
Massive Superpoly Recovery with Nested
Monomial Predictions

Kai Hu1,5, Siwei Sun2, Yosuke Todo3, Meiqin Wang1,5(�), and Qingju Wang4

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
China. hukai@mail.sdu.edu.cn,mqwang@sdu.edu.cn

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China.
siweisun.isaac@gmail.com

3 NTT Social Informatics Laboratories. yosuke.todo.xt@hco.ntt.co.jp
4 SnT, University of Luxembourg. qjuwang@gmail.com

5 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Qingdao, Shandong, China.

Abstract. Determining the exact algebraic structure or some partial
information of the superpoly for a given cube is a necessary step in
the cube attack – a generic cryptanalytic technique for symmetric-key
primitives with some secret and public tweakable inputs. Currently, the
division property based approach is the most powerful tool for exact
superpoly recovery. However, as the algebraic normal form (ANF) of
the targeted output bit gets increasingly complicated as the number of
rounds grows, existing methods for superpoly recovery quickly hit their
bottlenecks. For example, previous method stuck at round 842, 190, and
892 for Trivium, Grain-128AEAD, and Kreyvium, respectively. In this
paper, we propose a new framework for recovering the exact ANFs of
massive superpolies based on the monomial prediction technique (ASI-
ACRYPT 2020, an alternative language for the division property). In
this framework, the targeted output bit is first expressed as a polyno-
mial of the bits of some intermediate states. For each term appearing
in the polynomial, the monomial prediction technique is applied to de-
termine its superpoly if the corresponding MILP model can be solved
within a preset time limit. Terms unresolved within the time limit are
further expanded as polynomials of the bits of some deeper intermediate
states with symbolic computation, whose terms are again processed with
monomial predictions. The above procedure is iterated until all terms are
resolved. Finally, all the sub-superpolies are collected and assembled into
the superpoly of the targeted bit. We apply the new framework to Triv-
ium, Grain-128AEAD, and Kreyvium. As a result, the exact ANFs of
the superpolies for 843-, 844- and 845-round Trivium, 191-round Grain-
128AEAD and 894-round Kreyvium are recovered. Moreover, with help
of the Möbius transform, we present a novel key-recovery technique based
on superpolies involving all key bits by exploiting the sparse structures,
which leads to the best key-recovery attacks on the targets considered.

Keywords: Cube Attack, Superpoly, Trivium, Grain-128AEAD, Kreyvium,
Division Property, Monomial Prediction

1 Introduction

The cube attack was proposed by Dinur and Shamir at EUROCRYPT 2009
against symmetric-key primitives with a secret key and a public input [16]. For
a cipher with a secret key k ∈ Fm2 and a public input x ∈ Fn2 , any output bit of
the cipher can be regarded as a Boolean function in k and x, denoted as f(x,k).
For a constant u ∈ Fn2 , let xu =

∏
ui=1 xi where ui and xi are the ith coordinate

of u and x, respectively. Then f(x,k) can be written uniquely as

f(x,k) = p · xu + q(x,k),

where each term of q(x,k) misses at least one variable in {xi : ui = 1}. Let
Cu = {x ∈ Fn2 : x � u}, where x � u means xi ≤ ui for all 0 ≤ i ≤ n−1. Then,
we have ⊕

x∈Cu

f(x,k) =
⊕

x∈Cu

(p · xu + q(x,k)) = p. (1)

We call p the superpoly of the cube term xu or the cube Cu. Note that p is
a Boolean function in k and x[ū] = {xi : ui = 0}, thus sometimes this fact is
signaled by the notation p(x[ū],k).

Typically, in the cube attack, the attacker first recovers the superpoly in the
offline phase, and then queries the cipher oracle over the cube to compute the
summation given by Equation (1), i.e., the value of the superpoly. Information
of the secret keys can be obtained from the equation of the superpoly and its
value. Hence recovering superpolies is a crucial step in the cube attack.

In early applications of cube attacks [16,32,17,46], the target ciphers are re-
garded as black boxes and the superpoly recovery is achieved by experimental
test. Hence, superpolies recovered in this way have to be extremely simple (typ-
ically linear or quadratic functions). In [38], the conventional bit-based division
property [40] was first introduced to probe the structure of the superpoly, which
allows us to identify some key bits that do not appear in the superpoly. This
is the first time that the targeted cipher is regarded as a non-black box object
in performing the cube attacks. By setting the key bits that are not involved in
the superpoly to arbitrary constants and varying the remaining l key bits, one
can obtain the truth table of the superpoly for a subsequent key-recovery attack
with complexity 2|I|+l, where I = {i : ui = 1} is the so-called cube indices. The
complexity of recovering the superpoly could be further improved by computing
the upper bound on the algebraic degree of the superpoly [41].

At ASIACRYPT 2019, Wang et al. took the three-subset bit-based division
property model with the pruning technique to recover the exact superpoly for the
first time [42]. However, as the method needs to test every possible monomial
in the superpoly, its usage is practically limited when the superpoly is dense.
In [43], Ye and Tian introduced a division property-aided algebraic method to
recover the exact superpolies by recursively expressing the output of a cipher
as the bits of intermediate states and discarding those terms that have no con-
tribution to the superpoly. They found out that several superpolies recovered

2

in [41] were actually constants, based on which we can only perform distinguish-
ing attacks rather than key-recovery attacks. In [19,20], Hao et al. proposed the
three-subset division property without unknown subsets (3SDPwoU) and uti-
lized the Gurobi PoolSearchMode to enumerate all possible three-subset trails.
By counting the number of trails, they could recover the exact superpolies. In
[23], Hu et al. proposed the monomial prediction technique aided by the divide-
and-conquer strategy to speed up the enumeration of the monomial trials, and
more superpolies have been recovered. Besides, Ye and Tian also introduced a
pure algebraic method in [47]. By representing the output bit in a polynomial of
the intermediate states, the superpoly can be recovered for some so-called useful
cubes directly. Recently, Sun claimed that a superpoly of a 78-dimensional cube
for 843-round Trivium can be recovered [35] without describing details of the
method employed.

Contribution. As the number of rounds grows, the superpolies for certain
cubes become increasingly complex. Existing methods for superpoly recovery
quickly hit their bottlenecks [42,49,19,20,23,47]. Motivated by this fact, we pro-
pose a new framework with nested monomial predictions which scales well for
massive superpoly recovery. In this framework, the targeted output bit is first
expressed as a polynomial of the bits of some intermediate state. For each
term appearing in the polynomial, the monomial prediction technique is ap-
plied to determine its superpoly if the corresponding MILP model can be solved
within a given time limit. Terms unresolved within the time limit are further
expanded as polynomials of the bits of some deeper intermediate states with
symbolic computation, whose terms are again processed with monomial predic-
tions. The above procedure is iterated until all terms are resolved. Finally, all
the sub-superpolies are collected and assembled into the superpoly of the tar-
geted bit. All the source codes of our framework is available in the public domain
https://github.com/hukaisdu/massive_superpoly_recovery.git.

We apply the framework to some important symmetric-key ciphers, includ-
ing Trivium (ISO/IEC standard), Grain-128AEAD (one of the ten Finalists
of the NIST lightweight cryptography standardization process), and Kreyvium
(designed for fully Homomorphic encryption). For Trivium, we are the first to
obtain superpolies for up to 845-round Trivium. For Grain-128AEAD, we re-
cover two 191-round superpolies, while the previous best results reach only 190
rounds. For Kreyvium, we recover a 894-round superpoly, penetrating two more
rounds than the best previous results. The details of the superpolies recovered
by the new framework and the previous ones are shown in Table 1.

To perform key-recovery attacks based on these superpolies, we face a dif-
ficulty that makes existing key-recovery techniques inferior to exhaustive key
search: the superpolies are too complicated whose ANFs involve all secret key
bits. With help of the Möbius transformation, we present a novel key-recovery
technique based on superpolies involving all key bits exploiting the disjoint prop-
erties. Applying this technique with the recovered superpolies leads to the best
key-recovery attacks on the targets considered (see Table 2).

3

https://github.com/hukaisdu/massive_superpoly_recovery.git

Table 1: Summary of the exact superpolies recovered practically for round-
reduced Trivium, Grain-128AEAD, and Kreyvium.
Cipher Rounds Dim #Term Degree Balancedness¶ Method Ref.

Trivium

818 35 189,540 22 2−11.8 Algberaic§ [47]
835 37 471,120 23 2−10.0 Algberaic§ [47]
837 37 5,011,664 26 2−8.0 Algberaic§ [47]
832 72 3 3 0.375 Pruning & GE† [38,42,49]
838 37 2,877,096 25 2−8.3 Algberaic§ [47]
840 78 67 4 0.5 3SDP/u [19,20]
840 75 41 4 0.5 Mon. Pred. [23]
840 76 6 3 0.5 Mon. Pred. [23]
840 76 4 2 0.5 Mon. Pred. [23]
840 47 390,899 20 0.02 Nested App. C.1
840 49 357,989 20 0.08 Nested App. C.1
840 42 31,647 17 0.14 Nested App. C.1
840 53 116,145 17 0.26 Nested App. C.1
840 56 7,549 14 0.30 Nested App. C.1
840 62 1,253 12 0.44 Nested App. C.1
841 78 53 5 0.5 3SDP/u [19,20]
841 76 3,632 9 0.5 Mon. Pred. [23]
841 77 11,161 8 0.5 Mon. Pred. [23]
841 56 20,485 16 0.48 Nested App. C.2
842 78 975 6 0.5 3SDP/u [20]
842 76 5,147 8 0.5 Mon. Pred. [23]
842 77 4,174 8 0.5 Mon. Pred. [23]
842 56 343,000 17 0.50 Nested App. C.3
843 78 16,561 8 0.5 –‡ [35]
843 56 1,671,492 17 0.50 Nested Section 5.1
843 57 7,985,786 19 0.50 Nested Section 5.1
843 55 359,466 17 0.49 Nested Section 5.1
843 54 628,607 18 0.50 Nested Section 5.1
843 76 38,021 18 0.50 Nested Section 5.1
844 55 1,770,734 19 0.50 Nested Section 5.1
844 54 917,468 17 0.49 Nested Section 5.1
845 55 19,967,968 22 0.50 Nested Section 5.1
845 54 12,040,654 21 0.50 Nested Section 5.1

Grain-128AEAD

190∗ 95 178 ∼ 18, 958 19 ∼ 24 0.012 ∼ 0.196 3SDP/u [19,20]
190 96 1, 097 21 0.032 3SDP/u [19,20]
191 95 3,053,028 27 0.312 Nested Section 5.2
191 96 2,398,450 27 0.293 Nested Section 5.2

Kreyvium 892 115 6 1 0.5 3SDP/u [20]
893 118 5? 1 0.5 3SDP/u [20]
894 119 191 4 0.5 Nested Section 5.3

¶: The balancedness is measured by the probability that the superpoly is 1.
§: In [47], the complete ANFs are not given. We take our framework to recover them.
†: In [39], Todo et al. showed this superpoly could be recovered in 277 by the conven-
tional bit-based division property. In [42,49], the superpoly was recovered practically
by the method of three subset division property with a pruning technique and the
recursively-expressing method.
‡: In [35], Sun claimed they recovered a superpoly for 843-round Trivium but no
details of their technique was present.
∗: In [19], the authors recovered superpolies for 15 different 95-dimensional cubes.
?: In [20], there is an extra term pre-computed offline with 2118 time complexity.

4

Table 2: A summary of the key-recovery attacks on Trivium, Grain-128AEAD,
and Kreyvium. Here we do not consider the key recovery attacks under the
weak-key seeting such as the works in [47,29].

Cipher Rounds Type Data Time Reference

Trivium

672 Cube 218.6 217 [16]
709 Cube 223 229.14 [32]
767 Cube 231 245 [16]
784 Cube 233 239 [17]
799 Cube 238 262 [17]
802 Cube 237 272 [46]
805 Corr. Cube 228 273 [30]
805 Cube 238 241.4 [48]
806 Cube 216 264 [48]
832 Cube 272 279 [39,49,42]
835 Corr. Cube 235 275 [30]
840 Cube 278 279.6 [19,20]
840 Cube 276.6 277.8 [23]
840 Cube 262 276.32 App. C.1
841 Cube 278 279.6 [23]
841 Cube 277 278.6 [23]
841 Cube 256 278 App. C.2
842 Cube 278 279.6 [23]
842 Cube 277 278.6 [23]
842 Cube 256 278 App. C.3
843 Cube 278 279.6 [35]
843 Cube 256 277 Section 6.2
844 Cube 256 278 Section 6.2
845 Cube 256 278 Section 6.2

Grain-128a†

169 Condit. Diff. 247 small [29]
182 Cube 288 2129 [38,39]
182 Cube 288 2127 [38,39,41]
183 Cube 292 2127 [41]
183 Cube 295 2127 [41]

Grain-128AEAD
190 Cube 296 2123 [19,20]
– State Recovery – Practical∗ [12]

191 Cube 296 2126.26 Section 6.2

Kreyvium

849 Cube 261 2127 [39,41]
872 Cube 285 2127 [39,41]
891 Cube 2113 2127 [19,20]
892 Cube 2115 2127 [18,19,20]
893 Cube 2118 2119 [20]
894 Cube 2119 2127 Section 6.2

†: Since in our assumption, the Grain-128AEAD is the same as Grain-128a, we provided the
results for Grain-128a for a better comparison.
∗: In [12], the authors showed that if the state after the initialization (t = 384) is known, then
the secret key can be recovered in practical time.

2 Division Property and Monomial Prediction

The division property [37] was proposed by Todo initially as generalized in-
tegral attacks [27] (a.k.a. Square attacks [13] or higher-order differential at-
tacks [28,26]). The division property was successfully applied to many primitives.
In particular, it was employed to break the full MISTY1 block cipher [31], which
undoubtedly demonstrates its powerfulness [36,6].

