
The Adversary Capabilities In Practical Byzantine Fault Tolerance

Yongge Wang
College of Computing and Informatics, UNC Charlotte

Charlotte, NC 28223, USA
yonwang@uncc.edu

September 19, 2021

Abstract
The problem of Byzantine Fault Tolerance (BFT) has received a lot of attention in the last 30 years. The seminal

work by Fisher, Lynch, and Paterson (FLP) shows that there does not exist a deterministic BFT protocol in complete
asynchronous networks against a single failure. In order to address this challenge, researchers have designed random-
ized BFT protocols in asynchronous networks and deterministic BFT protocols in partial synchronous networks. For
both kinds of protocols, a basic assumption is that there is an adversary that controls at most a threshold number of
participating nodes and that has a full control of the message delivery order in the network. Due to the popularity
of Proof of Stake (PoS) blockchains in recent years, several BFT protocols have been deployed in the large scale
of Internet environment. We analyze several popular BFT protocols such as Capser FFG / CBC-FBC for Ethereum
2.0 and GRANDPA for Polkadot. Our analysis shows that the security models for these BFT protocols are slightly
different from the models commonly accepted in the academic literature. For example, we show that, if the adver-
sary has a full control of the message delivery order in the underlying network, then none of the BFT protocols for
Ethereum blockchain 2.0 and Polkadot blockchain could achieve liveness even in a synchronized network. Though it
is not clear whether a practical adversary could actually control and re-order the underlying message delivery system
(at Internet scale) to mount these attacks, it raises an interesting question on security model gaps between academic
BFT protocols and deployed BFT protocols in the Internet scale. With these analysis, this paper proposes a Casper
CBC-FBC style binary BFT protocol and shows its security in the traditional academic security model with complete
asynchronous networks. Finally, we propose a multi-value BFT protocol XP for complete asynchronous networks
and show its security in the traditional academic BFT security model.

Key words: Byzantine Fault Tolerance; security models; blockchain

1 Introduction
Consensus is hard to achieve in open networks such as partial synchronous networks or complete asynchronous net-
works. Several practical protocols such as Paxos [10] and Raft [12] have been designed to tolerate bn−12 c non-
Byzantine faults. For example, Google, Microsoft, IBM, and Amazon have used Paxos in their storage or cluster
management systems. Lamport, Shostak, and Pease [11] and Pease, Shostak, and Lamport [13] initiated the study of
reaching consensus in face of Byzantine failures and designed the first synchronous solution for Byzantine agreement.
Dolev and Strong [6] proposed an improved protocol in a synchronous network with O(n3) communication complex-
ity. By assuming the existence of digital signature schemes and a public-key infrastructure, Katz and Koo [9] proposed
an expected constant-round BFT protocol in a synchronous network setting against bn−12 c Byzantine faults.

Fischer, Lynch, and Paterson [8] showed that there is no deterministic protocol for the BFT problem in face of
a single failure. Several researchers have tried to design BFT consensus protocols to circumvent the impossibility.
The first category of efforts is to use a probabilistic approach to design BFT consensus protocols in completely asyn-
chronous networks. This kind of work was initiated by Ben-Or [2] and Rabin [14] and extended by others such as
Cachin, Kursawe, and Shoup [5]. The second category of efforts was to design BFT consensus protocols in partial
synchronous networks which was initiated by Dwork, Lynch, and Stockmeyer [7]. Though the network communica-
tion model could be different for these protocols, the assumption on the adversary capability is generally same. That
is, there is a threshold t such that the adversary could coordinate the activities of the malicious t participating nodes.
Furthermore, it is also assumed that the adversary could re-order messages on communication networks.

1

In recent years, many practical BFT protocols have been designed and deployed at the Internet scale. For example,
Ethereum foundation has designed a BFT finality gadget for their Proof of Stake (PoS) blockchain. The current
Ethereum 2.0 beacon network uses Casper Friendly Finality Gadget (Casper FFG) [4] and Ethereum foundation has
been advocating the “Correct-by-Construction” (CBC) family consensus protocols [19, 20] for their future release
of Ethereum blockchain. Similarly, the Polkadot blockchain deployed their home-brew BFT protocol GRANDPA
[16]. The analysis in this paper shows that these protocols have an assumption that the adversary cannot control the
message delivery order in the underlying networks. Our examples show that if the adversary could control the the
message delivery order, then these blockchains could not achieve liveness property. This brings up an interesting
question to the research community: what kind of models are appropriate for the Internet scale BFT protocols? Does
an adversary have the capability to co-ordinate/control one-third of the participating nodes and to reschedule message
delivery order for a blockchain at Internet scale?

Before we have a complete understanding about the impact of the new security assumptions for these blockchain
BFT protocols (i.e., the adversary cannot control the message delivery order on the underlying networks), we should
still design practical large-scale BFT protocols that are robust in the traditional academic security model. For complete
asynchronous networks, we present an Casper CBC-FBC style binary BFT protocol and a multi-value BFT protocol
XP and prove their security in the traditional security model.

The structure of the paper is as follows. Section 2 introduces system models and Byzantine agreement. Section
3 shows that Ethereum blockchain 2.0’s BFT protocol Casper FFG could not achieve liveness if the adversary can
re-order messages in the network. Section 4 shows that Ethereum blockchain’s candidate BFT protocol Casper FBC
for future deployment could not achieve liveness if the adversary can re-order messages in the network. Section 4 also
proposes a Casper FBC style binary BFT protocol that achieves both safety and liveness in the traditional academic
security model for complete asynchronous networks. Section 5 reviews the Polkadot’s GRANDPA BFT protocol
and shows that it cannot achieve liveness if the adversary is allowed to reschedule the message delivery order in the
underlying networks. Section 6 proposes a multi-value BFT protocol XP for complete asynchronous networks and
proves its security.

2 System model and Byzantine agreement
For the Byzantine general problem, there are n participants and an adversary that is allowed to corrupt up to t of
them. The adversary model is a static one wherein the adversary must decide whom to corrupt at the start of the
protocol execution. For the network setting, we consider three kinds of networks: synchronous networks, partial syn-
chronous networks by Dwork, Lynch, and Stockmeyer [7], and complete asynchronous networks by Fischer, Lynch,
and Paterson [8].

1. In a synchronous network, the time is divided into discrete units called slots T0, T1, T2, · · · where the length
of the time slots are equal. Furthermore, we assume that: (1) the current time slot is determined by a publicly-
known and monotonically increasing function of current time; and (2) each participant has access to the current
time. In a synchronous network, if an honest participant P1 sends a message m to a participant P2 at the start of
time slot Ti, the message m is guaranteed to arrive at P2 at the end of time slot Ti.

