
BooLigero: Improved Sublinear Zero Knowledge Proofs for
Boolean Circuits

Yaron Gvili1, Sarah Scheffler2, and Mayank Varia2

1 Cryptomnium LLC
yaron.gvili@cs.tau.ac.il

2 Boston University
{sscheff,varia}@bu.edu

Abstract. We provide a modified version of the Ligero sublinear zero knowledge proof system for
arithmetic circuits provided by Ames et. al. (CCS ‘17). Our modification “BooLigero” tailors Ligero
for use in Boolean circuits to achieve a significant improvement in proof size. Although the original
Ligero system could be used for Boolean circuits, Ligero generally requires allocating an entire field
element to represent a single bit on a wire in a Boolean circuit. In contrast, our system performs
operations over words of bits, allowing a proof size savings of between O((log |F|)1/4) and O((log |F|)1/2)
compared to Ligero, where F is the field that leads to the optimal proof size in original Ligero. We
achieve improvements in proof size of approximately 1.1-1.6x for SHA-2 and 1.7-2.8x for SHA-3. In
addition to checking constraints of standard Boolean operations such as AND, XOR, and NOT over
words, BooLigero also supports several other constraints such as multiplication in GF(2w), bit masking,
testing for zero bits, bit rearrangement within and across words, and bitwise outer product. Most of these
techniques batch very efficiently, with only a constant overhead regardless of how many constraints of
the same type are tested. Like Ligero, our construction requires no trusted setup and no computational
assumptions, which is ideal for blockchain applications. It is plausibly post-quantum secure in the
standard model. Furthermore, it is public-coin, perfect honest-verifier zero knowledge, and can be
made non-interactive in the random oracle model using the Fiat-Shamir transform.

1 Introduction

Zero knowledge proofs and arguments have become the backbone of modern cryptography. In addition to
their uses in building other cryptographic primitives such as signatures, multiparty computation (MPC),
and identification schemes, they play a pivotal role in the design of anonymous and privacy-preserving
cryptocurrencies [4, 15,26,31].

Since Kilian’s seminal work on probabilistically checkable proofs [27], their interactive version [25], and
their generalization into interactive oracle proofs [7], many zero knowledge argument systems have been
created from such proofs. In this work, we focus on and improve Ligero [1], a protocol that achieves a
balance between proof size and prover runtime.

1.1 Our Contributions

This paper makes three contributions.
BooLigero: Ligero for Boolean circuits. In this paper, we present BooLigero, an improvement to

Ligero tailored for Boolean circuits. Our method allows us to utilize “full” field element to store log |F|
bits of the witness, rather than using an entire field element to represent a single bit (and enforce an
additional constraint). We can utilize the full field for XOR and NOT operations; for AND we can use√

log |F| bits of the field element. This buys us an improvement in the proof size between O((log |F|)1/4) and
O((log |F|)1/2) compared to original Ligero, depending on the proportion of ANDs in the circuit. The prover
and verifier runtime should not change much compared to original Ligero. We do this while maintaining
Ligero’s properties of being public coin, perfect honest-verifier zero knowledge, amenability to the Fiat-
Shamir heuristic, being plausibly post-quantum secure in the standard model, and requiring no trusted
setup.

Efficient zero-checking and bit-pattern constraint tests. In Ligero, the witness is encoded, and
constraints are checked by ensuring that the prover’s claims are consistent with parts of the encoded witness
that were randomly chosen by the verifier. We add the ability to reveal masked elements of the witness
directly, in such a way that the verifier may check properties on the masked elements that will enable them
to test properties of other hidden witness elements. Tests with a certain kind of linearity are extremely
efficient, requiring only a constant overhead in the number of witness elements to test arbitrarily many
instances of the property on existing variables. This enables us to test properties that would normally be
difficult to test while representing many bits per word, such as testing whether certain bits are zero, or
testing bit “patterns” such as masking and shifting. We can also use these to build range tests. These tests
may be helpful in frameworks outside BooLigero as well.

Concrete 1.1-2.8x improvement over Ligero. We evaluate our performance on the hash functions
SHA-3 and SHA-2, which are common benchmarks and have particular appeal to the cryptocurrency com-
munity. We achieve a 1.7-2.8x improvement over Ligero for Merkle trees of SHA-3 from 21 to 215 leaves. Our
circuit for SHA-3 utilizes one of our specialized tests to perform the bit-rotation step of the SHA-3 main
loop. For SHA-2, we achieve a 1.1-1.6x improvement over Ligero for Merkle trees from 21 to 215 leaves. Note
that this is in spite of the fact that SHA-2 uses some addition modulo 232 operations, which Ligero supports
directly and BooLigero does not.

1.2 Related Work

In general, zero knowledge proofs are evaluated for performance on three metrics: proof/argument size, prover
runtime, and verifier runtime. There is a spectrum of zero-knowledge proof/argument systems.

On one extreme of the spectrum, large, fast proofs construct ZK proofs from various flavors of MPC:
the garbled-circuit based approach of ZKGC [24] (with improvements from [28]) or approaches that use the
GMW [19] paradigm (e.g. [23], improved in [18] and [11]). All of these are generally much quicker to compute
than the approaches listed above, but they incur a linear proof size (except the very recent work of [36],
which cannot be made non-interactive, and is therefore not usable in most blockchain scenarios).

On the other extreme, we have “succinct” sublinear-size arguments. The smallest arguments are constant
size, but generally suffer from two problems – assumptions and trusted setup. Many of these arguments use
unfalsifiable assumptions (e.g., [5,8,13,16,20,29,32]) and this is inherent at a certain level [17]. Others require
a trusted setup step performed by a central authority or a trusted committee operating a costly multiparty
computation (e.g. [4, 5, 9, 12, 14, 16, 20, 21, 30, 32, 37]), both being undesirable or even unacceptable in many
financial use cases.

In the middle, there exist transparent protocols that achieve sublinear (but not constant) size without
the need for trusted setup. A number of these protocols use assumptions that render them vulnerable to
quantum attacks (e.g. [10,22,33,35]). There are three different approaches to sublinear transparent protocols
without trusted setup that are plausibly post-quantum secure: Ligero [1], Stark [3], and Aurora [6].

Compared to Ligero and BooLigero, Stark’s proof size is asymptotically smaller (O(log2 s) instead of
O(
√
s) for circuit size s), but concretely larger for circuits smaller than approximately 106 gates, as shown

in [35]. Its prover runtime is more expensive than Ligero’s both asymptotically by a log s factor, and is also
concretely longer. For circuits with repeated sub-circuits, Stark has significantly improved verifier runtime,
but there is no asymptotic difference for circuits without this property.

Aurora [6] also has a significantly smaller proof size than Ligero and BooLigero (O(log2 s) instead of
O(
√
s)) and the same asymptotic prover and verifier runtime. However, its interactive version has a O(log s)

round complexity compared to Ligero and BooLigero’s O(1), and its prover runtime is concretely higher than
Ligero’s. Moreover, without a certain unproven conjecture involving Reed-Solomon codes, it becomes much
less efficient (see discussion in [33]).

2

2 Preliminaries

Notation. We use F to refer to a finite field, and GF(2w) to refer to a finite field with order 2w. We also
often use w to refer to the “word size” and refer to elements of GF(2w) as “w-words” when we use their
w-bit representations.

For operations, we use ⊕ for bitwise XOR and & for bitwise AND, over bits or w-words depending on
context. We use ∗ to denote Galois field multiplication, and · for element-wise multiplication of vectors.

