingCT Pub. coin O(m) O(|st|) Tx ring Ring Sig. O(c · r)
Quisquis Pub. coin O(u) O(|st|) Tx ring NIZK O(c · r)
Zether Pub. coin O(n) O(1) Acc ring NIZK O(r)

Figure 1: Comparison of possible instantiations of Flax from prior designs. We assume that there
are n accounts, m overall transactions, and u unspent coins in the UTXO set (for practical systems
n� u� m). For the authentication structure of transactions: r is the ring size and c is the coin
overhead (number of coins required to realize the transaction amount). Running time of Process is
proportional to the verification time of the authentication mechanism. Running time of CreateTx
is proportional to the prover (or signing) time of the authentication mechanism. The concrete
efficiencies of authentication mechanisms differ. For example, ring signatures can support larger
ring sizes given the same computational budget compared to NIZKs.

Transaction integrity. Transaction integrity guarantees security for honest users. It requires
that an attacker, with active access to transaction interfaces of honest users, cannot generate new
transactions that decrease the balance of the honest user. Intuitively, transaction integrity is very
similar to notions such as strong unforgeability (SUF-CMA) of digital signatures and integrity of
ciphertext (INT-CTXT) for authenticated encryption schemes.

Replay protection. The syntax of Flax allows multiple concurrent ledger states in applications.
It is paramount to prevent replay attacks both across and within instances. Replay protection
guarantees that, for any transfer or debit transaction tx, it can only be processed exactly once by
exactly one Flax instance. Replay protection can be achieved generically without cryptographic
assumptions. We can encode the intended ledger identifier as well as a transaction nonce in associ-
ated data of a transaction and verify them during processing time. Intuitively, the “heavy-lifting”
is deferred to transaction integrity, which ensures that this information is authenticated.

Transaction privacy. There are two sub-notions of privacy for transactions: transaction anonymity
and (transfer) transaction confidentiality. Transaction anonymity asks each transaction to hide the
transaction originator (i.e. the secret key holder). Transaction confidentiality ensures that for
transfer transactions, the amount amt is hidden from outside observers.

2.2 Instantiations

We describe instantiations of Flax from existing DAPs schemes. Specifically, we look at Zerocash
[BCG+14], RingCT [Noe15, SALY17, YSL+20], Quisquis [FMMO19], and Zether [BAZB20, Dia20].
Figure 1 gives a comparison of the instantiations. We describe the modifications necessary to realize
the additional syntax required by Flax, namely that (1) transactions authenticate associated data
AD and (2) addition of flexible debit and credit transactions, with the latter required to be applicable
to any state. Appendix 7.1 gives more details on UTXO-based instantiations and Appendix 7.2
gives a detailed instantiation FlaxZether based on Zether.

Authenticating associated data. A common structure to all aforementioned systems is that
transactions have a transaction body and a piece of authenticating information. For RingCT,
the authentication mechanism is a ring signature. Hence, AD can simply be added to the signing
message. For Zerocash, Quisquis, and Zether, the authentication mechanism is a non-interactive

8

proof system. In particular, Zerocash uses a SNARK (e.g. [Gro16]), while Quisquis and Zether rely
on NIZKs which are instantiated using the Fiat-Shamir transform, e.g. Bulletproofs [BBB+18]. For
these systems, we can authenticate AD by embedding it into the instance, assuming that the proof
system employed is (weakly) simulation extractable [Sah99, DDO+01, Gro06], which has known
constructions [GM17, KLO20, BKSV21].

Credit and debit transactions for UTXO-based DAPs. The state of UTXO-based DAPs,
such as Zerocash, RingCT, and Quisquis, contains a set of “coins.” A transaction “spends” a set
of input coins and creates a set of output coins. Each coin has an owner and encodes a value,
usually as a homomorphic commitment to the value. The balance of each account is simply the
sum of the values of coins owned. To realize flexible credit transactions, we can repurpose the
“mint” functionality of these systems, i.e. a credit transaction simply creates a coin. Flexibility
is possible due to the homomorphic property of the value commitment. Moreover, the validity of
such coin does not depend on the ledger state and can be added to the UTXO-set at any time.
Finally, debit transactions can be generically constructed by combining a transfer transaction with
a zero transfer amount and a credit transaction.

Specialized construction from Zether. Zether differs from other DAPs in that it uses an
account-based model. One could view Zether in the UTXO-model where each public key owns
exactly one coin and repeated spending from the same coin is allowed. The balance of each public
key, which is an ElGamal ciphertext, is stored at a distinct location in the state. Transactions are
made anonymous via zero updates to decoys accounts (together with the originator and recipient,
these accounts form the anonymity ring). It is not hard to modify their scheme to additionally give
interfaces for CreateDebitTx and CreateCreditTx.

3 Flax Token Standard

We first give a brief overview of a smart contract platform (cf. [LCO+16] for a good overview). In
Section 3.1, we present the Flax token standard and construction of smart contract calls involving
Flax transactions. In Section 3.2, we describe a blockchain system that uses a native Flax token
as the “gas token.”

Smart contract platforms. A blockchain, for the purpose of our work, is a public state machine,
whose transition functions and states are public. Smart contracts are deterministic programs
that run on the blockchain. Smart contracts can invoke function calls to other smart contracts.
We assume that each execution of a smart contract is initiated by an end-user via a blockchain
transaction (not to be confused with a Flax transaction). Error encountered during execution
of smart contracts reverts the execution, meaning any state changes for an invocation of a smart
contract by an end-user only happen if the invocation finishes without any errors. In more detail, a
blockchain transaction contains the intent of the transaction, specifying the contract and function to
invoke as well as the call arguments. The transaction is then authenticated by the user preparing it,
ensuring its non-malleability. Transactions in production systems often include funding information.
On Ethereum, this is specified via the transaction gas price and gas limit. We remark that while
user-funded transactions are common in current smart contract platforms, it is not necessarily the
only model.

Required smart contract functionalities. Recall that smart contracts can invoke each other,
and an execution starts from a user transaction in our model. We assume that the address of
the caller is stored in a globally accessible variable caller. For example, if ContractA calls
a ContractB.Function, then inside the execution of ContractB function, we have caller =
ContractA. Additionally, we assume read access to the full inter-contract call stack and call ar-

9

Contract TokenContract extends ERC20

global bal // a table mapping of addresses to (public) balances

global st // a Flax system state, keeping track (hidden) account balances

Constructor:

1 st← Flax.Setup(this)

FTransfer(TX): // TX is a set of Flax transaction.
2 netval←

∑
tx∈TX tx.val

3 If (netval 6= 0) then // Net value change must be covered by the caller.

4 bal[caller]← bal[caller]− netval ; Require (bal[caller] ≥ 0)

5 For tx ∈ TX do

6 VerifyIntent(tx) // Reverts if tx.intent does not match call trace

7 st← Flax.Process(st, tx) // Reverts if tx is in valid, i.e. st = ⊥

Figure 2: Anonymous token standard. Each token contract maintains its own Flax system. ERC20
interfaces enabling contracts to transfer tokens, such as Transfer, Approve, TransferFrom are not
shown. Line 6 performs a check of tx.intent using the current inter-contract call stack and call
arguments. It reverts if the matching fails.

guments. For example, suppose a user calls Contract1.Func1, and each contract Contracti.Funci
invokes Contracti+1.Funci+1 for i = [1..n − 1]. Then, during the execution of Contractn in this
execution, each of the n − 1 call frames, i.e. Contracti.Funci(arg, . . .) for i ∈ [1..n − 1] should be
available for read access. We assume that the internal function calls of a contract are not included
in the inter-contract call stack. For example, the inter-contract call stack does not change when
Contract.Func1 calls Contract.Func2.

We remark that although the call stack requirement is not available for some in-production
platforms such as Ethereum6, it is feasible to add such functionality. Indeed, an execution of
smart-contracts inside a blockchain transaction is considered atomic and carried out as part of the
blockchain state transition. Additionally, we think this feature can prove useful in other settings.
For example, it can be used to prevent re-entry attacks [LCO+16].

3.1 Anonymous Token Standard and Transaction Intent

We first show how to build anonymous token contracts using Flax. First, we briefly review the
architecture of a token contract, and more in particular the ERC20 token standard [VB]. A token
contract is a smart contract that (1) maintains account balances (2) exposes transaction interfaces
to users and other smart contracts. Token contracts such as ERC20 store account balances in
the clear for any address (either a user-owned address or a contract address). Our architecture
differ in the following: we keep the standard functionality of a token contract (global state bal,
as well as interfaces Transfer, Approve and TransferFrom), but add Flax on top of it to enable
privacy-preserving transactions.

The pseudocode of a token contract is given in Figure 2. The Flax state st is initialized so
that st.lid is equal to the contract address. Since contract states are public, we omit specifying
a read interface for Flax accounts and assume that users can obtain the contract state st to run
Flax.Read locally. The transfer interface FTransfer takes input a set of Flax transactions. If
the set of Flax transactions has a non-zero net change in value, then it is ensured the net change

6The Ethereum virtual machine exposes the immediate caller, call data, the transaction originator, but not the
entire call stack and call arguments.

10

is debited or credited to the caller (line 4). The intent of each Flax transaction is first verified
(line 6), before they are processed.

To demonstrate the purpose of the intent check at line 6, let us consider the following scenario.
Suppose an honest user construct a transaction calling AMM.SwapAtoB(dtxA, ctxB, minOut) where
dtxA is a debit transaction for TokenA. An attacker, after obtaining dtxA, could misuse dtxA
by constructing his own credit transaction ctx′B and calling AMM.SwapAtoB(dtxA, ctx

′
B, minOut),

which transfers the output tokens to the attacker. More generally, a (not-yet processed) Flax
transaction can be used to construct an adversarial blockchain transaction. To solve the problem,
notice that the honest and adversarial calls to AMM.SwapAtoB differ in the credit transaction supplied,
i.e. honest transaction calls AMM.SwapAtoB(dtxA, ctxB, minOut) while adversarial transaction swaps
out ctxB with ctx′B. Hence, to prevent such methods of misuse, we rely on (read-only) access to
the inter-contract call stack.