2. In partial synchronous networks, the time is divided into discrete units as in synchronous networks. The ad-
versary can selectively delay or re-order any messages sent by honest parties. In other words, if an honest
participant P1 sends a message m to an honest participant P2 at the start of time slot Ti1 , P2 will receive the
message m eventually at time Ti2 where i2 = i1 + ∆. Based on the property of ∆, we can distinguish the
following two scenarios:

• Type I partial synchronous network: ∆ <∞ is unknown. That is, there exists a ∆ but participants do not
know the exact (or even approximate) value of ∆.

• Type II partial synchronous network: ∆ < ∞ holds eventually. That is, the participant knows the value
of ∆. But this ∆ only holds after an unknown time slot T = Ti. Such a time T is called the Global
Stabilization Time (GST).

For Type I partial synchronous networks, the protocol designer supplies the consensus protocol first, then the
adversary chooses her ∆. For Type II partial synchronous networks, the adversary picks the ∆ and the protocol

2

designer (knowing ∆) supplies the consensus protocol, then the adversary chooses the GST.

3. In a complete asynchronous network, we make no assumptions about the relative speeds of processes or about
the delay time in delivering a message. We also assume that processes do not have access to synchronized
clocks. Thus algorithms based on time-outs cannot be used.

In all of the network models, we assume that the adversary has complete control of the network. That is, the adversary
may schedule/reorder the delivery of messages as he wishes, and may insert messages as he wishes. The honest
participants are completely passive: they simply follow the protocol steps and maintain their internal state between
protocol steps.

The computations made by the honest participants and the adversary are modeled as polynomial-time computa-
tions. We assume that public key cryptography is used for message authentications. In particular, each participant
should have authentic public keys of all other participants. This means that if two participants Pi and Pj are honest
and Pj receives a message from Pi over the network, then this message must have been generated by Pi at some prior
point in time. A Byzantine agreement protocol must satisfy the following properties:

• Safety: If an honest participant decides on a value, then all other honest participants decides on the same value.
That is, it is computationally infeasible for an adversary to make two honest participants to decide on different
values.

• Liveness (termination): There exists a function B(·) such that all honest participants should decide on a value
after the protocol runs at most B(n) steps. It should be noted that B(n) could be exponential in n. In this
case, we should further assume that 2n is significantly smaller than 2κ where κ is the security parameter for the
underlying authentication scheme. In other words, one should not be able to break the underlying authentication
scheme within O(B(n)) steps.

• Non-triviality (Validity): If all honest participants start the protocol with the same initial value, then all honest
participants that decide must decide on this value.

3 Casper the Friendly Finality Gadget (FFG)
Buterin and Griffith [4] proposed the BFT protocol Casper the Friendly Finality Gadget (Casper FFG) as an overlay
atop a block proposal mechanism. Casper FFG has been deployed in the Proof of Stake Based Ethereum 2.0. In
Casper FFG, weighted participants validate and finalize blocks that are proposed by an existing proof of work chain
or other mechanisms. To simplify our discussion, we assume that there are n = 3t + 1 validators of equal weight.
The Casper FFG works on the checkpoint tree that only contains blocks of height 100 ∗ k in the underlying block tree.
Each validator Pi can broadcast a signed vote 〈Pi : s, t〉 where s and t are two checkpoints and s is an ancestor of t on
the checkpoint tree. For two checkpoints a and b, we say that a→ b is a supermajority link if there are at least 2t+ 1
votes for the pair. A checkpoint a is justified if there are supermajority links a0 → a1 → · · · → a where a0 is the
root. A checkpoint a is finalized if there are supermajority links a0 → a1 → · · · → ai → a where a0 is the root and a
is the direct son of ai. In Casper FFG, an honest validator Pi should not publish two distinct votes

〈Pi : s1, t1〉 AND 〈Pi : s2, t2〉

such that either
h(t1) = h(t2) OR h(s1) < h(s2) < h(t2) < h(t1)

where h(·) denotes the height of the node on the checkpoint tree. In other words, an honest validator should neither
publish two distinct votes for the same target height nor publish a vote strictly within the span of its other votes.
Otherwise, the validator’s deposit will be slashed. The authors [4] claimed that Casper FFG achieves accountable
safety and plausible liveness where

1. achieve accountable safety means that two conflicting checkpoints cannot both be finalized (assuming that there
are at most t malicious validators), and

2. plausible liveness means that supermajority links can always be added to produce new finalized checkpoints,
provided there exist children extending the finalized chain.

3

In order to achieve the liveness property, [4] proposed to use the “correct by construction” fork choice rule: the
underlying block proposal mechanism should “follow the chain containing the justified checkpoint of the greatest
height”.

The authors in [4] proposed to defeat the long-range revision attacks by a fork choice rule to never revert a finalized
block, as well as an expectation that each client will “log on” and gain a complete up-to-date view of the chain at some
regular frequency (e.g., once per month). In order to defeat the catastrophic crashes where more than t validators
crash-fail at the same time (i.e., they are no longer connected to the network due to a network partition, computer
failure, or the validators themselves are malicious), the authors in [4] proposed to slowly drains the deposit of any
validator that does not vote for checkpoints, until eventually its deposit sizes decrease low enough that the validators
who are voting are a supermajority. Related mechanism to recover from related scenarios such as network partition is
considered an open problem in [4].

No specific network model is provided in [4]. In the implementation of the Casper FFG (see GO-Ethereum
implementation), a participating node broadcasts his message as soon as he receives a sufficient number of messages
to move forward. In other words, even if the network is a synchronized network, a participant may just make his
decision on the first 2t + 1 messages and ignore the remaining messages if these first 2t + 1 messages are sufficient
for him to move forward. This is reasonable and necessary since the remaining t nodes could be malicious ones
and will never send any message at all. Based on this observation, we show that if the adversary could reschedule the
message delivery order on the underlying networks, Casper FFG cannot achieve liveness property even in synchronized
networks.

Figure 1: Casper FFG cannot achieve liveness

As an example, assume that, at time T , the checkpoint a is finalized where there is a supermajority link from a to
its direct child b (that is, b is justified) and no vote for b’s descendant checkpoint has been broadcast by any validator
yet (see Figure 1). Now assume that the underlying block production mechanism produces a fork starting from b. That
is, b has two descendant checkpoints c and d. The adversary who controls the network can arrange t honest validators
to receive c first and t + 1 honest validators to receive d first where h(c) = h(d). Thus t honest validators vote for
b→ c, t+ 1 honest validators vote for b→ d, and t malicious validators vote randomly so that both b→ c and b→ d
receives same number of votes. This means that c and d could not be finalized since neither the link b → c nor the
link b→ d could get a supermajority vote. It should be noted that by the two slashing rules in Casper FFG, an honest
validator who voted for b → c is allowed to vote for b → f later since the two votes on b → c and b → f are not
slashable. Next assume that the adversary schedules the message delivery order so that t honest validators receive e
first and t + 1 honest validators receive f first (without loss of generality, we may assume that h(e) = h(f)). Thus t
honest validators vote for b→ e, t+ 1 honest validators vote for b→ f , and t malicious validators vote randomly so
that both b → e and b → f receives same number of votes. Thus e and f could not be finalized since neither the link
b → e nor the link b → f could get a supermajority vote. This process continues forever and no checkpoint after a
could be finalized. That is, Casper FFG could not achieve liveness with this kind of message delivery schedule by the
adversary.