5

At the early stage, the division property works in a word-oriented approach,
and the propagation of the division properties only considers the algebraic de-
grees of the local components. Subsequently, by considering the division property
at the bit level, Todo and Morii [40] introduced the bit-based division prop-
erty [7]. With a deeper understanding of the propagation of the bit-based divi-
sion properties for local components [8], Xiang et al. introduced a MILP-based
method to search for the conventional (a.k.a. two-subset) bit-based division prop-
erties automatically [45].

From then on, a series of researches on extending the application scope or
increasing the accuracy of the algorithms for detecting division properties were
conducted [15,14,25,24]. To capture not only balanced but also constant output
bits as well as some cancellation characteristics ignored by the conventional bit-
based division property, the so-called three-subset bit-based division property
was proposed [40]. In [42,44], Wang et al. presented the automated methods for
detecting the three-subset bit-based division properties. In [19,20], Hao et al.
proposed the three-subset bit-based division property without unknown subsets
(3SDPwoU). Eventually, we arrive at methods for detecting division properties
with perfect accuracy.

The monomial prediction is another language for describing the division prop-
erties from a pure polynomial viewpoint [23]. They are equivalent although they
start from different perspectives. In this paper, we mainly take the conceptions
of the monomial prediction to interpret our new framework, so in the remaining
of this section, we introduce some basic language of the monomial prediction.

2.1 Notations and Definitions

We use bold italic lowercase letters to represent bit vectors. For an n-bit vector
u = (u0, · · · , un−1) ∈ Fn2 , its complementary vector is denoted by ū, where
ui ⊕ ūi = 1 for 0 ≤ i < n. The Hamming weight of u is wt(u) =

∑n−1
i=0 ui.

For u,x ∈ Fn2 , x[u] denotes a sub-vector of x with respect to u as x[u] =

(xi0 , xi1 , . . . , xiwt(u)−1
) ∈ Fwt(u)

2 , where ij ∈ {0 ≤ i ≤ n − 1 : ui = 1}. For any
n-bit vectors u and u′, we define u � u′ if ui ≥ u′i for all i. Similarly, we define
u � u′ if ui ≤ u′i for all i.

Boolean Function. Let f : Fn2 → F2 be a Boolean function whose algebraic
normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕

u∈Fn
2

au

n−1∏

i=0

xui
i ,

where au ∈ F2, and

xu = πu(x) =

n−1∏

i=0

xui
i with xui

i =

{
xi, if ui = 1,

1, if ui = 0,

is called a monomial. We use the notation xu → f to indicate that the coefficient
of xu in f is 1, i.e., xu appears in f . Otherwise, xu 9 f . In this work, we will

6

use xu and πu(x) interchangeably to avoid using the awkward notation x(i)u
(j)

when both x and u have superscripts.

Vectorial Boolean Function. Let f : Fm2 → Fn2 be a vectorial Boolean func-
tion with y = (y0, y1, . . . , ym−1) = f(x) = (f0(x), f1(x), . . . , fn−1(x)). For
v ∈ Fn2 , we use yv to denote the product of some coordinates of y:

yv =

m−1∏

i=0

yvii =

m−1∏

i=0

(fi(x))vi ,

which is a Boolean function in x.

2.2 Monomial Prediction

Let f : Fn0
2 → Fnr

2 be a composite vectorial Boolean function of a sequence of r
smaller function f (i) : Fni

2 → Fni+1

2 , 0 ≤ i ≤ r − 1 as

f = f (r−1) ◦ f (r−1) ◦ · · · ◦ f (0). (2)

For 0 ≤ i ≤ r − 1, suppose x(i) ∈ Fni
2 and x(i+1) ∈ Fni+1

2 are the input and
output of the ith component function f (i). Considering a monomial of x(0),
say πu(0)(x(0)), it is easy to find all the monomials of πu(1)(x(1)) that contain
πu(0)(x(0)), i.e., πu(0)(x(0)) → πu(1)(x(1)); for every such πu(1)(x(1)), we then
find all the πu(2)(x(2)) satisfying πu(1)(x(1)) → πu(2)(x(2)); finally, if we are
interested in whether πu(0)(x(0))→ πu(r)(x(r)), we may collect some transitions
from πu(0)(x(0)) to πu(r)(x(r)) as

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)).

Every such transition is called a monomial trail from πu(0)(x(0)) to πu(r)(x(r)),
denoted by πu(0)(x(0)) πu(r)(x(r)). All the trails from πu(0)(x(0)) to πu(r)(x(r))
are denoted by πu(0)(x(0)) 1 πu(r)(x(r)), which is the set of all trails. Then
whether πu(0)(x(0)) → πu(r)(x(r)) is determined by the size of πu(0)(x(0)) 1

πu(r)(x(r)), represented as |πu(0)(x(0)) 1 πu(r)(x(r))|. If there is no trail from
πu(0)(x(0)) to πu(r)(x(r)), we say πu(0)(x(0)) 6 πu(r)(x(r)) and accordingly
|πu(0)(x(0)) 1 πu(r)(x(r))| = 0.

Theorem 1 (Integrated from [19,20,21,23]). Let f = f (r−1) ◦f (r−1) ◦ · · · ◦
f (0) defined as above. πu(0)(x(0))→ πu(r)(x(r)) if and only if

|πu(0)(x(0)) 1 πu(r)(x(r))| ≡ 1 (mod 2).

Propagation Rules for the Monomial Trail and the MILP Model. Any
component of a symmetric cipher can be regarded as a vectorial Boolean func-
tion as f : Fn2 → Fm2 ,y = f(x). According to the definition of the monomial
prediction [23], the propagation rule for f can be described by a set of tuples

7

generated with Algorithm 5, which in turn can be described with a set linear
inequalities [34,33,9] and thus modeled with MILP. Since any symmetric prim-
itive can be represented as a sequence of basic operations such as XOR, AND
and COPY, it suffices to give the propagation rules for these basic functions.
We provide their concrete propagation rules and MILP models in App. A.

Gurobi Solver and PoolSearchMode. In this paper, we choose the Gurobi
solver [2] as our MILP tool to trace the propagation trails. Gurobi supports a
special mode called PoolSearchMode, which is useful to extract all possible solu-
tions of a model. In [19,20,23], this mode has been successfully used to enumerate
all the trails. In this paper, we use the notation

M.PoolSearchMode← 1

to signal that the PoolSearchMode is turned on. For more on Gurobi and the
PoolSearchMode, readers are requested to refer to the Gurobi manual [3].

3 Cube Attack and Superpoly Recovery

In the context of the symmetric-key cryptanalysis, we typically regard each out-
put bit of a primitive as a parameterized Boolean function f : Fn2 → F2 whose
algebraic normal form is

fk(x) =
⊕

u∈Fn
2

au(k)xu,x ∈ Fn2 ,k ∈ Fm2 ,

where the coefficient au(k) of the monomial xu can be regarded as a Boolean
function of k. In this paper, we denote the coefficient of xu in f by au(k) =
Coe (f,xu). Since the function mapping (x,k) to fk(x) can be expressed as a
Boolean function from Fn+m2 to F2, we may use f(x,k) to denote the parame-
terized Boolean function fk(x) when there is no confusion.

3.1 Cube Attack

Let f(x,k) be a parameterized Boolean function from Fn+m2 to F2, and u be a
constant vector. f(x,k) can be represented uniquely as

f(x,k) = p(x[ū],k) · xu + q(x,k),

where each term of q(x,k) is not divisible by xu. xu is called a cube term,
and Cu = {x ∈ Fn2 : x � u} is called a cube. The cube we use is sometimes
represented by its cube indices I = {0 ≤ i ≤ n− 1 : ui = 1} ⊆ {0, 1, . . . , n− 1},
and the cube is also denoted by CI . If we compute the sum of f over Cu, we
have ⊕

x∈Cu

f(x,k) =
⊕

x∈Cu

(p(x[ū],k) · xu ⊕ q(x,k)) = p(x[ū],k),

8

where p(x[ū],k) is called the superpoly of Cu. It is easy to check that the super-
poly of Cu is just the coefficient of xu in the parameterized Boolean function
f(x,k), i.e.,

p(x[ū],k) = Coe (f(x,k),xu) .

If we set the variables in x[ū] to some fixed constants, the superpoly p(x[ū],k) =
Coe (f,xu) is a Boolean function of k. In this paper, x[ū] will be always fixed
as 0.

As mentioned, in the cube attack the superpoly recovery plays a critical role.
If the attacker manages to recover the superpoly in the offline phase, then in
the online phase, he queries the encryption oracle with the cube and gets the
value of the superpoly (0 or 1). Then the attacker obtains an equation of some
key bits. By solving this equation, some key information can be extracted. The
remaining key bits can be recovered by exhaustive search.

3.2 Superpoly Recovery Based on the 3SDPwoU/Monomial
Prediction

To our best knowledge, currently there are four kinds of methods of recover-
ing the exact superpolies for a non-blackbox cipher. A brief introduction to the
four methods is provided in App. B. In this subsection, we recall some details
about the MILP model for recovering the exact superpoly based on the 3SDP-
woU [19,20] or the monomial prediction [23].

As we mentioned, any cipher output bit can be decomposed into a sequence
of small vectorial Boolean functions. Then by constructing the MILP models for
the propagation rules of these small functions in the way shown in Algorithm 5,
we can construct the whole MILP model whose solutions are all valid monomial
trails. If we want to recover the superpoly of a cube term xu, then we use u to
assign the public input variables (plaintext, IV or tweak) in the MILP model. For
the secret input (secret key), we just leave them as free variables. And for those
constant values of the input, if they are zero, the MILP variable corresponding
to the variables are also assigned by zero, while for those constant one input, we
let them be free variables.

After the model is constructed, every solution will be a valid monomial trail
like the form kvxu f . By calling the Gurobi solver with the PoolSearchMode
on, we can obtain all solutions of the MILP model. Once we collect all the
monomials from kvxu for f for any v ∈ Fm2 , we can compute the superpoly of
xu as

Coe (f,xu) = Coe

 ⊕

|kvxu1f |≡1 (mod 2)

kvxu,xu

 =

⊕

|kvxu1f |≡1 (mod 2)

Coe (kvxu,xu) .

In [23], Hu et al. observed that for the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0),

9

if πu(0)(x(0)) f , then for 0 < i < r,

|πu(0)(x(0)) 1 f | ≡
∑

π
u(r−i) (x(r−i))→f

∣∣∣πu(0)(x(0)) 1 πu(r−i)(x(r−i))
∣∣∣ (mod 2).

Since computing |πu(0)(x(0)) 1 πu(r−i)(x(r−i))| one by one is much easier than
computing |πu(0)(x(0)) 1 f | when i is significantly smaller than r, such a divide-
and-conquer strategy helps to speed up the search significantly.

4 Superpoly Recovery with Nested Monomial Predictions

In this section, we introduce a new framework for superpoly recovery that scales
well for massive superpolies. In some sense, the new framework is a hybrid of the
four previous methods described in App. B. First, we describe the new frame-
work in detail, and then a comprehensive comparison will be made with existing
methods.

4.1 The Nested Framework

Given a parameterized Boolean function which consists of a sequence of simple
vectorial Boolean functions as

f(x,k) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x,k),

let the output of f (i) is s(i+1). For simplicity, we always let the dimension of
s(i+1) be n. Then we choose a proper positive number (we will elaborate on how
to choose it later) r0 and express f in a polynomial of s(r−r0) ∈ Fn2 , i.e.,

f(x,k) =
⊕

t(r−r0)∈Fn
2

π
t(r−r0) (s

(r−r0))∈S(r−r0)

πt(r−r0)(s(r−r0)),

where S(r−r0) = {πt(r−r0)(s(r−r0)) : πt(r−r0)(s(r−r0)) → f}. Suppose the cube
term is xu, as Equation (7) shows, we need to compute Coe

(
πt(r−r0)(s(r−r0)),xu

)

for each element in S(r−r0).

Compute Coe
(
πt(r−r0)(s(r−r0)),xu

)
. According to the definition, s(r−r0) is the

output vector of a new composite vectorial Boolean function as

s(r−r0) = f (r−r0−1) ◦ f (r−r0−2) ◦ · · · ◦ f (0),

then πt(r−r0)(s(r−r0)) is a polynomial of (x,k). Hence we can construct the MILP
model to enumerate all feasible trails representing kvxu πt(r−r0)(s(r−r0))
to compute Coe

(
πt(r−r0)(s(r−r0)),xu

)
just like [19,20,23]. Different from the

10

previous methods, we set a time limit τ (r−r0) for the MILP model. For a MILP
modelM, we use

M.TimeLimit← τ (r−r0)

to denote it. We refer the readers to, e.g., the Gurobi manual [3, Page 591] for
more details about the TimeLimit. If the solver hasn’t stopped when the time is
up, the procedure will be forcibly terminated. For each element in S(r−r0), the
model of enumerating the trails will end up with three different kinds of status,

1. The model is solved and infeasible, then Coe
(
πt(r−r0)(s(r−r0)),xu

)
= 0;

2. The model is solved and feasible, and all the solutions has been enumerated,
then Coe

(
πt(r−r0)(s(r−r0)),xu

)
are obtained [19,20,23];

3. The model is not solved in the time limit τ (r−r0).

According to the three different results, we partition S(r−r0) into three parts in
sequence, say

S(r−r0) = S(r−r0)0

⋃
S(r−r0)p

⋃
S(r−r0)u ,

where S(r−r0)0 is called a solved-0 set that contains the elements of case 1, S(r−r0)p

is called a a solved-p set containing the elements of case 2, and S(r−r0)u is called
an undecided set containing the elements of case 3. The intersection of any two
sets among S(r−r0)0 ,S(r−r0)p and S(r−r0)u is empty.

The solved-0 set is discarded naturally since the elements in it have no con-
tribution to Coe (f,xu). For the solved-p set,

p(r−r0) =
⊕

π
t(r−r0) (s

(r−r0))∈S(r−r0)
p

Coe
(
πt(r−r0)(s(r−r0)),xu

)

is collected as a part of the whole superpoly Coe (f,xu). The undecided set is
the only one we proceed with.

