
Fault-Enabled Chosen-Ciphertext Attacks on
Kyber

Julius Hermelink1,2, Peter Pessl1, and Thomas Pöppelmann1

1 Infineon Technologies AG, Munich, Germany
{peter.pessl, thomas.poeppelmann}@infineon.com

2 Research Institute CODE, Universität der Bundeswehr München, Munich,
Germany julius.hermelink@unibw.de

Abstract. NIST’s PQC standardization process is in the third round,
and a first final choice between one of three remaining lattice-based key-
encapsulation mechanisms is expected by the end of 2021. This makes
studying the implementation-security aspect of the candidates a pressing
matter. However, while the development of side-channel attacks and cor-
responding countermeasures has seen continuous interest, fault attacks
are still a vastly underdeveloped field.
In fact, a first practical fault attack on lattice-based KEMs was demon-
strated just very recently by Pessl and Prokop. However, while their
attack can bypass some standard fault countermeasures, it may be de-
feated using shuffling, and their use of skipping faults makes it also highly
implementation dependent. Thus, the vulnerability of implementations
against fault attacks and the concrete need for countermeasures is still
not well understood.
In this work, we shine light on this problem and demonstrate new attack
paths. Concretely, we show that the combination of fault injections with
chosen-ciphertext attacks is a significant threat to implementations and
can bypass several countermeasures. We state an attack on Kyber which
combines ciphertext manipulation–flipping a single bit of an otherwise
valid ciphertext–with a fault that “corrects” the ciphertext again dur-
ing decapsulation. By then using the Fujisaki-Okamoto transform as an
oracle, i.e., observing whether or not decapsulation fails, we derive in-
equalities involving secret data, from which we may recover the private
key. Our attack is not defeated by many standard countermeasures such
as shuffling in time or Boolean masking, and the fault may be introduced
over a large execution-time interval at several places. In addition, we im-
prove a known recovery technique to efficiently and practically recover
the secret key from a smaller number of inequalities compared to the
previous method.

1 Introduction

The emerging threat of large-scale quantum computers to asymmetric cryp-
tography drives the research on quantum-secure schemes. The standardization
process on Post-Quantum cryptography (PQC) of the National Institute of Stan-
dards and Technology (NIST) [Natb] is in the third round, and as the process

2 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

slowly reaches its (preliminary) end, the topic of implementation security of PQC
schemes is receiving increased attention. While for classical public-key cryptog-
raphy, implementation security has seen decades of research and threats are
relatively well understood, the situation is much less clear for quantum-secure
algorithms.

In this regard, lattice-based key-encapsulation mechanisms (KEMs) are of
particular interest. These schemes offer comparably small key- and ciphertext
sizes and high speeds. Therefore, they are especially well-suited for embedded
devices, which are highly susceptible to implementation attacks. Also, NIST
expects to pick one of the three third-round lattice KEMs for standardization
by the end of 2021, thereby making the study of side-channel and fault attacks
and possible mitigations a pressing matter [Nata].

In fact, the side-channel aspect has already seen some analysis. Especially
single-trace (or more generally, profiled) attacks appear to be a focal point of
research, in, e.g., [PPM17,PP19,ACLZ20,PH16]. Another emerging topic is the
combination of side-channel analysis with chosen-ciphertext attacks as shown
in [RRCB20] and [HHP+21]. Almost all finalist KEMs in the NIST process use
some variant of the Fujisaki-Okamoto (FO) transform [FO99,HHK17] to achieve
CCA security. However, chosen ciphertexts are still highly useful when com-
bined with side-channel leakage from the re-encryption step involved in this
transform [RRCB20,RBRC20,GJN20,BDH+21]. There also exist works on side-
channel secured implementations [OSPG18,BDH+21,HP21,RRVV15,RRdC+16].

Fault attacks against these systems, however, are a comparably underdevel-
oped topic. A potential reason is that the FO transform closes many attack
paths through its re-encryption step and ciphertext-equality test. One already
well documented attack option is to skip the equality test and thereby re-enabling
chosen-ciphertext attacks [VOGR18,OSPG18,BGRR19,XIU+21]. Very recently,
however, Pessl and Prokop [PP21] showed that other parts of the decapsulation
can also be sensitive to fault injections. By skipping over certain instructions
and then observing if the device still computes the correct shared secret (ineffec-
tive fault) or not (effective fault), they can gather information on the secret key.
After faulting many decapsulation calls and accumulating said information, they
can solve for the key. While their attack is practical, it does not come without
caveats. For instance, instructions-skip attacks typically require a certain level of
knowledge on the used implementation, and they presume that the attacker can
find the selected instruction in the execution time. Also, since the shuffling coun-
termeasure randomizes the time of execution, the specific attack by Pessl and
Prokop might be already defeated by this relatively cheap technique. Thus, it
is unknown whether such standard countermeasures might already suffice when
used on an FO-transformed KEM. It is also unclear what algorithm steps and
intermediates require protection, and if more general data corruption can also
be used for attacks.

Our contribution. In this work, we explore these open questions and show that
fault-enabled CCA-attacks are a powerful attack tool capable of bypassing many
standard fault countermeasures. We also demonstrate that in these scenarios

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 3

public data (the ciphertext) needs to be secured against manipulation. To show
this, we present such a fault-enabled attack on Kyber, but instead of faulting
the equality test within the FO-transformation, we exploit it as an oracle. We
flip a single selected bit in an otherwise honestly generated ciphertext. This
ciphertext is sent to the device under attack. The device decrypts and then re-
encrypts the message before comparing the re-encrypted ciphertext to the sent
ciphertext. Anytime between the initial unpacking and the final comparison of
the ciphertexts, we correct the induced flip on either the sent or the recomputed
ciphertext using a fault and observe whether the following comparison fails. From
this, linear inequalities involving the secret key can be derived, akin to the attack
by Pessl and Prokop [PP21]. We further improve upon their key-recovery; our
belief propagation based recovery technique significantly reduces the amount of
memory required and recovers the secret key using far fewer faults.

Our fault can, e.g., be introduced in memory during virtually the entire
decapsulation, or at more specific locations in registers during re-encryption.
That is, our attack is flexible in its target choice. Securing the equality check of
the FO-transform does not protect against our attack. Several countermeasures,
such as shuffling (which protects against [PP21]) and also Boolean masking, can
be bypassed. In addition, our fault is introduced in public data only, making fault
profiling easier. We thereby stress the importance of not only securing certain
operations but also to protect the integrity of both secret and public data over
most of the execution time. In addition, we show that countermeasures such
as first-order masking, as presented e.g. in [OSPG18], on CCA2-secured LWE-
based schemes are not sufficient to protect against fault attacks. Our results in
this regard are similar to and in line with the results of [BDH+21] but in a more
general setting and not reliant on a faulty comparison. In addition, compared to
their approach, we provide a drastically improved key-recovery algorithm.