4 CBC Casper the Friendly Binary Consensus (FBC)
The network model for Casper FFG is not clearly defined. In order to make Ethereum blockchain robust in complete
asynchronous networks, Ethereum foundation has been advocating the “Correct-by-Construction” (CBC) family of
Casper blockchain consensus protocols [19, 20] for their future release of Ethereum blockchain. The CBC Casper the
Friendly Ghost emphasizes the safety property. But it does not try to address the liveness requirement for the consensus
process. Indeed, it explicitly says that [19] “liveness considerations are considered largely out of scope, and should
be treated in future work”. Thus in order for CBC Casper to be deployable, a lot of work needs to be done since the
Byzantine Agreement Problem becomes challenging only when both safety and liveness properties are required to be

4

satisfied at the same time. It is simple to design BFT protocols that only satisfy one of the two requirements (safety or
liveness). The Ethereum foundation community has made several efforts to design safety oracles for CBC Casper to
help participants to make a decision when an agreement is reached (see, e.g., [15]). However, this problem is at least
as hard as coNP-complete problems. So no satisfactory solution has been proposed yet.

CBC Casper has received several critiques from the community. For example, Ali et al [1] concluded that “the defi-
nitions and proofs provided in [20] result in neither a theoretically sound nor practically useful treatment of Byzantine
fault-tolerance. We believe that considering correctness without liveness is a fundamentally wrong approach. Impor-
tantly, it remains unclear if the definition of the Casper protocol family provides any meaningful safety guarantees
for blockchains”. Though CBC Casper is not a deployable solution yet and it has several fundamental issues yet to
be addressed, we think these critiques as in [1] may not be fair enough. Indeed, CBC Casper provides an interesting
framework for consensus protocol design. In particular, the algebraic approach proposed by CBC Casper has certain
advantages for describing Byzantine Fault Tolerance (BFT) protocols. The analysis in this section shows that the
current formulation of CBC Casper could not achieve liveness property. However, if one revises the CBC Casper’s
algebraic approach to include the concept of “waiting” and to enhance participant’s capability to identify more ma-
licious activities (that is, to consider general malicious activities in addition to equivocating activities), then one can
design efficiently constructive liveness concepts for CBC Casper even in complete asynchronous networks.

4.1 Casper FBC protocol description
CBC Casper contains a binary version and an integer version. In this paper, we only consider Casper the Friendly
Binary Consensus (FBC). Our discussion can be easily extended to general cases. For the Casper FBC protocol, each
participant repeatedly sends and receives messages to/from other participants. Based on the received messages, a
participant can infer whether a consensus has been achieved. Assume that there are n participants P1, · · · , Pn and let
t < n be the Byzantine-fault-tolerance threshold. The protocol proceeds from step to step (starting from step 0) until
a consensus is reached. Specifically the step s proceeds as follows:

• LetMi,s be the collection of valid messages that Pi has received from all participants (including himself) from
steps 0, · · · , s− 1. Pi determines whether a consensus has been achieved. If a consensus has not been achieved
yet, Pi sends the message

mi,s = 〈Pi, ei,s,Mi,s〉 (1)

to all participants where ei,s is Pi’s estimated consensus value based on the received message setMi,s.

In the following, we describe how a participant Pi determines whether a consensus has been achieved and how a
participant Pi calculates the value ei,s fromMi,s.

For a message m = 〈Pi, ei,s,Mi,s〉, let J(m) = Mi,s. For two messages m1,m2, we write m1 ≺ m2 if m2

depends on m1. That is, there is a sequence of messages m′1, · · · ,m′v such that

m1 ∈ J(m′1)
m′1 ∈ J(m′2)

· · ·
m′v ∈ J(m2)

For a message m and a message set M = {m1, · · · ,mv}, we say that m ≺ M if m ∈ M or m ≺ mj for some
j = 1, · · · , v. The latest message m = L(Pi,M) by a participant Pi in a message set M is a message m ≺ M
satisfying the following condition:

• There does not exist another message m′ ≺M sent by participant Pi with m ≺ m′.

It should be noted that the “latest message” concept is well defined for a participant Pi if Pi has not equivocated,
where a participant Pi equivocates if Pi has sent two messages m1 6= m2 with the properties that “m1 6≺ m2 and
m2 6≺ m1”.

For a binary value b ∈ {0, 1} and a message setM, the score of a binary estimate for b is defined as the number
of non-equivocating participants Pi whose latest message voted for b. That is,

score(b,M) =
∑

L(Pi,M)=(Pi,b,∗)

λ(Pi,M) (2)

5

where

λ(Pi,M) =

{
0 if Pi equivocates inM,
1 otherwise.

To estimate consensus value: Now we are ready to define Pi’s estimated consensus value ei,s based on the received
message setMi,s as follows:

ei,s =

 0 if score(0,Mi,s) > score(1,Mi,s)
1 if score(1,Mi,s) > score(0,Mi,s)
b otherwise, where b is coin-flip output

(3)

To infer consensus achievement: For a protocol execution, it is required that for all i, s, the number of equivocating
participants inMi,s is at most t. A participant Pi determines that a consensus has been achieved at step s with the
received message setMi,s if there exists b ∈ {0, 1} such that

∀s′ > s : score(b,Mi,s′) > score(1− b,Mi,s′). (4)

4.2 Efforts to achieve liveness for CBC Casper FBC
From CBC Casper protocol description, it is clear that CBC Casper is guaranteed to be correct against equivocating
participants. However, the “inference rule for consensus achievement” requires a mathematical proof that is based on
infinitely many message setsMi,s′ for s′ > s. This requires each participant to verify that for each potential set of t
Byzantine participants, their malicious activities will not overturn the inequality in (4). This problem is at least co-NP
hard. Thus even if the system reaches a consensus, the participants may not realize this fact. In order to address this
challenge, Ethereum community provides three “safety oracles” (see [15]) to help participants to determine whether
a consensus is obtained. The first “adversary oracle” simulates some protocol execution to see whether the current
estimate will change under some Byzantine attacks. As mentioned previously, this kind of problem is co-NP hard and
the simulation cannot be exhaustive generally. The second “clique oracle” searches for the biggest clique of participant
graph to see whether there exist more than 50% participants who agree on current estimate and all acknowledge the
agreement. That is, for each message, the oracle checks to see if, and for how long, participants have seen each other
agreeing on the value of that message. This kind of problem is equivalent to the complete bipartite graph problem
which is NP-complete. The third “Turan oracle” uses Turan’s Theorem to find the minimum size of a clique that
must exist in the participant edge graph. In a summary, currently there is no satisfactory approach for CBC Casper
participants to determine whether finality has achieved. Thus no liveness is guaranteed for CBC Casper. Indeed, we
can show that it is impossible to achieve liveness in CBC Casper.