To deal with the monomials in the undecided set S(r−r0)u , we choose another
positive r1 and expand each monomial in S(r−r0)u in a polynomial of s(r−r0−r1).
All the monomials from the expression are inserted into the S(r−r0−r1), i.e.,

S(r−r0−r1) = {πt(r−r0−r1)(s(r−r0−r1)) : πt(r−r0−r1)(s(r−r0−r1))→ πt(r−r0)(s(r−r0)),

πt(r−r0)(s(r−r0)) ∈ S(r−r0)u }

Note that if even-number monomials πt(r−r0−r1)(s(r−r0−r1)) are inserted into
S(r−r0−r1), they should cancel each other by combining the similar terms. Only
those occurring odd-number times should be held. Then we repeat the process
of dealing with S(r−r0), and keep going to reduce r.

As r reduces, there are two possible results of the whole procedure, the first
is for some r′ = r− r0− r1−· · ·− ri, i > 0, S(r

′)
u is an empty set. Then we obtain

Coe (f,xu) = p(r−r0) ⊕ p(r−r0−r1) ⊕ · · · ⊕ p(r′),

11

f the output of r-round cipher

S(r−r0)

S(r−r0)u S(r−r0)0
disgardedS(r−r0)p

Choose r0, express f in a poly-
nomial of s(r−r0)

for each πt(r−r0)(x(r−r0)) ∈ S(r−r0), con-
struct the MILP model for trails like kvxu
πt(r−r0)(x(r−r0)) with the time limit τ (r−r0)

call MILP solver

construct MILP models

p(r−r0) =⊕
π
t(r−r0) (s

(r−r0))∈S(r−r0)
p

Coe
(
πt(r−r0)(s(r−r0)),xu

)

is part of Coe (f,xu)

collect

S(r−R1)

If S(r−r0)u is NOT empty, choose
r1, express f in a polynomial of
s(r−R1)

define R1 = r0 + r1

S(r−R1)
u S(r−R1)

0
disgardedS(r−R1)

p

for each πt(r−R1)(x(r−R1)) ∈ S(r−R1), con-
struct the MILP model for trails like kvxu
πt(r−R1)(x(r−R1)) with the time limit τ (r−R1)

call MILP solver

construct MILP models

p(r−R1) =⊕
π
t(r−R1) (s

(r−R1))∈S(r−R1)
p

Coe
(
π
t(r−R1) (s(r−R1)),xu

)

is part of Coe (f,xu)

collect

· · ·

S(r−R)

If S(r−R) is NOT empty, choose
r1, express f in a polynomial of
s(r−R)

define R = r0 + r1 + · · ·

S(r−R)
u S(r−R)

0
disgardedS(r−R)

p

for each πt(r−R)(x(r−R)) ∈ S(r−R), con-
struct the MILP model for trails like kvxu
πt(r−R)(x(r−R)) with the time limit τ (r−R)

call MILP solver

construct MILP models

p(r−R) =⊕
π
t(r−R) (s(r−R))∈S(r−R)

p
Coe

(
πt(r−R)(s(r−R)),xu

)

is part of Coe (f,xu)

collect

Terminate

If S(r−R) is EMPTY

Coe (f,xu) = p(r−r0) ⊕ p(r−r0−r1) ⊕ · · · ⊕
p(r−r0−r1−···)

output the superpoly

Fig. 1: The nested framework of the superpoly recovery for the cube term xu for
r-round cipher f , i.e., Coe (f,xu).

the superpoly is recovered. The second result is we finally get S(0), it is natural
to get the partial superpoly from monomials in S(0). In this case, we also say
S(0)u is empty. Hence the superpoly is also recovered.

12

Algorithm 1: A framework for the superpoly recovery
1 Procedure SuperpolyRecFramework(f(x,k), r, I, ModelX):
2 Prepare a polynomial p = 0

3 Initialize S(r)
u = {f}

4 Prepare a hash table J whose key is the key monomial and the values is an
integer

5 while S(r)
u 6= ∅ do

6 r′ = r − ChooseRiX(S(r)
u , r)

7 for πt(r)(s
(r)) ∈ S(r)

u do
/* Express πt(r)(s

(r)) in a polynomial of s(r′) */
8 S(r′) ← Express(πt(r)(s

(r)), r, r′)

9 Remove the elements occurring even-number times in S(r′)

10 for π
t(r
′)(s

(r′)) ∈ S(r′) do
11 M← ModelX(r′, π

t(r
′)(s

(r′)), I)

12 τ (r
′) = ChooseTiX(r′)

13 M.PoolSearchMode← 1

14 M.TimeLimit← τ (r
′)

15 SolveM
16 if M is solved and all the solutions are extracted then
17 Extract kv in every found solution
18 Increase J [kv] by 1
19 Prepare p(r

′) = 0
20 for kv whose J [kv] is an odd number do
21 p(r

′) = p(r
′) ⊕ kv

22 p = p⊕ p(r
′)

23 else if M is not solved within τ (r
′) then

24 S(r′)
u ← π

t(r
′)(s

(r′))

25 return p

The nested framework can be illustrated by Figure 1 and the procedure
superpolyRecFramework in Algorithm 1. The procedure superpolyRecFramework
accepts four inputs: the first stands for the function of the output bit of our tar-
get; the second is the round number we are interested in; the third is the cube
indices related to the cube term xu; and the fourth is a MILP model construc-
tor for computing Coe

(
πu(r′)(x(r′)),xu

)
based on works in [19,20,23], which is

given when we introduce the concrete application. For example, when we target
Trivium, the fourth parameter should be ModelTrivium in Algorithm 2.

The choices of ri and τ (ri). The choices of ri and τ (ri) play important roles in
the whole algorithm since they affect the efficiency directly. When ri is big, it is
sometimes difficult to express π

t(r−r0−···−ri−1)(s(r−r0−···−ri−1)) in s(r−r0−···−ri)

13

especially when r − r0 − . . . − ri−1 has been close to 0. On the contrary, if
ri is too small, the size of S(r−r0−···−ri) will be small, too, then the program
is also not efficient, because we have to repeat more times of the expression.
Generally speaking, the choice of ri is heavily related to the position in the life
cycle of the nested framework. So we take a dynamic way to decide it. Given
S(r−r0−···−ri−1), we choose that ri which makes the size of S(r−r0−···−ri) become
larger than a given number N for the first time. In our application, we usually
choose N = 10, 000 or 100, 000. In Algorithm 1, the choice of ri is represented
by ChooseRiX function, X stands for the concrete instance.

The choice of τ (ri) affects the efficiency, too, as well as the memory consump-
tion. For a monomial πt(r−r0−···−ri)(s

(r−r0−···−ri)) that is hard or even impossible
to compute out Coe

(
πt(r−r0−···−ri)(s

(r−r0−···−ri)),xu
)
, a large τ (ri) is pure waste.

However, if Coe
(
πt(r−r0−···−ri)(s

(r−r0−···−ri)),xu
)
can be obtained in, e.g., 100

seconds, while we set τ (ri) = 50 seconds, then πt(r−r0−···−ri)(s
(r−r0−···−ri)) will

be pushed into the undecided set S(r−r0−···−ri)u and wait to be expressed. Then
the 50 seconds is also waste. It is indeed a tough task to choose a proper τ (ri).
We can only provide some principles and the τ (ri) should be obtained according
to the concrete instance.

When r − r0 − · · · − ri is closer to r, τ (i) should be smaller since it is more
likely that the model for computing Coe

(
πt(r−r0−···−ri)(s

(r−r0−···−ri)),xu
)
needs

an unbearable amount of the time to solve or even impossible to solve. While
r−r0−· · ·−ri is closer to 0, the model is more likely to be solved in a limited time
and expressing πt(r−r0−···−ri)(s

(r−r0−···−ri)) in π
t(r−r0−···−ri+1)(s(r−r0−···−ri+1)) is

more difficult and will spawn thousands of new monomials. Therefore, we prefer
to choose a larger τ (i). The concrete τ (i) we use for our applications will be given
on the spot, i.e., we will give ChooseRiX function when discussing the concrete
cipher.

4.2 A Comparison with Existing Methods

At first glance, the nested framework is similar to Ye and Tian’s recursively-
expressing method [49], as we need to express the polynomials in intermediate
states, too. However, there is one critical difference between the new frame-
work and the recursively-expressing method. In each step, we partition S(r′)
into three parts, say solved-0, solved-p and undecided sets while the recursively-
expressing method partitions it into two parts, in the same language with ours,
solved-0 and undecided sets. Some parts of the superpoly could be computed
out by MILP model when we process the solved-1 set, whereas the recursively-
expressing method simply pushes all monomials that should have been in solved-
1 set into the undecided set. As a result, the size of the undecided set may become
larger and larger. Every such monomial is potential to spawn thousands of new
monomials in the next expression. Especially when the superpoly is massive,
the size may explode in an exponential way. This is the main reason why their
method is not suitable to a large superpoly recovery and longer rounds of Triv-
ium.

14

The 3SDPwoU and the monomial prediction are embedded in our nested
framework as a sub-procedure. However, we use the MILP model in an restrained
way rather than totally relying on the MILP solver as done in [19,20,23]. This
is important because the internal mechanisms of the MILP solver are unknown.
The time consumption is hard to predict beforehand. In some extreme cases, the
MILP model is even impossible to be solved but we have no measures to deal
with it at all. While in our framework, each MILP model is small and under
control by setting the time limit. Besides, since the superpoly is computed in
the offline phase, we only need to calculate it once. It is natural for us to resort
more computation resources to compute it. Although some solvers like Gurobi
support the multithreading property, however, the improvement of the efficiency
is not always proportional to the number of threads we use in the experiments.
Whereas in the new framework, the program is naturally parallel when processing
the monomials in the undecided set, then the efficiency will be proportional to the
number of the threads we use. Hence, it is smooth for us to take a multithreading
strategy to speed up the search.

As discussed in App. B, Ye and Tian’s algebraic methods is potential for mas-
sive superpolies but it only works when we find the useful cubes so it has many
restrictions when dealing with a casual cube. Most importantly, such require-
ments for useful cubes are hard to meet when the number of rounds increases.
Our method is more general and has no such limitations.

Since Wang’s et al. pruning method needs to test every possible monomial
of the polynomial one by one, it is meaningful more in theory rather than prac-
tice. Our new framework focuses more on the practical recovery of the massive
superpolies.

5 Massive Superpoly Recovery

In this section, we apply the new framework to Trivium, Grain-128AEAD,
and Kreyvium. As a result, the exact ANFs of the superpolies for 843-, 844-
and 845-round Trivium, 191-round Grain-128AEAD and 894-round Kreyvium
are recovered, though they are extraordinarily massive. All the experiments are
conducted by Gurobi Solver (version 9.1.1) on a work station with 2×AMD
EPYC 7302 16-core (32 siblings) Processor 3.3 GHz, (totally 64 threads), 256G
RAM, and Ubuntu 20.10. In our platform, the superpolies for 843- and 844-
round Trivium are obtained less than two weeks, while the results for 845-round
Trivium consume less than three weeks. It costs 31 days to recovery the superpoly
for 894-round Kreyvium (who looks quite simple though). The two results for
Grain-128AEAD cost 3 and 5 days, respectively. The source codes (as well as
the superpolies we recovered) are available in our git repository.

5.1 Superpoly Recovery for Trivium up to 845 Rounds

Trivium is a hardware oriented stream cipher designed by De Cannière and Pre-
neel [10]. It has been selected as part of the eSTREAM portfolio [1] and specified

15

https://github.com/hukaisdu/massive_superpoly_recovery.git

as an International Standard under ISO/IEC 29192-3 [4]. At the initialization
phase, an 80-bit key and an 80-bit IV are loaded into the 288-bit initial state
(s0, s1, . . . , s287). Then the state is updated through 1152 rounds. This process
is summarized by the following pseudo-code:

(s0, s1, . . . , s92)← (K0,K1, . . . ,K79, 0, . . . , 0)

(s93, s95, . . . , s177)← (IV0, IV1, . . . , IV79, 0, . . . , 0)

(s177, s179, . . . , s287)← (0, . . . , 0, 1, 1, 1)

for i = 0 to 1151 do
t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170
t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263
t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68
(s0, s1, . . . , s92)← (t3, s0, s1, . . . , s91)

(s93, s95, . . . , s177 ← (t1, s93, s94, . . . , s175)

(s177, s179, . . . , s287)← (t2, s177, s178 . . . , s286)

end for

After the initialization phase, one key stream bit is generated by z = s65⊕s92⊕
s161⊕ s176⊕ s242⊕ s287. When we say r-round Trivium, we mean after r times
of updates in the initialization phase, one key bit denoted by zr is generated.
We assume that an attacker has the right to access zr.

