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Abstract

We propose the first maliciously secure multi-party computation (MPC) protocol for
general functionalities in two rounds, without any trusted setup. Since polynomial-time
simulation is impossible in two rounds, we achieve the relaxed notion of superpolynomial-
time simulation security [Pass, EUROCRYPT 2003]. Prior to our work, no such maliciously
secure protocols were known even in the two-party setting for functionalities where both
parties receive outputs. Our protocol is based on the sub-exponential security of standard
assumptions plus a special type of non-interactive non-malleable commitment.

At the heart of our approach is a two-round multi-party conditional disclosure of se-
crets (MCDS) protocol in the plain model from bilinear maps, which is constructed from
techniques introduced in [Benhamouda and Lin, TCC 2020].

1 Introduction

A multi-party computation (MPC) protocol [GMW87] allows a set of n mutually distrustful
parties to securely compute any function f on their inputs (x1, . . . , xn), while revealing nothing
beyond the function output f(x1, . . . , xn). An MPC satisfies the notion of semi-honest secu-
rity if the privacy of the inputs is guaranteed against an adversary that faithfully follows the
specification of the protocols. On the other hand, if the MPC is secure against any adversary,
who can corrupt any subset of parties and let them deviate from the protocol specifications
arbitrarily, then we say that it satisfies the notion of malicious security.

MPC is a central tool in modern cryptography and characterizing its exact round com-
plexity has been a major open problem. Recently, this question was settled for the semi-
honest setting [GS18, BL18a] where the authors showed a “round-collapsing” compiler to
turn any MPC protocol into a 2-round protocol, under the (minimal) assumption of the ex-
istence of a 2-round oblivious transfer (OT) protocol. Unfortunately, the compiled proto-
cols achieve only semi-honest security (even if the input protocols were maliciously secure to
begin with). Achieving malicious security requires one to add additional rounds of interac-
tion [BHP17, ACJ17, HHPV18, BL18a, BGJ+18, CCG+19] or assume the presence of a trusted
setup [GS18]. Besides introducing an additional (reusable) round of interaction where all partic-
ipants need to receive the common reference string (CRS), the presence of a trusted setup is at
odds with the main objective of MPC of reducing the trust in external parties. This motivates
us to ask the following question:
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Can we construct maliciously secure 2-round MPC without trusted setup?

At first, it might appear that the answer to the above question is clearly negative: Even for the 2-
party setting it is well known that four rounds are necessary [KO04] (with respect to blackbox
simulation) and that polynomial time simulation in 2 rounds is strictly impossible [GO94].
However none of these barriers hold if we consider the relaxed notion of superpolynomial-time
simulation.

Super-Polynomial Simulation (SPS). SPS-based security [Pas03, PS04] has emerged as
the de-facto notion of security to bypass impossibility results of classical polynomial-time sim-
ulation. In SPS security, the adversary is restricted to run in (non-uniform) polynomial time
but the simulator is allowed to run in superpolynomial time. To see why this is a meaningful
notion, note that the standard definition of input-indistinguishability (e.g. semantic security
for the case of encryption) is equivalent to SPS security with an unbounded simulator. Thus,
input-indistinguishability is a strict relaxation of SPS security.

In fact, the notion of (malicious) 2-round MPC with SPS security has been recently consid-
ered for the restricted settings of 2 parties (2PC), out of which one might be corrupted. Recent
works [BGI+17, JKKR17, MPP20] achieve 2-round 2PC with SPS security from a variety of
assumptions, where a single party receives the output. Even constructing a 2-round 2PC with
SPS security where both parties receive the output at the end of second round is currently an
open problem,1 let alone extending such a result to the setting of more than 2 parties.

As discussed in [BGJ+17], who construct three round MPC with SPS security, it is helpful
to view SPS security through the lens of the security loss inherent in all security reductions. In
polynomial-time simulation, the security reduction has a polynomial security loss with respect
to the ideal world. That is, an adversary in the real world has as much power as another
adversary that runs in polynomially more time in the ideal world. In SPS security, the security
reduction has a fixed super-polynomial security loss, for example 2n

ε
for a small constant ε > 0

and security parameter n, with respect to the ideal world. Just as in other applications in
cryptography using super-polynomial assumptions, this situation still guarantees security as
long as the ideal model is itself super-polynomially secure. For instance, if the ideal model
hides honest party inputs information-theoretically, then security is maintained even with SPS.
This is true for applications like online auctions, where no information is leaked in the ideal world
about honest party inputs beyond what can be easily computed from the output. But SPS also
guarantees security for ideal worlds with cryptographic outputs, like blind signatures, as long
as the security of the cryptographic output is guaranteed against super-polynomial adversaries.
Indeed, SPS security was explicitly considered for blind signatures in [GRS+11, GG14] with
practically relevant security parameters computed in [GG14].

1.1 Our Results

We construct a 2-round MPC protocol for polynomially-many parties with SPS security. All
communications happen via a broadcast channel that immediately relays the messages to all
participants. We guarantee security in the dishonest majority setting and against malicious
adversaries, i.e. we allow the adversary to behave arbitrarily and to corrupt all but one partic-
ipant. We do not assume a trusted setup or a common reference string (i.e. our protocol is in
the plain model). 2 More concretely, we obtain the following result.

1Running two instances of the same protocol in parallel does not achieve any meaningful security guarantee
since nothing prevents one party from using two different inputs in each session.

2We note that our usage of bilinear group based NIWI does not require any setup phase as the prover can self
sample the group. Soundness of NIWI will hold as long as the group is cyclic and of the right order[GOS06b].
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Theorem 1 (Informal). Assuming the sub-exponential security of the following building blocks:

• A non-interactive witness-indistinguishable (NIWI) proof.

• A special non-interactive non-malleable commitment scheme3.

• A 2-round semi-malicious4 MPC.

• A bilinear group in which the SXDH assumption holds.

Then there exists a 2-round MPC in the plain model with SPS security for all functions.

Prior to our work, 2-round (malicious) MPC was known only for the 2-party settings where
only one party receives the output at the end of the interaction [BGI+17, JKKR17, MPP20].
Protocols for more than 2 parties in the plain model were not known under any assumption.
Note that 3-round MPC with SPS (and even concurrent) security is known (see [BGJ+17] and
references therein) and that 1-round MPC is impossible in the plain model (even with SPS-
security). Thus, our work fills the natural knowledge gap about the round complexity of MPC
with SPS security.

Multi-Party Conditional Disclosure of Secrets. The central tool that we use to achieve
our main result is a new construction of multi-party conditional disclosure of secrets (MCDS).
Loosely speaking, in an MCDS protocol we want one party (the sender) to reveal a message to
a set of n parties (the receivers) if and only if some statements (x1, . . . , xn) are all true. Each
receiver holds a witness wi and, at the end of the interaction, the message m can be publicly
reconstructed if all witnesses are valid, i.e. (wi, xi) ∈ R, where R is an NP relation. Security
requires that all witnesses remain hidden and that the message m is also hidden if at least
one statement xi is false. Building on the recent techniques of [BL20], we obtain the following
construction, which may be of independent interest.

Theorem 2 (Informal). If there exists a bilinear group where the SXDH and the DLin problems
are (subexponentially) hard, then there exists a (delayed statement) 2-round (subexponentially-
secure) MCDS protocol for NP in the plain model.

On the Assumptions. We observe that all our building blocks except non-interactive non-
malleable commitment admit efficient instantiations from standard assumptions over bilinear
maps. In the case of constant number of parties, we achieve the required special non-malleable
commitments by relying on the RSW time-lock puzzle assumption in [LPS17] together with
any sub-exponentially quantum-hard non-interactive commitment (which follows, e.g., from
quantum-hardness of LWE). In the case of polynomially many parties, our special non-malleable
commitments can be instantiated based on a variant of a “hardness amplifiability” assumption
on non-interactive commitments (inspired by [BL18b]), together with other standard assump-
tions. A much simpler instantiation of the required non-malleable commitments for polynomially
many parties would also follow from the factoring-based adaptive one-way functions of [PPV08]
together with any sub-exponentially quantum-hard non-interactive commitment (which follows,
e.g., from quantum sub-exponential hardness of LWE).

Also, our usage of tag-based non-malleable commitment scheme doesn’t require setup as the parties can locally
choose their identities.

3Specifically, we assume (a strengthened form of) sub-exponentially secure non-malleable commitments with
respect to commitment.

4Semi-malicious security is a strengthening of semi-honest security where the adversary follows the specifica-
tions of the protocols but can choose the random coins of the corrupted parties arbitrarily.
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Conclusion and Open Questions. This work provides the first template to achieve multi-
party computation in two rounds against Byzantine adversaries without trusted setup. Prior
to our work, all existing two round multi-party (and even two-party) computation proto-
cols [GGHR14, GP15, GS18, BL18a, BJKL21] either required trusted setup or achieved provable
security only against variants of honest-but-curious adversaries. On the other hand, our protocol
achieves security with super-polynomial simulation against arbitrary malicious corruptions.

We believe that future work will be able to build on this template to realize secure two-round
MPC protocols under a variety of different assumptions. For instance, improved constructions
of non-interactive non-malleable commitments that rely on various new “axes of hardness” could
improve the assumptions used in our work. The problem of building multi-party CDS under
other standard assumptions could also be an interesting open question for future work.

1.2 Technical Overview

We first describe our principal building block - a construction of multi-party conditional dis-
closure of secrets (MCDS) in the plain model - and then describe the techniques we develop to
construct two-round MPC in the plain model.

1.2.1 Multi-Party Conditional Disclosure of Secrets

As discussed in the previous section, our two-round maliciously secure MPC protocol relies on
an underlying semi-malicious MPC protocol. The first challenge that we encounter in compiling
this to a maliciously secure MPC is the following: there needs to be a mechanism to make sure
that the first message of each party is well-formed, otherwise the semi-malicious MPC offers no
security whatsoever. Now in the absence of a trusted setup, we cannot simply attach a NIZK
proof that certifies well-formedness. This forces us to adopt an implicit approach instead.

Specifically, instead of relying on publicly-verifiable NIZKs, we aim to realize the following
(two-round) two-party functionality: Let C be an NP-verification circuit that the parties wish
to compute over some secret witness w. One party - the receiver - has a witness w as input, the
other party - the sender - has a secret message m as input. The public output is m if C(w) = 1,
and otherwise the output is ⊥.

This functionality would allow us to achieve the desired goal, since we can “condition” the
transfer of the second round message to the fact that the first round message of all parties was
well-formed. In the multi-party settings, all parties should simultaneously receive all second
round messages, and therefore we additionally need to ensure that the above functionality
satisfies public reconstruction: If C(w) = 1, then the message m is publicly recoverable from
the conversation transcript. While this appears to be a plausible avenue to attack the problem,
building a protocol implementing this functionality in two rounds and in the plain model requires
some new ideas. We note that the notion of CDS and its use as an alternative to zero-knowledge
was first introduced in the work of [GIKM98].

What Makes This a Difficult Problem? Since parties may behave maliciously, there is no
guarantee that a party A’s first round message is honestly generated. Furthermore, A should be
able to recover an output after obtaining party B’s second round message, which is computed
based on A’s potentially mal-formed first message. Thus, it appears that B should have some
guarantee that A’s first message is well-formed before it computes and releases its second round
message, which will potentially reveal information about its secret input. Importantly, this
proof of well-formedness should preserve the confidentiality of A’s input.

In the CRS model, one could have each party prove the well-formedness of its first round
message with a NIZK. However, in the absence of any setup, one cannot achieve such strong
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zero-knowledge properties with a non-interactive proof. The best we can hope for is to have each
party prove that its first message is well-formed with a non-interactive witness indistinguishable
proof (NIWI). Now, in order to preserve confidentiality while using a NIWI, there must exist
multiple valid explanations (i.e. witnesses) of the party’s first round message. Thus, a natural
approach is to have each party generate two separate first round messages and prove with a
NIWI that at least one of the two is well-formed.

While this appears promising, there are still serious issues that prevent one from construct-
ing general-purpose two-round two-party computation in the plain model (with publicly recon-
structable output). If party A is now computing two separate first round messages, how does
party B know which of them to use when computing its second round message? If B simply
computes a second round message with respect to both, then since one may be mal-formed we
are back to the original problem. One could try to have B secret share its input and compute
a (first and) second round message with respect to each share. However, this immediately runs
into issues if the functionality is computing on B’s input in any way. But we observe that
this outline, with additional ideas, can be made to work for a special type of functionality.
Specifically, this motivates the relaxation from general-purpose 2PC to conditional disclosure
of secrets (CDS) protocol.

Conditional Disclosure of Secrets (CDS). In CDS, there is no computation performed
on sender’s input m at all, and can thus be secret shared across two independent executions.
However, the issue of preserving receiver privacy remains, since secret sharing the witness will
be problematic. We circumvent the problem by simply requiring that the sender not have
first round message at all! Therefore, an honest receiver does not have to respond to any
potentially mal-formed sender message. In summary, then, we seek an instantiation of the
following primitive.

• The receiver, on input a witness w, publishes a first round message Com(w).

• The parties decide to compute a CDS for circuit C.

• The sender, on input a message m, outputs a second round message Enc(m) that is
computed with respect to Com(w).

• Simultaneously, the receiver outputs a second round message πC , also computed with
respect to Com(w).

• Given Com(w),Enc(m), and πC , anybody can recover m if C(w) = 1, and otherwise m is
completely hidden.

Recently, Benhamouda and Lin [BL20] gave a construction (which they call “witness encryption
for NIZK of commitment”) that essentially satisfies the above syntax, except that it requires a
CRS to be secure against malicious parties. While we seemingly have not made much progress,
observe that we have significantly reduced the functionality, enough to make our initial idea
work. In our scheme, the sender and the receiver will run two parallel copies of the above
system, where CRSs are chosen by the receiver. Specifically, the receiver will send

(crs0, crs1,Com0(w),Com1(w))

together with a NIWI proof that at least one of the two copies is correctly computed. The
sender will then respond with

(Enc(m0),Enc(m1)) such that m0 ⊕m1 = m
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and the receiver will simultaneously respond with both copies of the second round message
πC,0 and πC,1. In terms of security, the NIWI guarantees that at least one of the two copies is
correctly computed, which in turn implies that one of the shares of the message is hidden, if
C(w) 6= 1.

Upgrading the Functionality. Now, the above gives a non-trivial two-party functionality
that may be computed in two rounds in the plain model. We further observe that, due in
part to the simplicity of the CDS functionality, the same techniques naturally extend to the
multi -party setting. Here, we consider multiple receivers, each with a different input witness wi
and each associated with a different circuit Ci. A single sender can now additively secret share
its message across all receiver commitments, so that m may only be recovered if Ci(wi) = 1 for
all i. In the next section, we show how this simple multi-party functionality can be used as a
crucial building block for computing all multi-party functionalities in the plain model.