4.3 Impossibility of achieving liveness in CBC Casper
In this section, we use a simple example to show that without a protocol revision, no liveness could be achieved in
CBC Casper. Assume that there are 3t + 1 participants. Among these participants, t − 1 of them are malicious and
never vote. Furthermore, assume that t + 1 of them hold value 0 and t + 1 of them hold value 1. Since the message
delivery system is controlled by the adversary, the adversary can let the first t+ 1 participants to receive t+ 1 voted 0
and t voted 1. On the other hand, the adversary can let the next t+ 1 participants to receive t+ 1 voted 1 and t voted
0. That is, at the end of this step, we still have that t + 1 of them hold value 0 and t + 1 of them hold value 1. This
process can continue forever and never stop.

In CBC Casper FBC [19, 20], a participant is identified as malicious only if he equivocates. This is not sufficient
to guarantee liveness (or even safety) of the protocol. For example, if no participant equivocates and no participant
follows the equation (3) for consensus value estimation, then the protocol may never make a decision (that is, the
protocol cannot achieve liveness property). However, the protocol execution satisfies the valid protocol execution
condition of [19, 20] since there is zero equivocating participant.

4.4 Revising CBC Casper FBC
CBC Casper does not have an in-protocol fault tolerance threshold and does not have any timing assumptions. Thus
the protocol works well in complete asynchronous settings. Furthermore, it does not specify when a participant Pi

6

should broadcast his step s protocol message to other participants. That is, it does not specify when Pi should stop
waiting for more messages to be includedMi,s. We believe that CBC Casper authors do not specify the time for a
participant to send its step s protocol messages because they try to avoid any timing assumptions. In fact, there is a
simple algebraic approach to specify this without timing assumptions. First, we revise the message setMi,s as the
collection of messages that Pi receives from all participants (including himself) during step s−1. That is, the message
setMi,s is a subset of Es where Es is defined recursively as follows:

E0 = ∅
E1 = {〈Pj , b, ∅〉 : j = 1, · · · , n; b = 0, 1}
E2 = {〈Pj , b,Mj,1〉 : j = 1, · · · , n; b = 0, 1;Mj,1 ⊂ E1}
· · ·
Es = {〈Pj , b,Mj,s−1〉 : j = 1, · · · , n; b = 0, 1;Mj,s−1 ⊂ Es−1}
· · ·

Then we need to revise the latest message definition L(Pj ,Mi,s) accordingly:

L(Pj ,Mi,s) =

{
m if 〈Pj , b,m〉 ∈ Mi,s

∅ otherwise (5)

As we have mentioned in the preceding section, CBC Casper FBC [19, 20] only considers equivocating as malicious
activities. This is not sufficient to guarantee protocol liveness against Byzantine faults. In our following revised CBC
Casper model, we consider any participant that does not follow the protocol as malicious and exclude their messages:

• For a message setMi,s, let I(Mi,s) be the set of identified malicious participants fromMi,s. Specifically, let

I(Mi,s) = E(Mi,s) ∪ F (Mi,s)

where E(Mi,s) is the set of equivocating participants withinMi,s and F (Mi,s) is the set of participants that
does not follow the protocols withinMi,s. For example, F (Mi,s) includes participants that do not follow the
consensus value estimation process properly or do not wait for enough messages before posting his own protocol
messages.

With the definition of I(Mi,s), we should also redefine the score function (2) by revising the definition of λ(Pi,M)
accordingly:

λ(Pi,M) =

{
0 if Pi ∈ I(M),
1 otherwise.

4.5 Secure BFT protocol in the revised CBC Casper
With the revised CBC Casper, we are ready to introduce the “waiting” concept and specify when a participant Pi
should send his step s protocol message:

• A participant Pi should wait for at least n− t+ |I(Mi,s)| valid messages mj,s−1 from other participants before
he can broadcast his step s message mi,s. That is, Pi should wait until |Mi,s| ≥ n− t+ |I(Mi,s)| to broadcast
his step s protocol message.

• In case that a participant Pi receives n − t + |I(Mi,s)| valid messages mj,s−1 from other participants (that is,
he is ready to send step s protocol message) before he could post his step s − 1 message, he should wait until
he finishes sending his step s− 1 message.

• After a participant Pi posts his step s protocol message, it should discard all messages from steps s− 1 or early
except decision messages that we will describe later.

It is clear that these specifications does not have any restriction on the timings. Thus the protocol works in complete
asynchronous networks.

In Ben-Or’s BFT protocol [2], if consensus is not achieved yet, the participants autonomously toss a coin until
more than n+t

2 participant outcomes coincide. For Ben-Or’s maximal Byzantine fault tolerance threshold t ≤ bn5 c, it
7

takes exponential steps of coin-flipping to converge. It is noted that, for t = O(
√
n), Ben-Or’s protocol takes constant

rounds to converge. Bracha [3] improved Ben-Or’s protocol to defeat t < n
3 Byzantine faults. Bracha first designed

a reliable broadcast protocol with the following properties (Bracha’s reliable broadcast protocol is briefly reviewed
in the Appendix): If an honest participant broadcasts a message, then all honest participants will receive the same
message in the end. If a dishonest participants Pi broadcasts a message, then either all honest participants accept the
identical message or no honest participant accepts any value from Pi. By using the reliable broadcast primitive and
other validation primitives, Byzantine participants can be transformed to fail-stop participants. In the following, we
assume that a reliable broadcast primitive such as the one by Bracha is used in our protocol execution and present
Bracha’s style BFT protocol in the CBC Casper framework. At the start of the protocol, each participant Pi holds an
initial value in his variable xi ∈ {0, 1}. The protocol proceeds from step to step. The step s consists of the following
sub-steps.

1. Each participant Pi reliably broadcasts 〈Pi, xi,Mi,s,0〉 to all participants whereMi,s,0 is the message set that
Pi has received during step s− 1. Then Pi waits until it receives n− t valid messages inMi,s,1 and computes
the estimate ei,s using the value estimation function (3).

2. Each participant Pi reliably broadcasts 〈Pi, ei,s,Mi,s,1〉 to all participants and waits until it receives n− t valid
messages inMi,s,2. If there is a b such that score(b,Mi,s,2) > n

2 , then let e′i,s = b otherwise, let e′i,s =⊥.

