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Abstract. The goal of secure multi-party computation (MPC) is to
allow a set of parties to perform an arbitrary computation task, where
the security guarantees depend on the set of parties that are corrupted.
The more parties are corrupted, the less is guaranteed, and typically the
guarantees are completely lost when the number of corrupted parties
exceeds a certain corruption bound.
Early and also many recent protocols are only statically secure in the
sense that they provide no security guarantees if the adversary is allowed
to choose adaptively which parties to corrupt. Security against an adver-
sary with such a strong capability is often called adaptive security and a
significant body of literature is devoted to achieving adaptive security,
which is known as a difficult problem. In particular, a main technical ob-
stacle in this context is the so-called “commitment problem”, where the
simulator is unable to consistently explain the internal state of a party
with respect to its pre-corruption outputs. As a result, protocols typi-
cally resort to the use of cryptographic primitives like non-committing
encryption, incurring a substantial efficiency loss.
This paper provides a new, clean-slate treatment of adaptive security in
MPC, exploiting the specification concept of constructive cryptography
(CC). A new natural security notion, called CC-adaptive security, is pro-
posed, which is technically weaker than standard adaptive security but
nevertheless captures security against a fully adaptive adversary. Known
protocol examples separating between adaptive and static security are
also insecure in our notion. Moreover, our notion avoids the commitment
problem and thereby the need to use non-committing or equivocal tools.
We exemplify this by showing that the protocols by Cramer, Damgard
and Nielsen (EUROCRYPT’01) for the honest majority setting, and (the
variant without non-committing encryption) by Canetti, Lindell, Ostro-
vsky and Sahai (STOC’02) for the dishonest majority setting, achieve
CC-adaptive security. The latter example is of special interest since all
UC-adaptive protocols in the dishonest majority setting require some
form of non-committing or equivocal encryption.
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1 Introduction
1.1 Multi-Party Computation
Secure multi-party computation (MPC) is one of the most fundamental problems
in cryptography. It considers the setting where a set of parties wish to carry out
a computation in a secure manner, where security informally means that parties
obtain the correct output of the computation, while at the same time keeping
their local inputs as private as possible.

A crucial step towards meaningfully designing and analyzing cryptographic
protocols is to come up with appropriate definitions of security. Formulating
good definitions is highly non-trivial: the definition should closely capture the
aspects that we care about, while at the same time being simple and usable,
even minimal, avoiding as much as possible unnecessary artifacts.

There is a vast literature on security definitions in the field of MPC. Initial
works [26, 42, 3, 8, 21] considered the stand-alone setting, which examines only
the protocol at hand and does not capture what it means to use the protocol in
a larger context, for the task of secure function evaluation [49, 50, 25]. It was not
until several years later, that definitions in so-called composable frameworks for
general reactive tasks were introduced [46, 9, 20, 39, 43, 34, 30]. Such definitions
aim to capture all aspects of a protocol that can be relevant, with respect to any
possible application, hence the term universal composability [9].

An important aspect of security definitions for secure computation is the
way in which the corrupted parties are chosen. Here, two models are commonly
considered. The static security model assumes that the set of corrupted par-
ties is fixed before the computation starts and does not change. In the more
general adaptive security model, the adversary may corrupt parties during the
protocol execution, based on information that has been gathered so far. Indeed,
adaptive security captures important concerns regarding cryptographic protocols
that static security does not capture. These include scenarios where attackers,
viruses, or other adversarial entities can take advantage of the communication
to decide which parties to corrupt.

The currently considered standard MPC definition for adaptive security is
the one introduced by Canetti [9] in the UC framework. The UC-adaptive se-
curity definition follows the well-known simulation paradigm, and is formalized
by comparing the execution of the protocol in the real world, to an ideal world
that has the desired security properties by design. Intuitively, it guarantees that
for any attack in the real world performed by an adversary that can adaptively
corrupt parties, the attack can be equivalently performed in the ideal world,
achieving a similar effect. This is formalized by the existence of a single sim-
ulator that has to simulate the entire protocol execution, with respect to any
environment where the protocol is being executed.