Bit indexing, denoted with square brackets, always begins at 1. Bitstrings are always shown in big endian.
Thus, if x = 0001, then x[1] = 1 is the least significant bit of x.

Zero knowledge IOPs. A ZKIOP is an interactive oracle proof (IOP) [7] that is additionally zero-knowledge.
Let P and V be probabilistic polynomial-time interactive Turing machines. An interactive oracle protocol
between P and V occurs over several rounds. P reads messages sent by V fully, but V queries random parts
of P’s message rather than reading them entirely. At the end, V either accepts or rejects. Let 〈P(x,w),V(x)〉
refer to the output of V(x) when executing an interactive oracle protocol with P(x,w). Let R be a relation
for language L so that (x,w) ∈ R if w is a witness for x’s membership in L.

Definition 1 (Zero knowledge interactive oracle proof). 〈P,V〉 is a zero knowledge interactive oracle
proof system for R with soundness error δ if:

– Completeness: For any (x,w) ∈ R, 〈P(x,w),V(x)〉 = 1.
– Soundness: If x /∈ L, then for all P∗, Pr[〈P∗,V(x)〉 = 1] ≤ δ
– Perfect honest-verifier zero knowledge: Let ViewV(P,V, x, w) be the view of V upon completion of 〈P(x,w),V(x)〉.

The protocol is perfect honest-verifier zero knowledge if there exists a probabilistic poly time simulator S
such that for all (x,w), the distribution of S(x) equals the distribution of ViewV(P,V, x, w).

The IOPs we deal with in this paper are also public-coin, meaning that V’s messages to P are always
chosen randomly from a known distribution, and V’s queries to P depend only on messages that have already
occurred and that P has seen. Zero knowledge IOPs can be converted to zero knowledge arguments in a
standard way using the Fiat-Shamir transform [7].

3 Ligero Background

In this section we provide relevant background from [1].

Proof size of Ligero. Ligero [1] is a zero-knowledge argument that achieves O(
√
s) proof size, where s is the

size of the verification circuit.
Ligero encodes the witness using an Interleaved Reed-Solomon code, which can be considered an m-

vector of Reed-Solomon (RS) codewords. Each RS codeword can itself be considered a vector of n elements
which encode ` unencoded elements, for n = O(`). Thus, the overall interleaved Reed-Solomon code can be
considered an m× n matrix encoding m× ` variables.

Ligero achieves O(
√
s) proof size by being clever about how the verifier checks constraints on this matrix.

Roughly speaking, the communication will consist of some (linear combinations of) rows and some columns
of the matrix, with simplified complexity O(n + m). Thus, one can balance m against ` and set both3 to
O(
√
s) to achieve a proof size of O(

√
s).

We let L = RSF,n,k,η be a Reed-Solomon code with minimal distance. Lm refers to the interleaved code,
which has codewords that are simply m codewords of L. Lm is best understood as a matrix where the m
rows are L-codewords. The details of interleaved Reed-Solomon codes as they relate to Ligero are provided
in §A, but they should not be necessary to understand this paper.

3 Actually, m is set to O(
√
s/κ) and ` is set to O(

√
sκ), where κ is a security parameter.

3

Tests in Ligero. As a zero-knowledge IPCP between the prover P and verifier V, the prover begins by encoding
its witness as a Lm codeword – an m × n matrix encoding m × ` variables in the witness. Ligero creates
three tests for constraints over this matrix: Test-Interleaved ([1] §4.1), Test-Linear-Constraints-IRS
([1] §4.2), and Test-Quadratic-Constraints-IRS ([1] §4.3). Each of these tests consists of two phases:

1. Oracle phase: P creates an oracle to the Lm-encoded witness (possibly with some additional info).
2. Interactive testing phase: P and V interact with each other. P sends some linear combinations of rows

of the matrix. V makes queries to the oracle to obtain columns of the Lm codeword (without receiving
any L codeword “rows” fully). After the interaction, V checks whether the linear combinations given to
it by P match the columns it queried, and either accepts or rejects.

When used as a zero-knowledge argument (instead of a ZKIPCP), the oracle is replaced with a commit-
ment. Before the interactive testing phase, P commits to all columns of its encoded witness as the leaves of
a Merkle tree that uses a statistically hiding commitment scheme. To make the proof non-interactive, the
verifier’s messages can be replaced with a random oracle call on the prover’s messages up to that point.

Boolean circuits in Ligero. Ligero is presented for arithmetic circuits over a prime field. It is possible to use
Ligero for a Boolean circuit as well, but this has two downsides.

The first downside is that one must use an entire field element to represent a single bit. This causes a
blowup of log |F| in the number of witness elements, which causes a blowup of O(

√
log |F|) in the proof size.

How small of a field can we use? There is a minimum requirement that |F| ≤ ` + n ([1] §5.3), which
is required so that there are sufficient evaluation points for L. Furthermore, if the field gets too small, one
must repeat the protocol several times in order to achieve the desired soundness. At very small field sizes,
the costs of the commitments (log s times a constant hash output length) also start growing in comparison
to the rest of the proof. Concretely, testing out different field sizes for Boolean circuits on the order of 106

to 109 gates tends to yield optimal field sizes of about 14-20 bits. This suggests that there is approximately
a 3.7-4.4x gain to be had by packing the bits efficiently.

The second downside is that this costs additional constraints. First, each extended witness element e
must be proven to be 0 or 1 by adding a quadratic constraint that e2 − e = 0. Second, XOR and AND
are also both quadratic constraints: the constraint e1 + e2 = a0 + 2 · a1, along with bit constraints on all
variables, enforce that a0 is the XOR of e1 and e2, and that a1 is the AND of e1 and e2. Computing only
one or the other necessitates the creation of a dummy variable for the other, and enforcing bit constraints
on all. Hence, the number of constraints is twice the maximum number of AND and XOR gates combined.

Unlike linear constraints, which can be evaluated using only an encoding of the witness itself, evaluating
quadratic constraints like x ∗ y = z requires providing encodings of x, y, and z, separately from (but related
to) the encoding of the witness itself. Although the number of quadratic constraints will asymptotically be
O(s), this suggests that there may be concrete room for improvement by reducing the number of quadratic
constraints.

4 BooLigero Techniques

We make one minor change and two major changes to Ligero [1], which we described in §3.
The minor change is that we use GF(2w) instead of the prime field GF(p). Ligero’s methods work for

any finite field, where addition and multiplication now use operations in the new field. Since we are still
using Interleaved Reed-Solomon codes, we can directly reuse Ligero’s Test-Interleaved, Test-Linear-
Constraints-IRS, and Test-Quadratic-Constraints-IRS. The latter two now test bitwise XOR/NOT
constraints and GF(2w) multiplication rather than arithmetic addition and multiplication. We lose the ability
to natively check linear arithmetic constraints in mod 2w, but we gain the ability to cheaply check XORs.
We can still check linear arithmetic constraints in power-of-two moduli by building an adder out of the
constraint tests we have.

The following two larger changes to Ligero are the focus of our work:

4

Change 1: Additional constraint tests that reveal variables directly. We add a number of tests for additional
constraints. These new tests operate differently than the Ligero tests, and in fact the new tests rely on the
Ligero tests in order to check linear and quadratic constraints. In the new tests, the prover modifies and
extends the witness with additional variables, some of which are based on a “challenge” sent by the verifier.
As part of the proof oracle, the prover sends some (masked) elements of the witness to the verifier directly,
and the verifier must check to see whether the revealed elements have a certain property. These tests can
be nested inside other tests – e.g., our Test-And-Constraints procedure involves invoking Test-Pattern-
Zeros-Constraints, as described in §4.3.