In [23,19,20], the MILP model of Trivium for tracing the three-subset divi-
sion/monomial trails are proposed. In this paper, we slightly adjust their model
to make them suitable to the nested framework. The TriviumCore in Algorithm 2
generates the MILP constraints for all the monomial trails of the update function,
which is directly borrowed from [19,20]. The procedure ModelTrivium generates
a model M as the input of Algorithm 1. All feasible solutions of M cover all
kvxu πt(R)(s(R)) where v ∈ F80

2 and xu is the cube term. The functions that
produce the sequences of r0, r1, . . . , ri and τ (r−r0), τ (r−r0−r1), . . . , τ (r−r0−···−ri)
for Trivium used in Algorithm 1, i.e., ChooseRiTrivium and ChooseTiTrivium
are given in Algorithm 3.
Superpoly Recovery for 843-Round Trivium. Currently, there is no opti-
mal method of choosing a good cube, so we construct new cubes heuristically as
shown in Table 3. It is worth noting that we took the method in [23] to recover
the superpoly for I4, the program had not ended for more than one month and
we had to give up. Taking our nested framework, the superpoly for I4 could be
recovered in less than 12 days. Since the superpolies for I0, I1, . . . , I4 are too
complicated to present here, we provide them in the git repository. We here only
give some information of the five superpolies in Table 4. Since the superpolies
are too complicated, the balancedness of each superpoly is tested by 215 random
keys.
Superpoly Recovery for 844- and 845-Round Trivium. From Table 3,
we know the number of monomial trails and the terms in the superpoly for I2
is the minimum. We heuristically choose I2 for 844- and 845-round Trivium
and recover the superpolies. The information of the two superpolies are listed

16

https://github.com/hukaisdu/massive_superpoly_recovery.git

Algorithm 2: Model for the propagation trails of R-round Trivium
1 Procedure TriviumCore(M, x0, x1, . . . , x287, i1, i2, i3, i4, i5):
2 M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3 M.con← xij = yij ∨ zj for all j ∈ {1, 2, 3, 4}
4 M.con← a = z3
5 M.con← a = z4
6 M.con← yi5 = xi5 + a+ z1 + z2
7 for i ∈ {0, 1, . . . , 287} w/o i1, i2, i3, i4, i5 do yi = xi
8 return (M, y0, y1, . . . , y287)

9 Procedure ModelTrivium(round R, πt(R)(s(R)), I):
10 Prepare empty MILP ModelM
11 M.var ← s0i for i ∈ {0, 1, . . . , 287}
12 for i = 80 to 92 and i = 93+ 80 to 284 do M.con← s0i = 0

13 for i = 93 to 172 do
14 M.con← s0i = 1 ∀ i− 93 ∈ I
15 M.con← s0i = 0 ∀ i− 93 /∈ I
16 for r = 0 to R− 1 do
17 (M, x0, . . . , x287) = TriviumCore(M, sr1, . . . , s

r
288, 65, 170, 90, 91, 92)

18 (M, y0, . . . , y287) = TriviumCore(M, x1, . . . , x288, 161, 263, 174, 175, 176)
19 (M, z0, . . . , z287) = TriviumCore(M, y1, . . . , y288, 242, 68, 285, 286, 287)
20 (sr+1

0 , . . . , sr+1
287) = (z287, z0, . . . , z286)

21 for i = 0 to 287 do
22 M.con← sri = t

(R)
i // t(R) = (t0, t1, . . . , t287)

23 returnM

Algorithm 3: ChooseRiTrivium and ChooseTiTrivium
1 Procedure ChooseRiTrivium(S, r):
2 r′ = 0
3 while |S′| < 100, 000 and r − r′ > 0 do
4 r′ = r′ + 1
5 S′ = ∅
6 for s ∈ S do S′ = S′ ∪ Express(s, r, r′)

7 return r′

8 Procedure ChooseTiTrivium(r):
9 if r ≥ 600 then τ = 60 seconds

10 else if r ≥ 500 then τ = 120 seconds
11 else if r ≥ 400 then τ = 180 seconds
12 else if r ≥ 300 then τ = 360 seconds
13 else if r ≥ 200 then τ = 720 seconds
14 else if r ≥ 100 then τ = 1200 seconds
15 else if r ≥ 20 then τ = 3600 seconds
16 else if r ≥ 0 then τ =∞
17 return τ

17

Table 3: Cube indices we use for the superpoly recovery of 843-round Trivium
I |I| Indices

I0 56
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 45, 47, 49,
51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I1 57
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 40, 42, 45, 47,
49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I2 55
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51,
53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I3 54
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53,
55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I4 76

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 79

Table 4: Details related to the Superpoly of CI for 843-round Trivium. The
concrete ANFs for them are provided in the git repository.

I # Trails #Monomials #Involved Key Bits Degree Balancedness

I0 44,586,510 1,671,492 80 17 0.50

I1 217,694,326 7,985,786 80 19 0.50

I2 6,124,212 359,466 80 17 0.49

I3 15,587,645 628,607 80 18 0.50

I4 1,977,228,919 38,021 80 10 0.50

in Table 5. Since the superpolies are too complicated, the balancedness of each
superpoly is tested by 215 random keys.

5.2 Superpoly Recovery for 191-Round Grain-128AEAD

Grain-128AEAD [22] is an authenticated encryption algorithm with support for
associated data, which has recently been selected as the one of the ten finalist
candidates of the NIST lightweight cryptography standardization process. The
design of Grain-128AEAD is closely based on the Grain-128a [5] which was
introduced in 2011. Before the pre-output bits are used for encryption, a 64-
bit shift register and a 64-bit accumulator are also initialized to generate the
authentication tag later. In [19,20], Hao et al. assumed that the first pre-output
bit could be observed, then the Grain-128AEAD is actually the same as Grain-
128a. In this work, we also analyze Grain-128AEAD under this setting.

The internal state of Grain-128AEAD is represented by two 128-bit states as
b = (b0, b1, ..., b127) and s = (s0, s1, . . . , s127). The 128-bit key is loaded to the
first register b, and the 96-bit nonce (the initialization vector for Grain128a) is
loaded to the second register s. The other state bits are set to 1 except the least

18

https://github.com/hukaisdu/massive_superpoly_recovery.git

Table 5: Details related to the Superpoly for I2 for 844- and 845-round Trivium.
The concrete ANFs of them are available in the git repository.

I Round # Trails #Monomials #Involved Key Bits Degree Balancedness

I2 844 186,128,078 1,770,734 80 19 0.50

I3 844 55,152,796 917,468 80 17 0.49

I2 845 4,731,073,108 19,967,968 80 22 0.50

I3 845 1,362,323,454 12,040,654 80 21 0.50

one bit in the second register. Namely, the initial state bits are represented as

(b0, b1, . . . , b127) = (K0,K1, . . . ,K127),

(s0, s1, . . . , s127) = (N0, N1, . . . , N95, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 ⊕ b26 ⊕ b56 ⊕ b91 ⊕ b96 ⊕ b3b67 ⊕ b11b13 ⊕ b17b18 ⊕ b27b59 ⊕ b40b48
⊕b61b65 ⊕ b68b84 ⊕ b88b92b93b95 ⊕ b22b24b25 ⊕ b70b78b82,

f ← s0 ⊕ s7 ⊕ s38 ⊕ s70 ⊕ s81 ⊕ s96,
h← b12s8 ⊕ s13s20 ⊕ b95s42 ⊕ s60s79 ⊕ b12b95s94,
z ← h⊕ s93 ⊕ b2 ⊕ b15 ⊕ b36 ⊕ b45 ⊕ b64 ⊕ b73 ⊕ b89,
(b0, b1, . . . , b127)← (b1, . . . , b127, g ⊕ s0 ⊕ z),
(s0, s1, . . . , s127)← (s1, . . . , s127, f ⊕ z).

In the initialization, the state is updated 256 times without producing an output.
After the initialization, the update function is tweaked such that z is not fed to
the state, and z is used as a pre-output key stream.

MILP Model. ModelGrain-128AEAD in Algorithm 6 produces the MILP model
as the fourth input of Algorithm 1. The MILP model is used to enumerate all
trails like kvxu πt(R)(s(R)) where v ∈ F128

2 , and xu is the cube term we are in-
terested in. Algorithm 6 is slightly adapted from [19,20], the supporting functions
such as funcZ, funcG and funcF are directly borrowed (Algorithm 8). The func-
tions that produce the sequences of r0, r1, . . . , ri and τ (r−r0), τ (r−r0−r1), . . . , τ (r−r0−···−ri)
for Grain-128AEAD used in Algorithm 1, i.e., ChooseRiGrain-128AEAD and
ChooseTiGrain-128AEAD are given in Algorithm 7. Due to the page limits, all
the algorithms are presented in App. D.

Superpoly Recovery for 191-Round Grain-128AEAD. For 191-round
Grain-128AEAD, we apply the nested framework to two cubes. The first is
I0 = {0, 1, 2, . . . , 95}, where all nonce bits are active. The second is I1 =
{0, 1, 2, . . . , 95}\{30}, where all IV bits except the 30th are active. The infor-
mation of the two superpolies are shown in Table 6.

5.3 Superpoly Recovery for 894-Round Kreyvium

Kreyvium is a stream cipher which was designed for the use of the fully Homo-
morphic encryption [11]. As a variant of Trivium, Kreyvium shares the same

19

https://github.com/hukaisdu/massive_superpoly_recovery.git

Table 6: Details related to the Superpoly of I0 and I1 for 191-round Grain-
128AEAD. The concrete ANFs of them are available in the git repository.
I #Trails #Monomials #Involved Key Bits Degree Balancedness

I0 58,442,962 2,398,450 80 27 0.31

I1 123,946,062 3,053,028 80 27 0.30

internal structure but allows for bigger keys of 128 bits. The main advantage of
Kreyvium over Trivium is that it provides 128-bit security (instead of 80-bit)
with the same multiplicative depth, and inherits the same security arguments.
Kreyvium supports 128-bit IV and consists of five registers, two of them are
LFSRs denoted by K∗ and IV ∗, respectively. Each one of these two registers is
rotated independently from the rest of the cipher when updated. The remaining
three registers are NFSRs which are identical to those of Trivium. The five
registers are initialized as

(s0, s1, . . . , s92)← (K0,K1, . . . ,K92)

(s93, s95, . . . , s176 ← (IV0, IV1, . . . , IV83)

(s177, s179, . . . , s287)← (IV85, . . . , IV127, 1, . . . , 1, 0)

(IV ∗127, . . . , IV
∗
0)← (IV127, . . . , IV0)

(K∗127, . . . ,K
∗
0)← (K127, . . . ,K0)

Then, the state is updated over 1152 rounds, which is also identical with Triv-
ium. The update function is as follows,

for i = 0 to 1151 do
t1 ← s65 ⊕ s92, t2 ← s161 ⊕ s176, t3 ← s242 ⊕ s287 ⊕K∗0
zi ← t1 ⊕ t2 ⊕ t3
t1 ← t1 ⊕ s90s91 ⊕ s170 ⊕ IV ∗0
t2 ← t2 ⊕ s174s175 ⊕ s263
t3 ← t3 ⊕ s285s286 ⊕ s68
t4 ← K∗0 , t5 ← IV ∗0

(s0, s1, . . . , s92)← (t3, s0, s1, . . . , s91)

(s92, s93, . . . , s176)← (t1, s93, s94, . . . , s175)

(s177, s178, . . . , s287)← (t2, s177, s178, . . . , s286)

(K∗127,K
∗
126, . . . ,K

∗
0)← (t4,K

∗
127,K

∗
126, . . . ,K

∗
1)

(IV ∗127, IV
∗
126, . . . , IV

∗
0)← (t5, IV

∗
127, IV

∗
126, . . . , IV

∗
1)

end for

Only after the initialization finishes, the key stream bit zi, i ≥ 1152 is produced.
In this paper, we focus on the variant of Kreyvium whose initialization is reduced
to R rounds, where the key stream bit is denoted by zR.

MILP Model. ModelKreyvium in Algorithm 10 produces the MILP model as
the fourth input of Algorithm 1. The MILP model is used to enumerate all

20

https://github.com/hukaisdu/massive_superpoly_recovery.git

trails like kvxu πt(R)(s(R)) where v ∈ F128
2 , and xu is the cube term we are

interested in. Algorithm 10 is slightly adapted from [19,20] and the TriviumCore
subroutine is identical to that in Algorithm 2. The functions that produce the
sequences of r0, r1, . . . , ri and τ (r−r0), τ (r−r0−r1), . . . , τ (r−r0−···−ri) for Kreyvium
in Algorithm 1, i.e., ChooseRiKreyvium and ChooseTiKreyvium are given in
Algorithm 11. These algoritms are provided in App. E.

Superpoly Recovery for 893- and 894-Round Kreyvium For 893- and
894-round Kreyvium, we let the 119-dimensional cube indices be

I = {0, 1, . . . , 127}\{6, 66, 72, 73, 78, 101, 106, 109, 110}.

We apply the nested framework to recover the superpolies. For the 893-round
Kreyvium, there are 53 trails are obtained. However, only the trails representing
the monomial 1 appear odd-number times, i.e., the superpoly of z893 is pI = 1.

For 894-round Kreyvium, we get 24,107 trails, and 191 terms are involved in
the superpoly in z894. The superpoly is a 4-degree polynomial and involves 77
key bits. Since k119 is an independent term, the superpoly is a balance Boolean
function. The superpoly is as given in App. F.

6 Key-Recovery Attacks Exploiting Massive Superpolies

Suppose we have recovered the exact ANF of a superpoly p(k) for the cube term
xu (the corresponding cube is denoted by Cu). In the online phase, we first
call the cipher oracle to encrypt all elements in the cube and get the value of
the superpoly with time complexity 2wt(u). In this paper, we always use small-
dimensional cubes such that the complexity of this step can be ignored. Next,
we try to obtain some information of the secret key from the equation:

p(k) =
⊕

x∈Cu

fk(x). (3)

Suppose that p(k) involves n′ bits of the n-bit secret key. In the simplest case
where n′ � n, i.e., p(k) involves only a small part of the secret key, as the
situation in [20,23], we can evaluate p(k) for every combination of the involved
n′ key bits and filter out those incorrect keys that violates Equation (3).

However, for the case n′ = n, i.e., p(k) involves all the key bits, the method
presented above does not work any more. Indeed, the complexity of evaluating
Equation (3) with all possible key values is larger than 2n, especially for massive
superpolies. To tackle this problem, we present a new key-recovery technique
with the binary Möbius transforms shown in Algorithm 4 as its fundamental
algorithm.