1.2 The Commitment Problem in Adaptive Security
Despite the fact that the current standard notion has been the cornerstone of
adaptive security in MPC and has lead to the development of many beautiful
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cryptographic protocols and primitives, one could argue that the definition is
too strong.

To show this, consider the following example: Let π be any protocol for secure
function evaluation that is adaptively secure. Now, consider a modified protocol
π̃, where each party i first commits to its input using for example any (non-
equivocable) perfectly hiding and computationally binding commitment scheme
and publishes the commitment. Then, all parties execute the protocol π. The
commitments are never again used, and in particular they are never opened. In-
tuitively, protocol π̃ should be adaptively secure, since the commitments do not
reveal any secret information (the commitments are even statistically indepen-
dent of the inputs!). However, protocol π̃ is no longer adaptively secure: we run
into the so-called commitment problem, where the simulator is unable to con-
sistently explain the internal state of the parties that are adaptively corrupted.
This is because the simulator first has to publish a commitment on behalf of
each honest party without knowing its input, and later, upon corruption, output
an internal state on behalf of each party that is consistent with its input and
the previously published commitment.

Common ways to address this issue include the use of non-committing en-
cryption (see e.g. [12, 13]), or the availability of secure erasable memory (see e.g.
[4]), therefore incurring to a substantial efficiency loss or an extra assumption.

However, at a more general level, this raises the question of whether one
could have an alternative security definition that is not subject to this issue, but
still captures natural security guarantees under adaptive corruption:

Is there a natural MPC security definition that captures security guarantees
under adaptive corruption and is not subject to the commitment problem?

There have been a number of works that aimed to solve this issue. A line of
work [45, 47, 7] considers simulators that have super-polynomial running time.
Such approaches come at the price of being technical or sacrificing composition
guarantees. Another approach [1] disallows certain activation sequences by the
environment that cannot be simulated, avoiding some of the complications of the
other approaches, but sacrificing some guarantees by excluding certain attacks.
A recent work [31] addressed this issue by proposing a notion that formalizes
guarantees that hold within a certain interval, between two events, and requiring
the simulation to work within each interval, without forcing the simulation to
be consistent between the intervals. Although this approach seems promising,
the guarantees that are given turn out to be too weak for MPC applications.
In particular, the corruptions can only depend on “external” events, and not on
the outputs from the given resources.

1.3 Contributions

CC-Adaptive Security. Intuitively, an MPC protocol should provide, at any
point during the protocol execution, security guarantees to the set of honest
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parties at that point. That is, for every set of parties, there is a guarantee as long
as these parties are honest. This is exactly what CC-adaptive security captures:
we phrase the guarantees naturally as the intersection (i.e. conjunction) of the
guarantees for every set of so-far honest parties. Informally, we require the same
protocol to realize a possibly different functionality FX for each subset X of
parties. In each statement, there must exist a simulator that correctly simulates
the protocol execution, as long as the parties in X are honest, without having
access to the secret inputs and outputs of parties in X. As soon as a party in X
gets corrupted, the guarantee for this set is dropped. (However, guarantees for
other so-far honest sets still remain.)

The corruptions are completely adaptive in the strong and usual sense, where
the selection of which parties become corrupted can be done based on informa-
tion gathered during the protocol execution. The more parties are corrupted,
the less guarantees remain.

Technically, the commitment problem does not arise because the guarantees
are dropped (i.e. the simulation stops) at the point where a party in X gets
corrupted. Therefore, the simulator does not need to explain the secret state of
a party in X. This is in contrast to previous adaptive security definitions, which
require the existence of a single simulator that explains all possible cases.