Before moving on we note that the initial construction given in [BL20] only supports compu-
tation of NC1 circuits, and they later upgrade their construction to support all polynomial-size
circuits via the use of a randomized encoding with encoding in NC1 and a garbled circuit.
Our construction uses similar techniques, starting with the same underlying building blocks
as [BL20] and then tailoring this NC1 to P upgrade to our (multi-party, plain model) setting.
Details may be found in Section 3.3.

1.2.2 Two Round Maliciously-Secure MPC

To construct a two-round maliciously secure MPC protocol, we start with any generic two-round
MPC protocol which is secure against semi-malicious adversaries. In short, semi-malicious
adversaries are those who follow the protocol specification (like semi-honest adversaries) but
may choose arbitrary randomness. Two-round MPC protocols such as [GS18, BL18a, AJJM20]
provide security against such class of adversaries. However, an arbitrary malicious adversary
might choose not to follow the protocol specification (e.g. by generating messages that are
outside the support of honest distribution).

Challenge: Message Integrity. If we allow the adversary to behave arbitrarily, the afore-
mentioned protocols no longer guarantee any meaningful notion of security. Well-studied tech-
niques, such as requiring a zero-knowledge proof of “honest” behavior from all parties, does
not work because such ZK proofs require at least 2 rounds [Pas03]. Therefore, transferring the
second MPC message only after verifying the ZK proofs will end up requiring 3 rounds in the
overall protocol. If, somehow, we could achieve some kind of “delayed-verification” then this
problem would be solved. To realize this intuition, we will rely on our MCDS primitive. A
natural approach would be to encrypt the second MPC messages of parties using MCDS so that
they can be decrypted only if all parties behaved honestly in their first round. However, this
intuition does not directly translate into a proof because of some key issues which we describe
and address in the following.

From WI to Simulation Security. First, note that the MCDS only guarantees a witness-
indistinguishability (WI) kind of security. In particular, it doesn’t ensure that the witness (i.e.
input and randomness) of parties remains hidden. All it ensures is that the choice, out of two
possible witnesses (if they exist), remains hidden. Therefore, in order to leverage such WI-style
security to provide a full-fledged ZK style guarantee, we will use the well-known FLS paradigm
wherein we introduce a second “trapdoor” witness and require each party to prove (through
MCDS) that either it behaved honestly in the first round OR it was successful in guessing the
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trapdoor. The trapdoor will be set up in a way so that a polynomially bounded adversary, in
the real world, will not be able to guess the trapdoor and therefore will be forced to stick to
the honest protocol. However, a super-polynomial time simulator, in the ideal world, would be
able to guess the trapdoors and thereby generate the honest distribution without relying on the
honest party witnesses (i.e. input and randomness).

To implement the aforementioned trapdoor-based solution, we rely on a special pair of com-
mitment algorithms - com and Com. The idea is to have each party Pi generate a commitment
ci = com(0; ri) using a uniformly random value ri. Now the collection of all such n random
values {ri}i∈[n] will be used as a single trapdoor for all n parties. Concretely, each party Pi will
be required to prove (through MCDS) that either there exists a valid witness wi (encoding the
semi-malicious MPC input and randomness) in its MCDS commitment (in Round 1) which is
consistent with its first round semi-malicious MPC message OR that its MCDS commitment
message contains the exact trapdoor values {ri}i∈[n].

Malleability Attacks. Unfortunately, the above idea is not yet sufficient for achieving se-
curity due to the existence of different types of malleability attacks. For example, consider a
scenario where the adversary A, on receiving cHi from some (set of) honest party, “mauls” it into
his own MCDS commitment value. If this happens, the second OR branch of the adversary’s
MCDS statement will be valid, and we won’t be able to invoke the sender-security of the MCDS
scheme to argue that the second round MPC message of honest parties is hidden. To handle
this, we add a requirement that each party Pi must generate a commitment Ci = Com(0kn) in
the first round and modify the second OR branch of the MCDS statement to additionally verify
whether Ci = Com({ri}i∈[n]). The pair of commitment algorithms (com,Com) is designed so
that any (implicit) information from ci cannot be (efficiently) transferred to Ci. In other words,
com is non-malleable w.r.t. to Com. In the real world, this will ensure that a polynomially-
bounded adversary is unable to take the trapdoor branch of the MCDS statement. However,
in the ideal world, the super-polynomial simulator will be able to do so by just guessing the
trapdoor values.

A subtle issue that arises is the following: What happens if A just “copies” the exact same
messages as that of the honest party? If this happens, he would be able to decrypt the second
round MPC messages of honest parties just by using the exact same MCDS proof messages as
that of honest parties. This is because the MCDS statement, along with the implicit witness
in the copied first round MCDS message, of the adversary would be exactly the same as that
of the honest party. Such attacks might be devastating because they might enable A to make
his input “dependent” on the honest party’s input. For example, consider a 2-party case where
P1 holds input x, P2 holds input y, and they would like to securely compute f(x, y). In such
cases, a malleability attack might enable a corrupt P2 to recover f(x, x) with probability one.
Note that such an attack is not allowed in the ideal world where each Pi sends its input to the
functionality independently (of other parties). To thwart such attacks, we require Com to be
a non-malleable commitment i.e. a commitment C1 generated by honest party P1 cannot be
“mauled” into a related commitment C2 by corrupt party P2. From the protocol perspective,
this ensures that an adversary which tries to copy the exact same messages as that of the honest
party will be detected in the first round (as the non-malleable design of Com enforces each Pi to
use a unique tag). From the perspective of security proof, this enables the simulator, in one of
the hybrids, to switch from using the real inputs of honest parties to using the trapdoor witness
in its Ci messages without letting the adversary also perform the same kind of switch.

Integrity of the Second Round. Although MCDS helps us conditionally transfer the second
MPC message of honest parties, an adversary might still be able to “cheat” in his second round
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after behaving honestly in the first round. For example, an adversary generating “malformed”
second round messages (i.e. messages outside the support of honest distribution) might be able
to force honest parties into recovering an incorrect output without detection. Note that such
attacks are not allowed by the real/ideal definition – in fact, in such a scenario, it is required
that honest parties should be able to detect such an event and then abort. To fix this, we will
use a type of (two-message) ZK argument, which we will again instantiate via a NIWI [GOS06a].
Essentially, each party will be required to prove, using NIWI, that either it is sending a well-
formed second round message OR it has successfully guessed the trapdoor value {ri}i∈[n] (which
has already been set up in the first round as we described above).

Some Additional Challenges. Finally, we mention some of the details specific to the se-
curity proof of our protocol. Note that in a 2-round setting, rewinding is not an option for
the simulator, and therefore the only way out is to correctly guess the adversary’s actions in
advance. This means that our simulator will make several (superpolynomially many) attempts
to guess the adversary’s trapdoor, and indistinguishability of hybrids will be conditioned on the
event that the simulator was successful in correctly guessing all the trapdoors {ri}i∈[n] (which
includes the ones generated by the adversary). We note that it appears to be necessary to embed
n trapdoors, one for each player, and allow the simulator (or any other player) to deviate from
honest strategy if and only if it guessed the trapdoors of all other players. This, in turn, requires
other primitives in the protocol to have a higher level of security than the total computation
needed to guess all n trapdoors simultaneously. Concretely, assuming each ci was created using
γ bits of randomness in the com algorithm, then the simulator has a probability of 2−nγ of
being successful at the guess. Conditioned on this (very) low probability event, when we switch
the value inside simulator’s CHi from 0nγ to the actual trapdoors r1|| . . . ||rn, we would have to
argue the independence of values inside adversary’s CMi from the values inside CHi .5 To enable
this, we require that the non-malleable commitment scheme Com allows an advantage no better
than negl(2nγ). We refer the reader to Section 2.4 for some plausible instantiations of such a
primitive. Similarly, the other primitives in our protocol, such as MCDS and the semi-malicious
MPC must also allow for an advantage no better than negl(2nγ).

At the same time, we would like to ensure that no adversary or set of colluding adversaries
can copy the trapdoors r1||... . . . ||rn, which include trapdoors used by honest parties. This
means that we must ensure that commitments to ri created according to the commitment
scheme com cannot be mauled to generate commitments using the commitment scheme Com.
Therefore, we interpret com and Com together as a “special” non-malleable commitment with
n + 1 tags, where commitments w.r.t. a special tag (say, the 0 tag) use at most γ bits of
randomness and cannot be mauled to commitments via any other tag by a polynomial-sized
circuit; and commitments with all non-zero tags are non-malleable w.r.t. each other with an
advantage no better than negl(2nγ). We view identifying the right notion of non-malleability to
instantiate our compiler as an important technical contribution of this work.

In Section 2.4, we provide instantiations for these special commitments in the setting of
constant n (i.e. constant number of parties) based on sub-exponential time-lock puzzles and
sub-exponential quantum hardness of the learning with errors (LWE) assumption. The re-
striction to constant n is due to the need for negl(2nγ) security, which is not satisfied by some

5This is needed, for example, to ensure that the hybrid before switching to trapdoor is indistinguishable from
the hybrid obtained after switching to trapdoor w.r.t an adversary who was unable to retrieve the Round 2
semi-malicious MPC message in the former hybrid (because of some dishonest behavior in the Round 1). We
would like to avoid a scenario where such an adversary is actively trying to maul the honest party’s CHi into its
own CMi and therefore distinguishes the latter hybrid from the former one (by successfully retrieving the Round
2 MPC message in the latter but not the former).

8



existing constructions of non-interactive non-malleable commitments [LPS17, BL18b, KK19] for
n = poly(λ). Nevertheless, we formulate an assumption on the hardness amplification of com-
mitments (which is a variant of hardness amplifiability assumptions introduced in the context
of non-malleable commitments by [BL18b]), and use this to instantiate special commitments for
polynomial-sized tag spaces (and therefore, polynomially many parties) from sub-exponential
falsifiable assumptions. We also provide a much simpler proof-of-concept instantiation from
factoring-based adaptive one-way functions from [PPV08] and quantum hardness of the learn-
ing with errors (LWE) assumption. Due to the challenges outlined above, we believe that
removing the need for special non-malleable commitments is likely to require new, possibly
non-black-box, simulation techniques. However, we hope that future work will be able to sim-
plify the assumptions on which special non-malleable commitments can be based by relying on
other types of hardness.

Another interesting question is whether our protocols achieve a notion of angel-based se-
curity [PS04]. Angel based security allows the simulator as well as the adversary access to
a super-polynomial resource called an “angel” which can perform a pre-defined task such as
inverting a one-way function. Our simulation technique makes arguing angel-based security
tricky: our simulator must guess the randomness that the adversary uses in his commitment ci
even before receiving these commitments from the adversary. Our simulator repeatedly runs the
adversary until it guesses correctly, and it appears difficult to directly rely on an angel to make
this guessing step easier. We believe that constructing two-round MPC satisfying angel-based
or other forms of composable security is an interesting direction for future work.

2 Preliminaries

We say that a primitive satisfies (T, δ) security if the security definition holds for all poly(T )
time adversaries with advantage at-most negl(δ). Here T and δ can be arbitrary functions in
the security parameter λ and all the honest parties should run in time poly(λ).

2.1 Non-Interactive Witness-Indistinguishable Proofs

We recall the notion of a non-interactive witness-indistinguishable (NIWI) proof system [GOS06b].
In [GOS06b] the authors showed how to construct such a NIWI based on standard hard prob-
lems over prime-order bilinear maps. A NIWI proof system is defined with respect to an NP
language L with relation R and consists of the following efficient algorithms.

NIWIProve(x,w,R): On input a statement x, witness w, and relation R, returns a proof π.

NIWIVerify(x, π,R): On input a statement x, proof π, and relationR, the verification algorithm
returns a bit b ∈ {0, 1}.

For correctness, we require that true statements always lead to accepting proofs.

Definition 1 (Correctness). A NIWI proof system is correct if for all (w, x) ∈ R it holds that

NIWIVerify(x,NIWIProof(x,w,R),R) = 1.

We require that the NIWI proof satisfies perfect soundness.

Definition 2 (Soundness). A NIWI proof system is perfectly sound if for all x /∈ L and for all
proofs π it holds that

Pr [1 = NIWIVerify(x, π,R)] = 0.
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Finally, we require that the NIWI proof system satisfies the notion of computational witness-
indistinguishability.

Definition 3 (Witness-Indistinguishability). A NIWI proof system is witness indistinguishable
if there exists a negligible function negl such that for all λ ∈ N and all (stateful) PPT adversaries
ADV, it holds that

Pr

 ADV(π) = b
∧(w0, x) ∈ R ∧ (w1, x) ∈ R

∣∣∣∣∣∣
(w0, w1, x)← ADV(1λ)
b←$ {0, 1}
π ← NIWIProve(x,wb,R)

 ≤ 1/2 + negl(λ).

Groth et al. [GOS06b] showed that such a NIWI exists assuming the hardness of the DLin
problem over bilinear maps.

Theorem 3 ([GOS06b]). Let (G1,G2,GT ) be a bilinear group where the DLin problem is hard.
Then there exists a NIWI for NP.

2.2 Garbled Circuit

We recall the definition of a garbling scheme for circuits [Yao86] (see Applebaum et al. [AIK04],
Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further discussion).

Definition 4 (Garbled Circuit). A garbling scheme for circuits is a tuple of PPT algorithms
(Garble,GEval). Garble is the circuit garbling procedure and GEval is the corresponding evaluation
procedure. More formally:

• (C̃, {labi,b}i∈[n],b∈{0,1})← Garble
(
1λ, C

)
: Garble takes as input a security parameter 1λ, a

circuit C, and outputs a garbled circuit C̃ along with labels {labi,b}i∈[n],b∈{0,1}, where n is
the length of the input to C.

• y ← GEval
(
C̃, {labi,xi}i∈[n]

)
: Given a garbled circuit C̃ and a sequence of input labels

{labi,xi}i∈[n], GEval outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}n we
have that:

Pr
[
C(x) = GEval

(
C̃, {labi,xi}i∈[n]

)]
= 1

where (C̃, {labi,b}i∈[n],b∈{0,1})← Garble
(
1λ, C

)
.

Security. For security, we require that there exists a PPT simulator GSim such that for any
circuit C and input x ∈ {0, 1}n, we have that(

C̃, {labi,xi}i∈[n]

)
≈c GSim

(
1λ, 1|C|, 1n, C(x)

)
where (C̃, {labi,b}i∈[n],b∈{0,1})← Garble

(
1λ, C

)
.