Authenticating intent via the call stack. To solve the above problem, we let transactions
specify their intended usage by specifying the call trace pattern in the field tx.intent. For example,
dtxA.intent can be set to “AMM.SwapAtoB(?, ctxB, minOut)”, denoting that the intended initiating
contract call is the function SwapAtoB of contract AMM and the last two arguments must be the credit
transaction ctxB and the integer minOut. Each token contract must verify that the initiating call
matches the one specified by the transaction to be processed. In pseudocode, we use VerifyIntent
to denote such as check (line 6), i.e. VerifyIntent takes input tx.intent and compares the
requirements specified against the read-only call stack contents. Although we only need tx.intent
and VerifyIntent to specify and access the initiating contract call here, we state them in more
generality. The exact implementation details of tx.intent and VerifyIntent are not important
for our discussion here but a simple solution is to (1) fix a string encoding of the call stack and call
arguments and (2) have tx.intent be a regular expression.

We now argue why the above check is sufficient in preventing the misuse of transactions. First,
by replay protection (formal definition given in Appendix 6), each transfer and debit transaction
can only be processed by one honest token. Hence, for an honestly constructed transaction tx,
the only honest contract that deem tx valid is tx.lid. Next, at line 6 of contract tx.lid, the
check VerifyIntent(tx.intent) is performed. For tx to be processed, it must have been that the
initial call for this execution is consistent with tx.intent. Therefore, tx can only be processed
via initiating contract call specified in tx.intent. We move on to discuss how client wallets can
prepare Flax transactions in a general smart contract call.

Generating smart contract calls. To ensure that funds of users are used for their intended
purpose, we encode all call arguments and credit transactions as part of tx.intent for transfer and
debit transactions. In particular, consider a smart contract call of the form

Contract.Function(tx1, . . . , txn, ctx1, . . . , ctxm, arg1, . . . , argk) ,

for some transfer or debit transactions tx1, . . . , txn, credit transaction ctx1, . . . , ctxm, and other ar-
guments. The user wallet will first prepare the credit transactions ctx1, . . . , ctxm with ctxi.intent
fields set to “Contract.Function(?, arg1, . . . , argk)”, i.e encoding of the function call to Function

of Contract with the last k call arguments specified. Next, the user generate tx1, . . . , txn with
txi.intent field additionally specifying the newly generated credit transactions, i.e.

“Contract.Function(?, ctx1, . . . , ctxm, arg1, . . . , argk)” .

In Figure 3, we give an example smart contract invocation of an automated market-maker contract
(described in Section 4) involving two types of tokens.

11

3.2 Blockchain design with native anonymous Flax tokens

While it is feasible to add anonymous transactions to any smart contract platform, doing so require
the use of “relayers”, i.e. third parties who submit contract calls on behalf of other users, if
native blockchain transactions leak originating users. Indeed, this is proposed in Zether. While our
framework can be realized on any smart contract platform in the same manner, we will describe a
system where a distinguished token contract is used as the native gas token.

Let us consider a distinguished contract TokenFlax. We define a blockchain transaction to be a
Flax debit transaction dtxcall with:

I dtxcall.val specifying the maximum transaction fee.

I dtxcall.gasprice specifying the gas price.

I dtxcall.intent now specifies a full smart contract call, including all call arguments. For
example, a value of “Token.FTransfer(ttx)”.

In our special gas token contract, VerifyIntent can forego the checking of intent. Instead, the
contract can process the intent of the transactions and debit the correct transaction fees as follows.

1 gasused← Run(dtxcall.intent)

2 st← Process(st, dtxcall[dtxcall.gasprice · gasused])

where Run is a special command executing the intent of the blockchain transaction (with a fresh
inter-contract call stack) and returning the value of gas used (amount of computation performed).

4 Applications to Privacy-Preserving DeFi

In this section, we demonstrate how the Flax-based token standard serves as the fabric of com-
posable DeFi. In particular, we show contract designs for asset pools, automated market maker
(a.k.a liquidity pools), and collateralized debt positions. We remark that the design of these func-
tionalities on ERC20 are well-known and in-production on Ethereum. For readers familiar with
the ecosystem of Ethereum, we remark that we are checking the compatibility of the following
applications against the Flax token standard: Yearn [Yea] (asset management), Uniswap [AZR]
and Curve [Ego] (decentralized exchanges), Dai stablecoin [Tea], Aave [Aav] and Compound [LH]
(lending). Our goal is to demonstrate that the Flax token standard is as flexible and usable as
ERC20.

4.1 Anonymous token-denominated funds, a.k.a pools

As the first example, we describe a design of token-denominated funds. A fund, in context of
finance, is a pool of money or assets allocated for a specific purpose. In our context, a fund, or
more specifically a contract-controlled and token-denominated fund (which we also refer to as a
pool) is a smart contract that (1) owns a set of assets (tokens), (2) issues outstanding shares (pool
tokens), and (3) provides interfaces to exchange between underlying assets and pool shares. A pool
can be seen as a DeFi counterpart to what is known in traditional finance as an exchange-traded
fund (ETF).

Consider two underlying assets: token A and token B, hosted by contracts TokenA and TokenB
respectively. We give the (abstract) contract implementing a pool holding token A and B in
Figure 4. To enter, a user invokes EnterPool with two debit transactions dtxA, dtxB with val

12

Contract AMM
SwapAtoB(dtxA, ctxB , minOut):
1 Compute outB from dtxA.val

2 TokenA.FTransfer(dtxA)

3 TokenB .FTransfer(ctxB [outB])

Contract TokenContract
FTransfer(TX):

1 Change balance of caller

2 For tx ∈ TX do

3 VerifyIntent(tx.intent)

4 st← Flax.Process(st, tx)

User
“Swap 20 A tokens to at least 10 B”
1 ctxB ←$ CreateCreditTx(stB, sk)

2 dtxA←$ CreateDebitTx(stA, sk, 20, AD)
3 Call AMM.SwapAtoB(dtxA, ctxB, 10)

Associated data dtxA.AD
intent : “AMM.SwapAtoB(?, ctxB, 10)”

This check, performed by all
honest tokens, ensures that “call
intents” of transactions are hon-
ored, via read-only access to the
call stack and arguments.

Ct. TokenA
global stA

Ct. TokenB
global stB

SwapAtoB
(

dtxA,
ctxB,
10
)

FTransfer(·) FTransfer(·)

extends extends

Figure 3: Example call to AMM.SwapAtoB initiated by a user. The user prepares their Flax transac-
tions and forms a smart contract call. All contracts are executed by a distributed ledger. User code
is executed locally by the user. Dashed boxes contain explanations. The first lines of contracts AMM
and TokenContract are abbreviated. The detailed contracts are given in Figures 2 and 5.

specifying the max deposit values, as well as a credit transaction, ctxPool, for receiving the minted
pool tokens. To exit, a user invokes ExitPool specifying a debit transaction, dtxPool, removing
a desired amount of pool tokens, as well as two credit ctxA, ctxB transactions for receiving the
redeemed A and B tokens.

To fully specify a pool, one needs to specify functions that convert between values of asset and
pool tokens, specifically cptEnter and cptExit. These functionalities can read the token reserves
of the contract, but do not have any write access to global states—they simply compute and return
token amounts. For example, a fund can be created between two tokens A and B such that each
pool token represents exactly 1 token A and 2 token B. In this scenario, cptEnter(valA, valB)
should return (val, 2val, val) to denote that the contract should take val token A, 2val token B,
and output val pool tokens, where val is the largest value such that val ≤ valA and 2val ≤ valB.
On the other hand, cptExit(valPool) simply returns (valPool, 2valPool), denoting that if valPool
tokens are burnt, then the contract can output valPool token A and 2valPool token B. In general,
these functions could return outputs that depend on the states of the contract and its token reserves.
The exact implementation of these functions is left to the particular applications.

We remark that a Pool contract can use token A and B that it owns arbitrarily via the standard
ERC20 interfaces. The interface shown here can be used as a basis to build asset management
contracts, similar to asset vaults of Yearn.

4.2 Anonymous automated market-makers

An automated market maker (AMM) is a pool that additionally provides public interfaces to trade
between its underlying assets. It is also known as a liquidity pool since it is a pool representing

13

Contract Pool extends TokenContract

cptEnter(valA, valB) // Computes output pool tokens for input A and B tokens

cptExit(valPool) // Computes output tokens for valPool pool tokens

EnterPool(dtxA, dtxB , ctxPool):

1 (inA, inB , outC)← cptEnter(dtxA.val, dtxB .val)

2 TokenA.FTransfer(dtxA[inA]) // Transfer inA token A to this contract

3 TokenB .FTransfer(dtxB [inB]) // Transfer inB token B to this contract

4 bal[this]← bal[this] + outPool // Mint outPool pool tokens

5 this.FTransfer(ctxPool[outPool], this) // Transfer out minted pool tokens

ExitPool(dtxPool, ctxA, ctxB):

6 (outA, outB)← cptExit(dtxPool.val)

7 TokenA.FTransfer(ctxA[valA]) // Transfer outA token A out

8 TokenB .FTransfer(ctxB [valB]) // Transfer outB token B out

9 this.FTransfer(dtxPool) // Recover dtxPool.val pool tokens

10 bal[this]← bal[this]− dtxPool.val // Burns dtxPool.val pool tokens

Figure 4: Smart contract Pool implementing a contract-controlled and token-denominated fund.
Note that Pool contract extends the token standard TokenContract, meaning it has global variables
bal, st, as well as a public interface FTransfer.