The described guarantees are naturally phrased within the constructive cryp-
tography (CC) [38, 39, 40] composable framework, where each guarantee cor-
responds to a set specification of systems, and the conjunction of guarantees is
simply the intersection of specifications. The protocol can then achieve all these
guarantees within a single construction statement.
Comparison with Standard Static and Adaptive Security. At a techni-
cal level, we show that our new definition lies in-between the current standard
UC-security definitions for static and adaptive security, respectively. Interest-
ingly, popular examples that separate the standard static and adaptive security
notions and do not exploit the commitment problem, also separate static from
CC-adaptive security, therefore giving evidence that CC-adaptive security gives
strong adaptive security guarantees. More concretely, we show the following.

Static vs CC-Adaptive Security. We first show that CC-adaptive security
implies static security in all settings. Moreover, we also show that CC-adaptive
security is strictly stronger than static security: for the case of passive corruption
and a large number of parties, the protocol shown in [12] separates the notions
of static and CC-adaptive security, and in the case of active corruption and at
least three parties, the protocol shown in [10] makes the separation.

Adaptive vs CC-Adaptive Security. We show that UC-adaptive security is
strictly stronger than CC-adaptive security in all settings, by showing a protocol
example based on the commitment problem.
Applications. We demonstrate the usefulness of our notion with two exam-
ples, showing that known protocols achieve strong adaptive security guarantees
without the use of non-committing or equivocal encryption.

CDN Protocol. First, we show that the protocol by Cramer, Damgard and
Nielsen [17] (CDN) based on threshold (additively) homomorphic encryption
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(THE) achieves CC-adaptive security in the honest majority setting. In the pas-
sive corruption setting, the protocol is described assuming solely the key setup
for the THE scheme, while in the active corruption setting, the protocol is de-
scribed assuming in addition a multi-party zero-knowledge functionality. This
shows that the CDN protocol approach achieves strong adaptive security guaran-
tees as-is, even when using an encryption scheme that commits to the plaintext.

CLOS Protocol. Second, we show that the variant of the protocol by Canetti,
Lindell, Ostrovsky and Sahai [13] (CLOS) that does not use non-committing en-
cryption, previously only proven statically secure, actually achieves CC-adaptive
security in the dishonest majority setting. This is achieved by showing that
the oblivious transfer from [25] achieves CC-adaptivity, and the CLOS compiler
transforming passive to active protocols preserves CC-adaptivity. Note that, to
the best of our knowledge, all previous UC-adaptive protocols in the dishonest
majority setting required some form of non-committing or equivocal encryption.

1.4 Further Related Work

The problem of MPC with adaptive security was first studied by Canetti, Feige,
Goldreich and Naor [12], and there is a large literature on MPC protocols with
adaptive security. In the case of honest majority, it was shown that classical
MPC protocols are adaptively secure [5, 15, 48]. Using the results in [33, 32],
it was shown that these protocols achieve UC adaptive security with abort in
the plain model, or guaranteed output delivery in the synchronous model. A
more efficient protocol was shown in [19], following the CDN-approach based on
threshold homomorphic encryption and assuming a CRS. In the case of dishonest
majority, the protocols achieve security with abort, and all known protocols
assume some form of non-committing encryption or equivocation. The first work
achieving adaptive security for dishonest majority was the protocol by Canetti,
Lindell, Ostrovsky and Sahai [13], assuming a CRS setup. Since then, several
subsequent works have improved its round and communication complexity (e.g.
[18, 23, 16, 6, 14]). The work by Garg and Sahai [24] considered adaptive security
in the stand-alone model without trusted setup.

The work by Garay, Wichs and Zhou [22] consider the notion of semi-adaptive
security for two parties, which considers guarantees for the case where one party
is corrupted, and the other party is honest and can be adaptively corrupted. In
contrast, our security notion imposes guarantees also when both parties start
being honest.