2.3 Randomized Encoding

We provide a definition of randomized encoding that is perfectly correct, computationally private,
and has encoding in NC1. We follow the definition given in [BL20] which follows from [AIK05].
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Definition 5 (Randomized Encoding). Let G be a class of polynomial-size circuits. A computa-
tional randomized encoding scheme for G is a tuple of PPT algorithms (RE.Enc,RE.Dec,RE.Sim)
with the following syntax.

• Ĝ := RE.Enc(1λ, G): On input a security parameter and a circuit G ∈ G, where G :
{0, 1}n → {0, 1}, output a circuit Ĝ : {0, 1}n × {0, 1}` → {0, 1}p. This procedure is
deterministic.

• y := RE.Dec(1λ, G, ŷ): On input the security parameter, a circuit C ∈ G, and the output
ŷ of Ĝ, output the output y of G. This procedure is deterministic.

• Ĝ ← RE.Sim(1λ, G, y): On input the security parameter, a circuit G ∈ G, and an output
y ∈ {0, 1}, output a simulated randomized encoding Ĝ.

Efficiency. We require that ` and p are polynomial in λ and in the size of G. We also require
that Ĝ is in NC1.

Perfect Correctness. For every λ ∈ N, every circuit G ∈ G, every input x ∈ {0, 1}n, and
every string r ∈ {0, 1}`, we have that RE.Dec(1λ, G, Ĝ(x, r)) = G(x), where Ĝ := RE.Enc(1λ, G).

Computational Privacy. For every circuit G ∈ G and every input x ∈ {0, 1}n, we have that{
Ĝ := RE.Enc(1λ, G), r ← {0, 1}` : Ĝ(v, r)

}
λ∈N
≈c
{
RE.Sim(1λ, G,G(v))

}
λ∈N

.

2.4 Non-malleable Commitments

Non-malleability considers a man-in-the-middle MIM that receives a commitment to a message
m ∈ {0, 1}p and generates a new commitment c̃. We say that MIM commits to ⊥ if there does
not exist any (m̃, r̃) such that c̃ = com(m̃, r̃). Intuitively, the definition of non-malleability with
respect to commitment requires that for any two messages m0,m1 ∈ {0, 1}p, the joint distri-
butions of (com(m0), m̃0) and (com(m1), m̃1) are indistinguishable, where m̃b is the message
committed to by the MIM given com(mb). We consider the case where the MIM gets a single
committed message and generates a single commitment.

Definition 6 (One-to-One Non-malleable Commitments w.r.t. Commitment). A non-interactive
non-malleable (one-to-one) string commitment scheme with N tags consists of a probabilistic

poly-time algorithm C, that takes as input a message m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(λ),
and a tag ∈ [N ], and outputs a commitment comtag(m; r). It is said to be non-malleable w.r.t.
commitment if the following two properties hold:

• Binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(λ) and tag0, tag1 ∈ [N ]
such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1)

• One-to-One Non-malleability. For every pair of messages v0, v1 ∈ {0, 1}p, every pair
of tags tag, t̃ag, every poly-size man-in-the-middle adversary A, there exists a negligible
function µ(·) such that for all large enough λ ∈ N and all poly-size distinguishers D,∣∣∣Pr[D(V0) = 1]− Pr[D(V1) = 1]

∣∣∣ = negl(λ)

where for {b ∈ 0, 1}, the distribution Vb is defined as follows:
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Sample r
$← {0, 1}poly(λ) and set c = comtag(mb; r). Let (c̃, z) = A(c). If there exists

t̃ag ∈ [N ] \ tag, M̃ ∈ {0, 1}p(λ) and r̃ ∈ {0, 1}poly(λ) such that c̃ = comt̃ag(M̃ ; r̃) then

m̃ = M̃ , otherwise set m̃ = ⊥. The distribution Vb outputs (c, c̃, m̃).

We will use a strengthened version of one-to-one non-malleable commitments, that we define
next. Intuitively, we will require that there exist a special commitment (with say tag = 0κ), that
uses only a very “short” string of randomness of size (say) λ. Looking ahead letting n = poly(λ)
denote the number of parties in our MPC protocol, we will require commitments w.r.t. all
non-zero tags to be negl(2nγ)-non-malleable w.r.t. each other (as opposed to negl(λ)), for a γ
that is described below. This property is formalized in Property 1 below. We will also need
the special commitment (with say tag = 0κ) to satisfy the regular definition of (one-to-one)
non-malleability w.r.t. all other tags, as formalized in Property 2 below.

Definition 7 (n-Special One-to-One Non-malleable Commitments w.r.t. Commitment). A non-
interactive non-malleable (one-to-one) string commitment scheme with N tags consists of a
probabilistic poly-time algorithm C, that takes as input a message m ∈ {0, 1}p, randomness

r ∈ {0, 1}poly(λ), and a tag ∈ [0, N ], and outputs a commitment comtag(m; r). It is said to be a
special non-malleable commitment if the following three properties hold:

• Binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(λ) and tag0, tag1 ∈ [0, N ]
such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1)

• Property 1. For every pair of messages v0, v1 ∈ {0, 1}p, every pair of unequal tags
tag ∈ [1, N ], t̃ag ∈ [1, N ], every poly-size man-in-the-middle adversary A, there exists a
negligible function µ(·) such that for all large enough λ ∈ N and all poly-size distinguishers
D, ∣∣∣Pr[D(V0) = 1]− Pr[D(V1) = 1]

∣∣∣ = negl(2γ·n)

where γ denotes the size of randomness used to commit to λ-bit messages with tag = 0,
and for {b ∈ 0, 1}, the distribution Vb is defined as follows:

Sample r
$← {0, 1}poly(λ) and set c = comtag(mb; r). Let (c̃, z) = A(c). If there exists

t̃ag ∈ [N ] \ tag, M̃ ∈ {0, 1}p(λ) and r̃ ∈ {0, 1}poly(λ) such that c̃ = comt̃ag(M̃ ; r̃) then

m̃ = M̃ , otherwise set m̃ = ⊥. The distribution Vb outputs (c, c̃, m̃).

• Property 2. For every pair of messages v0, v1 ∈ {0, 1}p, every pair of tags tag, t̃ag ∈
[0, N ] such that tag = 0, every poly-size man-in-the-middle adversary A, there exists a
negligible function µ(·) such that for all large enough λ ∈ N and all poly-size distinguishers
D, ∣∣∣Pr[D(V0) = 1]− Pr[D(V1) = 1]

∣∣∣ = negl(λ)

where for {b ∈ 0, 1}, the distribution Vb is defined as follows:

Sample r
$← {0, 1}poly(λ) and set c = comtag(mb; r). Let (c̃, z) = A(c). If there exists

t̃ag ∈ [N ] \ tag, M̃ ∈ {0, 1}p(λ) and r̃ ∈ {0, 1}poly(λ) such that c̃ = comt̃ag(M̃ ; r̃) then

m̃ = M̃ , otherwise set m̃ = ⊥. The distribution Vb outputs (c, c̃, m̃).

We now describe different possible instantiations of such special non-malleable commitments.
First, in the setting of constant tags, we obtain the following lemma by combining non-malleable
commitments based on time-lock puzzles [LPS17], and quantum vs. classical hardness [KK19].
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Lemma 1. [LPS17, KK19] Assuming non-malleable commitments for constant-sized tag spaces
based on the RSW time-lock puzzle family of assumptions [LPS17], and assuming sub-exponential
quantum hardness of LWE, for every constant c, there exist c-special one-to-one non-malleable
commitments w.r.t. commitment for tags in [0, n] satisfying Definition 7.

Next, for the setting of polynomially many parties/tags, we develop a pathway to building
the desired special non-malleable commitments from falsifiable assumptions. To this end, we
first generalize the notion of hardness amplifiability from [BL18b] to consider non-interactive
commitments instead of one-way functions, and require an exponentially low guessing advantage.

Definition 8. We will say that a family of perfectly binding bit commitments is δ-hardness
amplifiable if for every polynomial-sized probabilistic adversary A = {Aλ}λ∈N, every sufficiently
large polynomial ` and sufficiently large λ ∈ N

Pr
∀i∈[`],xi←{0,1}λ,ri←{0,1}∗,ci=com(xi;ri)

[Aλ(c1, . . . , c`) = x1 ⊕ . . .⊕ x`)] ≤
1

2
+ 2−δ`(λ)

We have the following lemma, that follows by carefully instantiating parameters and com-
bining prior work.

Lemma 2. [LPS17, BL18b, KK19] Assume that the following exist.

• Quantum polynomially-hard non-interactive commitments that satisfy Definition 8 with
δ > 0.

• Classically polynomially-hard non-interactive commitments that satisfy Definition 8 with
δ > 0, and can be inverted in quantum polynomial time.

• Sub-exponentially secure non-interactive commitment.

• Sub-exponentially secure one-message weak zero-knowledge [BL18b].

Then for every polynomial n = n(λ), n-special one-to-one non-malleable commitments w.r.t.
commitment with tags in [0, n] satisfying Definition 7 exist.

The proofs of both these lemmas, together with a simpler instantiation from adaptive one-
way functions and QLWE, can be found in Appendix B.

In addition, we will rely on standard notions of MPC with superpolynomial simulation and
MPC against semi-malicious adversaries. For completeness, formal definitions can be found in
Appendix A.

3 Multi-Party Conditional Disclosure of Secrets

In the following we define and construct a multi-party conditional disclosure of secrets protocol
in two rounds, from standard assumptions over bilinear maps. Our protocol is (i) in the plain
model and (ii) delayed-statement. Our construction is for general polynomial-size circuits, and
satisfies computational sender and computational receiver security. We additionally provide a
construction for NC1 circuits that satisfies perfect sender security in Appendix C.
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3.1 Definition

A (delayed statement) multi-party conditional disclosure of secrets (MCDS) protocol is a 2-
round protocol consisting of a single sender S and a set R of n receivers - {R1, . . . ,Rn}. The
sender holds a private message m whereas each receiver holds a private witness wi. Additionally,
the sender shares a (delayed) statement xi with each Ri before the second round begins. If each
of the n witnesses are valid witnesses to the corresponding statements xi, then all the n receivers
obtain m. However, if there exists xi /∈ L, then m remains hidden from all the receivers.

More formally, an MCDS protocol is defined with respect to an NP language L with relation
R and consists of the following algorithms.

Com(1λ, wi, i): On input the security parameter 1λ and a witness wi, the commitment algo-
rithm returns the commitment ci and a trapdoor ti.

E((c1, . . . , cn), (x1, . . . , xn),m): On input n commitments (c1, . . . , cn), n statements (x1, . . . , xn),
and a message m, the encryption algorithm returns a ciphertext d.

Prove(ti, xi): On input a trapdoor ti and a statement xi, the proving algorithm returns a
decryption share pi.

Rec(d, (p1, . . . , pn)): On input a ciphertext d and n decryption shares (p1, . . . , pn), the recon-
struction algorithm returns a message m.

For correctness, we require that the message is always transmitted if all of the receivers commit
to the correct witness.

Definition 9 (Correctness). An MCDS protocol is correct if for all λ ∈ N, all n ∈ poly(λ), all
(wi, xi) ∈ R, all m ∈ {0, 1}, and all (ci, ti) in the support of Com(1λ, wi), it holds that

Rec(E((c1, . . . , cn), (x1, . . . , xn),m),Prove(t1, x1), . . . ,Prove(tn, xn)) = m.

Sender security requires that the message is computationally hidden if at least one of the
statements is false.

Definition 10 (Sender Security). An MCDS protocol satisfies sender security if there exists
a negligible function negl such that for all λ ∈ N, all n ∈ poly(λ), and all (stateful) PPT
adversaries ADV, it holds that

Pr

 ADV(d) = b
∧ ∃i : xi /∈ L

∣∣∣∣∣∣
(m0,m1, c1, . . . , cn, x1, . . . , xn)← ADV(1λ)
b←$ {0, 1}
d← E((c1, . . . , cn), (x1, . . . , xn),mb)

 ≤ 1/2 + negl(λ).

Receiver security is analogous to witness indistinguishability and says that any adversary
cannot distinguish between the commitment of two valid witnesses, even after seeing a proof for
a statement of his choice. The following property in particular implies security for any receiver,
even if the adversary corrupts every other party in the system.

Definition 11 (Receiver Security). An MCDS protocol satisfies receiver security if there exists
a negligible function negl such that for all λ ∈ N, all n ∈ poly(λ), and all (stateful) PPT
adversaries ADV, it holds that

Pr

 ADV(π) = b
∧ (w0, x) ∈ R ∧ (w1, x) ∈ R

∣∣∣∣∣∣∣∣∣∣
(w0, w1)← ADV(1λ)
b←$ {0, 1}
(c, t)← Com(1λ, wb)
x← ADV(c)
π ← Prove(t, x)

 ≤ 1/2 + negl(λ).
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We say that the MCDS satisfies reusable receiver security if the adversary is additionally
given access to a proving oracle Prove(t, ·) that can be queried on any statement x such that
(w0, x) ∈ R and (w1, x) ∈ R.

General Access Structures. It is worth mentioning that we define and consider only the
AND access structure across all statements, i.e. the message is revealed if (and only if) all
statements are true. This simple access structure will be sufficient for our purposes, however
one could image scenarios where more complex access structures are needed. Although we do
not elaborate on it, both our definitions and our constructions naturally extend to the more
general settings.

3.2 Witness Encryption for Dual Mode Commitments

We recall the notion of dual-mode commitment from [BL20]. We first define the basic interfaces.

DualSetupB(1λ): On input the security parameter, the setup algorithm (in binding mode)
returns a common reference string crs.

DualSetupH(1λ): On input the security parameter, the setup algorithm (in hiding mode) re-
turns a common reference string crs and a trapdoor τ .

DualCom(crs,m; r): On input the common reference string crs, a message m, and some random
coins r, the commitment algorithm returns a commitment com.

DualProof(crs, com, r, C, y): On input a common reference string crs, a commitment com, ran-
dom coins r, circuit C, and output y, the proof algorithm returns a proof π.

DualVerify(crs, com, π, C, y): On input a common reference string crs, a commitment com, a
proof π, a circuit C, and an output y, the verification algorithm returns a bit b ∈ {0, 1}.

The scheme satisfies perfect correctness in the following sense.

Definition 12 (Correctness). A dual-mode commitment scheme is perfectly correct if for all
λ ∈ N, all crs in the support of DualSetupB (or DualSetupH), all messages m, all random coins
r, all circuits C, it holds that

1 = DualVerify(crs, com,DualProof(crs, com, r, C, C(m)), C, C(m)).

where com = DualCom(crs,m; r).