We first introduce a trivial method for the key recovery based on the Möbius
transform. It is well known that Möbius transformation is available for the con-
version between the ANF and the truth table of any Boolean function. It requires
n×2n−1 1-bit XORs and 2n-bit memory complexity. Of course, the complexity is
higher than 2n in n ≥ 2, but the unit of the complexity is significantly lower. One

21

Algorithm 4: Möbius transformation
1 Procedure MöbiusTransformation(a[i], 0 ≤ i ≤ 2n):
2 for k = 1 to n do
3 for i = 0 to 2n−k do
4 for j = 0 to 2k−1 − 1 do
5 a[2ki+ 2k−1 + j] = a[2ki+ j]⊕ a[2ki+ 2k−1 + j]

6 return a

recovered superpoly can recover at most 1 bit of information, and the exhaustive
search is necessary to determine the whole of secret key bits. Considering the
difference between each unit of the complexity, the use of the Möbius transforma-
tion could be useful already. Although the superpolies we recovered are massive,
they are still very sparse when compared with the random polynomials (a ran-
dom polynomial may contains about 2n−1 monomials). Considering the sparse
property, in App. G we give a more efficient algorithm to compute the truth
table from the ANF. With the efficient algorithm, the Möbius transformation
costs only n× 2n−2 XORs for the superpolies we consider in this paper.

6.1 Divide-and-Conquer Method Using the Disjoint Set

Then, we exploit more detailed structural property of the recovered superpolies
to give a delicate key recovery attack on ciphers whose superpolies are massive.

Definition 1 (Disjoint set). Given a superpoly p(k) with n variables, if for
0 ≤ i 6= j < n, ki and kj are never multiplied mutually in all monomials
of p(k), then we say ki and kj are disjoint. If for a subset of variables D ⊆
{k0, k1, . . . , kn−1}, every pair of variables like ki, kj ∈ D are all disjoint, we call
D a disjoint set.

Search for a disjoint set of p(k). Obviously, there can be many different
disjoint sets for p(k), while usually we are only interested in the one with the
maximum size. To better study the disjoint sets of p(k), we introduce the disjoint
matrix. A matrix M ∈ Fn2 is called the disjoint matrix of p(k), if M [i][j] = 0
when ki and kj are disjoint, M [i][j] = 1 otherwise, where M [i][j] stands for the
value located at the intersection of the ith row and the jth column. Obviously,
all the pairs of the disjoint variables can be reflected by the disjoint matrix.
Given the disjoint matrix, a locally-optimized disjoint set can be obtained by a
greedy algorithm as follows,

1. sort the variables in {k0, k1, . . . , kn−1} in certain order, e.g., an increasing
order according to the value

∑
0≤j<nM [i][j] for ki. The sorted variables are

denoted as {k′0, k′1, . . . , k′n−1};
2. initialize a set D = {k′0};

22

3. for 1 ≤ i < n, if k′i is disjoint with all variables in D, put k′i into D; otherwise,
process the next variable.

4. after all the variables are processed, D is one of the disjoint sets.

Besides the greedy algorithm, noting that every disjoint set is one-to-one mapped
to a zero square sub-matrix of M that takes the diagonal of M as the axis of
symmetry, then an SAT/SMT model also works for finding a disjoint set with a
certain number of variables and sometimes it may find the optimal disjoint set.

We first consider the case where the targeted superpoly is balanced. And
later we consider the case where the superpolies are with a significant bias.

Key recovery attacks with single balanced superpoly. If the balanced su-
perpoly p(k) has a disjoint setD withm variables and J = {k0, k1, . . . , kn−1}/D,
then p(k) can be written as the form

p(k0, k1, . . . , kn−1) =

 ⊕

0≤i<m
ki · pi(J)

⊕ pm(J) (4)

where pi(J) is a polynomial of the variables in J .
Every pi(J) involves at most n −m variables, then we can use the Möbius

transform to compute the truth tables of p0, p1, . . . , pm over all possible values
of variables in J . Once we get the m + 1 truth tables, we can access them and
get the values for every key combination in J , then Equation (4) will become
a linear expression of variables in D. Considering Equation (3), we get a linear
equation of variables in D. For the linear equation, we can remove 1-bit key
guessing efficiently after guessing m− 1 key bits additionally.

As is pointed out, the complexity of computing the truth table from the ANF
of a Boolean function with κ variables by the Möbius transform is κ×2κ−2 XORs
(see App. G for more details about the complexity). Hence, if a superpoly has
a disjoint set with m variables, the above process costs (m + 1) × (n − m) ×
2n−m−2 XORs to construct the truth tables. For each of the 2n−m combinations
of variables in J , we access them+1 truth tables to get the values of pi, 1 ≤ i ≤ m
and construct a linear equation for the variables in D. Thereafter, with 2m−1

guesses for the values of any m− 1 variables in the linear equations, the value of
the remaining one variable can be determined. Finally we call the cipher oracle
to test whether the key candidate is correct.

Key recovery attacks with multiple balanced superpolies. Suppose we
have recovered N balanced superpolies p(0), p(1), . . . , p(N−1), if D is the disjoint
set for all p(i), 0 ≤ i < N , we call D their common disjoint set. With N super-
polies, we may get more linear equations to gain more information of the secret
keys. The complexity of the case then consists of

1. constructing the truth tables, which costs N × (m+ 1)× (n−m)× 2n−m−2

XORs;
2. constructing the linear equations, which is N × 2n−m × (m+ 1) truth table

lookups;

23

3. guessing the value of m − N (we always let m > N) variables, then the
remaining N variables can be determined by solving a set of simple linear
equations. This step costs 2n−m×2m−N guesses. For each guess in the third
step, call the cipher oracle to verify the key candidate.

The analysis of the complexity actually contains many redundant computa-
tions. For example, each sub-polynomial of a superpoly in Equation (4) at most
involves n −m variables, while in practice, some sub-polynomials may involves
less key bits. In this case, the complexity of constructing the truth tables and
the linear equations can be reduced. What’s more, for a superpoly, all linear
equations are limited within 2m+1 different types. So with a precomputed table
containing all the linear equations (and their solutions), the complexity of con-
structing the linear equations can be improved further. Finally, the dominant
part of the complexity is 2n−N cipher calls.

Compared with the previous cube attacks, our method requires considerable
memory complexities to store the N × (m+ 1) truth tables. We will provide the
memory cost for each concrete case later.

Key recovery attacks with significantly biased superpolies. When the
superpolies we consider are not balanced, then there are some problems with
the above process. For example, when a superpoly p is highly biased towards
zero, then its component sub-polynomials are very likely to be zero, too. We
may get many identities like 0 = 0 rather than the useful linear equations about
the variables in the disjoint set. The information we gain from the superpolies
are also reduced. Fortunately, the information of the secret keys contained in
the superpolies can be measured by their entropy. In this line of works, Hao
et al. also took the entropy to measure the information we can gain from the
superpolies of the 190-round Grain-128AEAD in [19,20].

For N superpolies p(0), p(1), . . . , p(N−1), we are interested in the joint proba-
bility distribution of

P (p(0) = ν0, p
(1) = ν1, . . . , p

(N−1) = νN−1) = P(ν0,ν1,...,νN−1), (ν0, ν1, . . . , νN−1) ∈ FN2 .
(5)

The distribution can be determined by experiments, e.g., in this paper, we test
215 random keys to observe this distribution. The entropy of this distribution is

E = −
∑

(ν0,ν1,...,νN−1)∈FN2

P(ν0,ν1,...,νN−1) logP(ν0,ν1,...,νN−1), (6)

When we know the entropy of the targeted superpolies, the information we gain
from the key recovery process are also known. If we have gained E bit of the key
information, then the final complexity is approximately 2n−E cipher calls.

6.2 Applications to Trivium, Grain-128AEAD and Kreyvium

Key recovery attack on 843-round Trivium. Consider the five superpolies
for cubes listed in Table 3, if we choose the superpolies for I0, I2 and I3, denoted
by p(0), p(2) and p(3), one of their common disjoint sets is

D = {k1, k39, k43, k12, k37}.

24

Then we can decompose p(0), p(2) and p(3) as follows,

p(0) = k37 · p(0)0 ⊕ k12 · p
(0)
1 ⊕ k43 · p

(0)
2 ⊕ k39 · p

(0)
3 ⊕ k1 · p

(0)
4 ⊕ p

(0)
5

p(2) = k37 · p(2)0 ⊕ k12 · p
(2)
1 ⊕ k43 · p

(2)
2 ⊕ k39 · p

(2)
3 ⊕ k1 · p

(2)
4 ⊕ p

(2)
5

p(3) = k37 · p(3)0 ⊕ k12 · p
(3)
1 ⊕ k43 · p

(3)
2 ⊕ k39 · p

(3)
3 ⊕ k1 · p

(3)
4 ⊕ p

(3)
5

The sub-polynomials of p(0), i.e., p(0)i , 0 ≤ i ≤ 5 involve respectively 58, 46, 67,
60, 69 and 75 key bits; the sub-polynomials of p(2), i.e., p(2)i , 0 ≤ i ≤ 5 involve
respectively 54, 18, 51, 33, 32 and 74 key bits; and the sub-polynomials of p(3),
i.e., p(3)i , 0 ≤ i ≤ 5 involve respectively 65, 40, 65, 47, 45 and 75 key bits. Then
it can be seen that comparing with p

(0)
5 , p

(2)
5 and p

(3)
5 , other sub-polynomials

involves much less key bits, then the complexity of constructing the truth tables
and linear equations for them can be neglected. According to Table 4, these
three superpolies are almost balanced. Then the complexity consists of (where
n = 80,m = 5, N = 3):

1. 3× 75× 273 XORs for constructing the truth tables;
2. 3× 275 table lookups for constructing the linear equations;
3. 22 × 275 guesses to determine the remaining three bits of information of the

keys. For each guess, call the 843-round Trivium to verify the key candidate.

Therefore, the final time complexity is slightly more than 277 843-round Trivium
calls to recover all the secret key bits. To store all the truth tables, we need
approximately 276.6 bits of memery, which is equivalent to 270 80-bit blocks.

Key recovery attack on 844-round Trivium. Consider the two super-
polies for 844-round Trivium of the cube I2 and I3, denoted by p(2) and p(3),
respectively, one of the common disjoint sets is

D = {k1, k10, k20, k43, k7, k22}.

Then we can decompose p(2) and p(3) as
{
p(2) = k22 · p(2)0 ⊕ k7 · p

(2)
1 ⊕ k43 · p

(2)
2 ⊕ k20 · p

(2)
3 ⊕ k10 · p

(2)
4 ⊕ k1 · p

(2)
5 ⊕ p

(2)
6

p(3) = k22 · p(3)0 ⊕ k7 · p
(3)
1 ⊕ k43 · p

(3)
2 ⊕ k20 · p

(3)
3 ⊕ k10 · p

(3)
4 ⊕ k1 · p

(3)
5 ⊕ p

(3)
6

The numbers of involved key bits in p
(2)
0 , p

(2)
1 , . . . , p

(2)
6 are respectively 69, 68,

67, 69, 64, 61 and 74, while the numbers for subpolies of p(3) are respectively 57,
62, 63, 62, 50, 63, 74. Furthermore, the superpoly is experimentally balanced.
Thereafter, the complexity consists of (where N = 2, n = 80,m = 6):

1. 2× 74× 272 XORs for constructing the truth tables;
2. 2× 274 truth table lookups for constructing the linear equations;
3. 24 × 274 guesses to determine two key variables in the linear equation and

for each guess, call 844-round Trivium to check the candidate.

25

Therefore, the final complexity is slightly more than 278 844-round Trivium calls
to recover all the secret key bits. The memory cost is about 275 bits, equivalent
to 269 80-bit blocks.

Key recovery attack on 845-round Trivium. Consider the superpoly p(2)
and p(3) for 845-round Trivium of the cubes I2 and I3, respectively, the only
common disjoint set is

D = {k1, k10}.
Then we can decompose p(2) and p(3) as

{
p(2) = k1 · p(2)0 ⊕ k10 · p

(2)
1 ⊕ p

(2)
2

p(3) = k1 · p(3)0 ⊕ k10 · p
(3)
1 ⊕ p

(3)
2

p
(2)
0 , p

(2)
2 , p

(3)
1 and p(3)2 involve 78 key bits while p(2)1 and p(3)0 involves only 77 key

bits. Therefore, the complexity consists of (where N = 2, n = 80,m = 2):

1. 4× 78× 276 + 2× 77× 275 XORs for constructing the truth tables;
2. 4× 278 + 2× 277 truth table lookups for constructing the linear equations;
3. Solver the linear equations of k1 and k10 to determine one key variables. For

each candidate, call the 845-round Trivium to verify the candidate.

Note the number of kinds of all linear equations of k1 and k10 is 8, so the
complexity of constructing the linear equations and solving them is very small.
Table lookups to the big tables may cost a lot. However, considering that the
values contained in the truth tables are all single bits. So we can construct these
tables parallelly. Then once lookup can obtain all bits that are used to construct
the linear equations. Fairly speaking, the final complexity is slightly more than
278 845-round Trivium calls to recover all the secret key bits. The memory
complexity is about 280 bits, which is equivalent to about 274 80-bit blocks.

Key recovery attack on 191-round Grain-128AEAD. Consider the super-
polies p(0) and p(1) for 191-round Grain-128AEAD, one of their common disjoint
sets is

D = {k9, k6, k0, k2, k7, k8, k5, k4, k14, k3, k11, k1}.
Then we can decompose p(0) and p(1) as

{
p(0) = k1 · p(0)0 ⊕ k11 · p

(0)
1 ⊕ · · · ⊕ k9 · p

(0)
11 ⊕ p

(0)
12

p(1) = k1 · p(1)0 ⊕ k11 · p
(1)
1 ⊕ · · · ⊕ k9 · p

(1)
11 ⊕ p

(1)
12

The sub-polynomials of p(0), i.e., p(0)0 , p
(0)
1 , . . . , p

(0)
12 involves respectively 89, 115,

112, 116, 93, 83, 109, 110, 29, 93, 112, 100, 116 key bits; while the sub-polynomials
of p(1), i.e., p(1)0 , p

(1)
1 , . . . , p

(1)
12 involves respectively 86, 115, 115, 116, 92, 96,

110, 115, 39, 99, 115, 107, 115 key bits. So for the complexity, it is enough to
consider only those superpolies involving at least 115 key bits. Further, since
p(0) and p(1) are highly biased, we compute the entropy of them according to
Equation (5) and (6). By taking 215 keys, the entropy contained in the two
superpolies is about 1.74. Then the complexity approximately consists of (where
n = 128,m = 12, N = 2):

26

1. 3× 116× 2114 + 6× 115× 2113 XORs for constructing the truth tables;
2. 3× 2116 + 6× 2115 table lookups for constructing the linear equations;
3. 210 × 2116 guesses to determine two bits of key information.
4. For about 2116.26 guesses from the previous step, we call 191-round Grain-

128AEAD for the verification for the key candidate.