2 Preliminaries: Constructive Cryptography

The basic concepts of the Constructive Cryptography framework by Maurer and
Renner [39, 38, 40] needed for this paper are quite natural and are summarized
below.
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2.1 Specifications and Constructions

A basic idea, which one finds in many disciplines, is that one considers a set Φ of
objects and specifications of such objects. A specification U ⊆ Φ is a subset of Φ
and can equivalently be understood as a predicate on Φ defining the set of objects
satisfying the specification, i.e., being in U . Examples of this general paradigm
are the specification of mechanical parts in terms of certain tolerances (e.g. the
thickness of a bolt is between 1.33 and 1.34 millimeters), the specification of
the property of a program (e.g. the set of programs that terminate, or the set
of programs that compute a certain function within a given accuracy and time
limit), or in a cryptographic context the specification of a close-to-uniform n-bit
key as the set of probability distributions over {0, 1}n with statistical distance
at most ϵ from the uniform distribution.

A specification corresponds to a guarantee, and smaller specifications hence
correspond to stronger guarantees. An important principle is to abstract a spec-
ification U by a larger specification V (i.e., U ⊆ V) which is simpler to under-
stand and work with. One could call V an ideal specification to hint at a certain
resemblance with terminology often used in the cryptographic literature. If a
construction (see below) requires an object satisfying specification V, then it
also works if the given object actually satisfies the stronger specification U .

A construction is a function γ : Φ → Φ transforming objects into (usually in
some sense more useful) objects. A well-known example of a construction useful
in cryptography, achieved by a so-called extractor, is the transformation of a
pair of independent random variables (say a short uniform random bit-string,
called seed, and a long bit-string for which only a bound on the min-entropy is
known) into a close-to-uniform string.

A construction statement of specification S from specification R using con-
struction γ, denoted R γ−→ S, is of the form

R γ−→ S :⇐⇒ γ(R) ⊆ S.

It states that if construction γ is applied to any object satisfying specification
R, then the resulting object is guaranteed to satisfy (at least) specification S.

The composability of this construction notion follows immediately from the
transitivity of the subset relation:

R γ−→ S ∧ S γ′

−→ T =⇒ R γ′◦γ−−−→ T .

2.2 Resources and Converters

The above natural and very general viewpoint of specifications is taken in Con-
structive Cryptography, where the objects in Φ are systems, called resources,
with interfaces to the parties considered in the given setting.
Resources. A resource R is a reactive system with interfaces. Formally, they
are modeled as random systems [37, 41], where the interface address and the
actual input value are encoded as part of the input. Then, the system answers
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with an output value at the same interface. One can take several independent
resources R1, . . . , Rk, and form a new resource [R1, . . . , Rk], with the interface
set being the union. This resource is denoted as the parallel composition.

Converters. A converter models the local actions executed by a party at its
interface, which can be thought of as a system or protocol engine. Formally, con-
verters are modeled as random systems with two interfaces, an outside interface
and an inside interface. At its inside, the converter gives input to the party’s
interface of the resource and at the outside it emulates an interface (of the trans-
formed resource). Upon an input at an outside interface, the converter is allowed
to make a bounded number of queries to the inside interfaces, before returning a
value at the queried interface. Applying a converter induces a mapping Φ → Φ.
We denote the set of converters as Σ.

For a converter α and a resource R, we denote by αiR the resource obtained
from applying the converter to the resource at interface i. One can then see
that converter attachment satisfies composition order invariance, meaning that
applying converters at distinct interfaces commutes. That is, for any converters
α and β, any resource R and any disjoint interfaces j, k, we have that αjβkR =
βkαjR.

Distinguisher. A distinguisher D is a reactive system that interacts with a
resource by making queries at its interfaces, and outputs a bit. The advantage
of D in distinguishing two resources R and T is defined as

∆D(R, S) := Pr[D(S) = 1] − Pr[D(R) = 1].