We require that the scheme satisfies setup indistinguishability, i.e. it is hard to distinguish
between common reference strings sampled in binding or hiding mode.

Definition 13 (Setup Indistinguishability). A dual-mode commitment scheme satisfies setup
indistinguishability if there exists a negligible function negl such that for all λ ∈ N and all
(stateful) PPT adversaries ADV, it holds that

Pr

ADV(crs) = b

∣∣∣∣∣∣
b←$ {0, 1}
crs← DualSetupB(1λ) if b = 0
(crs, τ)← DualSetupH(1λ) if b = 1

 ≤ 1/2 + negl(λ).

We require the strong notion of perfect soundness when the common reference string is
sampled in binding mode.
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Definition 14 (Soundness). A dual-mode commitment scheme satisfies perfect soundness if for
all λ ∈ N, all crs in the support of DualSetupB(1λ), all messages m, all random coins r, all com
in the support of DualCom(crs,m; r), all circuits C, all y 6= C(m), and all proofs π it holds that

Pr [1 = DualVerify(crs, com, π, C, y)] = 0.

We further require that, if the common reference string is sampled in hiding mode, then
proofs can be perfectly simulated.

Definition 15 (Zero-Knowledge). A dual-mode commitment satisfies zero-knowledge if there
exists a negligible function negl and a PPT simulator (Simcom,Simπ) such that for all λ ∈ N
and all (stateful) PPT adversaries ADV, it holds that

Pr

ADV(com)Prove(·) = b

∣∣∣∣∣∣∣∣∣∣
(crs, τ)← DualSetupH(1λ)
m← ADV(crs, τ)
b←$ {0, 1}
com← DualCom(crs,m; r) if b = 0
(com, α)← Simcom(crs, τ) if b = 1

 ≤ 1/2 + negl(λ)

where Prove(C) = DualProof(crs,m, r, C,C(m)) if b = 0 and Prove(C) = Simπ(τ, α, C,C(m)) if
b = 1.

Bit Commitments. We remark that, unless differently specified, in this work we always
consider commitments to single bits. The construction of [BL20] is a bit commitment, although
not explicitly defined this way. Specifically we are going to use the property that the hiding of
any commitment to n bits can be broken in time 2λ · n, where λ is the security parameter of
the commitment scheme.

Witness Encryption. We augment the syntax of the dual-mode commitment with a witness
encryption algorithm. This allows anyone to encrypt a message with respect to a circuit C,
which can be decrypted publicly with a proof π that certifies that the commitment message m
satisfies C(m) = y. The formal syntax is given below.

WEnc(crs, com, C, y,m′): On input a common reference string crs, a commitment com, a circuit
C, an output y, and a message m′, the encryption algorithm returns a ciphertext c.

WDec(crs, com, π, c, y): On input a common reference string crs, a commitment com, a proof
π, a ciphertext c, and an output y, the decryption algorithm returns a message m′.

We define correctness below.

Definition 16 (Correctness). A witness encryption for a dual-mode commitment is correct if
for all λ ∈ N, all crs in the support of DualSetupB (or DualSetupH), all messages m,m′, all
random coins r, and all circuits C it holds that

WDec(crs, com,DualProof(crs, com, r, C, C(m)),WEnc(crs, com, C, C(m),m′)) = m′,

where com = DualCom(crs,m; r).

Furthermore, we define semantic security. We require a strong notion where the message is
perfectly hidden even to the eyes of an unbounded adversary.
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Definition 17 (Semantic Security). A witness encryption for a dual-mode commitment is se-
mantically secure if for all (stateful) unbounded adversaries ADV it holds that

Pr


ADV(c) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← ADV(1λ)
crs← DualSetupB(1λ; ρ)
(m, r,C, y,m′0,m

′
1)← ADV(crs)

com← DualCom(crs,m; r)
b←$ {0, 1}
c←WEnc(crs, com, C, C(m),mb) if C(m) 6= y
c← ⊥ otherwise


= 1/2.

We recall the main theorem statement from [BL20], which says that a dual-mode com-
mitment with witness encryption for NC1 circuit exists assuming the hardness of the SXDH
problem over bilinear maps.

Theorem 4 ([BL20]). Let (G1,G2,GT ) be a bilinear group where the SXDH problem is hard.
Then there exists a dual-mode commitment scheme with witness encryption for NC1 circuits.

3.3 Construction of MCDS

In the following we describe our construction of MCDS for polynomial-size circuits. As the
underlying building blocks we assume the dual-mode commitment with witness encryption
from [BL20], NIWI proofs from [GOS06b], computational randomized encodings (Definition 5),
and garbled circuits (Definition 4).

Let U = {Uλ : {0, 1}h(λ) × {0, 1}k(λ) → {0, 1}}λ∈N be the family of verification circuits
for an NP language L, where each Uλ takes as input an instance x ∈ {0, 1}h(λ) and a witness
w ∈ {0, 1}k(λ), and outputs a bit indicating acceptance or rejection. For any fixed instance x, we
consider the circuit Uλ[x] : {0, 1}k(λ) → {0, 1} that just takes as input a witness w. Let `(λ) and
p(λ) be parameters for computing a randomized encoding of Uλ[x]. That is, RE.Enc(1λ, Uλ[x])

outputs Ûλ[x] =
(
Ûλ[x]1, . . . , Ûλ[x]p(λ)

)
, where each Ûλ[x]i : {0, 1}k(λ) × {0, 1}`(λ) → {0, 1}.

In the construction below, define ` := `(λ), p := p(λ), and U := Uλ. Let n be the number of
receivers.

• Com(1λ, wi):

– Sample two common reference strings

crsi,0 ← DualSetupB(1λ), crsi,1 ← DualSetupB(1λ)

in binding mode for the dual-mode commitment.

– Compute two commitments

comi,0 = DualCom(crsi,0, (wi, ri,0); si,0), comi,1 = DualCom(crsi,1, (wi, ri,1); si,1),

where ri,0, ri,1 ← {0, 1}p and si,0, si,1 ← {0, 1}λ.

– Compute the NIWI proof

π̃i ← NIWIProve

(
(zi, 0, wi, si,0),

{
∃(zi, bi, wi, si) :

crsi,b = DualSetupB(1λ; zi) ∧
comi,b = DualCom(crsi,b, wi; si)

})
.

– Return ci = (crsi,0, crsi,1, comi,0, comi,1, π̃i) and ti = (wi, ri,0, ri,1, si,0, si,1).
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• E((c1, . . . , cn), (x1, . . . , xn),m):

– Verify all of the NIWI proofs contained in the commitments, i.e. check whether for
all i = 1 . . . n it holds that

1 = NIWIVerify

(
π̃i,

{
∃(zi, bi, wi, si) :

crsi,b = DualSetupB(1λ; zi) ∧
comi,b = DualCom(crsi,b, wi; si)

})
and abort if this is not the case.

– Compute a 2n-out-of-2n secret sharing {mi,a}i∈[n],a∈{0,1} of m.

– Define the circuit f [i, a] : {0, 1}p → {mi,a,⊥} to take as input ŷi and output mi,a if
RE.Dec(1λ, U [xi], ŷi) = 1, and otherwise output ⊥.

– For each i ∈ [n], a ∈ {0, 1}, compute (f̃ [i, a], {lab[i, a]j,b}j∈[p],b∈{0,1})← Garble(1λ, f [i, a]).

– For each i ∈ [n], let
(
Û [xi]1, . . . , Û [xi]p

)
:= RE.Enc(1λ, U [xi]).

– For each i ∈ [n], a ∈ {0, 1}, j ∈ [p], compute

di,a,j,0 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,0, 0),

di,a,j,1 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,1, 1)

– Output

d =

({
f̃ [i, a], {di,a,j,b}j,b

}
i,a

)
.

• Prove(ti, xi):

– Parse ti as (wi, ri,0, ri,1, si,0, si,1).

– Compute ŷi,0 := Û [xi](wi, ri,0) and for each j ∈ [p], compute

πi,j,0 ← DualProof(crsi,0, comi,0, si,0, Û [xi]j , (ŷi,0)j).

– Compute ŷi,1 := Û [xi](wi, ri,1) and for each j ∈ [p], compute

πi,j,1 ← DualProof(crsi,1, comi,1, si,1, Û [xi]j , (ŷi,1)j).

– Output
(
ŷi,0, ŷi,1, {πi,j,0}j∈[p], {πi,j,1}j∈[p]

)
.

• Rec(d, (p1, . . . , pn)):

– Parse d as

({
f̃ [i, a], {di,a,j,b}j,b

}
i,a

)
and each pi as

(
ŷi,0, ŷi,1, {πi,j,0}j∈[p], {πi,j,1}j∈[p]

)
.

– For each i ∈ [n], a ∈ {0, 1}, j ∈ [p], compute

lab[i, a]j ←WDec(crsi,a, comi,a, πi,j,a, di,a,j,0, (ŷi,a)j).

– For each i ∈ [n], a ∈ {0, 1}, compute mi,a = GEval(f̃ [i, a], {lab[i, a]j}j).
– Ouptut m =

⊕
i,ami,a.
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Sender Security. We show that our MCDS protocol satisfies computational sender security.

Theorem 5 (Sender Security). Assuming a dual-mode commitment with witness encryption
(Section 3.2), NIWI proofs (Section 2.1), computational randomized encodings (Definition 5),
and garbled circuits (Definition 4), the MCDS protocol (Com,E,Prove,Rec) as described above
satisfies computational sender security. These primitives follow from the existence of a bilinear
group where the SXDH problem is hard and the existence of a bilinear group where where the
DLIN problem is hard.

We will actually prove the following lemma, which immediatedly implies the theorem due
to the perfect soundness of NIWI. The particular property defined by the lemma will be useful
later in our MPC construction.

Lemma 3. For all (stateful) unbounded adversaries ADV, there exists a negligible function
negl(·) such that

Pr


ADV(d) = b
∧ ∃(i, a) : crsi,a ∈ DualSetupB(1λ)
∧ comi,a ∈ DualCom(crsi,a, (wi, ri))
∧ (wi, xi) /∈ R

∣∣∣∣∣∣∣∣
(m0,m1, c1, . . . , cn, x1, . . . , xn)← ADV(1λ)
b←$ {0, 1}
d← E((c1, . . . , cn), (x1, . . . , xn),mb)


≤ 1/2 + negl(λ).

Proof. We will show that an adversary ADV contradicting the lemma can be used to break
security of the garbled circuit.

Fix the message (m0,m1, c1, . . . , cn, x1, . . . , xn) output by ADV for which it has the best
advantage, and let (i, a) be the associated tuple guaranteed by the lemma statement. Recall
that the encryption of m ∈ {m0,m1} that ADV sees consists of 2n garbled circuits along with
witness encryptions of each of the labels. Let Db be the distribution that samples an encryption
of mb. It suffices to show that for each b ∈ {0, 1}, Db is indistinguishable from a distribution
Eb that is identical to Db except that the circuit f [i, a] that is garbled has 0 hard-coded rather
than the share mi,a. This follows because E0 is identically distributed to E1, since the collection
of shares other than mi,a are uniformly random, regardless of the message.

Now, by the perfect soundness of the witness encryption (for NC1), we know that for each
j ∈ [p], at least one of

di,a,j,0 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,0, 0),

di,a,j,1 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,1, 1)

is a perfectly hiding encryption. In particular, the only labels that ADV will be able to decrypt
are those that correspond to the input ŷi = Û [xi](wi, xi). Since (wi, xi) /∈ R, by the perfect
correctness of the randomized encoding, we know that RE.Dec(1λ, U [xi], ŷi) = 0, and thus that
f [i, a](ŷi) = ⊥, regardless of which value mi,a is hard-coded. Thus, for each b ∈ {0, 1} there
exists a reduction Rb that takes as input either i) a garbling of f [i, a] with mi,a hard-coded along
with labels corresponding to ŷ, and perfectly simulates Db, or ii) a garbling of f [i, a] with 0
hard-coded along with labels corresponding to ŷ, and perfectly simulates Eb. But by the security
of the garbled circuit, the distributions seen by Rb are computationally indistinguishable, since
they can both be simulated by GSim(1λ, 1|f |, 1p·n,⊥).

Receiver Security. We show that our MCDS protocol satisfies computational receiver secu-
rity.
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Theorem 6 (Receiver Security). Assuming a dual-mode commitment with witness encryption
(Section 3.2), NIWI proofs (Section 2.1), computational randomized encodings (Definition 5),
and garbled circuits (Definition 4), the MCDS protocol (Com,E,Prove,Rec) as described above
satisfies computational receiver security. These primitives follow from the existence of a bilinear
group where the SXDH problem is hard and the existence of a bilinear group where where the
DLIN problem is hard.

Proof. We prove the theorem by defining a series of hybrids, then we argue that each pair of
hybrids is indistinguishable by any PPT adversary.

• Hyb0: This is the original experiment, with the bit of the challenger set to 0, i.e. the
commitment c is always computed as Com(1λ, w0).

• Hyb1: This hybrid is identical to the previous one, except that in the computation of
the algorithm Com, the common reference string crsi,1 is computed in hiding mode, i.e.
(crsi,1, τ1) ← DualSetupH(1λ). Computational indistinguishability follows from the setup
indistinguishability of the dual-mode commitment.

• Hyb2: In this hybrid we further modify the Com algorithm to compute a simulated com-
mitment (comi,1, α1) ← Simcom(crsi,1, τ1) and we switch to simulated proofs πi,j,1 ←
Simπ(τ1, α1, Û [xi]j , (ŷi,1)j). By the zero-knowledge property of the dual mode commit-
ment, this modification is computationally indistinguishable to the eyes of the adversary.

• Hyb3: In this hybrid we switch ŷi,1 to be computed as RE.Sim(1λ, U [xi], U [xi](w0)). This
is indistinguishable due to the computational privacy of the randomized encoding.

• Hyb4: In this hybrid we switch ŷi,1 to be computed as RE.Sim(1λ, U [xi], U [xi](w1)). This
is perfectly indistinguishable by the definition of receiver security, which requires that
U [xi](w0) = U [xi](w1).

• Hyb5: In this hybrid, we no longer simulate the commitment, computing comi,1 ←
DualCom(crsi,1, w1; si,1) and then computing the proofs πi,j,1 honestly. Thus this mod-
ification is computationally indistinguishable by another invocation of the zero-knowledge
property of the dual-mode commitment.