While we demonstrate our attack on Kyber, related attacks likely apply to
conceptually similar schemes, such as Saber [DKRV18], FrodoKEM [ABD+21],
or NewHope [AAB+19].

Outline. We first, in Section 2, give a short overview over necessary preliminaries,
focusing on the Kyber [BDK+18] algorithm for reference in the later sections. We
also give a short introduction to the belief propagation algorithm and the prior
work of [PP21]. In Section 3, we describe the basic idea of our attack, leading
to a description of the practical implementation and simulation in Section 4 and
then give and discuss the results of our simulations. In Section 5, we explore
possible countermeasures against our attack.

2 Preliminaries

2.1 Kyber

Kyber [BDK+18] is an IND-CCA2-secure key exchange mechanism (KEM) and a
finalist in the NIST standardization process [Natb]. Kyber relies on the hardness
of the Module Learning with Errors (MLWE) problem [LS15] and thus belongs

4 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

to the field of lattice-based cryptography. Three parameter sets are currently
specified: Kyber512, Kyber768, and Kyber1024. Kyber internally uses a CPA-
secure public-key encryption scheme (PKE) which can be seen as a descendant
of the LPR scheme [LPR13]. From the PKE, a CCA-secure KEM is derived by
using a variant of the Fujisaki-Okamoto (FO) transform [FO99,HHK17]. We now
describe (simplified) versions of the KEM and the internally used PKE.

Kyber PKE. Computations in Kyber take place in Rq and Rkq , with Rq =
Zq[x]/(xn + 1) with q = 3329, n = 256, and k ∈ { 2, 3, 4 } (depending on the
parameter set). SampleUniform performs coefficient-wise sampling from a uniform
distribution over Zq, SampleBinom,η denotes coefficient-wise sampling from a cen-
tered binomial distribution defined over {−η,−η + 1, . . . , η }, where η ∈ {η1, η2}.
Sampling is deterministic and depends on a seed which is incremented after each
call. The functions compress and decompress are given by

compress(x, d) =

⌈
2d

q
· x
⌋

mod 2d

decompress(x, d) =
⌈ q

2d
· x
⌋

where d is either set to du or dv. The concrete values of all parameters are
given in Table 1. The functions Encode and Decode1 interpret a bitstream as
polynomial and vice-versa. Decode therefor multiplies each bit of a message m
by q

2 . d·c denotes rounding to the nearest integer and mod q maps an integer x to
an element x′ ∈ { 0, 1 . . . , q − 1 } such that x ≡ x′mod q. Elements a under the
number theoretic transform (NTT) are denoted by â = NTT(a), and the symbol
◦ denotes pointwise multiplication. Vectors and matrices, i.e. elements in Rkq and

R
(k×k)
q , are denoted in bold lowercase and uppercase letters, respectively. For an

element a ∈ Rkq , NTT(a) is defined as applying the NTT component-wise to its
components.

Table 1. Kyber parameter sets

Parameter set q n k (η1, η2) (du, dv)

Kyber512 3329 256 2 (3, 2) (10, 4)
Kyber768 3329 256 3 (2, 2) (10, 4)
Kyber1024 3329 256 4 (2, 2) (11, 5)

Key generation (Algorithm 1) uniformly samples a matrix A using a seed ρ
and samples vectors s, e from a binomial distribution using a seed σ. The public
key is then calculated as t = As + e, the secret key is s.

1 In earlier works, the names of Encode and Decode were sometimes switched. We use
them according to Kyber’s specification.

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 5

Encryption (Algorithm 2) reconstructs A, samples r, e1, e2 from the binomial
distribution, and computes u = ATr + e1 and v = tT r + e2 + Decode(m).
The compressed u and v are returned as ciphertext. The decryption, depicted
in Algorithm 3, computes an approximate version (due to compression being
ignored here) of

v − sTu

= tT r + e2 + Decode(m)− sTAT r− sTe1

= sTAT r + eT r + e2 − sTAT r− sTe1 + Decode(m)

= Decode(m) + eT r + e2 − sTe1

(1)

and as e, r, e2, s, and e1 are sufficiently small (due to being sampled from a
narrow binomial distribution), the above gives m when encoded2.

Algorithm 1 PKE.KeyGen (simplified)

Input: Seeds ρ, σ
Output: Public key pk , secret key sk
1: Â ∈ Rk×kq ← SampleUniform(ρ) . Generate uniform Â in NTT domain
2: s, e ∈ Rkq ← SampleBinom,η1(σ) . Sample from binomial distribution
3: ŝ← NTT(s) . NTT for efficient multiplication
4: t̂← Â ◦ ŝ + NTT(e) . t := As + e
5: return (pk := (̂t, ρ), sk := ŝ)

Algorithm 2 PKE.Encrypt (simplified)

Input: Public key pk = (̂t, ρ), message m, seed τ
Output: Ciphertext ct
1: Â← SampleUniform(ρ) ∈ Rk×kq

2: r ∈ Rkq ← SampleBinom,η1(τ)
3: e1 ∈ Rkq , e2 ∈ Rq ← SampleBinom,η2(τ) . Sample from binomial distribution

4: u← NTT−1(Â
T ◦ NTT(r)) + e1 . u = AT r + e1

5: v ← NTT−1(̂t
T ◦ NTT(r)) + e2 + Decode(m) . v = tT r + e2 + Decode(m)

6: c1, c2 ← Compress(u, v) . Lossy compression
7: return c := (c1, c2)

Kyber KEM. To transform the PKE to a KEM using the FO-transform, two
distinct hash functions H and G are required. The key generation of the KEM
(Algorithm 4) corresponds mostly to that of the PKE. In the encapsulation (Al-
gorithm 5) the shared secret K is derived from the hash of a uniform message m,

2 The function Encode(Compress(·)) is often called Decoder by previous works.

6 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

Algorithm 3 PKE.Decrypt (simplified)

Input: Secret key sk = ŝ, ciphertext c = (c1, c2)
Output: Message m
1: u, v ← Decompress(c1, c2) . Decompress ciphertext
2: m← Encode(Compress(v − NTT−1(̂sT ◦ NTT(u)))) . Retrieve m
3: return m

the public key and the ciphertext c under PKE.Encrypt of the message, with seed
τ depending on the message and the public key. The decapsulation (Algorithm 6)
decrypts the ciphertext using PKE.Decrypt and re-encrypts the message using
the randomness retrieved from the message and the public-key hash H(pk). If
the re-encrypted ciphertext c′ matches the received ciphertext c, the shared se-
cret is returned, otherwise, the secret value z is used for an implicit rejection.