2.3 Relaxations

Often a construction statement does not achieve a desired specification S, but
only a relaxed version of S. We capture this via so-called relaxations [40], which
map specifications to weaker, or relaxed, specifications. A relaxation formalizes
the idea that we are often happy with resources being almost as good as a target
resource specification. For example, one could consider the relaxation that maps
a resource S to the set of resources that are indistinguishable from S.

Definition 1. Let Φ denote the set of all resources. A relaxation ϕ : Φ → 2Φ is
a function such that R ∈ ϕ(R), for all R ∈ Φ. In addition, for a specification R,
we define Rϕ :=

∪
R∈R ϕ(R).

Relaxations satisfy two important properties. The first, is that S ⊆ Sϕ.
And the second, is that if R ⊆ S then Rϕ ⊆ Sϕ. This simplifies the modular
analysis, as it means that one can typically consider assumed resources that are
completely ideal, or not relaxed. More concretely, from the statements R ⊆ Sϕ

and S ⊆ T ϕ′ , one can conclude that R ⊆ T ϕ◦ϕ′ .
In the following, we introduce a few generic types of relaxations [40, 31] that

we will use throughout the paper.
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ϵ-Relaxation. We introduce a fundamental relaxation that captures computa-
tional security based on explicit reductions. For that, we define a function ϵ that
maps distinguishers to their respective advantage in [0, 1]. The usual interpreta-
tion is that ϵ(D) is the advantage in the underlying computational problem of
the distinguisher which is modified by the reduction.

Definition 2. Let ϵ be a function that maps distinguishers to a real value in
[0, 1]. We define the ϵ-relaxation of a resource R as:

Rϵ := {S ∈ Φ | ∀D : ∆D(R, S) ≤ ϵ(D)}.

Until-Relaxation. Sometimes we want to consider guarantees that hold up to
the point where a certain event happens. This is formally modeled by considering
an additional so-called monotone binary output (MBO) [41], which is a binary
value that can switch from 0 to 1, but not back. Such an MBO can for example
model that all inputs to the system are distinct (no collisions).

Definition 3. Let R be a resource, and let E be an MBO for the resource. We
denote by untilE(R) the resource that behaves like R, but halts when E = 1.
That is, for any inputs from the point when E = 1 (and including the input that
triggered the condition), the output is ⊥.

The until-relaxation of a system R [31] consists of the set of all systems, that
behave equivalently up to the point where the MBO is set to 1.

Definition 4. Let R be a resource, and let E be an MBO for the resource. The
E-until-relaxation of R, denoted RE], is the set of all systems that have the same
behavior as R until E = 1. That is,

RE] := {S ∈ Φ | untilE(R) = untilE(S)}.

Combined Relaxation. In this paper we are interested in the relaxation that
corresponds to the intuitive interpretation of “the set of all systems that behave
equally until E = 1 given that the assumption of ϵ is valid”. However, it was
proven in [31] that the ϵ-relaxation and the until-relaxation do not generally
commute, i.e., (RE])ϵ ̸⊆ (Rϵ)E] and (RE])ϵ ̸⊇ (Rϵ)E], and therefore it is not clear
whether any of the two corresponds to the intuitive interpretation. Moreover,
choosing one of these would partially limit the composability of such statements.
That is, if one construction assumes SE] to construct T , and another one con-
structs Sϵ, then adjusting the first construction to use Sϵ is not trivial. Following
the solution in [31], we consider the next combined relaxation.

Definition 5. Let R be a resource, E be an MBO, and ϵ be a function mapping
distinguishers to a real value in [0, 1]. The (E , ϵ)-until-relaxation of R, denoted
RE:ϵ, is defined as follows:

RE:ϵ :=
((

RE])ϵ
)E]

.
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The combined relaxation benefits from the following desired properties, as
shown in [31].

Lemma 1. Let R be a specification, E1, E2 be MBOs for the resource, and ϵ1,
ϵ2 be functions mapping distinguishers to a real value in [0, 1]. Then,

(RE:ϵ)E′:ϵ′
⊆ RE∨E′:ϵE∨E′ +ϵ′

E∨E′ ,

where ϵE∨E′(D) = ϵ(D ◦ untilE∨E′) is the advantage of the distinguisher inter-
acting with the projected (by the function untilE∨E′(·)) resource, and analogously
for ϵ′

E∨E′ .