• Hyb6: Here we compute crsi,1 back in binding mode, i.e. crsi,1 ← DualSetupB(1λ). Indis-
tinguishability follows from the setup indistinguishability of the dual-mode commitment.

• Hyb7: In this hybrid we switch the branch of the NIWI proof, i.e. we compute the NIWI
proof using the witness (zi,1, 1, w1, si,1), instead of (zi,0, 0, w0, si,0). The rest of the algo-
rithms are unchanged. Note that both witnesses are valid for the given statement and
therefore indistinguishability follows from the witness-indistinguishability of the NIWI
proof.

• Hyb8 . . .Hyb13: These hybrids are defined identically to Hyb1 . . .Hyb6 except that we sim-
ulate crsi,0 and we switch the witness used in comi,0 to be w1, then we revert the change in
the sampling of the common reference string. The arguments to show indistinguishability
of each pair of hybrids are identical.

• Hyb14: In this hybrid we switch again th branch of the NIWI proof, i.e. we compute the
proof using the witness (zi,0, 0, w1, si,0) instead of (zi,1, 1, w1, si,1). Indistinguishability
follows from an invocation of the computational witness-indistinguishability of the NIWI
proof.
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Observe that the distribution induced by Hyb14 is identical to that of Hyb1 except that the
committed message is fixed to w1, instead of w0. By the above analysis, Hyb1 ≈c Hyb0 are
computationally indistinguishable, which concludes our proof.

We note that MCDS with sub-exponential security follows by instantiating the underlying
hardness assumptions (SXDH and DLin over bilinear maps) with their sub-exponentially secure
versions. This is because all our security reductions in the MCDS construction can be observed
to run in time p(λ, T ′) for a fixed polynomial p(·), where λ is the security parameter and T ′ is
the running time of the MCDS adversary. This will lead to a contradiction against T -security
of the underlying hardness assumption for any subexponential T . We will require MCDS with
sub-exponential security in our construction of the two round maliciously secure MPC.

Theorem 7 (Sub-exponential Sender Security). Assuming sub-exponentially secure garbled cir-
cuits (i.e. one-way functions), the MCDS protocol (Com,E,Prove,Rec) as described above sat-
isfies sub-exponential sender security.

Theorem 8 (Sub-exponential Receiver Security). Assuming sub-exponential SXDH and DLin,
the MCDS protocol (Com,E,Prove,Rec) as described above satisfies sub-exponential receiver se-
curity.

Reusable Receiver Security. Although we do not explicitly construct it, we note that the
above scheme can be easily lifted to the reusable settings, i.e. where the committed can be
reused for polynomially-many instances of the second round (possibly with different messages
and for different statments). The only subtlety that we need to address is that the randomness
used to compute the randomized encoding cannot be hardwired in the commitment, instead
it must be sampled using a PRF where the key is included in the commitment and the input
is public. The only constraint that we impose on the PRF is that it must be computable by
an NC1 circuit, which can be instantiated from a variety of assumptions (e.g. DDH [NR97] or
LWE [BP14]).

4 Two Round Malicious MPC

We assume the existence of:

• A non-interactive witness-indistinguishable proof satisfying Definition 3.

• A special non-interactive non-malleable commitment NMCom satisfying Definition 7.

• A two-round semi-malicious MPC protocol satisfying Definition 19.

• A multi-party CDS mCDS discussed in Section 3, satisfying Definitions 10 and 11.

We will use mCDS(i), to indicate an mCDS session where Pi is the sender and all other parties

{Pj}j∈[n]\i are receivers. We will also use msg
(i)
Ψ , to indicate a message for Protocol Ψ generated

by Party Pi.
We now define three relations that will be used in the protocol, and we define languages

Lα = {x : ∃w such that Rα(x,w) = 1} for α ∈ {NIWI1,NIWI2,mCDS}.

• RNIWI1

(
(c1, c2), r)

)
= 1 ⇐⇒

(
c1 = NMComtag=0(0; r)

∨
c2 = NMComtag=0(0; r)

)
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• RNIWI2

(
(m1,m2, {mk

3}k∈[n], {stmtkmCDS}k∈[n], com, x,M, c1, j, {cky , ckz}k∈[n]),

(st, wx, wr, r, {r̂k}k∈[n], {r̃k}k∈[n])
)

= 1 ⇐⇒(
(m1, st) = smMPC(wx;wr)

∧
m2 = mCDS.E(com, x, smMPC(M, st;wr))

∧
∀k ∈ [n],mk

3 = mCDS.Prove(s̃t, stmtkmCDS) where

(m̃, s̃t) = mCDS.Com(1κmCDS.R , (wx, wr, 0
nλ), j; r̃k)

)
∨(

c1 = NMComtag=j(r̂1|| . . . ||r̂n; r)∧∀k ∈ [n],
(
cky = NMComtag=0(0; r̂k)∨ckz = NMComtag=0(0; r̂k)

))
• RmCDS

(
(m1, c1, j, {cky , ckz}k∈[n]), (w, r, {r̂k}k∈[n])

)
= 1 ⇐⇒ m1 = smMPC(w; r)

∨(
c1 = NMComtag=j(r̂1|| . . . ||r̂n; r)∧∀k ∈ [n],

(
cky = NMComtag=0(0; r̂k)∨ckz = NMComtag=0(0; r̂k)

))
In words, RNIWI1 is stating that one of two non-malleable commitments is to 0. RNIWI2 is

stating that either i) first and second round of the semi-malicious MPC are computed correctly,
and the MCDS commitment and proofs are computed correctly OR ii) the trapdoor is known.
RmCDS is stating that either i) the first round of the semi-malicious MPC is computed correctly
OR ii) the trapdoor is known. In Fig. 1, Fig. 2 and Fig. 3, we describe the construction of our
two round maliciously-secure MPC protocol fmMPC. We have the following theorem.

Protocol fmMPC - Round 1

Common input: Security parameter 1λ and number of parties 1n

Pi input: xi ∈ {0, 1}p(λ)

Round 1: For i ∈ [n], Pi computes the following.

• (msg1
(i)
smMPC, st

(i)
smMPC) = smMPC(xi; ri), the first semi-malicious MPC protocol message with input

xi, randomness ri.

• cmt
(i)
td = NMComtag=i(0

nλ; r0), a non-malleable commitment to 0nλ.

• cmt
(i)
y = NMComtag=0(0; ry), a non-malleable commitment to the bit 0 with randomness ry.

• cmt
(i)
z = NMComtag=0(0; rz), a non-malleable commitment to the bit 0 with randomness rz.

• π
(i)
NIWI1

← NIWIProve(xNIWI1 , wNIWI1 ,LNIWI1) where xNIWI1 = (cmt
(i)
y , cmt

(i)
z ) and wNIWI1 = ry.

• For all j ∈ [n] \ i, compute an mCDS commitment

(msg1
(i)

mCDS(j)
, st

(i)

mCDS(j)
) = mCDS.Com(1κmCDS.R , (xi, ri, 0

nλ), i; r
(i)

mCDS(j)
).

Here κmCDS.R indicates the receiver security parameter of the mCDS.

For i ∈ [n], Pi broadcasts (
msg1

(i)
smMPC, cmt

(i)
td , cmt(i)y , cmt(i)z , π

(i)
NIWI1

)
,

and sends msg1
(i)

mCDS(j)
to Pj for each j ∈ [n], j 6= i.

For i, j ∈ [n], j 6= i, Pi receives from Pj(
msg1

(j)
smMPC, cmt

(j)
td , cmt(j)y , cmt(j)z , π

(j)
NIWI1

,msg1
(j)

mCDS(i)

)
For i ∈ [n], Pi verifies each π

(j)
NIWI1

, and outputs Abort if verification fails.

Figure 1: Round 1 of a two-round maliciously secure MPC protocol
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Protocol fmMPC - Round 2

Round 2: For i ∈ [n], Pi computes the following.

• Compute the second semi-malicious MPC protocol message

(msg2
(i)
smMPC, st

(i)
smMPC

′) = smMPC({msg1
(k)
smMPC}k∈[n], st

(i)
smMPC; ri).

• Compute the mCDS encryption

msg2smCDS(i) ← mCDS.E({msg1
(j)

mCDS(i)
}j∈[n]\i, {x(j)mCDS}j∈[n]\i,msg2

(i)
smMPC),

where
x
(j)
mCDS = (msg1

(j)
smMPC, cmt

(j)
td , j, {cmt(k)y , cmt(k)z }k∈[n]).

• For j ∈ [n] \ i, compute the mCDS proof

msg2r
(i)

mCDS(j)
← mCDS.Prove(st

(i)

mCDS(j)
, x

(i)
mCDS),

where
x
(i)
mCDS = (msg1

(i)
smMPC, cmt

(i)
td , i, {cmt(k)y , cmt(k)z }k∈[n]).

• Compute NIWI proof
πNIWI

(i)
2 ← NIWIProve(xNIWI2 , wNIWI2 ,LNIWI2),

where

xNIWI2 =

 msg1
(i)
smMPC,msg2smCDS(i) , {msg2r

(i)

mCDS(j)
}j∈[n], {x(k)mCDS}k∈[n],

{msg1
(j)

mCDS(i)
}j∈[n]\i, {x(j)mCDS}j∈[n]\i,

{msg1
(k)
smMPC}k∈[n], cmt

(i)
td , i, {cmt

(k)
y , cmt

(k)
z }k∈[n]


and wNIWI2 =

(
st

(i)
smMPC, xi, ri, 0, 0

∗, {r(i)
mCDS(j)

}j∈[n]
)

.

For i ∈ [n], Pi broadcasts (
msg2smCDS(i) ,

{
msg2r

(i)

mCDS(j)

}
j∈[n]\i

, π
(i)
NIWI2

)
.

For i ∈ [n], Pi receives(
{msg2smCDS(j)}j∈[n]\i ,

{
msg2r

(k)

mCDS(j)

}
k∈[n]\i,j∈[n]\i

,
{
π
(j)
NIWI2

}
j∈[n]\i

)
.

Figure 2: Round 2 of a two-round maliciously secure MPC protocol

Theorem 9. Fix an arbitrary polynomial n = n(λ) for security parameter λ. Assuming sub-
exponentially secure NIWI proofs satisfying Definition 3, n-special non-malleable commitments
satisfying Definition 7, sub-exponentially secure MPC against semi-malicious adversaries ac-
cording to Definition 19 and subexponentially secure multi-party CDS according to Definitions
10 and 11, two round maliciously-secure MPC for n-parties with super-polynomial simulation
exists which satisfies Definition 20.

Proof. In what follows, we let δ = 2−nγ where γ denotes the size of randomness ry (and
equivalently rz) in the protocol, and n denotes the number of parties which is polynomial in λ.

• We will rely on any NMCom that is a n-special one-to-one non-malleable commitment,
according to Definition 7. We use T brk

NMCom to denote the time needed to extract the
committed bit from any commitment string via a brute-force attack.

• We also rely on any NIWI1 that is (T brk
NMCom, λ)-secure, any MCDS that satisfies (T brk

NMCom, 1/δ)
receiver security and (λ, 1/δ) sender security.
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Protocol fmMPC - Output Reconstruction

Output Reconstruction: Pi computes the following.

• Verify each π
(j)
NIWI2

and output Abort if verification fails.

• For all j ∈ [n], reconstruct

msg2
(i)
smMPC ← mCDS.Rec(msg2smCDS(j) , {msg2

(k)

mCDS(j)
}k∈[n]\j).

• Use {msg2
(j)
smMPC}j∈[n] and st

(i)
smMPC

′ to compute the output of the smMPC.

Figure 3: Output reconstruction for a two-round maliciously secure MPC protocol

• We will rely on any semi-malicious MPC that is (max(T brk
NMCom, T

brk
mCDS), 1/δ) secure.

• Will rely on (standard) polynomial-size hardness of NIWI2.

Towards the end of the proof, we discuss how to set security parameters of these primitives
(assuming subexponential security of all primitives) to achieve all relationships discussed above.

We will now describe the simulator for fmMPC protocol. Below, H is the set of honest
parties and M is the set of malicious parties (i.e. parties corrupted by the adversary ADV):

SimfmMPC :

• Simulation of Round 1: For all i ∈ H:

– Guess the randomness used in cmt
(j)
y or cmt

(j)
z for all j ∈ [n]. Let the guessed values

be {v′1, . . . , v′n}. Use these guessed values to generate cmt
(i)
td using randomness r′i

sampled uniformly at random.

– Generate msg1
(i)
smMPC using SimsmMPC

– Generate cmt
(i)
y , cmt

(i)
z and π

(i)
NIWI as per the honest fmMPC protocol

– For all j ∈ [n], use the message and randomness for cmt
(i)
td to generate msg1

(i)

mCDS(j)
←

mCDS.Com(1κmCDS.R , (0, r′i, v
′
1, . . . , v

′
n), i).

– Send the generated items as prescribed in the honest fmMPC protocol, receive items

from all parties Pj where j ∈M and Abort if any of the π
(j)
NIWI is invalid.

• Checking the guess correctness: Perform the following ∅-Check: For every j ∈ M ,

if cmt
(j)
y = NMComtag=0(0; v′j) or cmt

(j)
z = NMComtag=0(0; v′j), the check passes and the

simulation proceeds to Round 2. Otherwise, the check fails and the simulation goes back
to Round 1

• Extracting the mCDS inputs: For all j ∈ M , use brute-force to break their MCDS

receiver messages {msg1
(j)

mCDS(i)
}i∈[n]\{j}. If input extraction succeeds, i.e., if for every

j ∈M , there exists i ∈ [n] \ {j}, (xj , rj), r
(j)

mCDS(i)
such that

msg1
(j)

mCDS(i)
= mCDS.Com(1κmCDS.R , (xj , rj , 0

nλ), j; r
(j)

mCDS(i)
),

then send (xj , rj)j∈M to SimsmMPC and obtain msg2
(i)
smMPC for i ∈ H from SimsmMPC. If

input extraction fails, set msg2
(i)
smMPC for i ∈ H to 0s(λ), where s(λ) denotes the length of

round 2 semi-malicious MPC messages.
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• Simulation of Round 2: For all i ∈ H:

– Generate msg2smCDS(i) as per the honest fmMPC protocol.

– For all j ∈ [n] \ i, generate the mCDS proof as per the honest fmMPC protocol.

– Generate NIWI proof π
(i)
NIWI2

using (0, 0, 0, r′i, {v′1, . . . , v′n}, 0∗) as the witness wNIWI2

– Send the generated items as prescribed in the honest fmMPC protocol.

• Output Reconstruction: Receive items from all parties Pj where j ∈M , and perform
the first two steps of Output Reconstruction as prescribed in the honest fmMPC protocol.