Most of our tests use only linear constraints and cost O(κ) (a security parameter) in the proof size,
independent of the circuit size and the number of constraints. Our Test-And-Constraints involves adding
approximately 3

√
wN hidden variables, where N is the number of AND gates. This is still an improvement

over the approximately wN added elements that are required to represent wN Boolean wires in plain Ligero.
We describe our constraint tests in §4.3.

Change 2: Two oracles/rounds of commitment. Unlike original Ligero, many of the tests we add require
verifier input in order to choose which constraints we will check – generally, the verifier will pick a random
linear combination of the variables to use in constraints. However, for this to be sound, the original variables
must already have been available in an oracle (or been committed to). This necessitates splitting the proof
oracle in two: one that presents an encoding of the “original” witness, and one that is parameterized by
the verifier’s random choices and returns an encoding of the added variables. We call the first oracle the
“initial oracle” and the second the “response oracle”. Thus, whereas Ligero had two phases of procedures –
the oracle phase and the interactive testing phase – we have four: initial phase (creation of initial witness to
be provided as oracle or commitment), challenge phase (verifier sends random bits as challenge), response
phase (creation of witness extension to be provided as a second oracle or commitment), and the interactive
testing phase We describe each of these phases in §4.1. This process is based on the circuit sampling idea
of [2].

4.1 Test Procedures

In original Ligero, each test consists of an oracle and an interactive test procedure which will ensure that
the oracle is valid. In our protocol, each test consists of two oracles, separated by a verifier challenge, and
followed by an interactive test procedure. The second oracle is the response to the challenge. We describe
each of our constraint test procedures in four phases:

1. Initial phase: P adds elements to the witness, encodes it, and provides the encoding as the first proof
oracle.

2. Challenge phase: V sends random bits to P, which will be required to generate the second proof oracle.
3. Response phase: Based on the bits received in the challenge, P adds more elements to the witness, and

adds additional constraints. P encodes the extensions to the witness, and provides the encoding (which
can be combined with the first oracle’s output) as well as the revealed variables.

4. Interactive testing phase: P and V run an interactive testing protocol. At the end, V has acceptance
criteria for determining whether to accept or reject the proof. Our tests augment the original Ligero
acceptance criteria with additional checks on properties of the revealed variables.

In slightly more detail, the variables in the witness consist of:

– v0 original variables
– v1 added hidden variables in the initial phase
– v2 added hidden variables in the response phase
– v3 added revealed variables in the response phase

P and V first set `, m1, m2, and m3 so that `m1 ≥ v0 + v1, `m2 ≥ v2, and `m3 ≥ v3. P creates the
initial witness encoding Uw1 ∈ Lm1 from the v0 original variables and v1 added hidden variables in the

5

initial phase, and sets this as the initial oracle. After receiving V’s challenge, it creates the response witness
encoding Uw2 ∈ Lm2 from the v2 newly added hidden variables. As in original Ligero, it also creates encodings
Ux, Uy, and Uz ∈ Lm′

needed for testing quadratic constraints (where m′ is set so that m′` is at least the
number of quadratic constraints). P sets the response oracle as the vertical concatenation of Uw2 , Ux, Uy,
Uz, along with all revealed variables in the clear.

When doing the interactive testing phase, P also creates Uw3 ∈ Lm3 which contains the revealed variables
added in the response phase. During this phase, P treats its witness encoding Uw as the vertical concatenation
of Uw1 , Uw2 , and Uw3 . The verifier will do the same with the revealed variables.

Our new BooLigero tests rely on executing the interactive testing phase of Ligero tests on Uw. (The
encodings of x, y, and z needed for Test-Quadratic-Constraints-IRS are also built relative to the full
w.) They also add additional linear and quadratic constraints to be tested in this way. These tests may be
useful in frameworks outside BooLigero as well.

Adding linear constraints. Ligero’s Test-Linear-Constraints-IRS checks whether an encoding of a secret
vector x is a solution to linear equation Ax = b, where A is a public matrix and b is a public vector. In
the context of testing the protocol in a full circuit, x is the witness vector, b is the all 0s vector, and A is
set so that the jth row of Ax equals in1 + in2 − out, where the jth addition gate in the circuit computes
out = in1 + in2. To add an additional linear constraint, we simply add an additional row to A along with
an additional element to b. Doing so does not affect the proof size.

Adding quadratic constraints. Ligero’s Test-Quadratic-Constraints-IRS tests whether encodings of vec-
tors x, y, z meet the condition that x · y + a · z = b, where · represents element-wise multiplication in F.
When using the protocol for testing a circuit, the x, y, z vectors are built so that their jth entries are
in1, in2, out, where the jth multiplication gate in the circuit computes out = in1 ∗ in2. These vectors are
constructed in a public way from the witness, i.e. P and V both construct Px such that x = Pxw. Unlike
the linear constraint test, separate encodings of x, y, and z must be provided to the verifier; thus, increasing
the number of quadratic constraints increases the proof size.

4.2 Testing linear operations that yield zero over bits

We first define a useful class of tests that can be batched very efficiently.
Let `1 and `2 be positive integers, and let t1 = `1w and t2 = `2w. Let T ∈ {0, 1}t2×t1 be a public t2 × t1

binary matrix. Then T defines a test on x ∈ {0, 1}t1 which checks whether Tx = ~0, where ~0 is of length t2.
To incorporate this into Ligero, we observe that one can represent a vector of Ligero variables x ∈

GF(2w)`1 as a vector in {0, 1}t1 of t1 = `1w bits. Adding two variables in one of these representations
exactly corresponds to adding the variables in the other representation. So, we abuse notation and treat the
vector x ∈ GF(2w)`1 as vector in {0, 1}t1 .

Observe that, given a ∈ {0, 1}t1 (which can also be represented by a vector in GF(2w)`1) such that
Ta = ~0, this implies that T (x+ a) = ~0 if and only if Tx = ~0. In the full protocol, rather than guaranteeing
that Ta will be 0, we will write a test that will check whether both Ta and Tx are 0 simultaneously. To
achieve privacy, we blind any Ligero variables we wish to test with T . P will generate a random a subject to
the constraint that Ta = ~0 and then open the variable (x+a) directly to the verifier, who can independently
check that T (x+a) = ~0. Figure 1 shows a construction for a perfect zero-knowledge protocol between P and
V to test T for a batch of N variables with low soundness error. Observe that the communication complexity
for this batched test of N `1-tuples is only the size of one tuple: `1 elements of GF(2w). Note that it is also
independent of t2; it depends only on t1 and w.

We will embed this construction into BooLigero to test properties discussed in §4.3, such as rearranging
bits in a “pattern,” checking whether certain bits are zero, or both at the same time.