Lemma 2. Let R be a specification, E be an MBO for the resource, and ϵ
be a function mapping distinguishers to a real value in [0, 1]. Further let α be a
converter, and let i be an interface of R. The (E , ϵ)-until-relaxation is compatible
with converter application and with parallel composition. That is,

1. αi
(
RE:ϵ) ⊆

(
αiR

)E:ϵα , for ϵα(D) := ϵ(Dαi), where Dαi denotes the distin-
guisher that first attaches α at interface i of the given resource, and then
executes D.

2. [RE:ϵ, S] ⊆ [R, S]E:ϵS , for ϵS(D) := supS∈S ϵ(D[·, S]), where D[·, S] denotes
the distinguisher that emulates S in parallel to the given resource, and then
executes D.

3 Multi-Party Constructive Cryptography with Adaptive
Corruption

In this section, we present our model for n-party constructions with adaptive
corruption. In this setting, we consider scenarios where an adversary may “hack”
into the parties’ systems during the protocol execution.
Multi-Party Resources. A multi-party resource for n parties is a resource
with n + 2 interfaces: a set P = {1, . . . , n} of n party interfaces, an adversary
interface A and a free interface W [2]. The party interfaces allow each party to
have access to the resource. The adversary interface models adversarial access to
the resource. The free interface allows direct access by the environment to the
resource1, and is used to model aspects that are not used by the parties, but
neither controlled by the adversary.

Examples of such resources are the available network resource (which allows
parties to communicate with each other), as well as the constructed computation
resources (which allows the parties to perform arbitrary computations of their
secret inputs).
Protocols. A protocol consists of a tuple of converters π = (π1, . . . , πn), one for
each party. We denote by πR the resource where each converter πj is attached
to party interface j.
1 This is reminiscent of the environment access to the global setup in UC [11].
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Basic Construction Notion. We say that a protocol π constructs specification
S from specification R, if and only if πR := {πR | R ∈ R} satisfies specification
S, i.e., πR ⊆ S.

Definition 6. Let R and S be specifications, and let π be a protocol. We say
that π constructs S from R, if and only if πR ⊆ S.

The specifications πR and S are usually called the real world and the ideal
world, respectively.

Typical constructions in the literature describe the ideal specification S with
the so-called simulation-paradigm. That is, by showing the existence of a simu-
lator σ attached to the adversary interface of a fixed ideal resource S, which can
for example be a resource that computes a function over private inputs. Note
that this is just a particular way of defining the security guarantees in our frame-
work. One can express different types of ideal specifications, as we will show in
our examples (see [35, 31] for further examples in other settings).
Protocol Converters as Resources. In order to model adaptive corruptions
in Constructive Cryptography, we consider only trivial converters [40]. More
concretely, we consider the class Σ of trivial converters which only define a wiring
between resource interfaces, and the protocol engines are then interpreted as
resources. In more detail, when writing a resource αiR consisting of a converter α
attached to interface i of resource R, we understand the converter α as a resource,
for example denoted α̃, in parallel with R. And we consider a trivial converter
β for interface i that simply connects α̃ and R, i.e., we have αiR = πi

i [R, α̃]. We
depict in Figure 1 this interpretation.

Fig. 1. On the left, the converter α is connected to a resource R. On the right, the
interpretation where the converter α is interpreted as a resource α̃ in parallel, with a
trivial converter that connects interfaces.