Contract AMM extends Pool

cptAtoB(valA) // Computes amount of B tokens for input amount of valA A token

SwapAtoB(dtxA, ctxB , minOut):

1 outB ← cptAtoB(dtxA.val) ; Assert (outB ≥ minOut)

2 TokenA.FTransfer(dtxA) // Transfer −dtxA.val to this contract

3 TokenB .FTransfer(ctxB [outB]) // Transfer outB token B out with ctxB

Figure 5: Smart contract AMM implementing an anonymous automated market maker with liquid-
ity pool token. Note that AMM extends the contract interface Pool and has additional interfaces
EnterPool, ExitPool as well as FTransfer. Interface for swapping B to A is symmetrical and
omitted.

liquidity, i.e. trade-able assets.

Suppose there are two token contracts TokenA and TokenB hosting token A and B respectively.
First, we recall a necessary functionality AMM.cptAtoB, which has read access to the amount of A
and B tokens owned by the AMM contract and computes, for each input amount valA ∈ [0,MAX]
of token A, an output amount valB of token B that the AMM contract is willing to exchange for.
We allow cptAtoB to return ⊥, which indicates error and will revert the transaction invoking it.
We note that there are many designs for the exact specification of cptAtoB, with the most popular
being the constant product and constant sum formulas (used by Uniswap and Curve respectively).
There are however other variants that give other trade-offs [AKC+19, AC20].

We present a construction of privacy-preserving AMM contract AMM in Figure 5. Due to the
difference in transaction preparation and execution time, AMM contracts often let the user specify
the minimum amount of output tokens, and the contract will revert the transaction if the exchange
rate at execution time does not yield enough of the output token. The swap functionality supporting
Flax transactions shall take a credit transaction ctxA, a debit transaction dtxB, and an integer
minOut. Transaction ctxA is used to transfer an amount of token A to the public account of the
AMM contract. Transaction dtxB is used to transfer the output amount of token B. Here, we

14

Contract CDP

global vault // List of all vaults

CheckLiqudationCondition(vid)→ int/⊥ // Liquidation check

OpenVault(dtxA,fund, ctxA,refund, ctxB,borrow, borrowB):

1 collateral← dtxA,fund.val // Amount of collateral A token

2 debt← borrow // Amount of debt B token

3 TokenA.FTransfer(dtxA,fund) // Fund the vault with dtxA,fund

4 TokenB .FTransfer(ctxB,borrow[borrow]) // Transfer out the borrow amount

5 Return vault.push((collateral, debt, ctxA,refund)) // Returns vid

Repay(dtxB , vid):

6 (collateral, debt, ctxA,refund)← vault[vid]

7 TokenB .FTransfer(dtxB) // Transfer dtxB .val to this contract

8 debt← debt + dtxB .val // Remove dtxB .val from debt

9 If (debt ≤ 0) then // If debt is all paid, refund and delete vault

10 TokenA.FTransfer(ctxA,refund[collateral]) ; vault[vid]← ⊥
11 Else vault[vid]← (collateral, debt, ctxA,refund) // Update debt value

Liquidate(dtxB , ctxA, vid):

12 // Check if vault can be liquidated, and compute the output collateral

13 out← CheckLiqudationCondition(vid) // Reverts if vault is healthy

14 (collateral, debt, ctxA,refund)← vault[vid]

15 Assert (debt = −dtxB .val) // Liquidator must repay all debt

16 TokenB .FTransfer(dtxB) // Charge the liquidator in token B

17 TokenA.FTransfer(ctxA[out]) // Pay the liquidator in token A

18 // collateral− out is profit to the protocol

Figure 6: Smart contract implementing anonymous vault-based lending.

crucially rely on the flexibility of a Flax transaction—the exact amount of token transferred is
determined at the execution time of the smart contract call.

4.3 Anonymous vault-based lending

We describe a design for collateralized lending, or so-called collateralized debt positions, similar to
Dai stablecoin, Aave, and Compound. For simplicity, we consider for now one type of collateral
token (A), and one type of debt token (B).

Consider the CDP contract given in Figure 6. We utilize the notion of a vault, which represents
collateral and debt. In particular, a vault consists of two integers and a Flax credit transaction,
i.e. (collateral, debt, ctxrefund). Amount collateral of token A and debt of token B are stored
in the clear. As a result, the overall amount of collateral token A and outstanding debt token B is
known at all times to the smart contract. The beneficiary of the refund credit transaction ctxrefund
is the “owner” of the vault since this is the only entity that benefits from the repayment of debt.

Any user can anonymously create a vault via interface OpenVault, depositing collateral to-
kens and taking out any other supported tokens as debt. Anyone can repay a vault via Repay.
A vault may be liquidated by other users if it becomes “under-collateralized”, ensuring the sol-
vency of the protocol. Typically, liquidation usually happens when the collateral to debt ra-
tio (valued against some common token, say the dollar or the native token of the blockchain)
falls below a certain threshold, e.g. 1.1. We encapsulate this liquidation check in a function

15

CheckLiqudationCondition(vid), which either returns an error if the vault vault[vid] cannot be
liquidated, or returns the amount of collateral for sale for a full liquidation of the vault.

Extensions to multi-asset and interest rates. We remark that the system designed here
closely resembles the CDP contract for the Dai stablecoin [Tea], where token B is owned by the
CDP contract and minted for every borrow. However, lending can be done even if token B is
external. To achieve this, we first need to allow token B as collateral to borrow token A, which
completes the lending and borrowing market between token A and token B. Real-world protocols
often set deposit and borrow interest rates for these markets as a function of the reserve ratio.
As vault collateral and debt are stored in the clear, it is possible to accrue interest on them. For
example, Compound [LH] keeps global variables, which accrues over time, recording the exact value
of a single collateral or debt token. Furthermore, vault-based lending can be extended to multi-
asset lending markets similar to Aave and Compound. However, we remark that CDP designed
here crucially rely on the use of vaults, whereas Aave [Aav] and Compound [LH] allow borrowing
without explicit creation of vaults.

5 Flax Token Standard on Ethereum-like Chains

The design proposed in Section 3 outlines a blueprint of smart-contract platforms supporting anony-
mous gas payments and smart contract interactions by default. However, as outlined it cannot be
built on top of existing smart-contract platforms in a backwards compatible manner. In this section,
we discuss how the design blueprint from Section 3 can be made compatible with the Ethereum
ecosystem, the most widely-adopted smart contract platforms at the time of writing.

Limitation of Ethereum execution model and mitigations. There are two types of accounts
in Ethereum, externally-owned accounts (EOAs) and contract accounts. EOAs have associated
secp256k1 public key pk and utilze ECDSA signatures to authenticate transactions. We denote
the Ethereum address of a public key pk, which is the last 20-bytes of a Keccak256 of pk, as
addr(pk). By default, Ethereum EOAs can only make a single smart-contract call per transaction.
However, with entry point contract specified in EIP-4337 [BWG+], users owning some public key
pk can authorize a sequence of smart contract interactions and have them processed atomically via
external “transaction bundlers.” Token-use authorization from pk can be done via “permits” per
EIP-2621 [Lun] without having addr(pk) be the caller of the token contract. This allows users to
generate a sequence of DeFi interactions, involving arbitrary ERC-20 spends by simply signing a
sequence of secp256k1 signatures in the EIP-712 format [BLE].

Supporting shielding and unshielding to EOAs. The next ingredients is to allow Flax tokens
to support shielding and unshielding of assets. We provide the pseudocode for these interfaces in
Figure 7. Interface Unshield takes input a single debit transactions dtx, whose associated data
encodes the public address to receive the funds. Interface Shield takes input a public key pk, a
credit transaction ctx, and a signature σ. It first verifies that σ is a valid signature on message
ctx with public key pk. It then shields upto min(ctx.val, bal[addr(pk)]) tokens from the public
account of addr(pk) to the private account associated with ctx. Here, we allow arbitrary large
values in ctx.val, allowing users to receive any output tokens from DeFi transactions anonymously
without knowing the amount in advance.

Anonymous usage via ephemeral addresses. To support composable anonymous interactions,
users can create one-time public keys that they will use for the duration of a DeFi transaction. For
trading, the public key is only used for the duration of one blockchain transaction. For lending,
the public key is used for the duration of the lending vault. For example, suppose a user wants to
invoke some swapping interface AMM.SwapAtoB to trade x of token A to at least y of token B. The

16

Contract TokenContract extends ERC20, EIP721

global bal // a table mapping of addresses to (public) balances

global st // a Flax system state, keeping track (hidden) account balances

Constructor:

1 st← Flax.Setup(this)

Unshield(dtx):

2 bal[dtx.addr]← bal[dtx.addr]− dtx.val

3 st← Flax.Process(st, dtx) // Reverts if tx is in valid, i.e. st = ⊥
Shield(pk, ctx, σ):

4 Require Sig.Verify(pk, ctx, σ)

5 val← min(bal[caller], ctx.val)

6 bal[addr(pk)]← bal[addr(pk)]− val

7 st← Flax.Process(st, ctx[val]) // Reverts if tx is in valid, i.e. st = ⊥

Figure 7: A token contract design compatible with Ethereum-like chains. Each token contract
maintains its own Flax system. ERC20 and EIP712 interfaces enabling contracts to transfer
tokens, such as TransferFrom and Permit are not shown.

user can run the following locally:

1 (sk′,pk′)← ECDSA.Kg()

2 dtx← Flax.CreateTx(st, sk,⊥, x, {addr : addr(pk′)})
3 ctx← Flax.CreateTx(st, sk,⊥,∞,⊥)

4 σauth ← ECDSA.Sign(sk′, auth[AMM, pk, x])

5 σctx ← ECDSA.Sign(sk′, ctx)

Above, the associated data of dtx encodes one-time public key pk′ and the ctx.val is set to the
maximum allowed value (e.g. 264). Variable auth[AMM,pk, x] is a message that authorizes AMM to
spend x tokens of TokenA from account of pk′ in the EIP-712 format. Next, the user construct a
sequence of smart contract calls:

1 TokenA.Unshield(dtx)

2 TokenA.Permit(addr(pk′),m, σauth)

3 AMM.SwapAtoB(addr(pk′), x, y)

4 TokenB.Shield(pk′, ctx, σctx)

The user then submits the above sequence of calls for execution per mechanism of EIP-4337.