Note that the test itself is not sound without the additional tests provided by Ligero – the soundness
of the main part of the test depends on the revealed variables being well-formed. We ensure that the all
variables are well-formed by using Test-Linear-Constraints-IRS and Test-Interleaved, and ensuring
that the initial elements are provided in an oracle (or committed to) before receiving the challenge. Note

6

Test-T (κ,F;x1 = (x11, . . . , x1t), . . . , xN = (xN1, . . . , xNt))

Auxiliary input: Soundness parameter κ. Field GF(2w) Positive integers `1 and `2; let t1 = w`1 and t2 = w`2.
Binary matrix T ∈ {0, 1}t2×t1 .
Inputs: A batch of N secret variables in GF(2w)`1 held by P, x1 = (x11, . . . , x1`1), . . ., xN = (xN1, . . . , xN`1) ∈
GF(2w)`1 . where P claims that (abusing notation and treating each xi as a binary t1-vector) Txi = ~0 for all i ∈ [N].
Protocol:
1. Initial phase: For j ∈ [κ], P picks and adds hidden variable a(j) ∈ GF(2w)`1 such that Ta(j) = ~0 to the witness.

2. Challenge phase: V sends Nκ bits: r
(j)
i for i ∈ [N] for j ∈ [κ].

3. Response phase: P adds

u(j) = a(j) ⊕
⊕
i∈[N]
s.t.

r
(j)
i =1

xi (1)

for j ∈ [κ] (a total of `1κ elements) as revealed elements to the witness. P and V add the κ instances of Eqn. 1
to the list of linear constraints to check.

4. Interactive testing phase: P and V run Test-Linear-Constraints-IRS and Test-Interleaved. V accepts if
both tests pass and additionally (abusing notation and treating each u(j) as a binary t1-vector) Tu(j) = ~0 for all
j ∈ [κ].

Fig. 1: Test construction for any binary matrix T

also that sometimes T itself will reveal certain information about x – for example, that x is 0 at certain
bit locations. But the protocol will not reveal anything about x other than the fact that Tx = ~0, which is
already true if P is honest.

Lemma 1 (Security of Test-T). The protocol described in Fig. 1 is complete, perfect zero-knowledge, and
has soundness error 1/2κ + δ1 + δ2, where δ1 is the soundness error of Test-Linear-Constraints-IRS and
δ2 is the soundness error of Test-Interleaved.

The proof is given in §B.1.

4.3 New constraint tests

In this section, we describe our added tests for BooLigero. Each of these calls one of the original Ligero
tests Test-Linear-Constraints-IRS or Test-Quadratic-Constraints-IRS. The later tests additionally
call on the earlier BooLigero tests as well.

Properties tested by Test-T . We proceed to name two useful properties (and their conjunction) that can be
tested using the construction from the previous section. As described in the previous section, they can test
the property on arbitrarily many input variables for only a constant overhead over the cost of the variables
themselves. Since we will reuse them later, we name each of these special cases of Test-T .

– Test-Zeros-Constraints: This tests whether particular bit locations in the input are 0. Let Z ⊆ [t2] be
a set of indices to be zero-tested. Formally, let TZ be a square matrix with 1s on the diagonal for indices
in Z, and 0 for all other elements. Observe that TZx = ~0 if and only if x is 0 at the Z indices.

– Test-Pattern-Constraints: We informally define a “pattern” as a relationship between between (ti =
t1 − t2) “input bits” and t2 “output bits.” The pattern property enforces that each “output bit” is an
XOR of some subset of the input bits. In general, pattern matrices Tπ are defined as a matrix that is a
concatenation between a matrix π ∈ {0, 1}t2×ti and a t2 × t2 identity matrix. Several useful functions
can be defined as patterns:

7

• Masking. Suppose we wished to show in Ligero that x&µ = y for some public mask µ, for Ligero
variables x, y ∈ GF(2w)`2 and mask µ ∈ {0, 1}t2 . Let M be the t2-square matrix with µ comprising
the diagonal and zeros elsewhere. Then we can test whether x&µ = y using the pattern Tµ = [M | I],
because:

[
M I

] [x
y

]
= ~0

which, for diagonal matrix M , implies that Mx = y.

• Even parity. Suppose we wished to show that y ∈ GF(2w) is the parity of x ∈ GF(2w)`1−1. This can
be tested by checking that 

.

· · · 0 · · · I
1 · · · 1

[x
y

]
= ~0

which will check that the least significant bit of y equals a sum of all bits of x. Even-parity can be
batch-tested by using Zeros, testing the parity of many variables simultaneously.

– Test-Pattern-Zeros-Constraints: Notice that a Zeros test can be performed on the same revealed
values as a pattern test, if the blinding variables are chosen to meet both constraints. We will often
perform these tests on the same revealed variables to save space.

Bitwise AND test. Next, we describe our test for bitwise AND. Note that AND cannot be tested using the
method in the previous section, since it is not a linear operation. Instead, we write a new test that calls
Test-Pattern-Zeros-Constraints.

As a first step, one way to test AND would be to fully bit-decompose our single w-bit element into w
elements each representing a single bit. This would let us use quadratic constraints directly to show AND
constraints. However, doing so is expensive. This method would yield roughly the same proof size as original
Ligero, since it uses an entire w-bit element to represent a single bit. Instead, we exploit the nature of
Galois field arithmetic to compute the AND of w0 = b

√
wc bits simultaneously in a w-bit element using

a GF multiplication. We then use our Pattern test to convert between the original variables and the w1

decomposed variables, where w1 is the minimum integer such that w0w1 ≥ w. Each of these w1 “split”
variables contains w0 bits of the original element (except the last, which may contain fewer if w0 6 |w).

Suppose we have elements x, y ∈ GF(2w), and want to find z = x&y. We start by using a Pattern to split
x into w1 variables x̂1, . . . , x̂w1

, and to split y into w1 variables ŷ1, . . . , ŷw1
. First, consider the x variables.

Each split variable x̂h will consist of w0 chunks of w0 bits each. (Recall that by construction w2
0 ≤ w.) The

least significant bit of each chunk will be a bit of x, and all other bits will be 0. This is illustrated in Equation
2. The y variables will be split differently: each ŷh will consist of a single chunk of w0 bits from y, starting
with the least significant bit. This is shown in Equation 3.

We then set ẑh = x̂h ∗ ŷh. The effect of multiplying x̂h by ŷh is that the chunk of w0 bits in ŷh is “copied”
to each of the w0 chunks of output for which the corresponding chunk of x̂h was 1. Thus, in order to figure
out which bits were shared between x and y, we go to the kth bit of the kth chunk of ẑh. This will equal the
kth bit of ŷh times the LSB of the kth chunk of x̂h. This is shown in Equation 4. Recomposing from the ẑh
variables back to z by using Pattern once again, we have exactly computed the bitwise AND of x and y.

Figure 2 shows an example of how to split (x, y, z), where z = x&y. The full Test-And-Constraints
procedure is shown in Figure 3. The patterns πx, πy, and πz, described formally in Figure 3 step 1(d).

Lemma 2 (Security of Test-And-Constraints). The protocol described in Fig. 3 is complete, perfect
zero-knowledge, and has soundness error 3(1/2κ) + δ1 + δ2 + δ3, where δ1 is the soundness error of Test-
Quadratic-Constraints-IRS, δ2 is the soundness error of Test-Linear-Constraints-IRS, and δ3 is the
soundness error of Test-Interleaved.

8

x = 10110→ (x̂w1 = 000

w0

01, x̂2 = 0

w0

00

w0

01, x̂1 = 0

w0

01

w0

00) (2)

y = 11101→ (ŷw1 = 0000 1, ŷ2 = 000 1 1, ŷ1 = 000 0 1) (3)

l l l ẑh = x̂h ∗ ŷh

z = 10100← (ẑw1 = 000

w0

01, ẑ2 = 0

w0

00

w0

11, ẑ1 = 0

w0

01

w0

00) (4)

Fig. 2: Example variable splits for Test-And-Constraints for w = 5, w0 = 2, w1 = 3. Pattern constraints
enforce the relationship between x and x̂, and similar for y and z. The ẑ variables are related to x̂ and ŷ via
a quadratic constraint.