Modeling Corruptions. Protocol converters as resources have, like any re-
source, an adversary interface A and a free interface W . Corruption is modeled
explicitly as an input to the resource via the free interface W . Upon input corrupt
at interface W , the resource adds additional capabilities at the adversary inter-
face A.2
2 One could alternatively model that the input corrupt is given at the adversary in-

terface A, with an additional mechanism to ensure that the real and ideal world
corruptions are the same; for example making available the set of currently cor-
rupted parties via the free interface W .
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One can then model different types of corruption. In order to model passive
corruption, we require that upon input corrupt at interface W , the resource makes
accessible the entire local state at interface A. One can then access the local
state of the resource via interface A with an input leak. If active corruption
is considered, the adversary can in addition take over the inside and outside
interfaces of the protocol engine via the adversarial interface A. That is, any
inputs given at the inside or outside interface are first made available to A, who
then decides what the values are.

4 CC-Adaptive Security

In an MPC protocol, the set of corrupted parties grows during the protocol
execution, and at the same time, the set of parties that benefit from security
guarantees, i.e. the set of so-far honest parties, shrinks.

We propose a very natural way to understand such guarantees obtained from
an MPC protocol with adaptive corruption. The idea is to understand the guar-
antees as simultaneously achieving guarantees for every set of so-far honest par-
ties. More concretely, we explicitly state one separate guarantee for every subset
X ⊆ P of the parties, and as long as parties in X are honest, the guaran-
tee remains. That is, the guarantee is dropped as soon as any party in X gets
corrupted.

The corruptions are completely adaptive as usual, and the identity of the
chosen parties to become corrupted can be made based on information gathered
during the protocol execution. The more parties are corrupted, the less sets are
so-far honest, and therefore less guarantees remain.

The described guarantees can naturally be captured within the construc-
tive cryptography framework, where each guarantee corresponds to a resource
specification, and the conjunction of guarantees is simply the intersection of
specifications.

As we will show in Section 4.2, our notion of CC-adaptive security lies strictly
in-between the standard UC-security notions of static and adaptive security.
Popular examples that separate static and adaptive security and are not based
on the commitment problem, also separate static and CC-adaptive security,
and examples based on the commitment problem separate our notion from UC-
adaptive security; therefore showing that CC-adaptive security achieves a strong
resilience against adaptive corruption, while at the same time overcoming the
commitment problem.

4.1 Definition of the Security Notion

As sketched above, our security notion gives a guarantee for every set of so-far
honest parties. That is, we give a explicit guarantee for each subset X ⊆ P of
parties, which lasts as long as the subset X is honest, irrespective of whether
the other parties are honest or not. The guarantee provides privacy to the set of
parties in X, and is described as usual, by requiring the existence of a simulator
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(for this set X) that correctly simulates the protocol execution. The simulator
has to simulate without knowing the secret inputs and outputs of parties in
X, but since the guarantee holds irrespective of the honesty of other parties, we
allow the simulator to have access to the inputs of parties that are in X = P \X.
Moreover, as soon as a party in X is corrupted, the guarantee for this set is lost
(and therefore the simulation stops at this point). However, guarantees for other
so-far honest sets still remain.

Finally, we state the guarantees with respect to a (monotone3) adversary
structure Z ⊆ 2P , meaning that if too many corruptions happen, i.e., the set of
corrupted parties exceeds the adversary structure, all guarantees are lost.
Addressing Adaptive Concerns. We will see with the examples below that
this security notion captures the typical adaptive concerns: leaking sensitive
information in the network, and also information leaked from an internal state
of a party.

The former is prevented since the adversary is fully adaptive and can corrupt
parties based on information seen in the network. Note, however, that when con-
sidering a small number of parties, and in particular two parties, our definition
is intuitively very close to that of static security. This is because when X con-
tains one party, the guarantee holds only for adversarial strategies that involve
corrupting the (single) party in X.4 (When the number of parties increases,
many of the sets X contain a large number of parties, and the guarantee holds
even when the adversary adaptively corrupts parties among these large sets. See
Lemma 5.)