Anonymous gas payments. On Ethereum, every blockchain transaction still needs to be funded
in Eth, which must be payed transparently from a standard EOA. However, we can utilize trans-
action bundlers and have end-users pay bundlers anonymously in any token, using the mechanism
described in Section 3.2 and in a manner that is similar EIP-4337 “paymasters.”

6 Formal correctness and security notions

We formally define correctness and security notions in this section. We adopt code-based game-
playing framework of [BR06]. A game G consists of a set of oracles and a main procedure, which

17

usually invokes an adversary. To facilitate the legibility of definitions, we use pkOf(sk) to denote
the public key associated with sk throughout this section.

Correctness. First, correctness asks that if Read(st, sk) = k for some ledger state st and secret
key sk, then CreateTx(st, sk, . . .) can be used to generate transactions transferring upto value k,
i.e. transfer transactions with amt + val ≤ k and debit transactions with val ≤ k. Moreover, a
user can at any time generate a credit transaction ctx that remain valid for any ledger state st,
meaning Process(st, ctx[k]) returns a valid state for any k.

Correctness also asks that a correctly generated transaction transfer the correct amount. Specif-
ically, let ttx be a transfer transaction generated via CreateTx(st, sk, (pk′, amt), val). After pro-
cessing, i.e. st′←$ Process(st, ttx), we require the balance of the sender, i.e. Read(·, sk), to
decrease by exactly amt + tx.val. (We forego requiring the balance of the receiver to increase by
amt here, as this property is implied by consistency and a definition would be cumbersome as we
do not have the secret key of the receiver.) Similarly, consider a debit transaction dtx created
with CreateDebitTx(st, sk, val). For any k ∈ [0, val], we require the balance of sk to decrease
by k in the state change st′ ← Process(st, dtx[k]). For credit transaction ctx created with
CreateCreditTx(st, sk), and any k ∈ [0,MAX], we require the balance of sk to increase by k in the
state change st′ ← Process(st, dtx[k]).

Consistency. Consistency guarantees security for the ledger. It asks that even maliciously gener-
ated transactions declare the correct amount of public net value change tx.val. Formally, consider
the following game Gcons

Flax.

Game Gcons
Flax(A)

1 param← ParamGen() ; (lid, (tx1, . . . , txn),Keys)← A(param)

2 st←$ Setup(lid) ; For i ∈ [n] do st← Process(st, txi)

3 Require
(
(st 6= ⊥) and (∀pk ∈ st.pk : pk = pkOf(Keys[pk]))

)
4 val0 ←

∑
i∈[n] txi.val ; val1 ←

∑
pk∈st.pk Read(st,Keys[pk])

5 Return (val0 6= val1)

Above, the adversary returns a ledger id, a sequence of transactions tx1, . . . , txn, as well as all
secret keys for accounts involved, which is encoded in a table that maps public keys to secret
keys. The adversary wins the game if the overall value of the final ledger state is inconsistent with
the sequence of transactions. We define the consistency advantage of adversary A against Flax,
Advcons

Flax(A), to be the probability that A wins the game, i.e. Pr[Gcons
Flax(A)].

Transaction integrity. Transaction integrity guarantees security for honest users. It asks that
the only transactions that can decrease the balance of an honest user are those directly generated
by that user. Formally, consider game Gtx-int

Flax given below.

Game Gtx-int
Flax (A)

1 (pk, sk)←$ KeyGen() ; (st0, tx
∗)← ACreateTx(pk)

2 Require (tx∗ 6∈ S) ; st1 ← Process(st0, tx
∗) ; Require (st1 6= ⊥)

3 Return (∃sk ∈ Keys.values : Read(st1, sk) < Read(st0, sk))

NewUser:

4 (pk, sk)←$ KeyGen() ; Keys[pk]← sk ; Return pk

CreateTx(st,pk, (pk′, amt), val, AD):

5 tx←$ CreateTx(st,Keys[pk], (pk′, amt), val, AD) ; S
∪← tx ; Return tx

18

Adversary A is given an honestly sampled public key pk and are given access to oracles that
generate transactions using the associated secret key sk. Note that the adversary is allowed to
supply any ledger state st in the input of these oracle calls. The returned transaction tx from
each call is added to the set S. In the end, the adversary wins if it can produce a fresh transaction
tx∗ 6∈ S that changes the balance for the honest user. We define the tx-int advantage of adversary
A against Flax, to be the probability that A wins the game, i.e. Advtx-int

Flax (A) := Pr[Gtx-int
Flax (A)].

Replay protection. Replay protection guarantees that any (transfer or debit) transaction can
only be processed once among any set of honest ledgers. Formally, consider the following game
Grep

Flax.

Game Grep
Flax(A)

1 AProcessO() ; Return win

NewLedger(lid):

2 Require (lid 6∈ L) ; Return (L[lid]
∪← Setup(lid))

ProcessO(lid, tx):

3 st←$ Process(L[lid], tx) ; Require (st 6= ⊥)

4 If (tx ∈ S and tx.type 6= Credit) then win← true

5 S
∪← tx ; Return (L[lid]← st)

We define the rep-advantage of an adversary A to be the probability that A wins the security
game, i.e. Advrep

FlaxA = Pr[Grep
Flax(A)]. We remark that replay protection can be added generically

with no cryptographic assumptions. A simple construction is have each debit and transfer transfer
specify a transaction nonce tx.nonce and the intended FLAX instance via tx.lid. In order to
verify the transaction, a ledger state encodes its own ledger identifier as st.lid as well as set st.S
keeping track of all transaction nonces processed so far. We remark that constructions may have
built-in methods to prevent replay protection, without the use of nonces. For example, the coin
“serial number” in Zerocash effectively acts as a transaction nonce.

Transaction privacy. Privacy guarantees that honest transaction originators should be hidden
(anonymity). Additionally, in the case that funds are being transferred between honest users,
the transfer amount should also be hidden (confidentiality). To formalize the notion, we require
specification of a functionality, Anonymize, that computes the compatible anonymity information
for a transaction input. It formally captures the uncertainty to an outside observer regarding
the possible originators as well as receiver and hidden transaction amounts. Formally, Anonymize
takes input a ledger state st, a key value map Keys representing honest, and transaction input
(pk0, (pk′0, amt), val, AD). It outputs some pk1, (pk′1, amt

′) representing a compatible anonymizing
input. We note that Anonymize could be trivial and only return the same sender, receiver, and
transfer amount, in which case there is no privacy guarantee. Hence, the exact privacy guarantee
depends on the Anonymize functionality specified. Consider the following game Gtx-priv

Flax,Anonymize.

19

Game Gtx-priv
Flax,Anonymize(A)

1 b←$ {0, 1} ; param←$ ParamGen()

2 (st, pk0, (pk′0, amt0), val, AD)←$ANewUser,CreateTx(param)

3 Require (pk0 ∈ Keys.keys)

4 (pk1, pk′1, amt
′
1)←$ Anonymize(st,Keys, pk0, (pk′0, amt0), val, AD)

5 tx←$ CreateTx(st,Keys[pkb], (pk′b, amtb), val, AD)

6 b′←$A(tx) ; Return (b′ = b)

NewUser:

7 (pk, sk)←$ KeyGen() ; Keys[pk]← sk ; Return pk

CreateTx(st,pk, (pk′, amt), val, AD):

8 Require (pk ∈ Keys.keys)

9 Return tx←$ CreateTx(st,Keys[pk], (pk′, amt), val, AD)

We define the priv-advantage of an adversary A against Flax and functionality Anonymize to be
the probability that A predicts the correct bit, i.e. Advtx-priv

Flax,Anonymize(A) := 2 Pr[Gtx-priv
Flax (A)]− 1.

6.1 Comparison with previous formulations

We note that since the syntax of DAPs studied by [BCG+14, FOS19, YSL+20, FMMO19, BAZB20]
are all distinct from each other, their security definitions are also incompatible. Our formulation
resemble that of Zerocash. However, we could not simply use their notions since their DAP syntax
only allows transactions on coins rather than accounts (consisting of all owned coins).

Our notion of consistency is formalized as “balance” in Zerocash [SALY17, BCG+14] and
RingCT [SALY17, YSL+20], “inflation resistance” in a study of Mimblewimble [FOS19]. Our notion
of transaction integrity has been proposed in Zerocash [BCG+14] as transaction non-malleability,
and as unforgeability in RingCT [YSL+20]. We remark Zether [BAZB20, Dia20] and Quisquis
[FMMO19] do not formalize notions similar to transaction integrity. However, their notions of
overdraft safety (or theft resistance in Quisquis) encompass some aspects of transaction integrity,
but do not imply it. Intuitively, our notions of transaction integrity and replay protection (which
can be obtained generically assuming the former) together guarantees strong forms of overdraft
safety.

Notions of transaction privacy are studied under ledger indistinguishability in [BCG+14], trans-
action indistinguishability in [FOS19], anonymity in [FMMO19], and privacy in Zether [BAZB20,
Dia20]. Our notion is both stronger and simpler since we let the adversary supply the ledger state.

7 Instantiations of Flax

7.1 Flax from UTXO-based DAPs

Review of UTXO DAPs. The most widely utilized paradigm in building DAPs is the UTXO
approach. Some examples include Zerocash [BCG+14], RingCT [Noe15, SALY17, YSL+20], and
Quisquis [FMMO19]. Their state contains a set of unspent-transaction outputs (UTXO), or “coins.”
These coins encode information regarding the coin owner (identified by public key), as well as
their value. The value of the coin is usually encoded homomorphically (RingCT uses Pedersen
commitment and Quisquis uses ElGamal encryption), or can be made so (in case of Zerocash).
A transaction spends a set of coins (inputs) and generates a new set of coins (outputs). Double
spending is prevented by ensuring that each coin can only be spent once. This is realized via coin
serial numbers in Zerocash and key images in RingCT. In Quisquis, the entire set of input coins are

20

deleted after the transaction is processed. Each transaction in these systems include (1) information
regarding coins being spent (i.e. serial numbers, key images, or pointers to input coins), (2) set of
newly created coins, and (3) a proof showing that the transaction preparer owns the coins being
spent and that rules places on coins values are respected (e.g. net values are preserved). For (3) and
in particular showing that the user holds the secret key for the input coins being spent, Zerocash
employs a SNARK, RingCT relies on ring signatures, and Quisquis relies on Fiat-Shamir-based
NIZKs. We refer to this as the authentication mechanism.