A full proof of security for the test is shown in §B.2. Additionally, the ẑ variables can be used to compute
bitwise outer product if desired.

In §C, we show how to do cheap range tests for power-of-two ranges, and how to build an adder and use
it to perform non-power-of-two range tests.

Our full modifications to the protocol from [1] are shown in Figure 4.

5 Performance

We primarily evaluate our proof on its size compared to original Ligero, since our asymptotic prover and
verifier runtime should be the same as Ligero. Recall that a proof for a Boolean circuit in original Ligero
requires using an entire field element to represent a single bit value on a wire. Like original Ligero, the
parameters for BooLigero can be set so that the proof size is O(

√
s) elements, where s is the circuit size.

If the field size in Ligero is b = dlogFe bits, then we would expect BooLigero to save a factor of O(
√
b)

in the proof size. For example, if a Ligero proof used a field with 18 bits, we would expect a
√

18 ≈ 4.2x
improvement in the BooLigero proof size For AND gates we require w1 ≈

√
w variables to compute the

AND of a single w-bit variable. If the Ligero and BooLigero field sizes‘:w require the same number of bits to
represent, BooLigero will use only

√
b fewer variables, a proof size improvement of O(b1/4) for AND-heavy

circuits. We also add a small constant up-front cost for the revealed variables.

Determining the size of the extended witness and proof. If the verification circuit C consists of only XOR
gates, NOT gates, and Galois field multiplications, then the size of the witness w is simply the number of
wires in C, which we call v0 as described in §4.1. If C contains ANDs, or uses any other BooLigero test (e.g.
using Test-Pattern-Constraints to perform a bit shift), then w is augmented with the (v1 + v2 hidden
and v3 revealed) variables described in §4.3. The combined proof oracle becomes an Lm encoding of the
v0 + v1 + v2 hidden variables in the witness, plus the v3 revealed variables in the clear. Once the extended
witness is created, the process of choosing the parameters proceeds in the same way as original Ligero: the
number of rows m is balanced against the number of variables per row ` to achieve sublinear proof size. For
more details, see [1] §5. In the non-interactive version of BooLigero, the Merkle path part of the proof is
doubled since the initial and response variables were committed to separately. We computed the parameters
using our own optimizer written in SciPy and validated them with an optimizer obtained from [34].

5.1 Concrete results

For both SHA-2 and SHA-3, we evaluate our proof sizes compared to Ligero on proving membership in
the list captured by a Merkle tree. This has become a common benchmark for evaluating the scalability of
zero-knowledge proofs to larger predicates.

9

Test-And-Constraints(F = GF(2w), κ;x1, . . . , xN , y1, . . . , yN , z1, . . . , zN)

Inputs: Soundness parameter κ. Secret variables x1, . . ., xN , y1, . . ., yN , z1, . . ., zN ∈ F where P claims that
xi&yi = zi for all i ∈ [N].
Constraint enforced: xi&yi = zi for all i ∈ [N].
Procedure:

1. Initial phase:
(a) Let w0 = b

√
wc. Let w1 be the minimum integer such that w0w1 ≥ w. (Note that w1 ≤ w0 + 2.)

(b) Add 3Nw1 new variables to the witness as described below.
i. For i ∈ [N], for h ∈ [w1], add new variable x̂i,h where x̂i,h[(k−1)w0 +1] = xi[((h−1)w0)+k] for k ∈ [w0]

(if the index is defined), and all other bits are 0. An example is shown in Equation 2.
ii. For i ∈ [N], for h ∈ [w1], add new variable ŷi,h where ŷi,h[k] = xi[((h − 1)w0) + k] for k ∈ [w0] (if the

index is defined), and all other bits are 0. An example is shown in Equation 3.
iii. For i ∈ [N], for h ∈ [w1], add new variable ẑi,h = x̂i,h ∗ ŷi,h, where ∗ denotes multiplication in GF(2w).

Observe that within ẑi,h, each of w0 “chunks” of w0 bits, the kth bit of the kth chunk is 1 if and only if
the corresponding bits in xi and yi are 1. An example is shown in Equation 4.

(c) For all i ∈ [N], h ∈ [w1], add a quadratic constraint that x̂i,h ∗ ŷi,h = ẑi,h.
(d) We define patterns πx, πy, πz which describe the relationship between the variables and their “hatted” versions

described in 1(b) and with examples in Equations 2, 3, and 4.
i. Tπx enforces the following on column-vector [xi, x̂i,1, . . . , x̂i,w1]:

A. For all h ∈ [w1], x̂i,h is 0 everywhere except at indices (1 + kw0) for all valid k. Additionally, x̂i,w1

is also 0 at indices where k + 1 > w mod w0.
B. For k ∈ [w], xi[k] = x̂

i,b k+1
w0
c[1 + w0((k − 1) mod w0)]

ii. Tπy enforces the following on column-vector [yi, ŷi,1, . . . , ŷi,w1]:
A. For all h ∈ [w1], ŷi,h is 0 everywhere except at indices 1, . . . , w0. Additionally, ŷi,w1 is also 0 at

indices greater than w mod w0.
B. For k ∈ [w], yi[k] = ŷ

i,b k+1
w0
c[k mod w0]

iii. Tπz enforces the following on column-vector [zi, ẑi,1, . . . , ẑi,w1]:
A. For all h ∈ [w1], ẑi,h is 0 at all indices greater than w2

0. Additionally, ẑi,w1 is also 0 at indices greater
than w0(w mod w0).

B. For k ∈ [w], zi[k] = ẑ
i,b k+1

w0
c[1 + ((k − 1) mod w0) + w0((k − 1) mod w0)]

Run the initial phase of 3 Test-Pattern-Zeros-Constraints tests, one for each of these predicates, using
all of the corresponding variables from 1(b) as input. That is, do a batch test for Tπx , Tπy , and Tπz for all
i ∈ [N]. Each test’s initial phase adds hidden (w1 + 1)κ elements, for a total of 3(w1 + 1)κ.

2. Challenge phase: Run the challenge phase of each of the three Test-Pattern-Zeros-Constraints, which involves
picking Nκ bits for each test.

3. Response phase: Run the response phase of each of the three Test-Pattern-Zeros-Constraints, which will add
(w1 + 1) revealed variables and some linear constraints on them.

4. Interactive testing phase: Run Test-Quadratic-Constraints-IRS on the constraints described in 1(c), and
run the interactive testing phase of Test-Pattern-Zeros-Constraints, which involves running Test-Linear-
Constraints-IRS and ensuring that Test-Pattern-Zeros-Constraints passes using the revealed variables.

Fig. 3: Witness modification procedure and costs for Test-And-Constraints

10

Protocol ZKIOP(C,F = GF(2w))

– Input: The prover P and the verifier V share a common input circuit C : GF(2w)ni → GF(2w) and input statement x. P
additionally has input α = (α1, . . . , αni) such that C(α) = 1.