The final complexity is then approximately 2116.26 191-round Grain-128AEAD
calls to recover all the secret key bits. The memory complexity is about 2118.6

bits which is equivalent to 2117.6 128-bit blocks.

Key recovery attack on 894-round Kreyvium. The superpoly for 894-
round Trivium is simple involving only 77 key variables, so we can recover all
the secret keys in 2127 Kreyvium calls by a normal way as done in [19,20,23].

7 Conclusion

In this paper, we propose a nested framework based on the monomial prediction
technique for efficiently recovering the massive superpolies. The nested frame-
work iteratively expands the cipher output in the polynomial of intermediate
states. For every term in the polynomial, we try to call the MILP solver to re-
cover a part of the superpoly from a smaller MILP model in a limited time.
For those terms which cannot be solved in the limited time, we proceed to ex-
pand them in deeper intermediate states. Finally, the targeted superpoly can be
fully recovered. We apply this new framework to Trivium, Grain-128AEAD and
Kreyvium, superpolies for up to 845, 191 and 894 rounds of the three ciphers are
recovered. With the disjoint set method taking the sparse property of the vari-
ables involved in the superpoly, the key recovery attacks on the corresponding
rounds of the three ciphers are improved. However, the disjoint set will take huge
memory cost which is a significant weakness. As the number of rounds increases,
the superpolies are expected to be more and more massive. Therefore, we put
up an open question: how to efficiently recover the secret keys in cube attacks
based on massive suoperpolies involving all secret key bits?

Acknowledgment. The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions. Kai Hu and Meiqin Wang are
supported by the National Natural Science Foundation of China (Grant No.
62002201, Grant No. 62032014), the National Key Research and Development
Program of China (Grant No. 2018YFA0704702, 2018YFA0704704), the Major
Scientific and Technological Innovation Project of Shandong Province, China
(Grant No. 2019JZZY010133), the Major Basic Research Project of Natural Sci-
ence Foundation of Shandong Province, China (Grant No. ZR202010220025).
Siwei Sun is supported by the National Natural Science Foundation of China
(61772519) and the Chinese Major Program of National Cryptography Devel-
opment Foundation (MMJJ20180102). Qingju Wang is funded by Huawei Tech-
nologies Co., Ltd (Agreement No.: YBN2020035184). The scientific calculations
in this paper have been done on the HPC Cloud Platform of Shandong Univer-
sity.

27

References

1. eSTREAM: the ECRYPT stream cipher project (2018). https://www.ecrypt.eu.
org/stream/. Accessed: 2021-03-23.

2. Gorubi Optimization. https://www.gurobi.com.
3. Gorubi Optimization Reference Manual. https://www.gurobi.com/wp-content/

plugins/hd_documentations/documentation/9.1/refman.pdf.
4. ISO/IEC 29192-3:2012: Information technology — Security techniques —

Lightweight cryptography — part 3: Stream ciphers. https://www.iso.org/
standard/56426.html.

5. Martin Ågren, Martin Hell, Thomas Johansson, andWilli Meier. Grain-128a: a new
version of Grain-128 with optional authentication. Int. J. Wirel. Mob. Comput.,
5(1):48–59, 2011.

6. Achiya Bar-On and Nathan Keller. A 2ˆ70 attack on the full MISTY1. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of
LNCS, pages 435–456. Springer, 2016.

7. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In DAC
2015, pages 175:1–175:6. ACM, 2015.

8. Christina Boura and Anne Canteaut. Another view of the division property. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, volume 9814 of
LNCS, pages 654–682. Springer, 2016.

9. Christina Boura and Daniel Coggia. Efficient MILP modelings for sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–361,
2020.

10. Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists,
volume 4986 of LNCS, pages 244–266. Springer, 2008.

11. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution
for efficient homomorphic-ciphertext compression. J. Cryptol., 31(3):885–916, 2018.

12. Donghoon Chang and Meltem Sönmez Turan. Recovering the key from the internal
state of Grain-128AEAD. IACR Cryptol. ePrint Arch., 2021:439, 2021.

13. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In
Eli Biham, editor, FSE ’97, volume 1267 of LNCS, pages 149–165. Springer, 1997.

14. Patrick Derbez and Pierre-Alain Fouque. Increasing precision of division property.
IACR Trans. Symmetric Cryptol., 2020(4):173–194, 2020.

15. Patrick Derbez, Pierre-Alain Fouque, and Baptiste Lambin. Linearly equivalent
s-boxes and the division property. IACR Cryptol. ePrint Arch., 2019:97, 2019.

16. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299.
Springer, 2009.

17. Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and 799
rounds of trivium using optimized cube attacks. In Shiho Moriai, editor, FSE 2013,
volume 8424 of LNCS, pages 502–517. Springer, 2013.

18. Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang.
Links between division property and other cube attack variants. IACR Trans.
Symmetric Cryptol., 2020(1):363–395, 2020.

19. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset - improved cube

28

https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://www.gurobi.com
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://www.iso.org/standard/56426.html
https://www.iso.org/standard/56426.html

attacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, volume 12105 of LNCS, pages 466–495. Springer,
2020.

20. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset. J. Cryptol.,
34(3):22, 2021.

21. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower bounds
on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 537–566. Springer, 2020.

22. Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka
Yoshida. Grain-128AEAD - A lightweight AEAD stream cipher. NIST Lightweight
Cryptography, Round, 3, 2019.

23. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and key-
independent sums. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT
2020, Part I, volume 12491 of LNCS, pages 446–476. Springer, 2020.

24. Kai Hu and Meiqin Wang. Automatic search for a variant of division property
using three subsets. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of
LNCS, pages 412–432. Springer, 2019.

25. Kai Hu, Qingju Wang, and Meiqin Wang. Finding bit-based division property for
ciphers with complex linear layers. IACR Trans. Symmetric Cryptol., 2020(1):236–
263, 2020.

26. Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel, editor,
FSE’94, volume 1008 of LNCS, pages 196–211. Springer, 1994.

27. Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127.
Springer, 2002.

28. Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard E.
Blahut, Daniel J. Costello, Ueli Maurer, and Thomas Mittelholzer, editors, Com-
munications and Cryptography, vol 276, pages 227–233. Springer, 1994.

29. Michael Lehmann and Willi Meier. Conditional differential cryptanalysis of Grain-
128a. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors, CANS
2012, volume 7712, pages 1–11. Springer, 2012.

30. Meicheng Liu. Degree evaluation of NFSR-based cryptosystems. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages
227–249. Springer, 2017.

31. Mitsuru Matsui. New block encryption algorithm MISTY. In Eli Biham, editor,
FSE ’97, volume 1267 of LNCS, pages 54–68. Springer, 1997.

32. Piotr Mroczkowski and Janusz Szmidt. The cube attack on stream cipher Trivium
and quadraticity tests. Fundam. Informaticae, 114(3-4):309–318, 2012.

33. Yu Sasaki and Yosuke Todo. New algorithm for modeling s-box in MILP based
differential and division trail search. In Pooya Farshim and Emil Simion, editors,
SecITC 2017, volume 10543 of LNCS, pages 150–165. Springer, 2017.

34. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Ap-
plication to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block
ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I,
volume 8873 of LNCS, pages 158–178. Springer, 2014.

35. Yao Sun. Cube attack against 843-round Trivium. IACR Cryptol. ePrint Arch.,
2021:547, 2021.

29

36. Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of LNCS, pages 413–
432, 2015.

37. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS,
pages 287–314. Springer, 2015.

38. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages 250–279.
Springer, 2017.

39. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-
blackbox polynomials based on division property. IACR Cryptol. ePrint Arch.,
2017:306, 2017.

40. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
Simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, 2016.

41. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. Improved division property based cube attacks exploiting algebraic proper-
ties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, volume 10991 of LNCS, pages 275–305. Springer, 2018.

42. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided
method of searching division property using three subsets and applications. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, volume 11923
of LNCS, pages 398–427. Springer, 2019.

43. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. A practical method
to recover exact superpoly in cube attack. IACR Cryptology ePrint Archive,
2019:259, 2019.

44. Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Exploring secret
keys in searching integral distinguishers based on division property. IACR Trans.
Symmetric Cryptol., 2020(3):288–304, 2020.

45. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, volume 10031 of LNCS, pages 648–678. Springer, 2016.

46. Chen-Dong Ye and Tian Tian. A new framework for finding nonlinear superpolies
in cube attacks against trivium-like ciphers. In Willy Susilo and Guomin Yang,
editors, ACISP 2018, volume 10946 of LNCS, pages 172–187. Springer, 2018.

47. Chen-Dong Ye and Tian Tian. Algebraic method to recover superpolies in cube
attacks. IET Inf. Secur., 14(4):430–441, 2020.

48. Chen-Dong Ye and Tian Tian. A practical key-recovery attack on 805-round triv-
ium. IACR Cryptol. ePrint Arch., 2020:1404, 2020.

49. Chendong Ye and Tian Tian. Revisit division property based cube attacks: Key-
recovery or distinguishing attacks? IACR Trans. Symmetric Cryptol., 2019(3):81–
102, 2019.

30

Appendix

A Propagation Rules and MILP Models for XOR, AND
and COPY

Algorithm 5. The propagation rules for f : Fn2 → Fm2 ,y = f(x) can be com-
puted by Algorithm 5, interested readers are refered to [23,19] for more details.

Algorithm 5: Compute the propagation rules for f : Fn2 → Fm2 ,y = f(x)

1 Procedure ComputeRule(n, m, x, y):
2 Initialize an empty set S
3 for u ∈ Fn2 do
4 for v ∈ Fm2 do

/* symbolic computation */
5 if xu → yv then put (u,v) into S

6 return S

Propagation Rules of XOR, AND and COPY. According to [19], the rules
for XOR, AND and COPY are shown as follows,

Rule 1 (XOR [19,20]) Let x = (x0, x1, . . . , xn−1) and y = (x0⊕x1, x2, . . . , xn−1)
be the input and output vector of a XOR function. Considering a monomial of
x as xu, the monomials yv of y meet the condition that xu → yv only when v
satisfy

v = (u0 + u1, u2, . . . , un−1), (u0, u1) ∈ {(0, 0), (0, 1), (1, 0)}.

Rule 2 (AND [19,20]) Let x = (x0, x1, . . . , xn−1) and y = (x0∨x1, x2, . . . , xn−1)
be the input and output vector of a AND function. Considering a monomial of
x as xu, the monomials yv of y meet the condition that xu → yv only when v
satisfy

v = (u0, u2, . . . , un−1), (u0, u1) ∈ {(0, 0), (1, 1)}.

Rule 3 (COPY [19,20]) Let x = (x0, x1, . . . , xn−1) and y = (x0, x0, x1, x2, . . . , xn−1)
be the input and output vector of a COPY function. Considering a monomial
of x as xu, the monomials yv of y meet the condition that xu → yv only when
v satisfy

v =

{
(0, 0, u2, . . . , un−1), if u0 = 0
(0, 1, u2, . . . , un−1), (1, 0, u2, . . . , un−1), (1, 1, u2, . . . , un−1), if u0 = 1

31

MILP Model of the Propagation Trails. When constructing the MILP
model, we usually initialize an empty model, denoted byM, then generate some
MILP variables such asM.var ← a, b, c; where a, b, c are some variables we need
in the following inequalities. Then some inequalities are added to the model such
as M.con ← a + b ≥ c; Finally, according to the language of the MILP tool in
the hand, we can call the tool to solve the model and obtain the results including
feasible or infeasible. If the model is feasible, we could derive a solution of all
the inequalities. Under the special settings, some tools can return all possible
solutions.

A MILP model for tracing the propagation trails of a whole cipher can be
established by collecting all the inequalities for each component functions. Here
we introduce the MILP models for the three mentioned basic functions XOR,
AND and COPY. Note that the following models describe the generalized forms
of Rule 1, 2 and 3, which are easily derived from their original forms.

Model 1 (XOR [19,20]) Let (a0, a1, . . . , an−1)
XOR−−−→ b be a propagation trail

of XOR. The following inequalities suffice to describe all the valid trails for
XOR, {

M.var ← a0, a1, . . . , an−1, b as binary;

M.con← b = a0 + a1 + · · ·+ an−1;

Model 2 (AND [19,20]) Let (a0, a1, . . . , an−1)
AND−−−→ b be a propagation trail

of AND. The following inequalities suffice to describe all the valid trails for
AND, {

M.var ← a0, a1, . . . , an−1, b as binary;

M.con← b = ai, ∀i ∈ {0, 1, . . . n− 1}.

Model 3 (COPY [19,20]) Let a COPY−−−−→ (b0, b1, . . . , bn−1) be a propagation
trail of AND. The following inequalities suffice to describe all the valid trails
for COPY,

M.var ← a, b0, b1, . . . , bn−1 as binary;

M.con← b0 + b1 + · · ·+ bn−1 ≥ a;

M.con← a ≥ bi, ∀i ∈ {0, 1, . . . , n− 1}.
If the MILP solver supports the OR (∨) operation, then the model can also be
represented by {

M.var ← a, b0, b1, . . . , bn−1 as binary;

M.con← a = b0 ∨ b1 ∨ · · · ∨ bn−1;

B Previous Methods for Exact Superpoly Recovery
Revisit

We now recall existing methods for superpoly recovery in the language of mono-
mial prediction.