Authenticating associated data. To additionally authenticate associated data, we can rely on
the authentication mechanism. This is simple for RingCT, since the mechanism is a ring signature.
For Quisquis and Zerocash, we can rely on simulation extractable NIZKs and SNARKs. More
specifically, since AD is encoded in the instances, we could rely on weak simulation extractability
[Sah99, DDO+01, Gro06]. For NIZKs, although it is not known if NIZKs obtained via the Fiat-
Shamir heuristic (e.g. Bulletproofs [BBB+18]) are simulation extractable, such result is known in a
simpler setting of sigma protocols [FKMV12]. Moreover, generic transformations of obtaining sim-
ulation extractable NIZKs are known [DDO+01, Gro06, KZM+15]. For SNARKs, there are known
efficient constructions [GM17, KLO20, BKSV21] that achieve weakly simulation extractability, with
efficiency comparable to the benchmark construction of Groth16 [Gro16] when secret witnesses are
short.

Credit and debit transactions. A credit transaction ctx is simply a transaction that creates
a new coin. Flexibility is achieved by using the homomorphic property of the value commitment.
Note that to process a credit transaction. The ledger only needs to verify that the coin indeed
encodes a unit coin (of value 1), which does not depend on the state of the ledger. Hence, a credit
transaction can be flexibly applied to any ledger state.

Debit from transfer and credit. We give of a generic way to construct flexible debit transactions
using transfer and credit transactions. To generate a debit transaction, we first generate a credit
transaction

ctx←$ CreateCreditTx(st, sk, AD) ,

then a transfer transaction

ttx←$ CreateTx(st, sk, (pk0, 0), val, AD′) ,

where pk0 is a dummy public key (could be the public key for sk) and AD′ is AD with an additional
field AD′.ctx set to the credit transaction ctx generated previously. This transfer transaction now
represents a debit transaction dtx. The transaction dtx[k] for some k ∈ [−val, 0] is processed as
two transactions ttx and ctx[val− k] (which must be processed atomically).

Other UTXO-based cryptocurrencies. Mimblewimble [Jed, Poe] is a UTXO-based “aggregate
cash” [FOS19] that has a different architecture compared to that of Zerocash, RingCT, or Quisquis
in that there are no public keys and payments require communication. While it is plausible that a
Flax-like system could be built on top of Mimblewimble, we do not pursue it here.

Coin overhead. We remark that DAPs such as Zerocash, RingCT, and Quisquis only expose an
interface to transact on a fixed set of coins. Since each public key can hold an arbitrary number of
coins, transactions spending a large fraction of the balance of a public key could incur numerous sub-
transactions. We do not explicitly model how a FLAX CreateTx call is mapped to coin spending
transactions here.

21

7.2 Flax from Zether

In this section, we instantiate Flax using the construction of Zether [BAZB20] and Anonymous
Zether [Dia20]. We first give the necessary background on groups and proof systems, as well as a
review of Zether, before presenting our instantiation and analysis.

7.2.1 Preliminary

For the rest of the section, we fix a cyclic group G of prime order p. Consider the following two
games capturing DL and q-DDH problems.

Game Gdl
G,g(A)

1 x←$ [p]

2 x′←$A(gx)

3 Return (x = x′)

Game Gddh
G,g,q(A)

1 b←$ {0, 1} ; x←$ [p] ; For i ∈ [q] do yi←$ [p]

2 v0←$ G2q+1 ; v1 ← (gx, gy1 , gxy1 , . . . , gyq , gxyq)

3 b′←$A(vb) ; Return (b = b′)

We define the DL and q-DDH advantage of an adversaryA against to be Advdl
G,g(A) := Pr[Gdl

G,g(A)],

and Advddh
G,g,q(A) := Pr[Gddh

G,g,q(A)], respectively.

Relations and proof systems. Let R be a relation. For pairs (x,w) ∈ R, we call x the instance
and w the witness. A non-interactive proof system Π for relation R consists of three algorithms
Setup, P, and V. We require a zero-knowledge simulators simulator Π.S, its associated setup
Π.SSetup, as well as an extractor Π.Ext. We adopt the concrete-security treatment of [Bel20].
Consider the zero-knowledge game Gzk

Π given below.

Game Gzk
Π (A)

1 b←$ {0, 1}
2 (crs0, td)←$ Π.SSetup

3 crs1←$ Π.Setup

4 b←$APf,Ex(crsb)

5 Return (b = b′)

Pf(x,w):

6 Require (R(crs, x, w))

7 π0 ← Π.S(crs0, td, x)

8 π1←$ Π.P(crs1, x, w)

9 Q
∪← (x, πb)

10 Return πb

We define the zero-knowledge advantage of an adversary A to be Advzk
Π (A) = Pr[Gzk

Π (A)]. Next,
we define the standard notion of soundness, which asks that only valid instances can have valid
proofs. Formally, consider the game Gsnd

Π given below.

Game Gsnd
Π (A)

1 crs←$ Π.Setup()

2 AVf(crs) ; Return win

Vf(x, π):

3 Require (x 6∈ LR)

4 Return (win← Π.V(crs, x, π))

We define the soundness advantage of an adversary A against Π to be Advsnd
Π A := Pr[Gsnd

Π (A)].
We move on to define simulation extractablility [Sah99, DDO+01, Gro06]. Which is a strong notion
requiring that the extractor to extract valid witnesses from forged proofs for an adversary even if
the adversary has seen simulated proofs on possibly incorrect instances. Formally, consider the
game Gxt

Π (A) given below.

Game Gxt
Π (A)

1 (crs, td)←$ Π.SSetup

2 APf,Ex(crs)

3 Return win

Pf(x):

4 π ← Π.S(crs, td, x)

5 Q
∪← (x, π)

6 Return π

Ex(x, π):

7 Require ((x, π) 6∈ Q)

8 Require (Π.V(crs, x, π))

9 w←$ Π.Ext(crs, td, x, π)

10 win← ¬R(crs, x, w)

11 Return win

We define the simulation extractable (XT) advantage ofA against Π to be Advxt
Π (A) := Pr[Gxt

Π (A)].

22

7.2.2 Review and Instantiating FLAX

We first recall the construction of Zether. Zether considers accounts Acc : G → G2. Public key
pk ∈ G is mapped to an ElGamal ciphertext encrypting the balance b ∈ [0,MAX] as Acc(pk) =
(C,D) = (pkrgb, gr) for some r ∈ Zp that is unknown.

Warm-up: confidential transactions. Suppose Alice, holding b coins under public key pkA and
secret key skA with current account state Acc(pkA) = (CA, DA), wants to send c coins to Bob, who
has public key pkB. The transaction tx consists of (Ctx,A, Ctx,B, Dtx, π) such that π is a proof
certifying that Alice knows a witness w = (skA, r, c, b− c) to the instance x = (g,pkA,pkB, CA, DA,
Ctx,A, Ctx,B, Dtx) for the following relation:

RConfTransfer = { (g,pkA,pkB, CA, DA, Ctx,A, Ctx,B, Dtx ; skA, r, c, b
′) :

gskA = pkA ∧D = gr

∧ Ctx,A = pkr
Ag
−c ∧ Ctx,B = pkr

Bg
c

∧ (CA/Ctx,A) = (DA/D)skAgb
′

∧ c ∈ [0,MAX] ∧ b′ ∈ [0,MAX] } .

(1)

To process this transaction, the smart contract verifies the proof π before simply setting the new
state (C ′A, D

′
A), (C ′B, D

′
B) to be

C ′A ← CA · C−1tx,A ; D′A ← DA ·D−1tx

C ′B ← CB · Ctx,B ; D′B ← DB ·Dtx .

Private transactions from anonymity set. Privacy can be added by hiding the actual sender
and receiver behind a set of randomly selected users, which is called the anonymity set. To do
this, Alice “hides” pkA,pkB within a set pk = {pk1, . . . ,pkn} of public keys. The transaction now
specifies n ElGamal ciphertexts, stored in a key-value map tx.C, under the same randomness tx.D.
A well-formed transaction needs to prove that the encrypted values are all zero besides two entries,
and those two entries must satisfy the same constraints outlined for confidential transactions.
However, in doing so, the system now has created a “front-running” problem, whereby a well-formed
transaction tx, with anonymity set pk, is rejected if another transaction tx′, whose anonymity
intersects with pk, gets processed before tx. To get around this issue, Zether uses a transaction
nonce, u which must be proved to be of the form gskepoch that is included as part of each transaction.
Zether enforces that, during each epoch, nonces must not repeat.

An anonymous and confidential transfer of amt coins from pk to pk′, with publicly declared
output of val coins is a transaction tx, consisting of fields tx.u, tx.D, tx.val, tx.C, and tx.AD,
whose validity is checked via the following relation.

RTransfer = {
(
(g, gepoch,Acc′, tx); (sk, r, amt, b′, pk, pk′)

)
:

tx.type = Transfer

∧ gsk = pk ∧ gskepoch = tx.u ∧ tx.D = gr

∧ ∀pk′′ ∈ (tx.pk− {pk,pk′}) : tx.C[pk′′] = pk′′r

∧ tx.C[pk] = g−amt+tx.valpkr ∧ tx.C[pk′] = gamtpk′r

∧ tx.val ∈ [0,MAX] ∧ amt ∈ [0,MAX]

∧ Acc′[pk].C

tx.C[pk]
= gb

′
(

Acc′[pk].D

tx.D

)sk

∧ b′ ∈ [0,MAX]} .