Algorithm 4 Kyber-KEM Key Generation (simplified)

Output: Public key pk = pkpke, secret key sk = (skpke||pk||H(pk)||z)
1: z, ρ, σ ← SampleUniform
2: pkpke, skpke ← PKE.KeyGen(ρ, σ)
3: return (pk := pkpke, sk := (skpke||pk||H(pk)||z))

Algorithm 5 Kyber-KEM Encapsulation (simplified)

Input: Public key pk = (̂t, ρ)
Output: Ciphertext c, shared key K
1: m, τ ← SampleUniform . Uniformly sample a message and a seed
2: (K̄, τ)← G(m||H(pk))
3: c← PKE.Encrypt(pk ,m, τ) . CPA encryption with seed τ
4: K ← KDF(K̄||H(c)) . Derive shared key from ct, m, and pk
5: return (c,K)

2.2 Belief Propagation

Since the belief propagation algorithm is an important part of our attack, we
now give a brief introduction based on the description of MacKay [Mac03, Chap-
ter 26]. For random variables {xi}i∈{1,...,N} = x on a set X with joint mass
function

p(x) =

K∏
k=1

fk(xIk), x ∈ X

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 7

Algorithm 6 Kyber-KEM Decapsulation (simplified)

Input: Secret key sk = (̂s, pk , z), ciphertext ct = (c1, c2)
Output: Shared key K
1: m← PKE.Decrypt(sk, ct)
2: (K̄, τ)← G(m||H(pk)) . Retrieve seed for re-encryption
3: c′ ← PKE.Encrypt(pk ,m, τ) . Re-encrypt
4: if c = c′ then
5: K ← KDF(K̄||H(c)) . Derive shared key on successful re-encryption
6: else
7: K ← KDF(z||H(c)) . Implicit rejection on failure

8: return K

with Ik ⊆ { 1, . . . , N } and fk functions mapping xIk = {xi}i∈Ik to [0, 1], belief
propagation aims on efficiently computing all

Zn(x) =
∑

x,xn=x

p(x)

which are proportional to the marginal distributions of xn. Näıvely computing Zn
is often computationally infeasible. Belief propagation exploits the factorisation
of p to significantly reduce the complexity of computing the marginals.

To compute the Zn, and thereby the marginal distributions of xn, for all n,
the x1, . . . , xN are interpreted as variable nodes, which are connected to factor
nodes given by f1, .., fK , where the connections are described by the index sets
I1, .., IK . In each step, either variable nodes or factor nodes send messages to
connected nodes. Messages at a variable node (with index) i ∈ { 1, . . . , N } to
factor node j ∈ { 1, . . . ,K } are computed as

mi,j(x)←
∏
k 6=j

m′k,i(x)

where m′k,i are the messages that were sent to the i-th node in the previous
iteration. Messages from a factor node j to a variable node i are computed as

mj,i(x)←
∑

x,xi=x

fj(x)
∏
k 6=i

m′k,j(x).

Belief propagation consists of the repeated computation and passing of messages
from variable to factor nodes and vice-versa. For an acyclic graph, the product of
the messages at the n-th variable node converges against Zn. Belief propagation
on cyclic graphs is called loopy belief propagation and often gives useful approx-
imations, even graphs might not converge or, in the context of key recovery,
retrieve the correct result.

Belief propagation has proven to be a powerful tool for side-channel analysis
of a wide variety of schemes [VGS14,PPM17,GRO18,PP19,KPP20,GGSB20],
recently also in combination with chosen-ciphertext attacks [HHP+21].

8 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

In this work, we use belief propagation to find the most likely solution in a
linear system of inequalities. This is similar to the usage of belief propagation for
decoding, e.g., low density parity check (LDPC) codes [Mac03], where one aims
at solving a system of (possibly erroneous) linear equations. In our case, every
variable node has a so called prior distribution, which is set to the distribution
the corresponding unknown variable was sampled from. In every iteration, either
all variable nodes process messages and pass them to factor nodes or vice-versa.
A full iteration is the combination of iterations from variable to factor nodes
and vice-versa.

2.3 The Fault Attack of Pessl and Prokop

In [PP21], Pessl and Prokop introduced an instruction-skipping fault in the De-
compress/Decode method of Algorithm 3. They thereby provided proof that the
equality check of the FO-transform is not the only critical operation for fault
attacks.

By introducing said fault and observing whether the re-encryption compari-
son in Algorithm 6 fails (by testing if the device still returns the correct shared
secret K), they obtain a linear inequality involving the decryption error polyno-
mial (c.f. Equation (1)). In the j-th fault introduction, this error polynomial is
given by

eT rj − sT (e1j +∆uj) + e2j +∆vj (2)

for j ∈ {0, .., l − 1} where l is the total number of faults introduced, and where
∆uj and ∆vj denote the compression error introduced to uj and vj , respectively,
by applying compression and decompression. Note that r, e1, e2, ∆u, ∆v, as well
as the true shared secret K are all known to the attacker, assuming he honestly
performs encapsulation.

Denoting the t-th component of a vector of polynomials by r(t), by writing
out Equation (2), we get that the i-th coefficient of the error term polynomial
is given by

k−1∑
t=0

n∑
h=0

σ(h, i)e
(t)
h r

(t)
j,τ(h,i)

+

k−1∑
t=0

n∑
h=0

σ(h, i)s
(t)
h (e1

(t)
j,τ(h,i) +∆u

(t)
j,τ(h,i))

+ e2j,i +∆vj,i,

where τ(h, i) = i−h mod n, and σ(h, i) returning 1 if i−h ≥ 0 and −1 otherwise.
Using the notation (·)i to encapsulate all involved sign flips and index shifts, we
can restate the above using dot products:

〈(rj)i, e〉+ 〈(e1,j +∆uj)i, s〉+ e2j,i +∆vj,i

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 9

Assuming that i is constant over all injections, the inequalities, involving the
error polynomial, may thus be written in matrix-vector form as Ax Q −b where

A =

(r0)i (e10 +∆u0)i

(r1)i (e11 +∆u1)i
...

(rl−1)i (e1l−1 +∆ul−1)i

 ,

x =

(
e
s

)
, and b =

e20,i +∆v0,i
e21,i +∆v1,i

. . .
e2l−1,i +∆vl−1,i

 .

Note that these inequalities hold over Z as due to all polynomials involved being
small, no reduction modulo q happens.

Each coefficient of each polynomial of e and s was sampled from a known
binomial distribution with small support. To recover the key from the inequalities
above, Pessl and Prokop initialize a 2n vector of probability distributions using
said distribution. This vector is successively updated in each iteration according
to the information given by the system of inequalities represented by A and b.

As previously mentioned, the attack is highly implementation specific and
requires a high level of synchronisation, as one needs to skip over a very specific
instruction. Also, the attack can likely be prevented by simple shuffling. Hence,
the true potential of fault attacks is still unclear.