Finally, send {msg2
(j)
smMPC}i∈M to SimsmMPC.

In Appendix D, we describe a sequence of hybrids, transitioning from the real world to the
ideal world and prove, via a sequence of lemmas, that these hybrids are indistinguishable from
each other, thus proving that our protocol fmMPC satisfies Theorem 9.

4.1 Compactness and Reusability

We sketch modification to our protocol to achieve communication complexity independent of the
circuit size (compactness) and to allow parties to reuse the first message to compute unbounded,
but polynomially many, functions (reusability).

Compactness. Instantiating the semi-malicious MPC with a compact protocol [AJJM20]
results in a compact malicious MPC, except for the NIWI used in the second round that is used
to prove a statement related to the semi-malicious MPC, and therefore may be non-compact.
However we note that we can generically transform any non-compact NIWI into a compact one
using (perfectly correct) fully-homomorphic encryption (FHE). The transformation is analogous
to [GGI+15] and we outline it here for completeness.

The NIWI prover samples two FHE key pair (sk0, pk0) and (sk1, pk1) and compute two
encryptions of the witness c0 = FHE.Enc(pk0, w) and c1 = FHE.Enc(pk1, w). Then it homorphi-
cally computes the predicate R(·, x) to obtain two evaluated ciphertexts e0 and e1. Finally, it
computes a NIWI proof that EITHER (sk0, pk0) and c0 are well-formed and e0 is an encryption
of 1 OR (sk1, pk1) and c1 are well-formed and e1 is an encryption of 1. The verifier simply checks
that the NIWI correctly verifies and that e0 and e1 are the correct output of the evaluation
algorithm for the circuit R(·, x). One can show with a standard argument that the proof is
still witness indistinguishable. Furthermore, the communication complexity does only depend
polynomially on |w|, by compactness of the FHE.

Reusable First Message. Instantiating a semi-malicious MPC with one with reusable first
message [AJJM20, BGMM20, BL20] and the reusable variant of our MCDS, we obtain 2-round
malicious MPC where the first message can be reused an unbounded amount of times (possibly
to compute different functions).
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A Secure Multiparty Computation

Here, we provide a formal definition of secure multiparty computation. Parts of this section
have been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality. The
security of a protocol is defined with respect to a functionality f . In particular, let n denote the
number of parties. A non-reactive n-party functionality f is a (possibly randomized) mapping
of n inputs to n outputs. A multiparty protocol with security parameter λ for computing a
non-reactive functionality f is a protocol running in time poly(λ) and satisfying the following
correctness requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run an
honest execution of the protocol, then the joint distribution of the outputs y1, . . . , yn of the
parties is statistically close to f(x1, . . . , xn). A reactive functionality f is a sequence of non-
reactive functionalities f = (f1, . . . , f`) computed in a stateful fashion in a series of phases. Let
xji denote the input of Pi in phase j, and let sj denote the state of the computation after phase
j. Computation of f proceeds by setting s0 equal to the empty string and then computing
(yj1, . . . , y

j
n, sj) ← fj(s

j−1, xj1, . . . , x
j
n) for j ∈ [`], where yji denotes the output of Pi at the end

of phase j. A multi-party protocol computing f also runs in ` phases, at the beginning of which
each party holds an input and at the end of which each party obtains an output. (Note that
parties may wait to decide on their phase-j input until the beginning of that phase.) Parties
maintain state throughout the entire execution. The correctness requirement is that, in an
honest execution of the protocol, the joint distribution of all the outputs {yj1, . . . , y

j
n}`j=1 of all

the phases is statistically close to the joint distribution of all the outputs of all the phases in a
computation of f on the same inputs used by the parties.

A.1 Defining Security.

We assume that readers are familiar with standard simulation-based definitions of secure multi-
party computation in the standalone setting. We provide a self-contained definition for com-
pleteness and refer to [Gol04] for a more complete description. The security of a protocol (with
respect to a functionality f) is defined by comparing the real-world execution of the protocol
with an ideal-world evaluation of f by a trusted party. More concretely, it is required that for
every adversary A, which attacks the real execution of the protocol, there exist an adversary
Sim, also referred to as a simulator, which can achieve the same effect in the ideal-world. Let’s
denote ~x = (x1, . . . , xn).

The real execution In the real execution, the n-party protocol π for computing f is executed
in the presence of an adversaryA. The honest parties follow the instructions of π. The adversary
A takes as input the security parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the
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corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties
and may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable Realπ,A(z),I(n, ~x) whose
value is determined by the coin tosses of the adversary and the honest players. This random
variable contains the output of the adversary (which may be an arbitrary function of its view)
as well as the outputs of the uncorrupted parties. We let Realπ,A(z),I denote the distribution
ensemble {Realπ,A(z),I(n, ~x)}k∈N,〈~x,z〉∈{0,1}∗ .

The ideal execution – security with abort. In this second variant of the ideal model,
fairness and output delivery are no longer guaranteed. This is the standard relaxation used
when a strict majority of honest parties is not assumed. In this case, an ideal execution for a
function f proceeds as follows:

• Send inputs to the trusted party: As before, the parties send their inputs to the
trusted party, and we let x′i denote the value sent by Pi. Once again, for a semi-honest
adversary we require x′i = xi for all i ∈ I.

• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

• Adversary instructs trusted party to abort or continue: This is formalized by
having the adversary send either a continue or abort message to the trusted party. (A
semi-honest adversary never aborts.) In the latter case, the trusted party sends to each
uncorrupted party Pi its output value yi. In the former case, the trusted party sends the
special symbol ⊥ to each uncorrupted party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output
the values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable Idealf,A(z),I(n, ~x) as
above,and we let Idealf,A(z),I denote the distribution ensemble {Idealf,A(z),I(n, ~x)}k∈N,〈~x,z〉∈{0,1}∗ .
Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 18. Let k be the security parameter. Let f be an n-party randomized functionality,
and π be an n-party protocol for n ∈ N. We say that π t-securely computes f in the presence
of malicious (resp., semi-honest) adversaries if for every PPT adversary (resp., semi-honest
adversary) A there exists a PPT adversary (resp., semi-honest adversary) Sim such that for
any I ⊂ [n] with |I| ≤ t the following quantity is negligible:

|Pr[Realπ,A(z),I(n, ~x) = 1]− Pr[Idealf,A(z),I(n, ~x) = 1]|

where ~x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

A.2 Security Against Semi-Malicious Adversaries

We take this definition almost verbatim from [AJL+12]. We consider a notion of a semi-
malicious adversary that is stronger than the standard notion of semi-honest adversary and
formalize security against semi-malicious adversaries. A semi-malicious adversary is modeled
as an interactive Turing machine (ITM) which, in addition to the standard tapes, has a special
witness tape. In each round of the protocol, whenever the adversary produces a new protocol
message msg on behalf of some party Pk, it must also write to its special witness tape some
pair (x, r) of input x and randomness r that explains its behavior. More specifically, all of
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the protocol messages sent by the adversary on behalf of Pk up to that point, including the
new message m, must exactly match the honest protocol specification for Pk when executed
with input x and randomness r. Note that the witnesses given in different rounds need not be
consistent. Also, we assume that the attacker is rushing and hence may choose the message m
and the witness (x, r) in each round adaptively, after seeing the protocol messages of the honest
parties in that round (and all prior rounds). Lastly, the adversary may also choose to abort the
execution on behalf of Pk in any step of the interaction.

Definition 19. We say that a protocol π securely realizes f for semi-malicious adversaries if
it satisfies Definition 18 when we only quantify over all semi-malicious adversaries A.

A.3 Security with Superpolynomial simulation

Definition 20. We say that a protocol π securely realizes f with superpolynomial simulation
if it satisfies Definition 18 with an ideal-world adversary (or Sim) that runs in time 2λ

ε
where

ε > 0 can be made arbitrarily small.

B Special Non-Malleable Commitments

Here will provide a proof sketch for the different possible instantiations of the special non-
malleable commitment schemes discussed in Section 2.4. First, we discuss a simpler instantiation
for the setting of a constant number of tags.
Recall Lemma 1: Assuming non-malleable commitments for constant-sized tag spaces based
on the RSW time-lock puzzle family of assumptions [LPS17], and assuming sub-exponential
quantum hardness of LWE, for every constant c, there exist c-special one-to-one non-malleable
commitments w.r.t. commitment for tags in [0, n] satisfying Definition 7.

Proof. One can set the commitment for tag = 0 to be an LWE-based commitment with security
parameter k. We will use 2κ

ε
secure time-lock puzzles (based on the RSW assumption) to obtain

non-malleable commitments for tag ∈ [1, c]. Furthermore, by setting the security parameter of
the (subexponentially) secure time-lock puzzle to be large enough, i.e. by setting it to κ such
that (c · k) ≤ κε, these will satisfy property 1 above. Next, by relying on the fact that the
commitment w.r.t. tag = 0 is quantum secure while the values committed via RSW-based
commitments can be extracted by a quantum polynomial sized machine (following [KK19]), the
overall scheme will also satisfy Property 2.

Next, we discuss two possible instantiations for the setting of polynomially many tags.
Recall Lemma 2: Assume that the following exist.

• Quantum polynomially-hard non-interactive commitments that satisfy Definition 8 with
δ > 0.

• Classically polynomially-hard non-interactive commitments that satisfy Definition 8 with
δ > 0, and can be inverted in quantum polynomial time.

• Sub-exponentially secure non-interactive commitment.

• Sub-exponentially secure one-message weak zero-knowledge [BL18b].

Then for every polynomial n = n(λ), n-special one-to-one non-malleable commitments w.r.t.
commitment with tags in [0, n] satisfying Definition 7 exist.
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Proof. (Sketch) Let comq denote the quantum hard commitment scheme and comc denote the
classically hard but quantum easy commitment. First, obtain non-malleable commitments for
tags in [1, log n], by combining the “axis” of hardness amplifiability axis with the “axis” of
classical versus quantum hardness. Specifically, a commitment to bit b w.r.t. tag t ∈ [n] will
consist of two sets of commitments:

• A set of `
δ2t

quantum (polynomially) hard commitments to bits x1, . . . , x `
δ2t

such that⊕
i∈[ `

δ2t
] xi = b1, for uniform b1, with security parameter k (polynomial in λ, the exact

polynomial will be determined later).

• A set of `
δ2(2n−t)

classically (polynomially) hard but quantum easy commitments to bits
x1, . . . , x `

δ2(2n−t)
such that

⊕
i∈

[
`

δ2(2n−t)

] xi = b⊕b1, with security parameter k (polynomial

in λ, the exact polynomial will be determined later).

Following a similar argument as in [KK19], Section 4, except leveraging distinguishing advantage
instead of running time, one can show that this set of commitments for tags t ∈ [log n] satisfies
non-malleability w.r.t. commitment where the adversary has advantage at most 2−δ`. Next,
this can be combined with one step of tag amplification (assuming sub-exponentially secure
one-message weak zero-knowledge) from [BL18b] to obtain commitments for tags in [n], where
a (polynomial-sized) man-in-the-middle’s advantage is bounded by 2−δ`. By setting ` “large
enough” such that δ` ≥ (γ · n), these commitments will satisfy Property 1 in Definition 7.

For tag = 0, define the commitment to be any subexponential non-interactive commitment
with security parameter γ = λ (which means that the commitment will be secure against
adversaries that run in time poly(2λ

ε
)), and define k = λε, where k is the security parameter

used for all other commitments with non-zero tags (recall that in the discussion above, we
had deferred setting k until later). Now by a straightforward complexity leveraging argument,
observe that commitments w.r.t. non-zero tags can be broken in time 2k

ε
while commitments

w.r.t. tag 0 remain secure against adversaries with 2k
ε

runtime. Thus, the resulting scheme can
also be seen to satisfy Property 2.

A simpler lemma follows from the assumption of adaptive OWF and QLWE which we discuss
below.

Lemma 4. [PPV08, KK19] Assuming adaptive one-way functions [PPV08] based on the sub-
exponential hardness of factoring, and assuming sub-exponential quantum hardness of LWE, for
every polynomial n = n(λ), there exist n-special one-to-one non-malleable commitments w.r.t.
commitment with tags in [0, n].

Proof. One can set the commitment for tag = 0 to be an LWE-based commitment with security
parameter k. We will use any 2κ

ε
secure adaptive one-way functions (for security parameter

κ) to obtain non-malleable commitments for tag ∈ [1, 2κ]. Furthermore, by setting the security
parameter of the (subexponentially) secure adaptive one way function to be large enough, i.e.
by setting it to κ such that kn ≤ κε, these will satisfy Property 1 in Definition 7. Next, by
relying on the fact that the commitment w.r.t. tag = 0 is quantum secure while the values
committed via factoring-based commitments can be extracted by a quantum polynomial sized
machine (following [KK19]), the overall scheme will also satisfy Property 2.

Comparison with [BL18b] : Our new assumption on hardness amplification is technically
incomparable with the one in [BL18b]. We rely on non-interactive commitments whereas they
rely on the stronger assumption that injective one-way functions exist. Injective OWFs are
known to imply non-interactive commitments, but not vice-versa.
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Also, we assume exponential hardness amplification against PPT adversaries, i.e. there exists
a constant δ > 0 such that for large enough `, the XOR of ` independently committed random
bits cannot be predicted by a PPT adversary with advantage better than 2−`δ. However, they
assume sub-exponential hardness amplification against sub-exponential time adversaries, i.e.
there exists a constant δ > 0 such that for large enough `, the XOR of ` independently committed
random bits cannot be predicted by a sub-exponential time machine with advantage better than
2−`

δ
. These assumptions are incomparable, although we agree that exponentially low advantage

appears to be qualitatively stronger. We require both quantum-hard and quantum-easy variants
of our assumption, and they do not.

Candidate constructions. For quantum-easy exponentially amplifiable commitments, we
put forth the same candidates as the injective OWF-based commitments in [BL18b], but based
on discrete logarithm over elliptic curves (which admit plausible exponential hardness). Plau-
sible candidates for quantum-hard exponentially amplifiable commitments are non-interactive
commitment schemes from LWE or LPN, eg. in [GHKW17].

We make this conjecture because given ` independent instances where each is randomly set
to an LWE (resp. LPN) sample or a random sample, it appears difficult to guess in polynomial
time

⊕
i∈[`] bi, where bi = 1 when the ith sample is an LWE sample, and bi = 0 otherwise.

This bestows some confidence in the exponential hardness amplifiability of these commitments
against polynomial-time adversaries.