(2)

Note that tx.AD is not used in the validity check of the relation above. However, it is crucially

23

included as part of the instance to ensure that a proof authenticates tx.AD.

This concludes the review of Zether. We are now ready to state our additions.

Debit and credit transactions. We simplify the private transfer transactions to only update
the balance of one account out of n. A debit transaction tx consists of fields tx.u, tx.val, tx.C,
and tx.D, tx.type = Debit. The transaction tx is valid if it is an instance of the following relation.

RDebit = {
(
(g, gepoch,Acc′, tx); (sk, r, b′, pk)

)
:

tx.type = Debit

∧ gsk = pk ∧ gskepoch = tx.u ∧ tx.D = gr

∧ ∀pk′ ∈ (tx.pk− {pk}) : tx.C[pk′] = pk′r

∧ tx.C[pk] = gtx.valpkr ∧ tx.val ∈ [0,MAX]

∧ Acc′[pk].C

tx.C[pk]
= gb

′
(

Acc′[pk].D

tx.D

)sk

∧ b′ ∈ [0,MAX]} .

(3)

The above relation ensures that only one account out of set S is being subtracted by −val, and
that the remaining balance of this account is positive after processing of this transaction.

Credit transactions have the benefit of not having to prove that the remaining balance is positive.
Moreover, we can drop the transaction nonce. We consider transactions that increment exactly the
balance of one account out of pk. The validity of a credit transaction tx is checked via the following
relation.

RCredit = {
(
(g,Acc′, tx); (sk, r,pk)

)
:

tx.type = Credit

∧ gsk = pk ∧ tx.D = gr ∧ tx.C[pk] = g · pkr

∧ ∀pk′ ∈ (tx.pk− {pk}) : tx.C[pk′] = pk′r .

(4)

Instantiating the relation and proof system. First, we consider putting the relations for
anonymous transfer, debit, and credit transactions together. Specifically, let

R := RTransfer ∪ RDebit ∪ RCredit , (5)

Relation R is the relation of interest for our FLAX instantiation. Note that instances of R are of
the form (g, gepoch,Acc′, tx), or (g,Acc′, tx), where tx is a key-value map specifying tx.type, tx.u
(only in case of transfer and debit transactions), tx.val, tx.D, tx.C, and tx.AD. We note that these
statements are all properties of either the ledger state st or transaction tx. Hence, for notational
convenience, we simply write (st, tx) to denote an instance of R. Formally, we also need to include
the discrete-log relation RDL into R to facilitate proofs of secret-key possessions. However, such
usage of R is only required in KeyGen, KeyVf, and a specific step in the transaction privacy proof.

Instantiating FLAX. Let Π be a non-interactive proof system for relation R. Let H be a hash
function modeled as a random oracle modeled as a random oracle with output space G. The
constituent algorithms of the transaction system are given in Figure 8. We require associated data
to contain a set pk, denoting the selected anonymity set. We require that the public key of the
originator gsk to be in pk, and that the receiver public key pk′ 6= ⊥ to also be in pk. Note that since
the anonymity set is included in the associated data, it is accessible via tx.pk for the constructed
transaction tx.

Epoch and correctness. We refer to [BAZB20] for more discussion on the table Pending and
the use of epochs. Intuitively, this work-around is needed to ensure that each account owner can

24

Scheme Flax
ParamGen():

1 crs←$ Π.Setup()

Setup(lid):

1 st← {epoch : 0, gepoch : H(epoch), lid : lid} ; Return st

Process(st, tx):

1 Require (tx.lid = st.lid and tx.u 6∈ U and Π.V(crs, (st, tx), tx.π))

2 If (tx.type = Debit) then

3 D ← tx.Dtx.val−1·tx.fp ; For pk ∈ tx.pk do C[pk]← tx.C[pk]tx.val
−1·tx.fp

4 Else If (tx.type = Credit) then

5 D ← tx.Dtx.fp ; For pk ∈ tx.pk do C[pk]← tx.C[pk]tx.fp

6 Else C[pk]← tx.C[pk] ; D ← tx.D

7 For pk ∈ tx.pk do st.Pending[pk]← st.Pending[pk] ◦ (C[pk], D)

8 epoch′ ← newepoch(st) // Increment epoch as specified via newepoch

9 If (epoch′ 6= epoch) then

10 st.epoch← epoch′ ; U ← ∅ ; st.gepoch′ ← H(epoch′)

11 For pk ∈ Pending do

12 st.Acc[pk]← st.Acc[pk] ◦ st.Pending[pk] ; st.Pending[pk]← (1G, 1G)

13 Return st

KeyGen():

14 sk←$ [p] ; pk← gsk ; pk.π←$ Π.P(crs, pk, sk) ; Return pk

KeyVf(pk):

15 Return Π.V(crs, pk, pk.π)

Read(st, sk):

16 (C,D)← st.Acc[gsk] ; B ← C ·D−sk

17 For b ∈ [0,MAX] do If (gb = B) then return b

CreateTx(st, sk, (pk′, amt), val, AD):

18 pk← gsk ; b← Read(st, sk)

19 Require (pk ∈ AD.pk) ; Require (pk′ = ⊥ ∨ pk′ ∈ AD.pk)

20 For y ∈ AD.pk do val[y]← 0

21 val[pk]← −amt + val ; If (pk′ 6= ⊥) then val[pk′]← amt

22 r←$ Zp ; tx← {AD : AD, D : gr, u : (st.gepoch)sk}
23 For y ∈ tx.pk do tx.C[y]← yr · gval[y]

24 tx.π ← Π.P((st, tx), (sk, r, b− amt + val, amt, pk, pk′)) ; Return tx

Figure 8: Construction of FlaxZether system. The parameter of a Flax transaction is stored as
tx.fp. Function newepoch, whose specification is not shown here, increments the epoch as needed.
The exact implementation of newepoch effects only the correctness of the system.

25

submit a transaction in any epoch. However, due to this, account balances are not usable during
the same epoch and the construction only achieves a weaker form of correctness, where balances
are guaranteed to be spendable by the next epoch.

Anonymity set. Similar to Zether, privacy for transactions come from the use of decoy public
keys. Our syntax assumes that the anonymity set pk to be supplied in the associated data, meaning
our model does not formally specify how such sets are picked. We give observations regarding the
selection of anonymity sets distinct in our setting of composable DeFi, but leave the formal study
and analysis required for future work. Suppose a Zether-based FLAX is deployed inside a token
standard outline in Section 3. First, we remark that all FLAX transactions included in the same
blockchain transaction should use the same anonymity set. For example, suppose a blockchain
transaction that includes two FLAX transaction tx1, tx2. It is easy to deduce that the originator
of the transaction must be inside the set tx1.pk ∩ tx2.pk. Intuitively, the overall anonymity set is
the intersection of all constituent ones. Second, the standard restriction in picking anonymity sets
should be applied to all FLAX transactions for a single smart contract call. For example, consider
an EnterLP call to a pool, which expects two debit transactions dtxA and dtxB. The anonymity set
of this blockchain transaction should only include those public keys that plausibly contain enough
balance for both debit transactions. In upshot, selection of the anonymity set should be delegated
to the wallet or client application for the smart contract platform.

Condensing Zether to a simple cryptographic primitive. Zether includes many design
choices tailored to the functionality of the Ethereum blockchain in 2019. It is designed where
the entire system, consisting of the Zether smart contract (ZSC) plus user algorithms, achieves
what is known as a Decentralized Anonymous Payment (DAP) system. We take a more modular
approach and acknowledge the distinction between cryptographic primitives and smart contracts.
Cryptographic primitives, such as public-key encryption (PKE) and FLAX, must satisfy their
associated security guarantees. Smart contracts can invoke cryptographic primitives to achieve
additional functionality.

Features dropped from Zether. (1) lock and unlock: We drop the functionality of lock and
unlock from Zether, since these features (of a smart contract) can be implemented exclusively
using a signature scheme such as Schnorr or ECDSA. (2) Per account roll-over: Zether rolls the
pending transaction state into the account state only when needed, due to high gas usage if this
is done for all pending transactions. This amortization is not relevant in achieving any security
notions, hence it is dropped in our treatment. (3) Mint and burn: these smart contract interfaces
can be realized, in an anonymous manner, via our debit and credit transactions instead.

Features added. First, FLAX allows debit and credit transactions which can be applied flexibly
at processing time (i.e. execution time of the smart contract). Second, we explicitly added the
“associated data” field to a transaction. Intuitively, the functionality of lock and unlock is moved
to the associated data.

Conditional disclosure. For regulatory compliance, a user inside the anonymity set of a trans-
action might need to prove or disprove that it is the originator of a transaction. We note that a
transaction for epoch with nonce tx.u is a originated from pk if and only if (g,pk, gepoch, tx.u) is a
valid DDH tuple. Hence, if a user needs to claim or disclaim a transaction, a proof of the correct
nonce for the user at the specified epoch can be supplied.

7.2.3 Security

We verify consistency, transaction integrity, and transaction privacy for FlaxZether. We show that
FlaxZether is consistent as long as the employed proof system Π is sound. This follows by inspection

26

of the relation R since all valid statements correctly declare their net value change. Hence, breaking
consistency implies breaking soundness.

Theorem 7.1 FlaxZether is consistent as long as Π is sound. Specifically, given any adversary
Acons, the proof constructs adversaries Asnd such that

Advcons
FlaxZether

(Asnd) ≤ Advsnd
Π (Asnd) . (6)

For each tx in the output of Acons, snd-adversary Asnd makes a query to Vf.

Next, we show transaction integrity. We give the following theorem.