3 Enabling Chosen-Ciphertext Attacks with Faults

In this section, present an attack that improves on the mentioned weaknesses of
[PP21]. Concretely, we explain how to use a fault to enable a chosen-ciphertext
attack on Kyber. Instead of faulting the decoder, we assume an attacker to be
able to introduce a single-bit fault. Sending a manipulated ciphertext and then
correcting it back to a valid ciphertext after the decryption step using a fault
yields inequalities, similar to [PP21]. This is due to the fact that the success
of decapsulation implies that decrypting the manipulated ciphertext yields the
original message used to create the valid ciphertext. This means, our attack
consists of

1. manipulating the polynomial v (in Algorithm 2) of a valid ciphertext dur-
ing encapsulation in Algorithm 5 by flipping a single bit in the compressed
ciphertext,

2. sending the manipulated ciphertext to the device under attack,
3. correcting the ciphertext during decapsulation (Algorithm 6) using a one-bit

fault,

10 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

4. observing whether a valid shared secret is established,
5. deriving inequalities from repeating the above steps (one inequality per

fault),
6. and recovering the secret key from those inequalities.

As shown in Figure 5, being able to introduce one-bit faults anywhere in the red
phases enables our attack. Decompression and compression methods are depicted
here, even though they belong to the decryption and the re-encryption, as they
prevent an earlier manipulation of c′. The incoming ciphertext c is manipulated
and either c or c′ need to be “corrected” using a fault. That is, either c is
faulted such that it matches the unaltered ciphertext, or c′ is faulted such that
it matches the manipulated ciphertext. Introducing a fault in c can be done
by e.g. flipping a bit in RAM, while manipulation of c′ would likely be done
using a fault against a value in a register, as values generated during the re-
encryption might not be stored RAM, or only for a shorter duration and possibly
varying addresses. The decryption/re-encryption corresponds to lines 1 to 3 in
Algorithm 6, the compression and decompression methods correspond to lines
5 and 1 of Algorithm 2 and Algorithm 3 which are called from lines 1 and 3 of
Algorithm 6, respectively.

c

decompress decrypt/re-encryption compress

compare

Fig. 1. Visualisation of the FO-transforms re-encryption check including decompression
and compression. Being able to introduce one-bit faults anywhere in the red (light)
phases enables our attack.

3.1 Manipulating and Correcting the Ciphertext

The PKE ciphertext consists of the result of compressing a polynomial v (to
get c2) and of compressing a vector of polynomials u (to get c1). The decrypt
functions decompresses both c1 and c2, retrieves approximate versions of u and
v, and computes and approximate version of v − uT s, given by

rec = eT r− sT (e1 +∆u) + e2 +∆v + Decode(m)

where each coefficient is reduced to the range {0, .., q−1} and the ∆-terms denote
the difference introduced by first compressing and then decompressing a (vector
of) polynomial(s). The message is then recovered by mapping the coefficients of
rec, rec[i] for i ∈ { 0, . . . , n− 1 }, to a 0-bit if rec[i] is closer to 0 or q than to

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 11

q/2 and to a 1-bit, otherwise; i.e. the function mapping a coefficient, reduced to
{0, .., q − 1}, to a bit is given by

φ : {0, .., q − 1} → {0, 1}

a 7→

{
0, if min(|a− q|, |a|) < q/4

1, else.

For an honestly generated ciphertext, this yields the message m with high prob-
ability as the error polynomial d, given by

d = eT r− sT (e1 +∆u) + e2 +∆v,

is small.

Decoding of Manipulated Ciphertexts. By adding q/4 to rec[i], we in some cases
change the i-th bit mi of the decoded message m. If mi is 0, rec[i] is “closer” to
0 mod q, i.e., 0 or q, than to q/2. In the first case (rec[i] is close to 0), adding
q/4 changes the decoding result to 1, as the result is now closer to q/2. In the
second case (rec[i] is close to q) rec[i] + q/4 will still be decoded to 0 (the result
is now closer to 0 than to q/2). Analogously, if mi is 1, then adding q/4 to rec[i]
changes the result of decoding to 0 if rec[i] < q/2 .

Hence, observing if decoding rec[i] + q/4 still results in the same message
m allows to retrieve information about the error polynomial d. By modularly
mapping the coefficients of d to

{
−b q2c, . . . , b

q
2c
}

and ignoring rounding, this
may be as expressed as

rec[i] +
q

4
decodes to mi if, and only if, d[i] < 0.

We are using this property of φ to manipulate ciphertexts and introduce faults
such that we may derive a system of inequalities involving the secret key.

Correct vs. incorrect message. Recall that during decapsulation (Algorithm 6),
the randomness τ used for re-encryption is derived by hashing the message m
with the hash of the public key. Hence, flipping just a single bit in m yields a
completely random c′. However, if the correct m is still computed, then c′ will
be equal to the original (non manipulated) ciphertext and thus only differs in a
single bit from the sent ciphertext.

Introducing and Correcting an Error. The above observations lead to the follow-
ing method. In the encapsulation step, we first create a valid ciphertext c = (v,u)

where v =
∑n−1
i=0 vix

i. We then replace v by v′ = v + q
4x

i and compress it to
obtain a manipulated ciphertext c′, which is sent to the device under attack. The
attacked device decompresses c′, retrieves a message m′, re-encrypts the mes-
sage to a ciphertext c′′ and compares c′ against c′′. Before the comparison, we
introduce a fault, flipping a bit of c′, such that c′ = c. Thereby, we achieve that

12 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

the attacker performs the decryption on the manipulated ciphertext c′ but effec-
tively compares against the honestly generated ciphertext c. Observing whether
a shared secret is established then tells us if the decryption of the manipulated
ciphertext c′ resulted in the original message m which was used to generate c. We
note that this approach (manipulating a single coefficient of v and then testing
if a decryption failure occurs) bares some resemblance to the side-channel attack
of [BDH+21] on (flawed) algorithms for masked comparison [OSPG18,BPO+20].

Retrieving information from observing encryption failures. In the decryption
step of the decapsulation routine, replacing c by the manipulated ciphertext c′

results in the message being recovered from

v′ − sTu = v − sTu +
⌊q

4

⌋
xi = rec+

⌊q
4

⌋
xi.

The manipulation therefore only affects the i-th message bit mi and does not
produce the same message and thus prevents a failed shared secret from being
established if d[i] > 0 and mi = 0 or d[i] ≥ 0 and mi = 13. The probability of
an error occurring not introduced by the manipulated ciphertext is those of a
decryption failure and can be ignored for this attack.

Restricting to single-bit differences. If c and c′ differ by more than one bit, we
do not use that ciphertext and re-try with new randomness. Otherwise, single-
bit faults would not be sufficient. This may take a few tries, but as ciphertexts
can be pre-computed and are not sent to the device, we do not regard this as a
limitation. Note that allowing multi-bit differences would also result in slightly
different inequalities as in these cases, compression changes the error added to
v.