C MCDS for NC1 Circuits

In the following we describe our construction of MCDS for NC1 circuits. As the underlying
building blocks we assume the dual-mode commitment with witness encryption from [BL20]
and the NIWI proofs from [GOS06b]. We follow the construction with a proof of perfect sender
security. Computational receiver security is subsumed by the proof given in the body of the
paper.

Com(1λ, wi): Sample two common reference strings crsi,0 ← DualSetupB(1λ) and crsi,1 ←
DualSetupB(1λ) in binding mode for the dual-mode commitment. Then compute two com-
mitments comi,0 = DualCom(crsi,0, wi; ri,0) and comi,1 = DualCom(crsi,1, wi; ri,1), where
ri,0 and ri,1 are uniformly sampled. Finally compute the NIWI proof

π̃i ← NIWIProve

(
(zi, 0, wi, ri,0),

{
∃(zi, bi, wi, ri) :

crsi,b = DualSetupB(1λ; zi) ∧
comi,b = DualCom(crsi,b, wi; ri)

})
.

Return ci = (crsi,0, crsi,1, comi,0, comi,1, π̃i) and ti = (ri,0, ri,1).

E((c1, . . . , cn), (x1, . . . , xn),m): Verify all of the NIWI proofs contained in the commitments,
i.e. check whether for all i = 1 . . . n it holds that

1 = NIWIVerify

(
π̃i,

{
∃(zi, bi, wi, ri) :

crsi,b = DualSetupB(1λ; zi) ∧
comi,b = DualCom(crsi,b, wi; ri)

})
and abort if this is not the case. Compute a 2n-out-of-2n secret sharing of the message
(s1, . . . , s2n) such that m =

⊕2n
i=1 si. For all i = 1 . . . n compute di,0 = WEnc(crsi,0, comi,0,

xi, s2i−1) and d,1 = WEnc(crsi,1, comi,1, xi, s2i). Return d = (d1,0, d1,1 . . . , dn,0, dn,1).

Prove(ti, xi): Compute the proofs for the dual commitment πi,0 = DualProof(crsi,0, comi,0, ri,0, xi)
and πi,0 = DualProof(crsi,1, comi,1, ri,1, xi) and return pi = (πi,0, πi,1).
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Rec(d, (p1, . . . , pn)): For all i = 1 . . . n compute si,0 = WDec(crsi,0, πi,0, di,0) and si,1 =
WDec(crsi,1, πi,1, di,1). Return m =

⊕2n
i=1 si.

Theorem 10 (Sender Security). The MCDS protocol (Com,E,Prove,Rec) as described above
satisfies perfect sender security.

Proof. By the perfect soundness of the NIWI proof, it holds that for all i = 1 . . . n, at least one
between crsi,0 and crsi,1 is in the support of DualSetupB and the corresponding commitment
(either comi,0 or comi,1) is in the support of DualCom. Let i be the index such that xi /∈ L. Since
xi /∈ L then it must be the case that the message wi,b (for at least one b ∈ {0, 1}) committed by
the adversary is not a valid witness for xi. Note that crsi,b is in binding mode and thus comi,b is
perfectly binding, which implies that wi,b is always well defined. Thus, the claim follows from
the semantic security of the dual-mode commitment.

D Proof of Theorem 9 (continued)

In what follows, we describe a sequence of hybrids, where we transition from using the actual
fmMPC protocol on behalf of honest players to simulating the view of the adversary. The last
hybrid (Hyb9) defines the simulation strategy and corresponds to the Ideal distribution. Hybrids
Hyb2 through Hyb8 below include a particular check ∅-Check. In the proof that follows, we will
actually show that Hyb1 is indistinguishable from Hyb2 conditioned on ∅-Check passing in Hyb2,
and then proceed to show that Hyb2, ...,Hyb8 are all indistinguishable conditioned on ∅-Check
passing. Finally, we will show that Hyb8 is indistinguishable from Hyb9, conditioned on the
check in Hyb8 passing.

In the hybrid experiments Hyb0, . . . ,Hyb5, the output of honest parties is set to ⊥ in case the
adversary aborts in any round, any of the NIWI generated by the adversary does not verify, or
any of the checks in the hybrid fail. Otherwise, the output is computed as per the honest algo-
rithm using real inputs {xi, ri}i∈H . From Hyb6 onwards, we will invoke the ideal functionality.
Therefore, instead of explicitly setting the output of honest parties as ⊥, an Abort signal will be
sent to the smMPC simulator (which in turn will send an Abort signal to the ideal functionality
and will result in the output of honest parties to be ⊥) in case the adversary aborts in any
round, any of the NIWI proofs generated by the adversary do not verify, any of the checks in
the hybrid fail or the extraction from the adversary’s mCDS Round 1 receiver messages fails.

• Hyb0 : This is identical to the Real distribution, which consists of the joint distribution of
the view of the adversary and the output of honest players in an execution of the protocol.

• Hyb1 : This is identical to Hyb0 except for an additional abort condition. Specifically, the
experiment performs the following check:

– Check1: At the end of round 1, check if there exists an index i ∈ M such that

cmt
(i)
td = NMComtag=i(rα1 , rα2 , . . . rαn ; r0) where for each j ∈ [n], either cmt

(j)
y =

NMComtag=0(0; rαj ) or cmt
(j)
z = NMComtag=0(0; rαj ). If such an index exists, the

experiment aborts and outputs ⊥1. Otherwise, the experiment continues identically
to Hyb0.

• Hyb2 : This hybrid is identical to Hyb1, except that at the beginning, the challenger
samples v′1, . . . , v

′
n ← {0, 1}λ . Next, at the end of round 1, a special check ∅-Check is

performed, which is defined next:

For every i ∈M , if cmt
(i)
y = NMComtag=0(0; v′i) or cmt

(i)
z = NMComtag=0(0; v′i), the check
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passes and the experiment proceeds identically to the previous hybrid. Otherwise, the
check fails: the experiment aborts and outputs ∅.

• Hyb3 : This is identical to Hyb2 except that for every i ∈ H, cmt
(i)
td = NMComtag=i(v

′
1, . . . , v

′
n; r′i),

where r′i is sampled uniformly at random.

• Hyb4 : This experiment is identical to the previous hybrid, except it generates NIWI2
arguments in Round 2 for all honest parties Pi for i ∈ H, using (0, 0, 0, r′i, {v′1, . . . , v′n}, 0∗)
as witness, instead of (st

(i)
smMPC, xi, ri, 0, 0

∗, {r(i)

mCDS(j)
}j∈[n]) indicated in the protocol.

• Hyb5 : This hybrid is identical to Hyb4 except that the first round MCDS commitments
for all honest parties Pi ∈ H are sampled using (0p(λ), r′i, v

′
1, . . . , v

′
n) as witness, instead of

(xi, ri, 0
nλ) as indicated in the protocol.

• Hyb6 : This hybrid is identical to Hyb5 except that the output of honest parties is com-
puted in the following fashion: Let {xi}i∈M be the implicit inputs of corrupted parties as
determined by their protocol messages in Round 1. If the NIWI proofs of the adversary

{π(i)
NIWI2

}i∈M verify, then set the output of honest parties to be f({xi}i∈[n]), where f is
the function being computed by the ideal functionality F . Otherwise, set the output of
honest parties to be ⊥.

• Hyb7 : This is identical to Hyb6 except that semi-malicious MPC messages are generated
by running the semi-malicious MPC simulator.

In more detail, the challenger does the following. For each i ∈ H, compute msg1
(i)
smMPC ←

SimsmMPC(1κsmMPC , 1n). Next, at the end of round 1, extract the inputs of all corrupted
parties Pi for i ∈ M in time T brk

mCDS by using brute-force to break their MCDS receiver

messages {msg1
(i)

mCDS(j)
}j∈[n]\{i}.

If input extraction succeeds, i.e., if for every i ∈M , there exists j ∈ [n]\{i}, (xi, ri), r
(i)

mCDS(j)

such that
msg1

(i)

mCDS(j)
= mCDS.Com(1κmCDS.R , (xi, ri, 0

nλ), i; r
(i)

mCDS(j)
),

then send (xi, ri)i∈M to SimsmMPC and obtain msg2
(i)
smMPC for i ∈ H from SimsmMPC.

Generate all other messages identically to Hyb6.

If input extraction fails, set msg2
(i)
smMPC for i ∈ H to 0s(λ), where s(λ) denotes the length of

round 2 semi-malicious MPC messages. Generate all other messages identically to Hyb6.

• Hyb8 : This is identical to Hyb7 except that Check1 is not performed at all.

• Hyb9 : This is identical to Hyb8 except that at the end of round 1, if ∅-Check fails, the
experiment does not output ∅. Instead, the experiment starts from the beginning (with
fresh randomness) and iterates until a transcript is found for which ∅-Check passes.

Here, we will prove, via a sequence of lemmas, that the hybrids described above are compu-
tationally indistinguishable from each other. Hyb9 corresponds to the output of the simulator.
Also, in our proofs, A ≈c B notation denotes that the two distributions A and B are negl(λ)
computationally indistinguishable, i.e. for every poly(λ)-sized (non-uniform) distinguisher D,
the following holds: ∣∣∣Pr[D(A) = 1]− Pr[D(B) = 1]

∣∣∣ = negl(λ).
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Lemma 5. Assuming that (1) the commitment scheme NMCom satisfies Property 2 in Defi-
nition 7 and (2) the NIWI proof used in Round 1 satisfies witness indistinguishability against
poly(T brk

NMCom)-size adversaries,
Hyb0 ≈c Hyb1

Proof. Since the two hybrids are identical except for the extra check in Round 1 leading to ⊥1

in Hyb1, it suffices to show that Pr[⊥1|Hyb0] = negl(λ). We consider a set of sub-hybrids, as
follows:

• Hyba,i: This is identical to Hyb0, except that cmt
(i)
z ← NMComtag=0(1; rz).

• Hybb,i: This is identical to Hyb0, except that wNIWI1 = rz for messages generated on behalf
of Pi.

• Hybc,i: This is identical to Hybb,i, except that cmt
(i)
y ← NMComtag=0(1; ry).

Then we have:

Pr
[
∃j ∈M s. t. cmt

(j)
td = NMComtag=j(m1|| . . . ||mn) ∧ (mi = rz)

∣∣Hyb0

]
= Pr

[
∃j ∈M s. t. cmt

(j)
td = NMComtag=j(m1|| . . . ||mn) ∧ (mi = rz)

∣∣Hyba,i]
= negl(λ) (1)

Suppose not, then there exists (non-uniformly) for every n = n(λ) an index j ∈ M for which
the equation is false. We construct a (non-uniform) adversary ADVNMCom that obtains j as
advice, and on input a challenge commitment c corresponding to one out of NMComtag=0(0; rz)
or NMComtag=0(1; rz) does the following.

It embeds c in place of cmt
(i)
z and executes the rest of the experiment according to Hyb0.

On obtaining the first round message of the MPC protocol, it outputs cmt
(j)
td . It obtains

(from the challenger of NMCom), the opening (m1, . . . ,mn) of cmt
(j)
td , and outputs 0 if c =

NMComtag=0(0;mi), 1 if c = NMComtag=0(1;mi), and ⊥ otherwise. It is easy to see that if
Equation (1) is not true, then this adversary contradicts the Property 2 of NMCom, as desired.

In addition, we will have:

Pr
[
∃j ∈M s. t. cmt

(j)
td = NMComtag=j(m1|| . . . ||mn) ∧ (mi = rz)

∣∣Hyb0

]
= Pr

[
∃j ∈M s. t. cmt

(j)
td = NMComtag=j(m1|| . . . ||mn) ∧ (mi = rz)

∣∣Hybb,i] and, (2)

Pr
[
∃j ∈M s. t. cmt

(j)
td = NMComtag=j(m1|| . . . ||mn) ∧ (mi = rz)

∣∣Hybb,i]
= Pr

[
∃j ∈M s. t. cmt

(j)
td = NMComtag=j(m1|| . . . ||mn) ∧ (mi = rz)

∣∣Hybc,i] = negl(λ) (3)

Assume towards a contradiction that there exists (non-uniformly) for every n = n(λ) an
index j ∈M for which equation (2) is false. We construct a (non-uniform) adversary ADVNMCom

that obtains j as advice, and on input a NIWI proof π corresponding to one out of wNIWI1 = ry
or rz does the following.

It embeds π in place of π
(i)
NIWI1

and executes the rest of the experiment according to Hyb0. On
obtaining the first round message of the MPC protocol, it extracts the opening (m1, . . . ,mn) of

cmt
(j)
td , and outputs 0 if c = NMComtag=0(0;mi), 1 if c = NMComtag=0(1;mi), and ⊥ otherwise.

It is easy to see that if Equation (2) is not true, then this adversary contradicts the T brk
NMCom-

security of the NIWI, as desired.
Finally, following the same argument as that for Equation (1), we see that if Equation (3)

is not true, then the adversary contradicts Property 2 in Definition 7 of NMCom, as desired.
This concludes the proof.
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Lemma 6. Hyb1 = (Hyb2|¬∅).

Proof. The variables (v′1, . . . , v
′
n) in Hyb2 are sampled independently and uniformly at random.

Therefore, the event that ∅-Check passes is independent of the hybrid experiment. This, com-
bined with the description of Hyb2 implies that (Hyb2|¬∅) is distributed identically to Hyb1.

Lemma 7. Assuming that the commitment scheme NMCom is a n-special one-to-one non-
malleable w.r.t. commitment satisfying Property 1 in Definition 7, (Hyb2|¬∅) ≈c (Hyb3|¬∅).

Proof. Suppose the claim is not true. Consider hybrids Hyb2,1, . . . ,Hyb2,n, where Hyb2,1 ≡ Hyb2

and for i(λ) ∈ [2, n], Hyb2,i is identical to Hyb2,i−1 except that if party Pi is honest, cmt
(i)
td =

NMComtag=i(v
′
1, . . . , v

′
n) instead of being set to NMComtag=i(0

nλ).
Then there exists an index i(λ) ∈ [n− 1] corresponding to an honest party, and there exists

an adversary ADV such that∣∣∣Pr[ADV(Hyb2,i|¬∅) = 1]− Pr[ADV(Hyb2,i+1|¬∅) = 1]
∣∣∣ ≥ 1

poly(λ)
(4)

and because ∅-Check is efficient and occurs with probability at least δ−negl(1/δ) in each hybrid,
this implies that∣∣∣Pr[ADV(Hyb2,i ∧ ¬∅) = 1]− Pr[ADV(Hyb2,i+1 ∧ ¬∅) = 1]

∣∣∣ ≥ δ

2 · poly(λ)
(5)

We construct a (non-uniform) adversary ADVNMCom that obtains i as advice, and on input a chal-
lenge commitment c corresponding to one out of NMComtag=i+1(0

nλ) or NMComtag=i+1(v
′
1, . . . , v

′
n)

does the following.