Theorem 7.2 Suppose that DL and DDH problems are hard in group G with generator g and that
Π is zero-knowledge and simulation-extractable. Then, FlaxZether satisfies transaction integrity.
Specifically, given any adversary Atx-int, the proof constructs adversaries Azk, Axt, Addh, and Adl,
all as efficient as Atx-int, such that

Advtx-int
FlaxZether

(Atx-int) ≤ Advzk
Π (Azk) + Advxt

Π (Axt)

+ Advddh
G,g,q(Addh) + Advdl

G,g(Adl) ,
(7)

where q (parameter to q-DDH) is the maximum amount of queries to CreateTx oracle that Atx-int
makes.

The proof is straightforward with the right ingredients. We will use the properties in the fol-
lowing order in constructing hybrid experiments: zero-knowledge, DDH, simulation extractability,
then finally DL. Zero-knowledge is first used to simulate proofs for honestly generated transactions
without using the target secret key sk. Next, we move to a game where the transaction nonces are
sampled uniformly randomly, instead of computed as gskepoch. After these two changes, transactions
can be simulated without knowledge of target sk, hence we can use XT to bound the probability
that the final forged transaction is both valid and decreases the balance of the target public key
pk, but does not lead to a valid extraction. Finally, in the last hybrid game, valid extraction of sk
is as hard as solving DL.

Proof of Theorem 7.2: Consider the game sequence given in Figure 9.

Moving from game G0 to G1, we have switched the crs from real to simulated, as well as changed
all proof generation to use the simulator Π.S. The distance between them is upper bounded by
the ZK advantage of a reduction adversary that is as efficient as AFlax. Hence, we could construct
adversary Azk such that

Pr[G0]− Pr[G1] ≤ Advzk
Π (Azk) . (8)

Moving from game G1 to G2, we have are switching the transaction nonces to be uniform randomly
sampled from the group G. It is routine to check that the distance is upper bounded by the q-DDH
advantage of an efficient reduction adversary. Hence, we can construct Addh such that

Pr[G1]− Pr[G2] ≤ Advddh
G,g,q(Addh) . (9)

Note that, in game G2, transaction creation no longer needs the secret key sk. We would like to
run the extraction Π.Ext on the forged transaction tx∗ to extract sk. Consider game G3, which
additionally check that the extraction of (st∗, tx∗) yields a witness containing target secret key
sk. We claim that G2 and G3 should be close unless simulation extractability is violated. This
is because, if b1 is true, then the statement (st∗, tx∗) is fresh and valid. This means that XT
guarantees a valid extraction. Hence, we could give adversary Axt such that

Pr[G2]− Pr[G3] ≤ Advxt
Π (Axt) . (10)

27

Game G0-G3

1 G0: crs←$ Π.Setup

2 G1-G3: (crs, td)←$ Π.SSetup

3 sk←$ [p] ; pk← gsk ; (st∗, tx∗)← ACreateTx
Flax (crs, pk)

4 Require (tx∗ 6∈ S) ; st′ ← Process(st∗, tx∗)

5 b← (Read(st′, sk) < Read(st∗, sk))

6 G0-G2: Return b

7 G3: Return (b ∧ (sk ∈ Π.Ext(crs, td, (st∗, tx∗), tx.π)))

CreateTx(st, (pk′, amt), val, AD):

8 pk← gsk ; b← Read(st, sk)

9 For y ∈ AD.pk do val[y]← 0

10 val[pk]← −amt + val ; If (pk′ 6= ⊥) then val[pk′]← amt

11 r←$ Zp ; tx← {AD : AD, D : gr}
12 For y ∈ tx.pk do tx.C[y]← yr · gval[y]

13 G0, G1: tx.u← (st.gepoch)sk

14 G2, G3: tx.u←$ G
15 G0: tx.π ← Π.P(crs, (st, tx), (sk, r, b− amt + val, amt, pk, pk′))

16 G1-G3: tx.π ← Π.S(crs, (st, tx), td)

17 S
∪← tx ; Return tx

Figure 9: Game sequence for the proof of Theorem 7.2.

Finally, we note that an adversary winning game G3 can be turned into a DL adversary, since sk
is not used anywhere inside G3, only the target key pk. Hence, we could give DL adversary Adl

such that

Pr[G3] ≤ Advdl
G,g(Adl) . (11)

Note that all constructed adversaries run AFlax as a black-box and involve simulation overhead of
the games, which is small. Putting the above equations together we conclude the proof.

Next, we show that FlaxZether satisfies replay protection as long as Π is sound. If Π is sound
then (g, gepoch,pk, tx.u) must be a DDH-tuple for a valid transaction tx, where pk is the public
key whose balance decreases in tx. This means that there is exactly one transaction nonce u that
is considered valid for each account during an epoch. Moreover, as long as gepoch does not repeat,
the correct transaction nonces do not repeat either. Hence, we observe the following theorem.

Theorem 7.3 FlaxZether satisfies replay protection if Π is sound. Formally, given adversary Arep,
adversary Asnd can be constructed so that

Advrep
FlaxZether

(Arep) ≤ Advsnd
Π (Asnd) +

q2

p
. (12)

where q is the number of queries that Arep makes to ProcessO.

Finally, we show that FlaxZether satisfies transaction privacy. First, we define Anonymize.

28

Anonymize(st,Keys, pk0, (pk′0, amt), val, AD):

1 R← Keys.keys ∩ AD.val

2 Require (pk0 ∈ R)

3 pk1←$ {pk ∈ R | Read(st,Keys[pk]) ≥ amt− val}
4 If (pk′0 ∈ R) then

5 pk′1←$ R ; amt′←$ [Read(st,Keys[pk1]) + val]

6 Else (pk′1, amt
′)← (pk′0, amt)

7 Return (pk1, pk′1, amt
′)

Theorem 7.4 Suppose that DDH problem is hard in group G with generator g, and that Π is zero-
knowledge and simulation-extractable. Then, FlaxZether satisfies transaction privacy. Specifically,
given any adversary Atx-priv, the proof constructs adversaries Azk, Axt, and Addh, all as efficient
as Atx-int, such that

Advtx-int
FlaxZether,Anonymize(Atx-priv) ≤ Advzk

Π (Azk) + Advxt
Π (Axt)

+ Advddh
G,g,r(Addh) ,

(13)

where r is the size of the anonymity ring.

Proof of Theorem 7.4: Consider the game sequence given in Figure 10. The first game G0 is
the tx-priv game associated with FlaxZether and Anonymize. We switch the proof generation from
real to simulated in game G1. It is routine to construct zk-adversary Azk such that

Pr[G0]− Pr[G1] ≤ Advzk
FlaxZether

(Azk) . (14)

Next, we would like to extract out secret keys from the adversary. This is exactly the code addition
in game G2, which extracts the secret key in the ring that is not honest (line 16). It is routine to
give an xt-adversary, such that

Pr[G1]− Pr[G2] ≤ Advxt
Π (Axt) . (15)

We are now ready to switch group elements to uniformly random using DDH. First is the transaction
nonce tx.u. Next are the ciphertexts tx.C[y] for those keys y that are (1) honest and (2) have
balances at least amt− val. We claim that

Pr[G2]− Pr[G3] ≤ Advddh
G,g,r(Addh) , (16)

where r is upper bounded by the size of the anonymity ring. Finally, we claim

Pr[G3] =
1

2
. (17)

Combining the above equations, we obtain (13).

Acknowledgements

We thank Tatsuaki Okamoto and Go Yamamoto for their helpful discussions during the early stages
of this work. We thank Psi Vesely for their helpful editorial comments. We thank Guillermo Angeris,
Alex Evans, and Shumo Chu for their conversations around ephemeral addresses. We thank Vesa-
Ville Piiroinen and Kyle Charbonnet for their pointers to EIP-4337, as well as Piiroinen additionally
for pointers to EIP-712 and EIP-2621.

29

Game G0-G3

1 G0: crs←$ Π.Setup

2 G1-G3: (crs, td)←$ Π.SSetup

3 (st,pk0, (pk′0, amt), val, AD)← ANewUser,CreateTx
Flax (crs)

4 Require (pk0 ∈ Keys)

5 (pk1, pk′1, amt
′
1)←$ Anonymize(st,Keys, pk0, (pk′0, amt0), val, AD)

6 tx←$ CreateTx(st,Keys[pkb], (pk′b, amtb), val, AD)

7 b′←$A(tx) ; Return (b = b′)

NewUser:

8 (pk, sk)←$ KeyGen() ; Keys[pk]← sk ; Return pk

CreateTx(st,pk, (pk′, amt), val, AD):

9 For y ∈ AD.pk do val[y]← 0

10 val[pk]← −amt + val ; If (pk′ 6= ⊥) then val[pk′]← amt

11 r←$ Zp ; tx← {AD : AD, D : gr}
12 For y ∈ tx.pk do tx.C[y]← yr · gval[y]

13 tx.u← (st.gepoch)Keys[pk]

14 G2,G3:

15 For y ∈ (AD.pk−Keys.keys) do

16 Keys[y]← Π.Ext(crs, td, y, y.π)

17 Require (gKeys[y] = y)

18 G3:

19 tx.u←$ G
20 For y ∈ tx.pk ∩Keys.keys do

21 If (Read(st,Keys[y]) ≥ amt− val) then tx.C[y]←$ G
22 G0:

23 sk← Keys[pk] ; b← Read(st, sk)

24 tx.π ← Π.P(crs, (st, tx), (sk, r, b− amt + val, amt,pk,pk′))

25 G1-G3: tx.π ← Π.S(crs, (st, tx), td)

26 Return tx

Figure 10: Game sequence for the proof of Theorem 7.4.