32

Wang et al.’s Pruning Method. In [42], Wang et al. introduced the first
systematical method to recover the exact superpoly based on the three-subset
division property [40]. For a parameterized composite vectorial Boolean function
shown in Equation (2) with x(i+1) = f (i)(x(i)), 0 ≤ i ≤ r−1,f (i) : Fni

2 → Fni+1

2 ,
whether πu(0)(x(0))→ πu(r)(x(r)) is determined by the following procedures [42]:

1. compute T1 = {πu(1)(x(1)) : πu(0)(x(0))→ πu(1)(x(1)),u(1) ∈ Fn1
2 }.

2. for each πu(1)(x(1)) ∈ T1, check whether πu(1)(x(1)) πu(r)(x(r)) by an
MILP model based on the two-subset bit-based division property. If there is
no trail, it is discarded.

3. for each surviving πu(1)(x(1)) ∈ T1, compute πu(2)(x(2)) satisfying πu(1)(x(1))→
πu(2)(x(2)) and put all πu(2)(x(2)) in T2, i.e., T2 = {πu(2)(x(2)) : πu(1)(x(1))→
πu(2)(x(2)), πu(1)(x(1)) ∈ T1}.

4. discard those monomials in T2 occurring an even-number of times, and then
discard those πu(2)(x(2)) that have no trails to πu(r)(x(r)) with the MILP
approach. Repeat the above step for T2.

There are two possible results of the above pruning method: (1st) we suc-
cessfully obtain Tr that contains odd-number πu(r)(x(r)), then we determine
πu(0)(x(0))→ πu(r)(x(r)). (2nd) Ti, 1 ≤ i ≤ r will be an empty set after discard-
ing the bad elements, then we determine πu(0)(x(0)) 9 πu(r)(x(r)). In theory,
this method is useful in recovering the exact superpoly because it can deter-
mine whether πu(0)(x(0)) → πu(r)(x(r)) or not. However, it is impractical for
many reasons. Firstly, the size of Ti may explode as the round grows so that it
costs unbearable memory and time to proceed. Secondly, we never know which
monomial of the key will appear in the superpoly, which means we have to test
all possible monomials of the key one by one, making it impossible for complex
superpolies. Indeed, they only gave a theoretical result for 841-round Trivium.

Ye and Tian’s Algebraic Method. In [47], Ye and Tian introduced a pure
algebraic method to recover the exact superpoly. For a parameterized Boolean
function which can be divided into two parts as f(x,k) = f (1) ◦ f (0)(x,k),

denote the output of f (0) by s = (s0, s1, . . . , sn−1). We first express f(x,k) in a
polynomial of s0, s1, . . . , sn−1, all the monomials of s contained by f is denoted
as T. Then for a cube term xu, we have

Coe (f,xu) = Coe

(⊕

t∈T
st,xu

)
=
⊕

t∈T
Coe

(
st,xu

)
. (7)

Note that each coordinate of s is also a Boolean function of x and k. Then by
combining all possible terms in the polynomial of si satisfying ti = 1, it is pos-
sible to compute out Coe

(
st,xu

)
. Finally, we can recover the whole superpoly

according to Equation (7). However, in most cases, Coe
(
st,xu

)
is too compli-

cated to compute. To handle this problem, Ye and Tian introduced the useful
cube and its criterion. If we consider a useful cube, Coe

(
st,xu

)
will be easier

to calculate. This method is potential for massive superpolies. But an Achilles’

33

heel of this method is that it is very possible that we cannot find any useful cube
at all as the rounds of the target cipher become larger. Actually, they at most
recovered some polynomials of 838-round Trivium.

Ye and Tian’s Recursively-Expressing Method. In [49], Ye and Tian pro-
posed another method to recover the exact superpoly. This method has some
dual property to Wang et al’s pruning method [42]. For a parameterized Boolean
function which can be divided into a sequence of r vectorial Boolean function,
f(x,k) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x,k), and the output of f (i) is denoted by
s(i+1). According to [49], the superpoly of a cube term xu can be recovered by
the following procedures:

1. express f in a polynomial of s(r−1), and push all monomials of s(r−1) con-
tained by f in S(r−1), i.e., S(r−1) = {πt(r−1)(s(r−1)) : πt(r−1)(s(r−1))→ f}.

2. for each monomial in S(r−1), we take MILP model of the two-subset division
property [40,45] to discard those satisfying Coe

(
πt(r−1)(s(r−1)),xu

)
= 0.

3. express every surviving element in S(r−1) by s(r−2), and push all related
monomials to s(r−2) in S(r−2). Repeat the above step for S(r−2).

If the program finishes properly, then f could be represented by x[u] and k, the
superpoly of xu is recovered naturally. Of course, it is possible that a certain S(i)
is empty, then the program returns Coe (f,xu) = 0. However, it is likely that
there are too many monomials in S(i) which cannot be discarded, especially for a
massive superpoly. In [49], they verified several proposed superpolies in [38,41],
but no new superpoly of Trivium for more than 380 rounds is recovered.

Hao’s et al.’s PoolSearchMode Method. Based on the PoolSearchMode of
Gurobi, Hao et al. introduced a method to enumerate all possible propagation
trails [19,20]. For a parameterized Boolean function f(x,k), considering the cube
term xu, we construct a MILP model over all possible kvxu f(x,k) 6. We
turn on the PoolSearchMode of Gurobi solver to find all solutions. When the
model is solved, we store all the kvxu int a hash table, and count |kvxu 1 f | for
each entry. Only those kvxu’s appearing odd times are presented in f . Finally,
the superpoly of kvxu can be computed as

Coe (f,xu) = Coe

 ⊕

|kvxu1f |≡1 (mod 2)

kvxu,xu

 =

⊕

|kvxu1f |≡1 (mod 2)

Coe (kvxu,xu) .

Later in [23], Hu et al. observed that for the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0),

if πu(0)(x(0)) f , then for 0 < i < r,

|πu(0)(x(0)) 1 f | ≡
∑

π
u(r−i) (x(r−i))→f

∣∣∣πu(0)(x(0)) 1 πu(r−i)(x(r−i))
∣∣∣ (mod 2).

6 In the MILP implementation of the model, v is set as a free variable. We refer the
readers to the codes in [19,20,23] for more details about the MILP implementation.

34

Since computing |πu(0)(x(0)) 1 πu(r−i)(x(r−i))| one by one is much easier than
computing |πu(0)(x(0)) 1 f | when i is significantly smaller than r, such a divide-
and-conquer strategy helps to speed up the search significantly.

This method enable to recover the superpoly up to 842-round Trivium,
190-round Grain-128AEAD and 892-round Kreyvium. However, there are two
serious restrictions on the method. Firstly, the efficiency is still a bottleneck.
For example, we took the method in [23] to recover the superpoly for 843-round
Trivium with the cube indices I4 in Table 3, the program did not end after a
month. In addition, the Gurobi PoolSearchMode supports at most 2,000,000,000
solutions. As the superpoly becomes increasingly complicated, the actual number
of trails is likely to surpass this bound. Then, enumerating all solutions with the
method of [19,20] to recover the superpoly will fail. In fact, in our result shown
later for recovering the superpoly for 845-round Trivium, the number of trails
will be at least 4,731,073,108.

C Results for 840-, 841- and 842-Round Trivium

C.1 Improved Key Recovery Attack for 840-Round Trivium

In [23], Hu et al. recovered three balanced superpolies of 75-dimension cubes.
Then they could recover 3 bits of key information, the remaining 77 bits infor-
mation could be searched by force. Then the complexity is about 277.8, which is
the best key recovery attack for 840-round Trivium. In this subsection, we pro-
posed some new superpolies based on the nested monomial prediction technique.
Although none of them are balanced, we can still extract some information of
the key if considering them together. The key recovery attacks for 840-round
Trivium is improved slightly.

The cube indices we use for attacking 840-round Trivium is listed in Table 7.
For each cube indices in Table 7, we take our new framework to recover the
superpoly. The number of propagation trails, the number of monomials in the
final superpoly, the number of key bits involved in the superpoly, the degree,
and the probability that the superpoly is 1 under 215 randomly-chosen keys are
given in Table 8. The concrete ANF of these superpolies are given in our public
repository.

Considering all 6 cubes in Table 7, from the viewpoint of the entropy, as
shown in Equation (5) and (6), we take 215 random keys to test the distribution
and then the entropy is about 3.68, i.e., we can extract averagely 3.68 bits of
the key information. Since the dimensions of the 6 cube indices are at most 62,
and at most 68 key bits are involved in the superpoly, the overhead of filtering
the wrong keys in the online phase can be ignored. The dominant part the
complexity for the key recovery attack is the exhaustive search, which is 276.32

Trivium encryptions.

35

https://github.com/hukaisdu/massive_superpoly_recovery.git
https://github.com/hukaisdu/massive_superpoly_recovery.git

Table 7: Cube indices we use for the superpoly recovery of 840-round Trivium

I |I| Indices

I0 47
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23,

25, 27, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68,
70, 72, 77, 75, 79

I1 49
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 23, 25, 27, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64,
66, 68, 70, 72, 77, 75, 79

I2 52
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57,
60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I3 53
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,
57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I4 56
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 45, 47, 49,
51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I5 62
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42,
43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

Table 8: Some information related to the superpoly of CI for 840-round Trivium

I # Trails #Monomials #Involved Key Bits Degree Balancedness

I0 2,380,185 390,899 57 20 0.02

I1 2,421,495 357,989 70 20 0.08

I2 320,805 31,647 61 17 0.14

I3 1,988,685 116,145 60 17 0.26

I4 80,197 7,549 68 14 0.30

I5 40,737 1,253 58 12 0.44

36

C.2 Improved Key Recovery for 841-Round Trivium

In [23], Hu et al. recovered two balanced superpolies of 76-dimension cubes. Then
they could recover 2 bits of key information, the remaining 78 bits information
could be searched by force. Then the complexity is about 278.6, which is the
best key recovery attack for 841-round Trivium. In this paper, we consider the
following 56-dimension cube indices

I = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 45, 47, 49,
51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79 }.

By the nested monomial prediction technique, the superpoly of this cube can be
recovered. Among totally 390,657 trails, 20,485 terms appear in the superpoly.
The superpoly is a polynomial of degree 16, related to 61 key bits.

Since the superpoly is complicated, we evaluate its balancedness by exper-
iments. With 215 different keys, 15,654 keys make the output be 1, i.e., the
probability that the output is 1 is approximately 0.48. From the perspective of
the entropy, approximately 1 bit information of keys can be extracted on av-
erage. Since the complexity of the key filtering by this superpoly in the online
phase can be ignored, together with the two superpolies recovered in [23], 3 key
bits can be obtained. The following 77 bits are gotten by exhaustive search. The
total complexity is 278.

C.3 Improved Key Recovery for 842-Round Trivium

In [23], Hu et al. recovered two balanced superpolies of 76-dimension cubes. Then
they could recover 2 bits of key information, the remaining 78 bits information
could be searched by force. Then the complexity is about 278.6, which is the
best key recovery attack for 842-round Trivium. In this paper, we consider the
following 56-dimension cube indices

I = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 45, 47, 49,
51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79 }.

By the hourglass technique, the superpoly of this cube can be recovered. Among
totally 9,395,018 trails, 343,000 terms appear in the superpoly. The superpoly
is a polynomial of degree 17, related to 75 key bits. Since the superpoly is
complicated, we evaluate its balancedness by experiments. With 215 different
keys, 16,392 keys make the output be 1, i.e., the probability that the output is
1 is approximately 0.50. Then this is (almost) a balance polynomial. From the
perspective of the entropy, 1 bit information of keys can be extracted on average.
Since the complexity of the key filtering by this superpoly in the online phase
can be ignored (at most 275), together with the two superpolies recovered in [23],
3 key bits can be obtained. and the following 77 bits are gotten by exhaustive
search. The total complexity is 278.