It embeds c in place of cmt
(i)
td and executes the rest of the experiment according to Hyb2,i.

On obtaining the first round message of the MPC protocol, it first performs ∅-Check and

outputs ∅ if the check fails. Otherwise, it outputs cmt
(j)
td to the challenger for a randomly

chosen session j ∈ M . It obtains (from the challenger of NMCom) the opening (m1, . . . ,mn)

of cmt
(j)
td , and checks if for all k ∈ [n], mk is such that either cmt

(k)
y = NMComtag=0(0;mk) or

cmt
(k)
z = NMComtag=0(0;mk). If so, it outputs ⊥1 to ADV and otherwise continues Round 2

exactly according to Hyb2,i. It sends the resulting view and outputs of honest parties to ADV.

Now if c = NMComtag=i+1(0
nλ) the output of ADVNMCom corresponds to ADV(Hyb2,i ∧ ¬∅)

and if c = NMComtag=i+1(v
′
1, . . . , v

′
n), the output of ADVNMCom corresponds to ADV(Hyb2,i+1 ∧

¬∅). Therefore by equation (5), and since δ = 2−nγ for γ = ω(log λ), we have that ADVNMCom

contradicts Property 1 of NMCom, as desired.

Lemma 8. Assuming witness indistinguishability of the NIWI2 against (non-uniform) poly(λ)-
sized adversaries,

(Hyb3|¬∅) ≈c (Hyb4|¬∅)

Proof. Fix (non-uniformly) any Round 1 transcript τ such that the claim is not true condi-
tioned on τ . Any adversary that distinguishes the two hybrids directly contradicts witness
indistinguishability of the NIWI.

Lemma 9. Assuming that the MCDS scheme satisfies (T brk
NMCom, 1/δ)-receiver security according

to Definition 11 for δ = 2−nγ, (Hyb4|¬∅) ≈c (Hyb5|¬∅).

37



Proof. Suppose the lemma is false. Then there exists an adversary ADV for which there exists
a polynomial poly(·) such that for infinitely many λ ∈ N:∣∣∣Pr[ADV(Hyb5|¬∅) = 1]− Pr[ADV(Hyb4|¬∅) = 1]

∣∣∣ ≥ 1

poly(λ)
(6)

We construct ADVmCDS which contradicts the receiver security of mCDS scheme as in Defi-
nition 11. ADVmCDS samples uniform randomness (v′1, . . . , v

′
n), {r′i}i∈H and sends it to CmCDS

along with {xi||ri}i∈H . It then receives |H|.|M | round 1 mCDS messages {msg1
(i)

mCDS(j)
}j∈M,i∈H

from the CmCDS where each msg1
(i)

mCDS(j)
is formed using either inp1 := (xi, ri, 0

nλ) or inp2 :=

(0λ, r′i, v
′
1, . . . , v

′
n), and does the following.

It forwards these messages, along with all other Round 1 messages generated according
to Hyb5, to ADV, and obtains the adversary’s Round 1 messages. It performs ∅-Check, and
outputs ∅ if this check fails. By the receiver security of mCDS, we have that Pr[∅|Hyb5] ≥
Pr[∅|Hyb4] − negl(1/δ) = δ − negl(1/δ) (otherwise ADVmCDS will be able to distinguish which
witness - out of inp1 and inp2 - was used by CmCDS for generating msg1mCDS).

If ∅-Check passes, it performs Check1 in time T brk
NMCom and sends ⊥1 to ADV if Check1 fails.

Next, it outputs |H| mCDS statements {x(i)
mCDS}i∈H to CmCDS and receives |H|.|M | Round 2

mCDS messages {msg1
(i)

mCDS(j)
}j∈M,i∈H . It forwards these messages, along with other Round 2

messages generated exactly as in Hyb5, to ADV. Finally, it receives Round 2 messages from the
adversary, computes the output of honest parties as per the honest protocol, and forwards the
output to the adversary to create a joint distribution of the adversary’s view and honest party’s
output. Next, it receives a guess bit b from ADV and outputs it.

The probability that ADVmCDS outputs 1 when CmCDS uses inp1 versus inp2, is exactly same
as Pr[ADV(Hyb4 ∧ ¬∅) = 1] and Pr[ADV(Hyb5 ∧ ¬∅) = 1] respectively. Then we have that

|Pr[ADVmCDS(inp1) = 1]− Pr[ADVmCDS(inp2) = 1]|
=|Pr[ADV(Hyb4 ∧ ¬∅) = 1]− Pr[ADV(Hyb5 ∧ ¬∅) = 1]|
= (δ − negl(1/δ)) · |Pr[ADV(Hyb4|¬∅) = 1]− Pr[ADV(Hyb5|¬∅) = 1]|
≥2−nγ · poly(λ)

Since γ = ω(log(λ)), this contradicts (T brk
NMCom, 1/δ) receiver-security of MCDS, as desired.

Lemma 10. Assuming the security of smMPC against semi-malicious adversaries and sound-
ness of NIWI2 against unbounded provers,

(Hyb5|¬∅) ≈c= (Hyb6|¬∅)

Proof. Note that both Hyb5 and Hyb6 are exactly identical in terms of the interaction with the
adversary, the only difference being the way in which the output of honest parties is determined.
Therefore, in the following analysis, we will fix the input and randomness of all parties in the
protocol which, in turn, will fix the transcript. Then will show that for every transcript, the
output of honest parties will be identical in Hyb5 and Hyb6.

To prove this, we will split into 2 cases: i) ADV behaves semi-maliciously during the inter-
action, ii) ADV does not behave semi-maliciously during the interaction. In the first case, the
correctness of the underlying smMPC protocol directly implies that the output of honest party
will be exactly same for both the hybrids (for a fixed interaction transcript). To argue that
the output of honest parties match in the second case as well, we will rely on the soundness of
NIWI. Let Ψ denote the event where ADV is not behaving semi-maliciously. Note that in Hyb6,
conditioned on event Ψ, the output of honest parties in always ⊥. Let T denote an arbitrary
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protocol transcript such that the output of honest parties as determined by Hyb6 equals ⊥ but
the output of honest parties as determined by Hyb5 does not equal ⊥. This implies that there

exists i ∈ M such that x
(i)
NIWI2

is false but π
(i)
NIWI2

passed the verification check. Hence we can
construct an adversary ADVNIWI which has hardcoded inputs and randomness for transcript T
(by non-uniform fixing argument), executes the Hyb5 experiment with ADV, and finally outputs

{x(i)
NIWI2

, π
(i)
NIWI2

} to the NIWI challenger. This ADVNIWI clearly contradicts the soundness of the
underlying NIWI.

Lemma 11. Assuming that (1) the MCDS scheme satisfies (λ, 1/δ)-sender security according
to Definition 10 and (2) (T, 1/δ) security of the semi-malicious MPC protocol according to
Definition 19 for T = max(T brk

NMCom, T
brk
mCDS) and δ = 2−nγ, (Hyb6|¬∅) ≈c (Hyb7|¬∅).

Proof. Suppose the lemma is false. Then there exists an adversary ADV for which there exists
a polynomial poly(.) such that for infinitely many λ ∈ N:∣∣∣Pr[ADV(Hyb7|¬∅) = 1]− Pr[ADV(Hyb6|¬∅) = 1]

∣∣∣ ≥ 1

poly(λ)
(7)

We construct an adversary that contradicts either the sender security of mCDS or the security
of semi-malicious MPC.

First we consider the following check which sets a variable pHybx for x ∈ {6, 7}: For all

i ∈ M , if ∅ passes, and the binding commitment of msg1
(i)
mCDS is associated with some value

u, and u, when parsed as input x′i and randomness r′i, results in msg1
(i)
smMPC = smMPC(x′i; r

′
i) ,

then set pHybx := 1, else set pHybx := 0.
Then, we have that

|Pr[pHyb6 = 1]− Pr[pHyb7 = 1]| = negl(λ)

Otherwise, consider an adversary ADVp which obtains either real or simulated Round 1 smMPC
messages {msg1smMPC}i∈H and forwards it to ADV along with other Round 1 messages generated
according to Hyb7. It then checks if p = 1 in time n · T brk

mCDS, and outputs 1 if and only if p = 1.
This contradicts smMPC security, therefore the equation above must be true.

In the next part of this proof, we analyze these experiments based on pHybx being either 0
or 1. We then argue indistinguishability between Hyb6 and Hyb7 in each case.

• Case I. We claim that

|Pr[ADV(Hyb6|¬∅) = 1 ∧ (pHyb6 = 1)]− Pr[ADV(Hyb7|¬∅) = 1 ∧ (pHyb7 = 1)]| = negl(λ)

Suppose this is not true, then we construct ADVsmMPC which contradicts the security of
the underlying smMPC protocol as follows: ADVsmMPC obtains either real or simulated
Round 1 smMPC messages {msg1smMPC}i∈H and forwards them to ADV along with other
Round 1 messages formed exactly as described in Hyb7. It then completes Round 1. It
performs ∅-Check and outputs ∅ if this check fails.

Next, it performs Check1 in time T brk
NMCom, and outputs ⊥1 if Check1 fails. Next, it per-

forms extraction in time T brk
mCDS as described in Hyb7. If extraction fails, it aborts, and if

extraction succeeds, ADVsmMPC obtains {xi, ri}i∈M which it forwards to the challenger.

ADVsmMPC then obtains either real or simulated Round 2 smMPC messages {msg2smMPC}i∈H
and forwards them to ADV along with other Round 2 messages and completes Round 2
as described in Hyb7. Finally, it obtains the output of honest parties from the challenger
and forwards it to the adversary to create a joint distribution of the adversary’s view and
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the honest party output. It then obtains a guess bit b from ADV and forwards it to the
challenger.

We have that

Pr[ADVsmMPC(RealsmMPC)] = 1− Pr[ADVsmMPC(IdealsmMPC)] = 1|
=|Pr[ADV(Hyb6 ∧ ¬∅ ∧ (p = 1))] = 1− Pr[ADV(Hyb7 ∧ ¬∅ ∧ (p = 1))] = 1|

= δ · 1

poly(λ)

Since γ = ω(log(λ)), and ADVsmMPC runs in time max(T brk
NMCom, T

brk
mCDS, T

brk
NIWI2

), this con-
tradicts (T, 1/δ) security of the underlying smMPC protocol, as desired.

• Case II. We claim that

|Pr[ADV(Hyb6|¬∅) = 1 ∧ (pHyb6 = 0)]− Pr[ADV(Hyb7|¬∅) = 1 ∧ (pHyb7 = 0)]| = negl(λ)

To prove this, we first consider an intermediate hybrid Hyb6′ that is identical to Hyb6

except that at the end of round 1, the inputs of all corrupted parties Pi for i ∈ M are
extracted in time T brk

mCDS by using brute-force to break their MCDS receiver messages

{msg1
(i)

mCDS(j)
}j∈[n]\{i}. If input extraction succeeds, then abort. Otherwise, continue

according to Hyb6 except generating msg2
(i)
smMPC for i ∈ H to 0p(λ), where p(λ) denotes

the length of round 2 semi-malicious MPC messages. Finally, it receives Round 2 messages
from the adversary, computes the output of honest parties as per the honest protocol, and
forwards the output to the adversary to create a joint distribution of the adversary’s view
and honest party’s output.

By (non-uniform) (λ, 1/δ) sender security of MCDS according to Definition 10:

|Pr[ADV(Hyb6|¬∅) = 1 ∧ (pHyb6 = 0)]− Pr[ADV(Hyb6′ |¬∅) = 1 ∧ (pHyb6 = 0)]| = negl(λ)

Next, by (T, 1/δ) security of the underlying smMPC, following a similar argument to that
in Case I, we conclude:

|Pr[ADV(Hyb7|¬∅) = 1 ∧ (pHyb7 = 0)]− Pr[ADV(Hyb6′ |¬∅) = 1 ∧ (pHyb6 = 0)]| = negl(λ)

which proves the claim for this case, as desired.

Combining the two claims yields the lemma, as desired.

Lemma 12. (Hyb7|¬∅) ≈c (Hyb8|¬∅).

Proof. The only difference is that Check1 is no longer performed, but since (Hyb7|¬∅) ≈c Hyb0,
we conclude that

Pr[⊥1|Hyb7 ∧ ¬∅] = negl(λ)

which proves the claim.

Lemma 13. (Hyb8|¬∅) = Hyb9.

Proof. The experiments generate identical distributions.

Finally, we remark that since Pr[¬∅-Check|Hyb8] = δ − negl(1/δ) > δ
2 where δ = 2−nγ , the

expected running time of the simulator is bounded by 2nγ+1.
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Setting the Parameters. Next, we discuss how one can set parameters (assuming sub-
exponential security) of all primitives. First, we will set γ, which denotes the size of randomness
ry (and equivalently rz) in the protocol to be λ. Next, we recall that δ = 2−nγ where n = n(λ)
is a polynomial in the number of parties. Let c1 be a constant such that n ≤ λc1

• Recall that we rely on a NMCom that is a n-special one-to-one non-malleable commitment
for all non-zero tags, according to Definition 7. Let c2 be a constant such that λc2 denotes
the security parameter of this non-malleable commitment, and such that all commitments
(w.r.t. all possible tags) can be broken (via brute-force) in time poly(2λ

c2 ) – i.e. T brk
NMCom =

2λ
c2 .

• Recall that we then need NIWI1 to be (T brk
NMCom, λ)-secure, that is (2λ

c2 , λ)-secure. We

also rely on any MCDS that satisfies (T brk
NMCom, 1/δ) = (2λ

c2 , 2λ
(c1+1)

) receiver security and

(λ, 1/δ) = (λ, 2λ
(c1+1)

) sender security. Note that this can be achieved by assuming sub-
exponentially secure NIWI, and MCDS, and setting the security parameters for NIWI1
and mCDS to be λc3 for a large enough constant c3 > 1. Now, by Definition 10, for every
allowable receiver message, the receiver’s implicit committed witness can be recovered in
time T brk

mCDS = 2λ
c3 .

• Finally, we will rely on any semi-malicious MPC that is (max(T brk
NMCom, T

brk
mCDS), 1/δ) =

(2λ
c3 , 2λ

c1+1
) secure. All other unspecified primitives (including NIWI2) are required to

just be (λ, λ)-secure.

This setting of parameters satisfies all constraints discussed at the beginning of the proof,
therefore our 2-round SPS MPC protocol is secure. This completes the proof of the theorem.
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