– Initial oracle: Let v1 be the total number of variables added by P in the initial phase all BooLigero tests. Let v2 and v3 be
the number of hidden and revealed variables added by P in the response phase all BooLigero tests. The variables themselves

cannot be known until the challenge, but the number is fixed. Let m1,m2,m3, ` be integers such that m1 · ` > ni + s+ v1,

m2 · ` > v2, and m3 · ` > v3, where s is the number of gates in the circuit. P generates an extended witness w1 ∈ Fm1`

where the first ni + s entries of w are (α1, . . . , αni , β1, . . . , βs) where βi is the output of the ith gate when evaluating

C(α). The next v1 variables are those for the initial phase section of all BooLigero tests. Let L = RSGF(2w),n,k,η , and

let ζ = (ζ1, . . . , ζ`) be a sequence of distinct elements disjoint from η1, . . . , ηn. The prover samples random codeword
Uw1 ∈ Lm1 subject to w1 = Decζ(Uw1).

– Challenge: V chooses and sends random bits as described in the challenge phase section of all BooLigero tests.
– Response oracle: P generates witness extension w2 ∈ Fm2` where the first v1 variables in w2 are the hidden variables

for the response phase section of all BooLigero tests. P also generates witness extension w3 ∈ Fm3`, where the first

variables in w3 are the revealed variables for the response phase section of all BooLigero tests. Let m = m1 + m2 and
let m′ = m1 +m2 +m3. Let w ∈ F` be the vertical concatenation of w1 and w2. Let w′ ∈ F(m1+m2+m3)` be the vertical

concatenation of w and all revealed variables. P deterministically chooses codeword Uw3 ∈ Lm3 . P samples random

codeword Uw2 ∈ Lm2 subject to w2 = Decζ(Uw2) and sets Uw ∈ Lm to be the vertical concatenation of Uw1 and
Uw2 . Let m′′ be an integer such that m′′` is greater than the number of multiplication gates plus additional quadratic

constraints in BooLigero tests. P constructs vectors x, y, z ∈ Fm′′` where the jth entry of x, y, z contains the values βa, βb, βc
corresponding to the jth multiplication gate in w. The following entries of x, y, z contain the values for additional constraints
added in BooLigero tests. P and V construct matrices Px, Py , Pz ∈ Fm′′`×m′′` such that x = Pxw′, y = Pxw′, z = Pzw′. P
constructs matrix Padd ∈ Fm′′`×m′′` such that the jth row of Paddw equals βa +βb−βc where βa, βb, and βc correspond
to the jth addition gate of the circuit in w, and the subsequent rows correspond to additional linear constraints added

in BooLigero tests. It also samples Ux, Uy , Uz ∈ Lm′′
subject to x = Decζ(Ux), y = Decζ(Uy), and z = Decζ(Uz). Let

u′h, u
x
h, u

y
h, u

z
h, u

0
h, u

add
h be auxiliary rows sampled randomly from L for every h ∈ [σ] where each of uxh, u

y
h, u

z
h, u

add
h encodes

an independently sampled random ` messages (γ1, . . . , γ`) subject to
∑
c∈[`] γc = 0 and u0h encodes 0`. P sets the combined

oracle as (U ∈ Lm+3m′′
, R) where U is set as the vertical juxtaposition of the matrices Uw ∈ Lm, Ux, Uy , Uz ∈ Lm′′

, and

R is the set of all v3 revealed variables. When the combined oracle is queried on Q ⊂ [n], the response will be the columns

of U that are in Q, as well as R sent in the clear.
– The interactive protocol:

1. For every h ∈ [σ], V sends the first verifier message of the testing process for Test-Interleaved, Test-Linear-

Constraints-IRS applied to A = Padd, b = ~0 on Uw, and Test-Quadratic-Constraints-IRS applied to Ux, Uy , Uz .
2. For every h ∈ [σ], P responds with the appropriate next step of the testing process for Test-Interleaved, Test-

Linear-Constraints-IRS, and Test-Quadratic-Constraints-IRS.

3. V picks a random set Q ⊂ [n] of size t, and queries U [j] that is the vertical juxtaposition of
Uxh [j], Uyh [j], Uzh [j], Uw

h [j], uxh[j], uyh[j], uzh[j], uadd
h [j], u′h[j], j ∈ Q. It also receives R, the list of revealed variables. It

uses the same deterministic process as P to generate Uw3 and appends this to the bottom of the queried columns for
testing. It accepts if all acceptance criteria for Test-Interleaved, Test-Linear-Constraints-IRS, Test-Quadratic-

Constraints-IRS, Test-Pattern-Zeros-Constraints and Test-And-Constraints are met.

Fig. 4: ZKIOP of [1] with our modifications shown in blue.

11

SHA-3 SHA-3 only uses bit operations, so there is no special benefit from using an arithmetic system.
Both BooLigero and Ligero may do the wordwise rotations for free; they can be achieved by re-indexing
constraints for the next step. Ligero can do the bitwise rotations for free (since each variable represents only
a single bit), but in BooLigero we must write the additional variable and use Test-Pattern-Constraints
to enforce the constraint.

Using SHA-3 as the hash function in a Merkle tree, each invocation of the hash function consists of a
single call to the f-function. For a Merkle tree with M leaves, (2M − 1) hash computations are done.

Fig. 5: BooLigero and Ligero absolute and relative proof sizes for SHA-3 Merkle trees

SHA-2 SHA-2 contains a mixture of Boolean operations and mod-232 addition. Although the SHA-2 circuit
used in [1] was not provided, we reconstruct a similar circuit using the same techniques. As described in [1],
Ligero computes modular addition by using a dummy variable. Our SHA-2 circuit for original Ligero tracks
16 32-bit variables (11 main variables plus 5 dummy variables) throughout 64 iterations of the SHA-2 loop.

BooLigero prefers a different strategy. Although we can compute mod-232 addition in BooLigero by
implementing an adder, it turns out that a standard 135840-wire Boolean circuit for SHA-2 leads to a
smaller proof size since it uses far fewer ANDs. We compare the proof sizes of Ligero and BooLigero for
Merkle trees of increasing size. For a Merkle tree with M leaves, (2M − 1) hash computations are done.

Fig. 6: BooLigero and Ligero absolute and relative proof sizes for SHA-2 Merkle trees

12

Acknowledgments

The authors graciously thank Muthu Venkitasubramaniam for providing us with a parameter optimizer [34],
and the anonymous reviewers for their insightful comments. The second author is supported by a Google
PhD Fellowship. The third author is supported by the DARPA SIEVE program under Agreement No.
HR00112020021 and the National Science Foundation under Grants No. 1414119, 1718135, 1801564, and
1931714.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a
trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104.
ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic circuits and their applica-
tion to lattice-based cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part I. LNCS, vol. 12110, pp. 495–526. Springer, Heidelberg, Germany, Edinburgh, UK (May 4–7, 2020).
https://doi.org/10.1007/978-3-030-45374-9 17

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computa-
tional integrity. Cryptology ePrint Archive, Report 2018/046 (2018), https://eprint.iacr.org/2018/046

4. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decentralized
anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy. pp. 459–474. IEEE
Computer Society Press, Berkeley, CA, USA (May 18–21, 2014). https://doi.org/10.1109/SP.2014.36

5. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying program executions suc-
cinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–
108. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013). https://doi.org/10.1007/978-
3-642-40084-1 6

6. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transparent succinct
arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128.
Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–23, 2019). https://doi.org/10.1007/978-3-030-
17653-2 4

7. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B,
Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg, Germany, Beijing, China (Oct 31 – Nov 3, 2016).
https://doi.org/10.1007/978-3-662-53644-5 2

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von neumann
architecture. In: Fu, K., Jung, J. (eds.) USENIX Security 2014. pp. 781–796. USENIX Association, San Diego,
CA, USA (Aug 20–22, 2014)

9. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive arguments via linear
interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg, Germany,
Tokyo, Japan (Mar 3–6, 2013). https://doi.org/10.1007/978-3-642-36594-2 18

10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/978-3-662-
49896-5 12

11. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Zaverucha, G.:
Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1825–1842. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2,
2017). https://doi.org/10.1145/3133956.3133997

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 738–768. Springer, Heidelberg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-
3-030-45721-1 26

13. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto:
Versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy. pp. 253–270. IEEE Computer
Society Press, San Jose, CA, USA (May 17–21, 2015). https://doi.org/10.1109/SP.2015.23

13

14. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-bases for oecu-
menical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019),
https://eprint.iacr.org/2019/953

15. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware blockchains. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 690–719. Springer, Heidelberg, Germany, Darmstadt,
Germany (May 19–23, 2019). https://doi.org/10.1007/978-3-030-17653-2 23

16. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg,
Germany, Athens, Greece (May 26–30, 2013). https://doi.org/10.1007/978-3-642-38348-9 37

17. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 99–108. ACM Press, San Jose, CA, USA (Jun 6–8, 2011).
https://doi.org/10.1145/1993636.1993651

18. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz, T., Savage,
S. (eds.) USENIX Security 2016. pp. 1069–1083. USENIX Association, Austin, TX, USA (Aug 10–12, 2016)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols
with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229. ACM Press, New York City, NY, USA
(May 25–27, 1987). https://doi.org/10.1145/28395.28420

20. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12,
2016). https://doi.org/10.1007/978-3-662-49896-5 11

21. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference
strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III.
LNCS, vol. 10993, pp. 698–728. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018).
https://doi.org/10.1007/978-3-319-96878-0 24

22. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the discrete log setting, revisited. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2093–2110. ACM Press (Nov 11–15,
2019). https://doi.org/10.1145/3319535.3354251

23. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In:
Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp. 21–30. ACM Press, San Diego, CA, USA (Jun 11–13,
2007). https://doi.org/10.1145/1250790.1250794

24. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 955–966. ACM Press,
Berlin, Germany (Nov 4–8, 2013). https://doi.org/10.1145/2508859.2516662

25. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg,
Germany, Reykjavik, Iceland (Jul 7–11, 2008). https://doi.org/10.1007/978-3-540-70583-3 44

26. Kerber, T., Kohlweiss, M., Kiayias, A., Zikas, V.: Ouroboros crypsinous: Privacy-preserving proof-of-stake. Cryp-
tology ePrint Archive, Report 2018/1132 (2018), https://eprint.iacr.org/2018/1132

27. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC.
pp. 723–732. ACM Press, Victoria, BC, Canada (May 4–6, 1992). https://doi.org/10.1145/129712.129782

28. Kondi, Y., Patra, A.: Privacy-free garbled circuits for formulas: Size zero and information-theoretic. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 188–222. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63688-7 7

29. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting
codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg,
Germany, Bengalore, India (Dec 1–5, 2013). https://doi.org/10.1007/978-3-642-42033-7 3

30. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs from linear-size universal
and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019. pp. 2111–2128. ACM Press (Nov 11–15, 2019). https://doi.org/10.1145/3319535.3339817

31. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed E-cash from Bitcoin. In: 2013
IEEE Symposium on Security and Privacy. pp. 397–411. IEEE Computer Society Press, Berkeley, CA, USA
(May 19–22, 2013). https://doi.org/10.1109/SP.2013.34

32. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation. In: 2013 IEEE
Symposium on Security and Privacy. pp. 238–252. IEEE Computer Society Press, Berkeley, CA, USA (May 19–22,
2013). https://doi.org/10.1109/SP.2013.47

33. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 17–21, 2020). https://doi.org/10.1007/978-3-030-56877-1 25

14

34. Venkitasubramaniam, M.: personal communication (Sep 2020)

35. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup.
In: 2018 IEEE Symposium on Security and Privacy. pp. 926–943. IEEE Computer Society Press, San Francisco,
CA, USA (May 21–23, 2018). https://doi.org/10.1109/SP.2018.00060

36. Weng, C., Yang, K., Katz, J., Wang, X.: Fast, scalable, and communication-efficient zero-knowledge
proofs for boolean and arithmetic circuits. Cryptology ePrint Archive, Report 2020/925 (2020),
https://eprint.iacr.org/2020/925

37. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-knowledge proofs with optimal
prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–
764. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019). https://doi.org/10.1007/978-
3-030-26954-8 24

A Reed-Solomon Code Details

Definition 2 (Reed-Solomon Code, [1] Defn. 4.1). For positive integers n and k, finite field F, and a
vector η = (η1, . . . , ηn) ∈ Fn of distinct field elements, the code L = RSF,n,k,η is the [n, k, n − k + 1] lienar
code over F that consists of all n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Definition 3 (Interleaved Code, [1] Defn. 4.2). Let L ⊂ Fn be a [n, k, d] linear code over F. We let Lm

denote the [n,mk, d] (interleaved) code over Fm whose codewords are all m × n matrices U such that every
row Ui of U satisfies Ui ∈ L.

Definition 4 (Encoded message, [1] Defn. 4.5). Let L = RSF,n,kη be an RS code and ζ = (ζ1, . . . , ζ`)
be a sequence of distinct elements of F for ` ≤ k. For u ∈ L we define the message Decζ(u) to be
(pu(ζ1), . . . , pu(ζ`)) where pu is the polynomial (of degree < k) corresponding to u. For U ∈ Lm with
rows u1, . . . , um ∈ L, we let Decζ(U) be the length-m` vector x = (x11, . . . , x1`, . . . , xm1, . . . , xm`) such
that (xi1, . . . , xi`) = Decζ(u

i) for i ∈ [m]. Finally when ζ is clear from context, we say the U encodes x if
Decζ(U).

B Proofs of Lemmas in §4

B.1 Security proof for linear binary operations that yield zero

Proof (Security of Test-T). We prove each property in turn:
Completeness: If the prover is honest, then Txi = 0 for all i ∈ [N], and Ta(j) = 0 for all j ∈ [κ]. Thus,

clearly Tu = T (a(j) ⊕
⊕

i∈[N]s.t.r
(j)
i =1

xi) = 0 for all j ∈ [κ] as desired.

Honest verifier zero-knowledge: We know by [1] Lemma 4.13 that aside from the added revealed variables
u, the remainder of the protocol is honest-verifier perfect zero knowledge. Consider the additional u variables.
Each of these is “masked” by a random element a which is known only to P. Thus, u will have the same
distribution as a fresh random binary vector for which Tu = 0. Thus, a simulated version of the protocol
which returns a random v for which Tv = 0 will be indistinguishable from the real execution which returns
u.

Soundness: Suppose the prover is lying and there exists at least one i ∈ [N] for which Txi 6= ~0. Without
loss of generality, let i = 1 be one such index. If the Ligero matrix itself is malformed, this will be caught with
probability 1−δ2 by Test-Interleaved. Assuming it is not malformed, if any of the u(j) values are not equal to
those given in Equation 1, then a linear constraint has been violated and this will be caught with probability
1−δ1 by Test-Linear-Constraints-IRS. We assume u(j) is correct for now. Let c(j) = a(j)⊕

⊕
i∈{2,...,N}

s.t.
r
(j)
i =1

xi

(note the indexing beginning at 2). Thus, for the remainder of this proof, we assume u is well-formed. If

r
(j)
1 = 0, then c(j) = u(j). If r

(j)
1 = 1, then c(j) = u(j) ⊕ x1. Consider Tc(j). There are two cases:

15

Case 1. Tc(j) = ~0. If r
(j)
1 = 0, then Tu(j) = Tc(j) = ~0 and the prover successfully cheats. If, however,

r
(j)
1 = 1, then Tu(j) = T (c(j) + x1) = ~0 + Tx1 6= ~0. So V correctly rejects in this case.