37

D Models and Functions Used for Grain-128AEAD

Algorithm 6: Model for the propagation trails of R-round Grain-
128AEAD
1 Procedure ModelGrain(round R, πt(R)(s(R)), I):
2 Prepare an empty MILP ModelM
3 M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4 M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5 M.con← s0127 = 0

6 for i = 0 to 95 do
7 M.con← s0i = 1 ∀ i ∈ I
8 M.con← s0i = 0 ∀ i /∈ I
9 for r = 0 to R− 1 do

10 (M, b′0, . . . , b
′
127, z

r) = funcZ(M, br−10 , . . . , br−1127 , s
r−1
0 , . . . , sr−1127)

11 M.var ← zg, zf as binary
12 M.con← zr = zg ∨ zf

13 (M, b′′0 , . . . , b
′′
127, g) = funcG(M, b′0, . . . , b

′
127)

14 (M, s′′0 , . . . , s
′′
127, f) = funcF(M, s′0, . . . , s

′
127)

15 for i = 0 to 126 do
16 bri = b′′i+1

17 sri = s′′i+1

18 M.var ← br127, s
r
127 as binary

19 M.con← b′′0 = 0

20 M.con← br127 = g+ s′′0 + zg

21 M.con← sr127 = f+ zf

/* Additional constraint in [19] */
22 M.con← sr0 + zr ≤ 1

23 for i = 0 to 127 do
/* tRi = (tR0 , t

R
1 , . . . , t

R
127, t

R
128, . . . t

R
255) */

24 M.con← bRi = tRi
25 M.con← sRi = tRi+128

26 returnM

38

Algorithm 7: ChooseRiGrain-128AEAD and ChooseTiGrain-128AEAD
1 Procedure ChooseRiGrain-128AEAD(S, r):
2 r′ = 1
3 while |S′| < 10, 000 and r − r′ > 0 do
4 S′ = ∅
5 for s ∈ S do S′ = S′ ∪ Express(s, r, r′)

6 return r′

7 Procedure ChooseTiGrain-128AEAD(r):
8 if r ≥ 120 then τ = 60 seconds
9 else if r ≥ 110 then τ = 120 seconds

10 else if r ≥ 100 then τ = 180 seconds
11 else if r ≥ 10 then τ = 360 seconds
12 else if r ≥ 0 then τ =∞
13 return τ

39

Algorithm 8: MILP model for NFSR and LFSR in Grain-128AEAD
1 Procedure funcZ(M, b0, . . . , b127, s0, . . . , s127):
2 (M, b0, . . . , b127, s0, . . . , s127, a1) = AND(M, b0, . . . , b127, s0, . . . , s127, {12}, {8})
3 (M, b0, . . . , b127, s0, . . . , s127, a2) = AND(M, b0, . . . , b127, s0, . . . , s127,∅, {13, 20})
4 (M, b0, . . . , b127, s0, . . . , s127, a3) = AND(M, b0, . . . , b127, s0, . . . , s127, {95}, {42})
5 (M, b0, . . . , b127, s0, . . . , s127, a4) = AND(M, b0, . . . , b127, s0, . . . , s127,∅, {60, 79})
6 (M, b0, . . . , b127, s0, . . . , s127, a5) = AND(M, b0, . . . , b127, s0, . . . , s127, {12, 95}, {94})
7 (M, b0, . . . , b127,∅, x1) = XOR(M, b0, . . . , b127,∅, {2, 15, 36, 45, 64, 73, 89},∅)
8 (M,∅, s0, . . . , s127, x2) = XOR(M,∅, s0, . . . , s127,∅, {93})
9 M.var ← z as binary

10 M.con← z = x1 + x2 +
∑5

i=1 ai
11 return (M, b0, . . . , b127, s0, . . . , s127, z)

12 Procedure funcF(M, s0, . . . , s127):
13 (M,∅, s0, . . . , s127, f) = XOR(M,∅, s0, . . . , s127,∅, {0, 7, 38, 70, 81, 96}) return

(M, s0, . . . , s127, f)
14 Procedure funcG(M, b0, . . . , b127):
15 (M, b0, . . . , b127,∅, a1) = AND(M, b0, . . . , b127,∅, {3, 67},∅)
16 (M, b0, . . . , b127,∅, a2) = AND(M, b0, . . . , b127,∅, {11, 13},∅)
17 (M, b0, . . . , b127,∅, a3) = AND(M, b0, . . . , b127,∅, {17, 18},∅)
18 (M, b0, . . . , b127,∅, a4) = AND(M, b0, . . . , b127,∅, {27, 59},∅)
19 (M, b0, . . . , b127,∅, a5) = AND(M, b0, . . . , b127,∅, {40, 48},∅)
20 (M, b0, . . . , b127,∅, a6) = AND(M, b0, . . . , b127,∅, {61, 65},∅)
21 (M, b0, . . . , b127,∅, a7) = AND(M, b0, . . . , b127,∅, {68, 84},∅)
22 (M, b0, . . . , b127,∅, a8) = AND(M, b0, . . . , b127,∅, {88, 92, 93, 95},∅)
23 (M, b0, . . . , b127,∅, a9) = AND(M, b0, . . . , b127,∅, {22, 24, 25},∅)
24 (M, b0, . . . , b127,∅, a10) = AND(M, b0, . . . , b127,∅, {70, 78, 82},∅)
25 (M, b0, . . . , b127,∅, x) = AND(M, b0, . . . , b127,∅, {0, 26, 56, 91, 96},∅)
26 M.var ← g as binary
27 M.con← g = x +

∑10
i=1 ai

28 return (M, b0, . . . , b127, g)

Algorithm 9: MILP model for XOR and AND in Grain-128AEAD
1 Procedure AND(M, b0, . . . , b127, s0, . . . , s127, I, J):
2 M.var ← b′i, xi ∀ i ∈ I as binary
3 M.var ← s′j, yj ∀ j ∈ J as binary
4 M.var ← z as binary
5 M.con← bi = b′i ∨ xi ∀ i ∈ I
6 M.con← si = s′j ∨ yj ∀ j ∈ J
7 M.con← z = xi ∀ i ∈ I
8 M.con← z = yj ∀ j ∈ J
9 for i ∈ {0, 1, . . . , 127}\I do s′i = si

10 for j ∈ {0, 1, . . . , 127}\J do b′j = bj
11 return (M, b′0, . . . , b

′
127, s

′
0, . . . , s

′
127, z)

12 Procedure XOR((M, b0, . . . , b127, s0, . . . , s127, I, J):
13 M.var ← b′i, xi ∀ i ∈ I as binary
14 M.var ← s′j, yj ∀ j ∈ J as binary
15 M.con← z as binary
16 M.con← bi = b′i ∨ xi ∀i ∈ I
17 M.con← sj = s′j ∨ yj ∀j ∈ J
18 M.con← z =

∑
i∈I xi +

∑
j∈J yj

19 for i ∈ {0, 1, . . . , 127}\I do b′i = bi
20 for j ∈ {0, 1, . . . , 127}\J do s′j = sj
21 return (M, b′0, . . . , b

′
127, s

′
0, . . . , s

′
127, z)

40

Algorithm 10: Model for the propagation trails of R-round Kreyvium
1 Procedure LFSR(M, x0, . . . , x127):
2 M.var ← a, b as binary
3 M.con← x0 = a ∨ b

4 (y0, . . . , y127) = (x1, . . . , x126, a)
5 return (M, y0, y1, . . . , y127, b)

6 Procedure ModelKreyvium(round R, πt(R)(s(R)), I c):
7 Prepare an empty MILP modelM
8 M← s0i ∀ i ∈ {0, 1, . . . , 287} as binary
9 M← xi ∀ i ∈ {0, 1, . . . , 287} as binary

10 M← ki ∀ i ∈ {0, 1, . . . , 287} as binary
11 for i = 0 to 127 do
12 M.con← x0i = 1 ∀ i ∈ I
13 M.con← x0i = 0 ∀ i /∈ I
14 M← K

∗,0
i ∀ i ∈ {0, 1, . . . , 287} as binary

15 M← IV
∗,0
i ∀ i ∈ {0, 1, . . . , 287} as binary

16 M.con← ki = K
∗,0
128−i ∨ s0i for i = 0, . . . , 92

17 M.con← ki = K
∗,0
128−i for i = 93, . . . , 127

18 M.con← xi = IV
∗,0
128−i ∨ s093+i for i = 0, . . . , 127

19 for r = 0 to R− 1 do
20 (M, K∗,r+1

0 , . . . , K∗,r+1
127 , ar)← LFSR(M, K∗,r0 , . . . , K∗,r127)

21 (M, IV∗,r+1
0 , . . . , IV∗,r+1

127 , ar)← LFSR(M, IV∗,r0 , . . . , IV∗,r127)
22 (M, x0, . . . , x287) = TriviumCore(M, sr1, . . . , s

r
288, 65, 170, 90, 91, 92)

23 (M, y0, . . . , y287) = TriviumCore(M, x1, . . . , x288, 161, 263, 174, 175, 176)
24 (M, z0, . . . , z287) = TriviumCore(M, y1, . . . , y288, 242, 68, 285, 286, 287)
25 M.var ← tr1, t

r
3 as binary

26 M.con← tr1 = z92 + br

27 M.con← tr3 = z287 + ar

28 (sr+1
0 , . . . , sr+1

287) = (tr3, z0, . . . , z91, t
r
1, z93, . . . , z286)

29 for i = 0 to 127 do
/* t(R) = (t

(R)
0 , . . . , t

(R)
543) */

30 M.con← K
∗,R
i = t

(R)
i

31 M.con← IV
∗,R
i = t

(R)
i+128

32 for i = 0 to 287 do M.con← sRi = t
(R)
i+256

33 returnM

E Models and Functions Used for Kreyvium

41

Algorithm 11: ChooseRiKreyvium and ChooseTiKreyvium
1 Procedure ChooseRiKreyvium(S, r):
2 r′ = 1 while |S′| < 100, 000 and r − r′ > 0 do
3 S′ = ∅
4 for s ∈ S do
5 S′ = S′ ∪ Express(s, r, r′)

6 return r′

7 Procedure ChooseTiKreyvium(r):
8 if r ≥ 600 then τ = 60 seconds
9 else if r ≥ 500 then τ = 120 seconds

10 else if r ≥ 400 then τ = 180 seconds
11 else if r ≥ 300 then τ = 360 seconds
12 else if r ≥ 200 then τ = 1440 second
13 else if r ≥ 0 then τ =∞
14 return τ

F The Superpoly of 894-Round Kreyvium

pI = k119 + k118 + k117k118 + k105 + k104 + k102 + k99 + k95 + k94 + k93 + k92 + k89+

k88k96 + k87k88 + k86k87k96 + k85 + k85k86 + k84k127 + k84k88 + k84k86k87+

k83 + k83k88 + k83k86k87 + k83k84 + k82k83 + k82k83k127 + k82k83k88+

k82k83k86k87 + k81k82 + k81k82k88 + k81k82k86k87 + k78 + k78k85 + k78k83k84+

k76 + k76k77 + k76k77k85 + k76k77k83k84 + k75k76 + k74k104 + k73k88+

k73k86k87 + k73k74 + k72k107 + k71k101 + k71k88 + k71k86k87 + k71k76 + k70k71+

k69 + k69k70k101 + k69k70k88 + k69k70k86k87 + k69k70k76 + k68k84 + k68k82k83+

k67k68 + k66k127 + k66k104 + k66k68 + k64k65k127 + k64k65k104 + k64k65k68+

k61 + k61k104 + k61k96 + k61k84 + k61k83 + k61k82k83 + k61k81k82 + k61k73+

k61k71 + k61k69k70 + k60 + k60k84 + k60k82k83 + k60k71 + k60k69k70 + k59k117+

k59k102 + k59k79 + k59k71 + k59k69k70 + k59k60 + k59k60k104 + k58 + k58k118+

k58k84 + k58k82k83 + k58k78 + k58k76k77 + k58k66 + k58k64k65 + k57 + k57k127+

k57k88 + k57k86k87 + k57k68 + k57k61 + k57k60 + k57k58k102 + k57k58k79 + k56+

k56k88 + k56k86k87 + k56k61 + k51 + k51k85 + k51k83k84 + k51k58 + k50 + k48+

k48k72 + k46 + k45k74 + k45k66 + k45k64k65 + k45k61 + k45k59k60 + k44k101+

k44k88 + k44k86k87 + k44k76 + k44k61 + k44k60 + k44k59 + k43 + k43k59+

k43k57k58 + k42 + k42k71 + k42k69k70 + k42k44 + k41 + k40 + k39k127 + k39k104+

k39k68 + k39k58 + k39k45 + k39k40 + k38k72 + k37k88 + k37k86k87 + k37k61 + k36+

k35 + k34k104 + k34k45 + k33k34 + k32 + k32k102 + k32k79 + k32k43 + k30 + k28+

k27 + k27k88 + k27k86k87 + k27k61 + k23k24 + k20k59 + k20k57k58 + k20k32 + k17+

k17k71 + k17k69k70 + k17k44 + k15k104 + k15k73 + k15k45 + k14 + k14k88+

k14k86k87 + k14k74 + k14k61 + k14k15 + k13 + k13k107 + k13k48 + k13k38 + k3+

42

k1k84 + k1k82k83 + k1k71 + k1k69k70 + k1k57 + k1k44 + k0k71 + k0k69k70 + k0k44

G Möbius Transform Using Sparse ANFs

We consider a variant of the Möbius transformation by exploiting the property of
the recovered superpolies. Recovered superpolies are massive compared to previ-
ous ones [19,20,23], but they are very sparse than random Boolean functions. For
example, the recovered superpoly of 845-round Trivium with 19, 967, 968 ≈ 224.3

monomials is really sparse as random Boolean function should have 279 mono-
mials. When the number of non-zero ANF coefficients is small, almost all 1-bit
XORes are 0⊕ 0 in small k and they are redundant computation. Algorithm12
shows the binary Möbius transformation exploiting the sparse ANF. Let U0 be
the set of the monomials in recovered superpolies, and we traverse only elements
in U in the first m steps. Then, for example in the 1st step, the number of XOR-
ing is reduced from 2n−1 to at most |U0| XORes. Moreover, in the mth step,
|U | ≤ 2m−1|U0|. The time complexity can be roughly written as

m∑

i=0

2i|U0|+ (n−m)2n−1,

but the unit of the complexity in the 1st step (1 ≤ k ≤ m) and the 2nd step
(m + 1 ≤ k ≤ n) is different. Since we suppose that the unit of the 1st step is
much expensive than that of the 2nd step, the value m should be chosen such
that 2m|U0| can be regarded as negligible compared to 2n−1.

In the case of the recovered superpoly of 845-round Trivium with 224.3 mono-
mials,

∑m
i=0 2i|U0| ≈ 264.3 with m = 40, and it should be negligible compared

to (80− 40)× 279. In other words, this algorithm roughly allows us to halve the
required time complexity of the Möbius transformation. Practically, the number
of non-zero coefficients in our recovered superpolies is significantly small. There-
fore, we simply assume that the time complexity of the Möbius transformation
is n× 2n−2 hereinafter.

43

Algorithm 12: Möbius transformation exploiting sparse ANF
1 Procedure MöbiusTransForSparseANF(U0 ⊂ Fn2):
2 U = U0

3 for k = 1 to m do
4 forall u ∈ {U |(u ∧ 2k) = 0} do
5 u′ = u⊕ 2k

6 if u′ is included in U then
7 Remove u′ from U

8 else
9 Insert u′ into U

10 forall u ∈ U do
11 a[u] = 1

12 for k = m+ 1 to n do
13 for i = 0 to 2n−k do
14 for j = 0 to 2k−1 − 1 do
15 a[2ki+ 2k−1 + j] = a[2ki+ j]⊕ a[2ki+ 2k−1 + j]

16 return a

44