Fault location and profiling. A single-bit fault model at a specific time in exe-
cution is realistic but requires profiling or good understanding of the implemen-
tation of software as well as hardware [RSDT13,OGM17]. However, in our case,
the fault may be introduced over a time interval spanning almost the whole ex-
ecution time and on different intermediates and methods, e.g. against a value in
memory or in a register, as depicted in Figure 1. Note that the attacker knows
the value of the bit to be flipped and may discard ciphertexts with an undesired
value of the targeted bit. Thus, a bit flip can be achieved if the attacker is being
able to either set or reset bits, which is a more realistic attacker assumption
compared to straight-up flipping [RSDT13,OGM17]. If a Boolean-masked value
is targeted, then setting/resetting a bit is ineffective with a probability of 50 %,
even if the plain value is known. Still, if we observe a successful decapsulation
(no decryption failure), then we can infer that the bit was actually flipped. As
we cannot further distinguish the cause of a decapsulation failure (decryption
failure or ineffective fault injection), we have to ignore injections yielding this
result. Therefore, in this case, the number of required faults is approximately
quadrupled.

3 The difference in strictness arises from rounding to integers.

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 13

In addition, the observed outcome of the FO can be used for profiling, i.e.,
finding the correct faulting position in memory. The sent manipulated ciphertext
will always be rejected unless properly corrected using a fault. This means that
one can sweep over faulting positions and accept the one which leads to a cor-
rect decapsulation.4 Even after finding a proper position, discarding inequalities
resulting from observed decapsulation failures allows to filter out fault injections
which did not produce the desired effect.

We finally note that the fault target (the ciphertext c) is public. Using, e.g.,
power analysis, one can find the point in time at which c is written into memory.
This can aid in finding its address and physical location in RAM.

3.2 Obtaining Inequalities

To obtain inequalities in e and s, we apply the procedure described in the pre-
vious section l times, where in the j-th step we obtain an inequality involving
the i-th coefficient of the error polynomial, denoted dj . As described before, in
case of the decapsulation failing, we have dj [i] ≥ 0 and otherwise dj [i] ≤ 05. The
polynomial dj is given by

dj = ψ(vj)− sTψ(uj)

= (v +∆v)− sTuj − s∆u

= eT rj − sT (e1j +∆uj) + e2j +∆vj + Decode(m),

where ψ denotes Decompress(Compress(·)). This means our inequalities are of
the form

(eT rj − sT (e1j +∆uj))[i] Q (e2j +∆vj)[i],

where i is the coefficient we are manipulating/faulting, j is the index of the
current step/fault, and all variables except for e and s are known. As the in-
equalities are clearly linear in e and s, we may write those equations as Ax Q −b
where each row of the matrix A, together with the corresponding row of b and
the information whether this row corresponds to a smaller or a greater sign,
gives a check node as described in the next section. The construction of A and
b is analogue to the construction in Section 2.3, x is the vector consisting of the
entries of e and s. In contrast to [PP21], we are not directly using the matrix
structure. As described in the next section, each inequality, i.e. each row of A
and b, are represented by a check node in a belief propagation graph.

4 By first adding, e.g., only q/8 instead of q/4 to one coefficient of v, the chance that
m = m′ and thus the probability of acceptance after a successful fault is drastically
increased. This allows finding neighboring bits in memory more easily, which can
then be used to find the actual targeted bit.

5 By taking the i-th message bit into consideration, one may derive strict inequalities.

14 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

3.3 Recovering the Secret Key

To recover the secret key from inequalities, we use belief propagation. Our belief
propagation graph consists of variable nodes, representing each unknown coef-
ficient of e and s, and factor nodes, which inspired by decoding algorithms we
call check nodes, representing an inequality. Check nodes are connected to all
variable nodes. In each iteration, the check nodes send messages to the vari-
able nodes or vice-versa. A message represents a probability distribution over
{−η1, . . . , η1 } of a key coefficient, where we interpret the key as consisting of e
and s and denote the key vector as x. In each step the messages are combined ac-
cording to the inequalities represented by the respective check node, from which
probability distributions for each key coefficient are derived. Figure 2 shows a
simplified example with four unknown variables (represented by x0, x1, x2, x3)
and five inequalities (represented by Check 0, . . . , Check 4).

The variable nodes are initialized with the distribution e and s were sampled
from in Algorithm 1, this is called the prior distribution and in the following
denoted by prior . In the first step, the prior distributions, now called messages,
are sent to the check nodes. The check nodes update the distributions according
to the inequality they represent. For an unknown coefficient i, all other messages
are combined according to the represented inequality and the resulting proba-
bility distribution is used to derive a distribution for the i-th coefficient. To be
precise, for each input with index i every check node computes the distribution
of the sum in the inequality, leaving out i. This means a check node with index
j, corresponding to an inequality∑

i

ajixi Q bj

receiving messages m0, . . . ,m2n−1 (mi belongs the i-th key coefficient) computes
distributions

Di =
∑
i 6=j

ajimi for i ∈ { 0 . . . 2n } (3)

where addition corresponds to computing the distribution of the sum of the
corresponding random variables, i.e. convolution of the mi (see Section 4), and
sends the messages

x 7→ PDi
(x Q bj) for i ∈ { 0 . . . 2n } , x ∈ {−η1, . . . , η1 }

to the i-th variable node. As described in Section 4, for efficiency reasons, the
computations of Equation (3) are carried out in the Fourier domain.

The variable nodes combine incoming messages by computing the product
with one index left out. For incoming messages m0, . . . ,ml (mj is the message
coming from the j-th check node/inequality), the (normalized) product

x 7→
∏
i 6=jmi(x)∑

y

∏
i 6=jmi(y)

, x ∈ {−η1, . . . , η1 }

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 15

is sent to the j-th check node.
Sending messages from variable nodes to factor nodes or vice-versa is called

an iteration; sending messages from variable nodes to factor nodes and vice-
versa is called a full iteration. After each full iteration, we may compute the
current resulting probability distributions for the i-th coefficient, by multiplying
and normalizing the incoming messages at the i-th node. That is, we compute
the distribution

x 7→
∏
jmj(x)∑

y

∏
jmj(y)

, x ∈ {−η1, . . . , η1 }

and use this as (preliminary) result for the i-th coefficient. We do not use an
equivalent of the clustering method used in [PP21].

Note that this process is also related to decoding Low-density parity-check
codes using belief propagation [Mac03]. In our setting, the implied code is not
low-density, instead, all variable nodes are connected to all factor nodes.

The belief propagation varies with the parameters k and η1, depending on
the parameter set as described in Table 1, and l. The parameter k determines
the number of variable nodes, given by 2nk; the size of a message is 2η1 + 1
probabilities. Each of the l observations corresponds to a check node.

x0 x1 x2 x3

Check 0 Check 1 Check 2 Check 3 Check 4

Fig. 2. A belief propagation graph with four variable nodes and five check nodes cor-
responding to four unknown coefficients and five inequalities.

4 Attack Implementation and Simulation

We implemented the simulation of the attack in Python and Rust where we rely
on a modified version of PQClean [PQC]. We obtain inequalities by calling the
Kyber implementation from Python, process them, and use a Rust implemen-
tation of belief propagation to recover the secret key from those inequalities.
As single-bit faults are an established fault model and can be achieved e.g. us-
ing a laser, we solely rely on a simulation. The implementation is available at
https://github.com/juliusjh/fault_enabled_cca.