References

[Aav] Aave. Protocol Whitepaper. https://github.com/aave/protocol-v2/raw/master/

aave-v2-whitepaper.pdf. Accessed Sept. 2021. 3, 5, 12, 16

[AC20] Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function mar-
ket makers. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pages 80–91, 2020. 14

[AEC21] Guillermo Angeris, Alex Evans, and Tarun Chitra. A note on privacy in constant
function market makers. arXiv preprint arXiv:2103.01193, 2021. 3

[AEF+21] Hendrik Amler, Lisa Eckey, Sebastian Faust, Marcel Kaiser, Philipp Sandner, and
Benjamin Schlosser. DeFi-ning DeFi: Challenges & Pathway, 2021. 3

30

https://github.com/aave/protocol-v2/raw/master/aave-v2-whitepaper.pdf
https://github.com/aave/protocol-v2/raw/master/aave-v2-whitepaper.pdf

[AKC+19] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An
analysis of uniswap markets. arXiv preprint arXiv:1911.03380, 2019. 14

[AZR] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 Core. https:

//uniswap.org/whitepaper.pdf. Accessed Sept. 2021. 3, 5, 12

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards
privacy in a smart contract world. In Joseph Bonneau and Nadia Heninger, editors,
FC 2020, volume 12059 of LNCS, pages 423–443. Springer, Heidelberg, February 2020.
3, 6, 8, 20, 22, 24

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer So-
ciety Press, May 2018. 8, 21

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE
Computer Society Press, May 2014. 3, 6, 8, 20

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. ZEXE: Enabling decentralized private computation. In 2020 IEEE Sym-
posium on Security and Privacy, pages 947–964. IEEE Computer Society Press, May
2020. 4

[Bel20] Mihir Bellare. Lectures on NIZKs. 2020. https://cseweb.ucsd.edu/~mihir/

cse208-Wi20/main.pdf. 22

[BKSV21] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another look
at extraction and randomization of groth’s zk-snark. FC 2021, 2021. 9, 21

[BLE] Remco Bloemen, Leonid Logvinov, and Jacob Evans. EIP-712: Ethereum typed struc-
tured data hashing and signing. https://eips.ethereum.org/EIPS/eip-712. 16

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. 17

[BWG+] Vitalik Buterin, Yoav Weiss, Kristof Gazso, Namra Patel, Dror Tirosh, and Shahaf Nac-
son. EIP-4337: Account Abstraction via Entry Point Contract specification [DRAFT].
https://eips.ethereum.org/EIPS/eip-4337. 16

[CXZ21] Shumo Chu, Yu Xia, and Zhenfei Zhang. Manta: a plug and play private DeFi stack.
Cryptology ePrint Archive, Report 2021/743, 2021. https://eprint.iacr.org/2021/
743. 4

[CZK+19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson,
Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 185–200. IEEE, 2019. 4

31

https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-4337
https://eprint.iacr.org/2021/743
https://eprint.iacr.org/2021/743

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Heidelberg, August
2001. 9, 21, 22

[DGK+20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability. In 2020 IEEE Symposium
on Security and Privacy, pages 910–927. IEEE Computer Society Press, May 2020. 3,
7

[Dia20] Benjamin E. Diamond. Many-out-of-many proofs and applications to anonymous
zether. Cryptology ePrint Archive, Report 2020/293, 2020. https://eprint.iacr.

org/2020/293. 3, 6, 8, 20, 22

[Ego] Michael Egorov. StableSwap—efficient mechanism for Stablecoin liquidity. https:

//curve.fi/files/stableswap-paper.pdf. Accessed Sept. 2021. 3, 5, 12

[EMP+21] Felix Engelmann, Lukas Müller, Andreas Peter, Frank Kargl, and Christoph Bösch.
SwapCT: Swap confidential transactions for privacy-preserving multi-token exchanges.
PoPETs, 2021(4):270–290, October 2021. 4

[Eth] Etherscan. Token tracker. https://etherscan.io/tokens. Accessed Sept. 2021. 3

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On
the non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith and Mridul
Nandi, editors, INDOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer,
Heidelberg, December 2012. 21

[FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A
new design for anonymous cryptocurrencies. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 649–678. Springer,
Heidelberg, December 2019. 3, 6, 8, 20

[FOS19] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash systems: A
cryptographic investigation of Mimblewimble. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 657–689. Springer,
Heidelberg, May 2019. 3, 6, 20, 21

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–612. Springer, Heidelberg,
August 2017. 9, 21

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume
4284 of LNCS, pages 444–459. Springer, Heidelberg, December 2006. 9, 21, 22

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Heidelberg, May 2016. 8, 21

32

https://eprint.iacr.org/2020/293
https://eprint.iacr.org/2020/293
https://curve.fi/files/stableswap-paper.pdf
https://curve.fi/files/stableswap-paper.pdf
https://etherscan.io/tokens

[Jed] Tom Elvis Jedusor. Mimble Wimble. https://download.wpsoftware.net/bitcoin/

wizardry/mimblewimble.txt. 3, 21

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Ed-
ward W. Felten. Arbitrum: Scalable, private smart contracts. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018, pages 1353–1370. USENIX As-
sociation, August 2018. 4

[KKK21] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Kachina–foundations of
private smart contracts. In 2021 IEEE 34th Computer Security Foundations Symposium
(CSF), pages 1–16. IEEE, 2021. 4

[KLO20] Jihye Kim, Jiwon Lee, and Hyunok Oh. Simulation-extractable zk-snark with a single
verification. IEEE Access, 8:156569–156581, 2020. 9, 21

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and Privacy, pages 839–858. IEEE
Computer Society Press, May 2016. 4

[KZM+15] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Charalampos
Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. How to use SNARKs in uni-
versally composable protocols. Cryptology ePrint Archive, Report 2015/1093, 2015.
https://eprint.iacr.org/2015/1093. 21

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-
ing smart contracts smarter. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 254–269.
ACM Press, October 2016. 3, 9, 10

[LH] Robert Leshner and Geoffrey Hayes. Compound: The Money Market Protocol. https:
//compound.finance/documents/Compound.Whitepaper.pdf. Accessed Sept. 2021.
3, 5, 12, 16

[Lun] Martin Lundfall. EIP-2612: permit – 712-signed approvals. https://eips.ethereum.
org/EIPS/eip-2612. 16

[Max] Gregory Maxwell. CoinJoin Bitcoin privacy for the real world. https://bitcointalk.
org/index.php?topic=279249.0. Accessed Nov. 2021. 4

[MM18] Sarah Meiklejohn and Rebekah Mercer. Möbius: Trustless tumbling for transaction
privacy. PoPETs, 2018(2):105–121, April 2018. 4

[MWD] Merriam-Webster.com Dictionary. Flax. https://www.merriam-webster.com/

dictionary/flax. Accessed Sept. 2021. 5

[Noe15] Shen Noether. Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098, 2015. https://eprint.iacr.org/2015/1098. 3, 8, 20

[Poe] Andrew Poelstra. Mimble Wimble. https://download.wpsoftware.net/bitcoin/

wizardry/mimblewimble.pdf. 3, 21

33

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://eprint.iacr.org/2015/1093
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://eips.ethereum.org/EIPS/eip-2612
https://eips.ethereum.org/EIPS/eip-2612
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://www.merriam-webster.com/dictionary/flax
https://www.merriam-webster.com/dictionary/flax
https://eprint.iacr.org/2015/1098
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[PSS] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado Cash Privacy
Solution. https://berkeley-defi.github.io/assets/material/Tornado%20Cash%

20Whitepaper.pdf. 4

[Pul] DeFi Pulse. Defi Pulse: The Decentralized Finance Leaderboard. https://defipulse.
com. Accessed Sept. 2021. 3

[QZLG20] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the defi
ecosystem with flash loans for fun and profit. arXiv preprint arXiv:2003.03810, 2020.
3

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
October 1999. 9, 21, 22

[SALY17] Shi-Feng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. RingCT 2.0: A com-
pact accumulator-based (linkable ring signature) protocol for blockchain cryptocur-
rency monero. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
ESORICS 2017, Part II, volume 10493 of LNCS, pages 456–474. Springer, Heidelberg,
September 2017. 3, 8, 20

[SBG+19] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, and
Martin T. Vechev. zkay: Specifying and enforcing data privacy in smart contracts.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 1759–1776. ACM Press, November 2019. 4

[Sch21] Fabian Schär. Decentralized finance: On blockchain-and smart contract-based financial
markets. Federal Reserve Bank of St. Louis Review, Second Quarter 2021. 3

[Tea] The Maker Team. The Dai Stablecoin System. https://makerdao.com/whitepaper/
DaiDec17WP.pdf. Accessed Sept. 2021. 3, 5, 12, 16

[VB] Fabian Vogelsteller and Vitalik Buterin. EIP-20: Token Standard. https://eips.

ethereum.org/EIPS/eip-20. Accessed Sept. 2021. 3, 10

[WPG+21] Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,
and William J Knottenbelt. SoK: Decentralized Finance (DeFi). arXiv preprint
arXiv:2101.08778, 2021. 3

[Yea] Yearn.finance. Introduction. https://docs.yearn.finance/. Accessed Sept. 2021. 3,
5, 12

[YSL+20] Tsz Hon Yuen, Shifeng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin,
Qingzhao Zhang, and Dawu Gu. RingCT 3.0 for blockchain confidential transaction:
Shorter size and stronger security. In Joseph Bonneau and Nadia Heninger, editors, FC
2020, volume 12059 of LNCS, pages 464–483. Springer, Heidelberg, February 2020. 3,
6, 8, 20

34

https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://defipulse.com
https://defipulse.com
https://makerdao.com/whitepaper/DaiDec17WP.pdf
https://makerdao.com/whitepaper/DaiDec17WP.pdf
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://docs.yearn.finance/

	Introduction
	Outline for the rest of the paper

	Flexible Anonymous Transaction Systems
	Correctness and security
	Instantiations

	Flax Token Standard
	Anonymous Token Standard and Transaction Intent
	Blockchain design with native anonymous Flax tokens

	Applications to Privacy-Preserving DeFi
	Anonymous token-denominated funds, a.k.a pools
	Anonymous automated market-makers
	Anonymous vault-based lending

	Flax Token Standard on Ethereum-like Chains
	Formal correctness and security notions
	Comparison with previous formulations

	Instantiations of Flax
	Flax from UTXO-based DAPs
	Flax from Zether
	Preliminary
	Review and Instantiating FLAX
	Security

	References