Case 2. Tc(j) 6= ~0. If r
(j)
1 = 0, then Tu(j) = Tc(j) 6= ~0 so V correctly rejects. If r

(j)
1 = 1, then Tu(j) =

T (c(j) + x1). This may equal 0, so the prover may successfully cheat.

In each case, the prover is caught cheating with probability 1/2 over the choice of r
(j)
1 . Note that this

continues to hold regardless of how many indices within [N] the prover chooses to cheat on. Repeating this
for κ choices of r1, the chance that the prover successfully cheats in all of them is 1/2κ. Union bounding this
with the chance of failure of Test-Linear-Constraints-IRS and Test-Interleaved, the soundness error
of this protocol is 1/2κ + δ1 + δ2, as desired. �

B.2 Security proof for bitwise AND test

Proof (Security of Test-And-Constraints). We must show that Test-And-Constraints is complete, zero-
knowledge, and sound up to error 3(1/2κ)+δ1 +δ2 +δ3, where δ1 is the soundness error of Test-Quadratic-
Constraints-IRS, δ2 is the soundness error of Test-Linear-Constraints-IRS, and δ3 is the soundness
error of Test-Interleaved..

Completeness: If P is honest, then all variables are well-formed. We must show that following the process
described in step 1(b) of Fig. 3 will lead to computing bitwise AND. Elements in GF(2w) are polynomials
over GF(2) of degree at most (w− 1), and multiplication in GF(2w) is polynomial multiplication modulo an
irreversible polynomial. As in step 1(a), let w0 = b

√
wc. Fix i ∈ [N].

By construction, the polynomial representations of all ŷi,h variables (for h ∈ [w1]) have degree at most

w0−1. They can be written as
∑w0−1
k=0 ckv

k, where v is the polynomial variable and c is the coefficient (either
0 or 1).

Further, the x̂i,h variables are of the form
∑w0−1
k=0 dkv

kw0 (now using d as the coefficient).
Thus, if we multiply x̂i,h ∗ ŷi,h, the result can be written as:

ẑi,h = x̂i,h ∗ ŷi,h =

(
w0−1∑
k=0

dkv
kw0

)(
w0−1∑
k=0

ckv
k

)

= d0

(
w0−1∑
k=0

ckv
k

)
+ d1

(
w0−1∑
k=0

ckv
w0+k

)
+ . . .+ dw0−1

(
w0−1∑
k=0

ckv
(w0−1)w0+k

)
=
(
d0c0v

0 + . . .+ d0cw0−1v
w0−1

)
+
(
d1c0v

w0 + . . .+ d1cw0−1v
2w0−1

)
+ . . .+

(
dw0−1c0v

(w0−1)w0 + . . .+ dw0−1cw0−1v
w2

0−1
)

=

w2
0−1∑
k=0

dbk/w0cc(k mod w0)v
k

First, notice that the degree of this polynomial is at most w2
0 − 1, so by construction, this polynomial will

not need to be reduced modulo the irreducible polynomial. Next, notice that the coefficient ek of vk can
be written as ek = dbk/w0cc(k mod w0). But remember that the c and d coefficients correspond to the bits of
x̂i,h and ŷi,h, which in turn correspond to the bits of xi and yi. So if we wish to know the AND of ck′ and
dk′ , we can look at the coefficient of vk, for the k for which k′ = bk/w0c = (k mod w0), This will occur
at k = k′w0 + k′. Thus, each ẑi,h can be used to find the AND of w0 bits. For k′ ∈ {0, . . . , w0 − 1}, bit
ẑi,h[1 + k′ + k′w0] is the AND of x̂i,h[1 + w0k

′] and ŷi,h[1 + k′].
Zooming back out to zi, we find that each bit of zi can be found as zi[k] = ẑi,b k+1

w0
c[1+((k−1) mod w0)+

w0((k − 1) mod w0)]. Since the ẑi,h variables were formed correctly from the x̂i,h and ŷi,h variables, which
were formed correctly from xi and yi, zi will be the AND of xi and yi for all i ∈ [N], as desired.

16

Zero-knowledge: The hidden variables are zero-knowledge for the same reason the original witness vari-
ables are. The revealed variables added as part of Test-Pattern-Zeros-Constraints in step 3 can be
simulated perfectly with random sets of elements that meet Rx, Ry, and Rz, as described in Test-Pattern-
Zeros-Constraints.

Soundness: Suppose P is cheating, that is, there is at least one (xi, yi, zi) triple for which zi 6= xi&yi.
Without loss of generality, let i = 1 be an index on which the prover cheats.

If the Ligero matrix is not well-formed, Test-Interleaved will fail with probability at least 1 − δ3; we
assume this is not the case for the remainder of the proof.

If z1 6= x1&y1, then one of the following must be true:

1. There exists an h ∈ [w1] for which ẑ1,h 6= x̂1,h ∗ ŷ1,h.
2. The x̂1,h variables were not properly formed from x1. In other words,

Tπx
[x1, x̂1,1, . . . , x̂1,w1

, x1]⊥ 6= ~0.

The same may be true for Tπy
on the y variables, or Tπz

on the z variables.

If the former is true, then Test-Quadratic-Constraints-IRS will fail with probability at least 1 − δ1. If
the latter is true, then either Test-Linear-Constraints-IRS will fail with probability at least 1−δ2, or the
pattern-checking part of Test-Pattern-Zeros-Constraints for Rx will fail with probability at most 1/2κ.
Similarly for Ry and Rz.

Thus, by a Union bound, the overall protocol has soundness error 3(1/2κ)+δ1 +δ2 +δ3 over the verifier’s
coins.

C Range tests

Power-of-two range tests Our Zeros test can be used to very cheaply test range tests where the range is a
power of two, and can be used combined with an Add-with-modulus gadget (which makes use of AND and
Pattern).

To check whether a variable x < 2a for some a ≤ w, we simply use the Zeros test with Z = {k : k > a},
to see whether the higher order bits of x are 0. This scales very efficiently – to check whether N variables are
all less than the same power of 2, the Zeros test can be applied to all N variables and costs only κ hidden
and κ revealed variables (independent of N).

Non-power-of-two range tests. Suppose we wish to show that x < n for some non-power-of-two n < 2w − 1.
Let a be the integer such that 2a is the smallest power of 2 greater than n. A range proof to ensure x < n
can be done by showing that both x and (x− n+ 2a) have 0 for their w− a MSBs, in other words, they are
less than 2a. Here, + and − denote arithmetic addition and subtraction.

This motivates the creation of an adder. A gadget to add x and y in a power-of-two modulus of at most
2w−1 can be created by writing constraints on an additional “carry” variable c based on a ripple-carry adder.
AND and Pattern can be combined to form a carry variable c such that c[i] = Majority(c[i−1], x[i−1], y[i−1])
and c[0] = 0. The XOR of c with x and y create the z variable. This can be used to set up the (x−n+2a−1)
equation above, and then the Zeros test can be used to ensure that both that and x are less than 2a.

17