4.1 Introducing Faults

To simulate our attack, we first fix a secret key on the assumed device. The sim-
ulated attacker then generates ciphertexts, checking for each ciphertext if the

https://github.com/juliusjh/fault_enabled_cca

16 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

manipulation described in Section 3.1 only affects a single bit in the compressed
ciphertext. If this is the case, we call a manipulated decapsulation function, cor-
recting the manipulated ciphertext before the comparison of the ciphertext with
the re-encrypted ciphertext. This function corresponds to a call to the device un-
der attack during which we flip one bit of the ciphertext. By observing whether
the correct shared secret is returned, we retrieve an inequality as described in
Section 3.2. These steps are repeated until a sufficient number of inequalities
have been extracted. Note that ciphertexts that differ in more than one bit are
not sent to the device but are discarded before any communication happens.

For our simulation, we assume a perfect bit-flipping fault. As mentioned in
Section 3.1, this assumption can be relaxed at the expense of having to send
more manipulated ciphertexts to the device under attack. Depending on the
fault model, it might be favorable to allow the manipulated ciphertext to dif-
fer in multiple bits, e.g. in a pattern matching some property of the expected
introduced fault.

4.2 Belief Propagation

For each coefficient of e and s, we initialize a variable node and for each in-
equality, we initialize a check node. We then propagate for a maximum of 80 full
iterations, i.e. from variable to factor nodes and vice-versa, and, after each full
iteration, we retrieve the resulting probability distribution at each variable node
and sort by

– entropy,
– min-entropy6,
– entropy change since the last iteration,
– entropy and min-entropy.

If the first n coefficients are correct in any ordering, we can find the other n
coefficients by solving the public key equation b = As+e using linear algebra. In
this case, the belief propagation is aborted and counted as a success. To minimize
the runtime for obtaining statistics, we also abort if after 5 full iterations, the
number of correct coefficients has not improved.

To compute the distributions Di, described in Section 3.3, Equation (3), for
each variable node i, the convolution of n − 1 messages has to be computed.
Näıvely, this results in having to compute (n− 1)n convolutions of distributions
(with growing support) at each check node in every full iteration. To avoid inef-
ficient re-computations when computing partial products in check nodes, we are
using the binary tree algorithm described by Pessl and Prokop in [PP21]. Using
an upwardly constructed and a downwardly constructed tree, we are avoiding
recomputations and may compute all Di at once. This is similar to the classical
two-directional pass to compute partial products.

To construct the upward tree, we first initialize leaf nodes with ŷi. Every
following layer then consists of the product of two nodes of the previous layer

6 The negative logarithm of the probability of the most likely value.

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 17

up until the log(2n) − 1-th layer having two nodes. The downward tree is then
initialized by swapping the values of the last layer of the upward tree. Every
other layer of the downward tree is computed by multiplying the node of the layer
above with the sibling from the upward tree. Thus, each node of the downward
tree is the product of all nodes except its child nodes. The algorithm is also used
for variable nodes. As the number of inequalities is not always a power of two,
we add an additional node to a layer if the number nodes in the previous layer
is not even. This additional node is equal to the last node of the previous layer,
i.e. we implicitly add a node with the value of the multiplicative neutral element
to each uneven layer.

Algorithm 7 Computations at a check node representing a less-equal inequality
given by a0, . . . a2n−1, a value b, and set of possible values V . Messages m map a
16-bit signed value to a probability represented as 64-bit float by the [·] operator.
The i-th messages represents the variable xi corresponding to the coefficient ai
in the inequality.

Input: Incoming messages m0, . . . ,m2n−1

Output: Outgoing messages m′0, . . . ,m
′
2n−1

1: for all i ∈ { 0, . . . , 2n− 1 } do
2: for all v ∈ V do
3: mmi[ai · v]← mi[x] . Distribution of aixi

4: m̂mi ← FFT(mmi)

5: downtree← BinaryTrees.compute(m̂m0, . . . , m̂m2n−1) . Multiply leaving one out
6: for all i ∈ { 0, . . . , 2n− 1 } do
7: m̂pi ← downtree.leaf(i) . downtree.leaf(i) =

∏
j 6=i m̂mj

8: mp← FFT−1(m̂pi) . Holds distribution of
∑
j 6=i ajxj

9: for all v ∈ V do
10: m′i[v]← mpi.sum lesseq than(b− v) . m′i[v] = P (

∑
j 6=i ajxj ≤ b− v)

11: return m′0, . . . ,m
′
2n−1

4.3 Results

We ran our simulations for all three Kyber parameter sets to determine the
number of inequalities and thus faulted decapsulations necessary to retrieve the
secret key. We first determined the range of inequalities from which on a key
recovery is possible. We than tested different numbers of inequalities with a
step-size of 250, 500, and 1000 inequalities depending on the rate of change in
the recovered coefficients in that range. For every number of inequalities, we ran
20 experiments, the success rate is then calculated as the number of successful
runs divided by the total number of runs. The number of recovered coefficients
is the average number of recovered coefficients.

Abort criteria We abort if the key is found or after at most 80 full iterations. To
check for a successful recovery, an attacker would use the ordering described in

18 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

Section 4.2 and the public key equation. To obtain statistics, we simply abort if
at least n of the coefficients in any of the orderings are correct. In addition, we
abort early if there is no improvement after 20 steps.

Success rate. Figure 3 shows the success rate of our experiments. In our sim-
ulations, our approach recovered the secret key in all cases starting with 5750
inequalities for Kyber512, 6750 inequalities for Kyber768, and 8500 inequalities
for Kyber1024. Each inequality corresponds to one manipulated key exchange
(and therefore one fault) with the device. More inequalities gave a higher suc-
cess rate in all experiments. Succeeding runs usually occur starting with 5000
inequalities for Kyber512, 5750 inequalities for Kyber768, and 7250 inequalities
for Kyber1024.

2000 3000 4000 5000 6000 7000 8000 9000

Number of inequalities

0.00

0.25

0.50

0.75

1.00

S
u
cc

es
s

ra
te

Kyber512

Kyber768

Kyber1024

Fig. 3. Success rate depending on the number of inequalities/introduced faults.

Recovered coefficients. In failing cases, we often recover a high number of coeffi-
cients that might be sufficient to retrieve the key, using standard lattice reduction
algorithms such as [CN11]. We count recovered coefficients as the longest chain of
correct coefficients in one of the orderings described in Section 4.2 after any step.
As the number of correct coefficients might decrease after further iterations, es-
pecially in corner cases, an attacker should test if the key can be recovered using
the public key equations after every step. If additional lattice reduction tech-
niques are used, those should also be applied to intermediate results. Figure 4
shows the average number of recovered coefficients. Given that the number of
recovered inequalities rises quickly after obtaining more than a certain threshold
of inequalities, we assume that additional lattice reduction techniques are only
useful for cases where obtaining further inequalities is very difficult or expensive.