3. Each participant Pi reliably broadcasts 〈Pi, e′i,s,Mi,s,2〉 to all participants and waits until it receives n− t valid
messages inMi,s,3. Pi distinguishes the following three cases:

• If score(b,Mi,s,2) > 2t + 1 for some b ∈ {0, 1}, then Pi decides on b and broadcasts his decision
together with justification to all participants.

• If score(b,Mi,s,2) > t+ 1 for some b ∈ {0, 1}, then Pi lets xi = b and moves to step s+ 1.

• Otherwise, Pi flips a coin and let xi to be coin-flip outcome. Pi moves to step s+ 1.

Assume that n = 3t+ 1. The security of the above protocol can be proved be establishing a sequence of lemmas.

Lemma 4.1 If all honest participants hold the same initial value b at the start of the protocol, then every participant
decides on b at the end of step s = 0.

Proof. At sub-step 1, each honest participant receives at least t+ 1 value b among the 2t+ 1 received values. Thus all
honest participants broadcast b at sub-step 2. If a malicious participant Pj broadcasts 1 − b during sub-step 2, then it
cannot be justified since Pj could not receive t+ 1 messages for 1− b during sub-step 1. Thus Pj will be included in
I(M). That is, each honest participant receives 2t+ 1 messages for b at the end of sub-step 2 and broadcasts b during
sub-step 3. Based on the same argument, all honest participants decide on b at the end of sub-step 3. 2

Lemma 4.2 If an honest participant Pi decides on a value b at the end of step s, then all honest participants either
decide on b at the end of step s or at the end of step s+ 1.

Proof. If an honest participant Pi decides on a value b at the end of sub-step 3, then Pi receives 2t+ 1 valid messages
for the value b. Since the underlying broadcast protocol is reliable, each honest participant receives at least t+ 1 these
valid messages for the value b. Thus if a participant Pi does not decide on the value b at the end of sub-step 3, it would
set xi = b. That is, all honest participants will decide during step s+ 1. 2

The above two Lemmas show that the protocol is a secure Byzantine Fault Tolerance protocol against bn−13 c
Byzantine faults in complete asynchronous networks. The above BFT protocol may take exponentially many steps to
converge. However, if a common coin such as the one in Rabin [14] is used, then the above protocol converges in
constant steps. It should be noted that Ethereum 2.0 provides a random beacon which could be used as a common coin
for the above BFT protocol. Thus the above BFT protocol could be implemented with constant steps on Ethereum 2.0.

8

5 Polkadot’s BFT protocol GRANDPA
The project Polkadot (https://github.com/w3f) proposed an algebraic approach based BFT finality gadget
protocol GRANDPA which is similar to Casper FBC in some sense. There are different versions of GRANDPA
protocol. In this paper, we refer to the most recent one [16] dated on June 19, 2020. Specifically, Polkadot implements
a nominated proof-of-stake (NPoS) system. At certain time period, the system elects a group of validators to serve for
block production and the finality gadget. Nominators also stake their tokens as a guarantee of good behavior, and this
stake gets slashed whenever their nominated validators deviate from their protocol. On the other hand, nominators also
get paid when their nominated validators play by the rules. Elected validators get equal voting power in the consensus
protocol. Polkadot uses BABE as its block production mechanism and GRANDPA as its BFT finality gadget. Here we
are interested in the finality gadget GRANDPA (GHOST-based Recursive ANcestor Deriving Prefix Agreement) that
is implemented for the Polkadot relay chain. GRANDPA contains two protocols, the first protocol works in partially
synchronous networks and tolerates 1/3 Byzantine participants. The second protocol works in full asynchronous
networks (requiring a common random coin) and tolerates 1/5 Byzantine participants. The first GRANDPA protocol
assumes that underlying network is a Type I partial synchronous network. In the following paragraphs, we will
show that GRANDPA cannot achieve liveness property in partial synchronous networks if the adversary is allowed to
reschedule the message delivery order.

Assume that there are n = 3t+ 1 participants P0, · · · , Pn−1 and at most t of them are malicious. Each participant
stores a tree of blocks produced by the block production mechanism with the genesis block as the root. A participant
can vote for a block on the tree by digitally signing it. For a set S of votes, a participant Pi equivocates in S if Pi has
more than one vote in S. A set S of votes is called safe if the number of participants who equivocate in S is at most t.
A vote set S has supermajority for a block B if

|{Pi : Pi votes for B∗} ∪ {Pi : Pi equivocates}| ≥ 2t+ 1

where Pi votes for B∗ mean that Pi votes for B or a descendant of B.
In GRANDPA, the 2/3-GHOST function g(S) returns the block B of the maximal height such that S has a super-

majority for B or a “nil” if no such block exists. If a safe vote set S has a supermajority for a block B, then there are
at least t+ 1 voters who do vote for B or its descendant but do not equivocate. Based on this observation, it is easy to
check that if S ⊆ T and T is safe, then g(S) is an ancestor of g(T).

The authors in [16] defined the following concept of possibility for a vote set to have a supermajority for a block:
“We say that it is impossible for a set S to have a supermajority for a block B if at least 2t+ 1 voters either equivocate
or vote for blocks who are not descendant of B. Otherwise it is possible for S to have a supermajority for B”. Then
they claimed (the second paragraph above Lemma 2.6 in [16]) that “a vote set S is possible to have a supermajority
for a block B if and only if there exists a safe vote set T ⊇ S such that T has a supermajority for B”. Unfortunately,
this claim is not true in practice if the adversary selects a non-equivocating strategy which may introduce deadlock to
the system (on the other hand, this claim is true if all t malicious voters MUST equivocate).

Example 5.1 Assume that blocksC andD are inconsistent (that is,C is not an ancestor ofD andD is not an ancestor
of C) and the vote set S contains the following votes which could be achieved by letting the adversary re-order the
messages to be delivered on the network (this could also happen before GST in partial synchronous networks).

1. t+ 1 voters vote for C.

2. 2t voters vote for D.

3. no voters equivocate.

Since only 2t votes in S that “either equivocate or vote for blocks who are not descendant of C”, by the above
definition, S is NOT impossible to have a supermajority for C. Thus, by the above definition, S is possible to have
a supermajority for a block C. If malicious voters choose not to equivocate (we cannot force a malicious voter to
equivocate), there does not exist a semantically valid safe vote set T ⊇ S such that T has a supermajority for C.
Similarly, by the above definition, S is NOT impossible to have a supermajority for D and is possible to have a
supermajority for a block D. If malicious voters choose not to equivocate, there does not exist a semantically valid
safe vote set T ⊇ S such that T has a supermajority for D. On the other hand, if a malicious voter submits another
vote (either for C or D) to S, then D has a supermajority vote in S.

9

https://github.com/w3f

In the following sections, we will use Example 5.1 to show that the GRANDPA protocol will enter deadlock and
cannot achieve the liveness property if the adversary is allowed to reschedule the message delivery order.