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 19

In all other cases where lattice reduction techniques may yield a correct result,
retrieving more inequalities should quickly increase the success rate to 1.

2000 3000 4000 5000 6000 7000 8000 9000

Number of inequalities

0

200

400

600

800

1000

R
ec

ov
er

ed
 c

o
ef

fi
ci

en
ts

Kyber512

Kyber768

Kyber1024

Fig. 4. Average number of recovered coefficients. The dashed lines mark 512, 768, and
1024 coefficients.

Runtime. Our implementation is in large parts multithreaded with the ability to
utilize as many cores as the number of inequalities used. The runtime strongly
depends on the number of inequalities as each inequality is represented by a
factor node.

Our attack runs on widely available hardware. For example, on a standard
laptop, one full iteration for Kyber768 and with 7000 inequalities takes about
15 minutes using a single thread of an Intel(R) Core(TM) i7-10510U CPU. Ta-
ble 2 shows the average number of full iterations and the runtime in minutes for
successful runs with 32 and 8 threads on a Intel(R) Xeon(R) Gold 6242 CPU
with 16 cores.

Table 2. Runtimes in minutes on a Intel(R) Xeon(R) Gold 6242 with 32 and 8 threads.

Parameter set Iterations 32 threads 8 threads

Kyber512 (6000 inequalities) 6.8 3.25 9.3
Kyber768 (7000 inequalities) 6.75 6.7 18.6
Kyber1024 (9000 inequalities) 9 16.9 39.25

20 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

Comparison with previous work. The work of Pessl and Prokop, presented in
[PP21], uses a different attack (especially regarding the fault model) to obtain
similar inequalities. Their technique to recover the secret key from those inequal-
ities is different, but in a way related to ours.

Note that they analyzed an older version of Kyber. The main difference
between the versions, in the context of key recovery from inequalities, is the
use of η = 3 (instead of η = 2 as in the previous version) for Kyber512. This
probably makes recovering the secret key slightly harder in our case.

Pessl and Prokop report a success rate of 1 starting with 7500 inequalities
for Kyber512, 10500 inequalities for Kyber768, and 11000 inequalities for Ky-
ber1024. While lacking an exact comparison, our technique seems to be a clear
improvement. We assume that our belief propagation based approach better
avoids feedback loops which might negatively impact the result. Our implemen-
tation also uses significantly less memory than the implementation of [PP21].
While the original recovery technique requires up to 79 GB of RAM, we stay
well below 10 GB of RAM usage at all times, depending on the number in-
equalities and threads, where we used up to 10000 inequalities and 40 threads.
Regarding runtime, our implementation is slightly slower, but the attack may
be carried out using a normal laptop.

5 Conclusion and Countermeasures

In the previous sections, we presented a realistic attack by combining a chosen-
ciphertext attack with a fault injection and introduced an improved recovery
technique for linear inequalities involving the secret key. The fault may be in-
jected over a long execution-time interval and on different variables which hold
public data. Our attack depends on the result of computations and not the com-
putational steps itself. Therefore, securing computations and Boolean masking
of inputs does not prevent our attack. We thereby highlighted the importance
to protect seemingly non-sensitive, public data as well as operations over the
whole execution time and to implement additional countermeasures to protect
against fault-enabled chosen-ciphertext attacks. In addition, we give another ex-
emplary usage of the belief propagation algorithm for key recovery and provide
further evidence for the importance of the belief propagation algorithm for side-
channel analysis. While we targeted Kyber, we conjecture that variants of this
attacks are applicable to conceptually similar schemes such as Saber [DKRV18],
FrodoKEM [ABD+21], or NewHope [AAB+19]. In this section, we provide an
overview over standard countermeasures and if and how they defend against our
attack.

Shuffling. In contrast to [PP21], our attack may not be mitigated by shuffling
the decoder. They introduce a fault in the decoder and need to know which bit
has been faulted to extract correct inequalities, which explains the usefulness
of shuffling. Shuffling in time, however, does not affect the physical location of
c in RAM, which is why manipulation of this value is not prevented. Still, a

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 21

second attack path, namely manipulating c′ during re-encryption (cf. Figure 1),
becomes more difficult to exploit. When only using successful decapsulations–
they can only occur when the correct coefficient was faulted–the number of
required faults is approximately multiplied by the number of shuffling positions.

Redundancy. Introducing redundancy in the storage of c, as depicted in Fig-
ure 5, might drastically increase the effort and abilities required by an attacker.
For that, a hash of c is computed directly after receiving the ciphertext. Right
after the comparison check of the re-encryption, c is again hashed and compared
against the previously computed hash. This mainly protects against faults intro-
duced in c while it is stored in RAM. A manipulation during compression of c′ is
still possible, therefore the attack is not fully prevented but significantly harder
to carry out.

The combination of introducing redundancy, shuffling the decoder, together
with a secured comparison (via, e.g., double computation) likely prevents our
attack with high probability. Additional security can be achieved by randomising
the memory layout, e.g. by storing coefficients in a permuted order, and shuffling
the compression function.

c

decompress decrypt/re-encryption compress

compare

Hash

Fig. 5. Visualisation of the FO-transforms re-encryption check including decompression
and compression with an additional countermeasure. Being able to introduce one-bit
faults anywhere in the red (light) phases enables our attack. Introducing redundancy
drastically reduces the attack surface.

22 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

6 Acknowledgments

This work has been supported by the German Federal Ministry of Education
and Research (BMBF) under the project “PQC4MED” (16KIS1041), as well as
by the European Union’s Horizon 2020 research and innovation program under
grant agreement No 830927. We would like to thank the anonymous reviewers
for their helpful comments which improved this work.

References

AAB+19. Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la
Piedra, Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila.
Newhope – Submission to the NIST post-quantum project., 2019. https:

//newhopecrypto.org/data/NewHope_2019_07_10.pdf.

ABD+21. Erdem Alkim, Joppe W. Bos, Leo Ducas, Patrick Longa, Ilya
Mironov, Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth
Raghunathan, and Douglas Stebila. Frodokem Learning With
Errors Key Encapsulation, 2021. https://frodokem.org/files/

FrodoKEM-specification-20210604.pdf.

ACLZ20. Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden.
Defeating NewHope with a Single Trace. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 11th International Confer-
ence, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings, vol-
ume 12100 of Lecture Notes in Computer Science, pages 189–205. Springer,
2020.

BDH+21. Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and Defending Masked Polyno-
mial Comparison for Lattice-Based Cryptography. IACR Cryptol. ePrint
Arch., 2021:104, 2021.

BDK+18. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM.
In 2018 IEEE European Symposium on Security and Privacy, EuroS&P
2018, London, United Kingdom, April 24-26, 2018, pages 353–367. IEEE,
2018.

BGRR19. Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. As-
sessment of the Key-Reuse Resilience of NewHope. In Mitsuru Matsui,
editor, Topics in Cryptology - CT-RSA 2019 - The Cryptographers’ Track
at the RSA Conference 2019, San Francisco, CA, USA, March 4-8, 2019,
Proceedings, volume 11405 of Lecture Notes in Computer Science, pages
272–292. Springer, 2019.