5.1 GRANDPA protocol
The GRANDPA protocol starts from round 1. For each round, one participant is designated as the primary and all
participants know who is the primary. Each round consists of two phases: prevote and precommit. Let Vr,i and Cr,i
be the sets of prevotes and precommits received by Pi during round r respectively. Let E0,i be the genesis block and
Er,i be the last ancestor block of g(Vr,i) that is possible for Cr,i to have a supermajority. If either Er,i < g(Vr,i) or
it is impossible for Cr,i to have a supermajority for any children of g(Vr,i), then we say that Pi sees that round r is
completable. Let ∆ be a time bound such that it suffices to send messages and gossip them to everyone. The protocol
proceeds as follows.

1. Pi starts round r > 1 if round r − 1 is completable and Pi has cast votes in all previous rounds. Let tr,i be the
time Pi starts round r.

2. The primary voter Pi of round r broadcasts Er−1,i.

3. prevote: Pi waits until either it is at least time tr,i + 2∆ or round r is completable. Pi prevotes for the head of
the best chain containing Er−1,i unless Pi receives a block B from the primary with g(Vr−1, i) ≥ B > Er−1,i.
In this case, Pi uses the best chain containing B.

4. precommit: Pi waits until g(Vr,i) ≥ Er−1,i and one of the following holds

(a) it is at least time tr,i + 4∆

(b) round r is completable

Then Pi broadcasts a precommit for g(Vr,i)

At any time after the precommit step of round r, if Pi sees that B = g(Cr,i) is descendant of the last finalized block
and Vr,i has a supermajority, then Pi finalizes B.

5.2 GRANDPA cannot achieve liveness in partial synchronous networks
In this section, we show that GRANDPA BFT protocol cannot achieve liveness property in partial synchronous net-
works. Assume that Er−1,0 = · · · = Er−1,n−1 = A and all 3t + 1 voters prevote and precommit to A during round
r−1 and A is finalized by all voters during round r−1. Also assume that no voter will ever equivocate. During round
r, the block production mechanisms produces a fork of of A. That is, we get two children blocks C and D of A.
Counter-example 1: By adjusting the message delivery schedule (this could happen before GST in partial syn-
chronous networks), t+ 1 voters only receive the block C before time tr,i + 2∆ and 2t voters only receive the block
D before time tr,i + 2∆. However, all voters will receive both blocks C and D before time tr,i + 3∆.

At step 2 of round r, the primary voter broadcasts A = Er−1,i. At step 3, both Vr,i and Cr,i are empty initially,
the round r cannot be completable until time tr,i + 2∆. Thus voter Pi waits until time tr,i + 2∆ to submit its prevote.
The t + 1 voters that received block C would prevote for C and the other 2t voters that received block D would
prevote for D. The adversary allows all prevotes of Step 3 to be delivered to all voters synchronously before time
tr,i + 4∆. During Step 4, each voter Pi receives t+ 1 prevotes for C and 2t prevotes for D. Since Cr,i is empty until
it receives any precommit, round r is not completable until time tr,i + 4∆. That is, each voter Pi waits until tr,i + 4∆
to precommit g(Vr,i) = A. The adversary allows all voters to receive all precommit votes for A. Now each voter Pi
estimates Er,i = g(Vr,i) = A. By the fact that Cr,i = {3t + 1 precommit votes for A}, we have g(Cr,i) = A. Since
A has already been finalized, Pi will not finalize any block during round r.

In order for the round r to be completable, we need “either Er,i < g(Vr,i) or it is impossible for Cr,i to
have a supermajority for any children of g(Vr,i)”. However, we have Er,i = g(Vr,i) = A and Cr,i = {3t +
1 precommit votes for A}. That is, by definition of “possibility”, it is “possible” for Cr,i to have a supermajority
for both children C and D of g(Vr,i) = A. In order words, the round r is NOT “completable” and GRANDPA cannot
start Step 1 of round r + 1.

10

Figure 2: Counter-example 2 for GRANDPA

Counter-example 2: This example is more involved than counter-example 1 and an example with t = 1 is shown in
Figure 2. By adjusting the message delivery schedule (this could happen before GST in partial synchronous networks),
by time tr,i + 2∆, we have t voters received block C and 2t+ 1 voters received block D. Furthermore, all voters will
receive both blocks C and D before time tr,i + 3∆.

At step 2 of round r, the primary voter broadcastsA = Er−1,i. At step 3, both Vr,i and Cr,i are empty initially, the
round r cannot be completable until time tr,i+ 2∆. Thus voter Pi waits until time tr,i+ 2∆ to submit its prevote. The
t voters that received block C would prevote for C and the other 2t+ 1 voters that received block D would prevote for
D. Durng Step 4, the adversary schedules the message delivery in such a way that, by time tr,i + 4∆, t voters receive
“2t+1 prevotes for D” and 2t+1 voters receive “t prevotes for C and t+1 prevotes for D”. Since Cr,i is empty until
it receives any precommit, round r is not completable until time tr,i + 4∆. That is, each voter Pi waits until tr,i + 4∆
to precommit g(Vr,i). At time tr,i + 4∆, t voters precommit for D = g(Vr,i), 2t voters precommit for A = g(Vr,i),
and one malicious voter does not precommit. The adversary let all precommit messages to be delivered to all voters
synchronously.

Now t voters estimates Er,i = g(Vr,i) = D and 2t+ 1 voters Pi estimates Er,i = g(Vr,i) = A. By the fact that

Cr,i = {t precommit votes for D and 2t precommit votes for A},

we have g(Cr,i) = A. Since A has already been finalized, Pi will not finalize any block during round r. In order for
the round r to be completable, we need “either Er,i < g(Vr,i) or it is impossible for Cr,i to have a supermajority for
any children of g(Vr,i)”. However, we have Er,i = g(Vr,i) for all voters and, by Example 5.1, it is “possible” for Cr,i
to have a supermajority for all children of g(Vr,i). In order words, the round r is NOT “completable” and GRANDPA
cannot start Step 1 of round r + 1.

Paper [16, page 7] mentions that “Cr,i and Vr,i may change with time and also that Er−1,i, which is a function of
Vr−1,i and Cr−1,i, can also change with time if Pi sees more votes from the previous round”. However, this has no
impact on our preceding examples since after an honest voter prevotes/precommits, the honest voter cannot change his
prevote/prevommit votes anymore (otherwise, it will be counted as equivocation).

6 Multi-value BFT protocols for asynchronous networks
Section 4.5 proposed a binary BFT finality gadget in complete asynchronous networks and Section ?? proposed a
multi-value BFT finality gadget for partial synchronous networks. Furthermore, the BFT protocol in Section 4.5
requires a strongly reliable broadcast channel. In this section, we present a constant round multi-value BFT protocol
XP for complete asynchronous networks that does not require strongly reliable broadcast channels. The XP protocol is
motivated by the probabilistic binary BFT protocol in Cachin, Kursawe, and Shoup [5] and requires a shared common
random beacon which could be implemented using the Ethereum random beacon.