BPO+20. Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-Speed Masking for Polynomial Comparison in Lattice-
based KEMs. TCHES, 2020(3):483–507, 2020.

CN11. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security
estimates. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 1–20. Springer, 2011.

https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 23

DKRV18. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-LWR Based Key Exchange, CPA-
Secure Encryption and CCA-Secure KEM. In Antoine Joux, Abderrah-
mane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology -
AFRICACRYPT 2018 - 10th International Conference on Cryptology in
Africa, Marrakesh, Morocco, May 7-9, 2018, Proceedings, volume 10831 of
Lecture Notes in Computer Science, pages 282–305. Springer, 2018.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmet-
ric and Symmetric Encryption Schemes. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of LNCS, pages 537–554.
Springer, 1999.

GGSB20. Qian Guo, Vincent Grosso, François-Xavier Standaert, and Olivier Bron-
chain. Modeling Soft Analytical Side-Channel Attacks from a Coding The-
ory Viewpoint. IACR TCHES, 2020(4):209–238, 2020.

GJN20. Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery tim-
ing attack on post-quantum primitives using the Fujisaki-Okamoto trans-
formation and its application on FrodoKEM. IACR Cryptol. ePrint Arch.,
2020:743, 2020.

GRO18. Joey Green, Arnab Roy, and Elisabeth Oswald. A Systematic Study of the
Impact of Graphical Models on Inference-Based Attacks on AES. In Begül
Bilgin and Jean-Bernard Fischer, editors, Smart Card Research and Ad-
vanced Applications, 17th International Conference, CARDIS 2018, Mont-
pellier, France, November 12-14, 2018, Revised Selected Papers, volume
11389 of Lecture Notes in Computer Science, pages 18–34. Springer, 2018.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A Modular Anal-
ysis of the Fujisaki-Okamoto Transformation. In Yael Kalai and Leonid
Reyzin, editors, Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part
I, volume 10677 of Lecture Notes in Computer Science, pages 341–371.
Springer, 2017.

HHP+21. Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen Ciphertext k-Trace Attacks on Masked CCA2 Secure
Kyber. IACR Cryptol. ePrint Arch., 2021:956, 2021.

HP21. Daniel Heinz and Thomas Pöppelmann. Combined Fault and DPA Pro-
tection for Lattice-Based Cryptography. IACR Cryptol. ePrint Arch.,
2021:101, 2021.

KPP20. Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-Trace
Attacks on Keccak. TCHES, 2020(3):243–268, 2020.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices
and Learning with Errors over Rings. J. ACM, 60(6):43:1–43:35, 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

Mac03. David J. C. MacKay. Information theory, inference, and learning algo-
rithms. Cambridge University Press, 2003.

Nata. National Institute of Standards and Technology. NIST Status Up-
date on the 3rd Round. https://csrc.nist.gov/CSRC/media/

Presentations/status-update-on-the-3rd-round/images-media/

session-1-moody-nist-round-3-update.pdf.

https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf
https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf
https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf

24 Julius Hermelink, Peter Pessl, and Thomas Pöppelmann

Natb. National Institute of Standards and Technology. Post-
Quantum Cryptography Standardization. https://

csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization.
OGM17. Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. Electro-

magnetic fault injection: the curse of flip-flops. J. Cryptogr. Eng., 7(3):183–
197, 2017.

OSPG18. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-Secure and Masked Ring-LWE Implementation. TCHES,
2018(1):142–174, 2018.

PH16. Aesun Park and Dong-Guk Han. Chosen ciphertext Simple Power Analysis
on software 8-bit implementation of ring-lwe encryption. In 2016 IEEE
Asian Hardware-Oriented Security and Trust, AsianHOST 2016, Yilan,
Taiwan, December 19-20, 2016, pages 1–6. IEEE Computer Society, 2016.

PP19. Peter Pessl and Robert Primas. More Practical Single-Trace Attacks on
the Number Theoretic Transform. In Peter Schwabe and Nicolas Thériault,
editors, Progress in Cryptology - LATINCRYPT 2019 - 6th International
Conference on Cryptology and Information Security in Latin America, San-
tiago de Chile, Chile, October 2-4, 2019, Proceedings, volume 11774 of Lec-
ture Notes in Computer Science, pages 130–149. Springer, 2019.

PP21. Peter Pessl and Lukás Prokop. Fault Attacks on CCA-secure Lattice
KEMs. TCHES, 2021(2):37–60, 2021.

PPM17. Robert Primas, Peter Pessl, and Stefan Mangard. Single-Trace Side-
Channel Attacks on Masked Lattice-Based Encryption. In Wieland Fis-
cher and Naofumi Homma, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Conference, Taipei, Tai-
wan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 513–533. Springer, 2017.

PQC. Contributors to PQClean. PQClean. https://github.com/PQClean/

PQClean.
RBRC20. Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopad-

hyay. Drop by Drop you break the rock - Exploiting generic vulnerabilities
in Lattice-based PKE/KEMs using EM-based Physical Attacks. IACR
Cryptol. ePrint Arch., page 549, 2020.

RRCB20. Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic Side-channel attacks on CCA-secure lattice-based PKE
and KEMs. TCHES, 2020(3):307–335, 2020.

RRdC+16. Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren,
and Ingrid Verbauwhede. Masking ring-LWE. J. Cryptogr. Eng., 6(2):139–
153, 2016.

RRVV15. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A Masked Ring-LWE Implementation. In Tim Güneysu and
Helena Handschuh, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Com-
puter Science, pages 683–702. Springer, 2015.

RSDT13. Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells. In
Wieland Fischer and Jörn-Marc Schmidt, editors, 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August
20, 2013, pages 89–98. IEEE Computer Society, 2013.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://github.com/PQClean/PQClean
https://github.com/PQClean/PQClean

Fault-Enabled Chosen-Ciphertext Attacks on Kyber 25

VGS14. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert.
Soft Analytical Side-Channel Attacks. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, volume 8873 of Lecture Notes in Computer Science, pages 282–296.
Springer, 2014.

VOGR18. Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni.
Exploring the Vulnerability of R-LWE Encryption to Fault Attacks. In
John Goodacre, Mikel Luján, Giovanni Agosta, Alessandro Barenghi, Israel
Koren, and Gerardo Pelosi, editors, Proceedings of the Fifth Workshop on
Cryptography and Security in Computing Systems, CS2 2018, Manchester,
United Kingdom, January 24, 2018, pages 7–12. ACM, 2018.

XIU+21. Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi
Homma. Fault-Injection Attacks against NIST’s Post-Quantum Cryptog-
raphy Round 3 KEM Candidates. IACR Cryptol. ePrint Arch., 2021:840,
2021.

	Fault-Enabled Chosen-Ciphertext Attacks on Kyber