Similar to Section ??, we assume that there is a partial order on the list of candidate blocks to be finalized:
B = {Bj : 1 ≤ j ≤ τ} where B1 ≺ B2 ≺ · · · ≺ Bτ . During the protocol run, each participant Pi maintains a list of
known candidate blocks in its local variable Xi ⊆ B. At the start of the protocol run, Xi contains the list of candidate
blocks that the participant Pi has learned and could be empty. During the protocol run, we assume that there is a
random coin shared by all participants. For example, for the Ethereum 2.0, one may use the existing random beacon

11

protocol as a common coin. Let σ be the random string shared by all participants for step s. Then participant Pi sets
the “common” block Xσ

i as a block Bj ∈ Xi such that H(Bj , s) and H(σ, s) has the maximal common prefix within
Xi, where H(·) is a hash function. If there are two candidate blocks Bj1 ≺ Bj2 such that

commonPrefix(H(Bj1 , s), H(σ, s)) = commonPrefix(H(Bj2 , s), H(σ, s)),

then Pi sets Xσ
i = Bj2 . It is easy to observe that if Xi1 = Xi2 , then Xσ

i1
= Xσ

i2
. However, if Xi1 6= Xi2 , then Xσ

i1
and Xσ

i2
may be different.

The protocol proceeds from step to step until an agreement is achieved and the protocol does not have any as-
sumption on the time setting. Each participant waits for at least n− t justified messages from participants (including
himself) to proceed to the next sub-step. The step s ≥ 0 for a participant Pi consists of the following sub-steps:

• lock: If s = 0, then let B be the maximal element in Xi. If s > 0 then wait for n − t justified commit-votes
from step s− 1 and let

B =

{
B′ Pi receives a commit-vote for B′ in step s− 1
Xσ
i Pi receives 2t+ 1 commit-votes for ⊥ and σ is common coin (6)

Then Pi sends the following message to all participants.

〈Pi, lock, s, B, justification〉 (7)

where justification consists of messages to justify the selection of the value B.

• commit: Pi collects n− t justified lock messages (7) and lets

B̄ =

{
B if there are n− t locks for B
⊥ otherwise (8)

Then Pi sends the following message to all participants

〈Pi, commit, s, B̄,Xi, justification〉 (9)

where justification consists of messages to justify the selection of the value B̄.

• check-for-decision: Collect n − t properly justified commit votes (9) and lets Xi = Xi ∪ (∪jXj) where Xj

are from messages (9). Furthermore, if these are n− t commit-votes for a block B̄, then Pi decides the block B̄
and continues for one more step (up to commit sub-step). Otherwise, simply proceed.

Assume that n = 3t+ 1. The security of the above protocol can be proved by establishing a sequence of lemmas.

Lemma 6.1 If an honest participant Pi decides on the value B̄ at the end of step s (but no honest participant has ever
decided before step s), then all honest participants either decide on B̄ at the end of step s or at the end of step s+ 1.

Proof. If an honest participant Pi decides on the value B̄ at the end of step s, then at least t + 1 honest participants
commit-vote for B̄. Thus each participant (including malicious participant) receives at least one commit-vote for B̄ at
the end of step s. This means that a malicious participant cannot create a justification that she has received a commit-
vote for another block B 6= B̄ or has received 2t+ 1 commit-votes for⊥ during step s. In other words, if a participant
broadcasts a lock message for a block B 6= B̄ during step s+ 1, it cannot be justified and will be discarded by honest
participants. This means that, all honest participants will commit-vote for the block B̄ during step s + 1 and any
commit-vote for other blocks cannot be justified. Thus, all honest participants will collect n− t justified commit-vote
for the block B̄ and decide on block B̄ at the end of step s+ 1. 2

Lemma 6.2 Block B in equation (6) is uniquely defined for each honest participant.

Proof. It is sufficient to show that each participant Pi (including both honest and dishonest participants) can not
receive commit-votes for two different blocks B̄1 and B̄2 during step s. For a contradiction, assume that Pi receives
commit-vote for both B̄1 and B̄2 during step s. Then there are 2t+ 1 participants who submit lock messages for B̄1

and 2t + 1 participants who submit lock messages for B̄2. This means that at least t + 1 participants (thus at least
one honest participant) submit lock messages for both B̄1 and B̄2 which is impossible. 2

12

Lemma 6.3 During step s, if participants Pi and Pj receive commit votes for B̄1 and B̄2 respectively, then B̄1 = B̄2.

Proof. For a contradiction, assume that B̄1 6= B̄2. Then there are 2t+1 lock messages for B̄1 and 2t+1 lock messages
for B̄2 during step s. This means that at least t + 1 participants (thus at least one honest participant) submit lock
messages for both B̄1 and B̄2 which is impossible. 2

Lemma 6.4 If all honest participants hold the the same local value Xi = B at the start of step s, then with high
probability, every participant decides by the end of step s+ τ .

Proof. The Lemma is proved by distinguishing the following two cases:

1. s = 0: At step 0, each honest participant broadcasts the lock for Bτ though dishonest participant may broadcast
a lock for another block. At the commit phase, each honest participant Pi broadcasts B and a commit message
for ⊥ or Bτ depending on what he receives. If some participant decides at the end of Step 0, by Lemma 6.1, all
honest participants decide by the end of Step 1. Assume that no participant decides by the end of Step 0. During
Step 1, when a participant broadcasts a lock for a block, he needs to include 2t + 1 commit messages from
Step 0 as the justification. Among these 2t + 1 commit messages, at least t + 1 come from honest participants
which contain B. Thus from now on, each participant must include its local variable Xi = B in its justification
message. In other words, if a participant broadcast a lock for a block based on the common coin, this locked
block must be identical for all participants who use the common coin. Therefore, from Step 1 on, a participant
can only broadcast a lock for a block committed in the immediate previous step (cf. Lemma 6.3) or a lock
for a block determined by the common coin. With probability 1

τ , the block determined by the common coin is
identical to the committed block from the previous step. Thus all honest participants are expected to decide by
Step τ .

2. s > 0: for this case, we distinguish the following three cases:

(a) By the end of step s − 1, at least one participant (including dishonest participant) can legally decide on
a block (this means at least one honest participant receives a commit-vote for a block B 6=⊥ during step
s− 1): By Lemma 6.1, all honest participants decides by the end of step s.

(b) By the end of step s − 1, no participant (including dishonest participant) can legally decide on a block:
From Step s and on, each honest participant broadcasts a lock message for the unique blockXσ

i determined
by the common coin or a unique block that was committed in the immediate previous Step (cf. Lemma
6.3). With probability 1

τ , the block determined by the common coin is identical to the committed block
from the immediate previous Step. Thus all honest participants are expected to decide by Step s+ τ .

This completes the proof of the Lemma. 2

Lemma 6.5 All honest participant decides in constant steps.

Proof. If no participant decides by the end of Step s+τ , then, by Lemma 6.4, with high probability, at least one honest
participant Pi revises its local variable Xi to include at least one more element during the Steps from s to s+ τ . Since
there are at most τ candidate blocks, this process continues until no honest participant revises its local variable Xi.
Then, by Lemma 6.4, all honest participants hold the same candidate block and the consensus will be reached. 2

The above five Lemmas show that the protocol XP is a secure Byzantine Fault Tolerance protocol against bn−13 c
Byzantine faults in complete asynchronous networks.

References
[1] M. Ali, J. Nelson, and A. Blankstein. Peer review: CBC Casper. available at: https://medium.com/

@muneeb/peer-review-cbc-casper-30840a98c89a, December 6, 2018.

[2] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended ab-
stract). In Proc. 2nd ACM PODC, pages 27–30, 1983.

13

https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a
https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a

[3] G. Bracha. An asynchronous [(n−1)/3]-resilient consensus protocol. In Proc. 3rd ACM PODC, pages 154–162.
ACM, 1984.

[4] V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437v4, 2019.

[5] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asynchronous byzantine
agreement using cryptography. Journal of Cryptology, 18(3):219–246, 2005.

[6] D. Dolev and H.R. Strong. Polynomial algorithms for multiple processor agreement. In Proc. 14th ACM STOC,
pages 401–407. ACM, 1982.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. JACM, 35(2):288–323,
1988.

[8] M.J. Fischer, N. A Lynch, and M.S. Paterson. Impossibility of distributed consensus with one faulty process.
JACM, 32(2):374–382, 1985.

[9] J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agreement. Journal of Computer and
System Sciences, 75(2):91–112, 2009.

[10] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, 1998.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[12] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 USENIX Annual
Technical Conference, pages 305–319, 2014.

[13] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM, 27(2):228–234,
1980.

[14] M.O. Rabin. Randomized byzantine generals. In 24th IEEE FOCS, pages 403–409. IEEE, 1983.

[15] Ethereum Research. CBC Casper FAQ. available at: https://github.com/ethereum/cbc-casper/
wiki/FAQ, November 27, 2018.

[16] A. Stewart and E. Kokoris-Kogia. GRANDPA: a byzantine finality gadge https://github.com/w3f/
consensus/blob/master/pdf/grandpa.pdf, June 19, 2020.

[17] Wang, Yongge. Byzantine Fault Tolerance in Partially Connected Asynchronous Networks. IACR Cryptol. ePrint
Arch., 2019. https://eprint.iacr.org/2019/1460.pdf

[18] Wang, Yongge. Blockchain BFT Protocol for Complete Asynchronous Networks. 2020. arXiv preprint
arXiv:2005.04309. https://arxiv.org/pdf/2005.04309.pdf

[19] V. Zamfir. Casper the friendly ghost: A correct by construction blockchain consensus protocol. Whitepaper:
https://github.com/ethereum/research/tree/master/papers, 2017.

[20] V. Zamfir, N. Rush, A. Asgaonkar, and G. Piliouras. Introducing the minimal cbc casper family of consensus
protocols. DRAFT v1.0: https://github.com/cbc-casper/, 2018.

A Bracha’s strongly reliable broadcast primitive
Assume n > 3t. Bracha [3] designed a broadcast protocol for asynchronous networks with the following properties:

• If an honest participant broadcasts a message, then all honest participants accept the message.

• If a dishonest participant Pi broadcasts a message, then either all honest participants accept the same message
or no honest participant accepts any value from Pi.

14

https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://eprint.iacr.org/2019/1460.pdf
https://arxiv.org/pdf/2005.04309.pdf
https://github.com/ethereum/research/tree/master/papers
https://github.com/cbc-casper/

Bracha’s broadcast primitive runs as follows:

1. The transmitter Pi sends the value 〈Pi, initial, v〉 to all participants.

2. If a participant Pj receives a value v with one of the following messages

• 〈Pi, initial, v〉
• n+t

2 messages of the type 〈echo, Pi, v〉
• t+ 1 message of the type 〈ready, Pi, v〉

then Pj sends the message 〈echo, Pi, v〉 to all participants.

3. If a participant Pj receives a value v with one of the following messages

• n+t
2 messages of the type 〈echo, Pi, v〉

• t+ 1 message of the type 〈ready, Pi, v〉

then Pj sends the message 〈ready, Pi, v〉 to all participants.

4. If a participant Pj receives 2t+ 1 messages of the type 〈ready, Pi, v〉, then Pj accepts the message v from Pi.

Assume that n = 3t + 1. The intuition for the security of Bracha’s broadcast primitive is as follows. First, if an
honest participant Pi sends the value 〈Pi, initial, v〉, then all honest participant will receive this message and echo the
message v. Then all honest participants send the ready message for v and all honest participants accept the message v.

Secondly, if honest participants Pj1 and Pj2 send ready messages for u and v respectively, then we must have
u = v. This is due to the following fact. A participant Pj sends a 〈ready, Pj , u〉 message only if it receives t + 1
ready messages or 2t+1 echo messages. That is, there must be an honest participant who received 2t+1 echo messages
for u. Since an honest participant can only send one message of each type, this means that all honest participants will
only sends ready message for the value u.

In order for an honest participant Pj to accept a message u, it must receive 2t + 1 ready messages. Among these
messages, at least t+1 ready messages are from honest participants. An honest participant can only send one message
of each type. Thus if honest participants Pj1 and Pj2 accept messages u and v respectively, then we must have u = v.
Furthermore, if a participant Pj accepts a message u, we just showed that at least t + 1 honest participants have sent
the ready message for u. In other words, all honest participants will receive and send at least t+ 1 ready message for
u. By the argument from the preceding paragraph, each honest participant sends one ready message for u. That is, all
honest participants will accept the message u.

15

	Introduction
	System model and Byzantine agreement
	Casper the Friendly Finality Gadget (FFG)
	CBC Casper the Friendly Binary Consensus (FBC)
	Casper FBC protocol description
	Efforts to achieve liveness for CBC Casper FBC
	Impossibility of achieving liveness in CBC Casper
	Revising CBC Casper FBC
	Secure BFT protocol in the revised CBC Casper

	Polkadot's BFT protocol GRANDPA
	GRANDPA protocol
	GRANDPA cannot achieve liveness in partial synchronous networks

	Multi-value BFT protocols for asynchronous networks
	Bracha's strongly reliable broadcast primitive