To see why the definition also limits the information leaked from an internal
state, note that upon corruption of party i, all guarantees where i /∈ X, still
remain. In all those simulations the internal state of party i must be explained
(from the inputs of parties in X). Concretely, for X being the so-far honest set,
the state of party i does not reveal anything beyond what can be inferred from
the current corrupted set.
Avoiding the Commitment Problem. Intuitively, the commitment problem
does not arise, because the guarantees are lost (i.e. the simulation stops) at the
point where a party in X gets corrupted. Therefore, the simulator does not need
to explain the secret state of any party in X. Moreover, for parties that are in
X, the simulator can consistently explain the secret state because it has access
to the inputs of these parties.

Let EX be the MBO indicating whether any party in X is corrupted. More-
over, let σX be a simulator that has access to the inputs of all parties from the
set X.5 Formally, any inputs given at interfaces from parties in X, are forwarded
3 If Z ∈ Z and Z′ ⊆ Z, then Z′ ∈ Z.
4 However, note that for passive corruption and a small number of parties, static

security intuitively provides sufficiently strong guarantees, as the static adversary
can always guess upfront which set of parties will be corrupted.

5 Our basic approach of stating a guarantee per set X allows to consider many different
definitions, depending on which information is accessible to the simulator. We choose
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to the adversary interface. Moreover, note that we only allow the simulator to
modify the inputs of actively corrupted parties.6

Further let EZ be the MBO that is set to 1 when the set of corrupted par-
ties does not lie in Z. For the common case of threshold corruption where the
adversary structure contains all sets of up to t parties, we denote Et the MBO
that is set to 1 when more than t parties are corrupted.

We require that for each set of parties X, there must be a simulator σX
that simulates the protocol execution until any party in X is corrupted, or the
adversary structure is no longer respected, i.e., until EX ∨ EZ = 1.

Definition 7. Protocol π CC-adaptively constructs specification S from R with
error ϵ and adversary structure Z, if for each set X ⊆ P, there exists (an
efficient) simulator σX , such that πR ⊆ (σXS)EX ∨EZ :ϵ. In short, πR satisfies
the following intersection of specifications:

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ

Moreover, we say that π CC-adaptively constructs S from R with error ϵ up
to t corruptions if πR ⊆

∩
X⊆P(σXS)EX ∨Et:ϵ.

The following lemma shows that this type of construction statement benefits
from desirable composition guarantees.

Lemma 3. Let R, S, T be specifications, and let π, π′ be protocols. Further let
Z ⊆ 2P be a monotone set. Then, we have the following composition guarantees:

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ ∧ π′S ⊆

∩
X⊆P

(σ′
X

T )EX ∨EZ :ϵ′

=⇒ π′πR ⊆
∩

X⊆P
(σ′

X
σXT )EX ∨EZ :ϵ̃,

for ϵ̃ := supX⊆P{(ϵπ′)EX ∨EZ + (ϵ′
σ

X
)EX ∨EZ }, where (ϵπ′)EX ∨EZ is the advan-

tage of the distinguisher that first attaches π′ to the given resource, and then
interacts with the projected resource, and same for (ϵ′

σ
X

)EX ∨EZ .
Furthermore, we have

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ =⇒ π[R, T ] ⊆

∩
X⊆P

(σX [S, T ])EX ∨EZ :ϵT ,

for ϵT (D) := supT ∈T ϵ(D[·, T ]), where D[·, T ] is the distinguisher that emu-
lates T in parallel to the given resource, and then executes D.

Proof. The proof can be found in Section A.
to solely leak the inputs of parties in X, since this seems to be the minimal necessary
information to overcome the commitment problem.

6 Allowing the simulator to modify the inputs of honest parties in X results in an
unnecessarily weak notion.
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4.2 Comparison to Traditional Notions of Security

In this section we show how to phrase the standard notions of static and adaptive
security within our framework, and further show that our new definition lies in-
between the two standard notions of static and adaptive security.

Static Security. In the standard notion of static security, the set of protocol
engines that are corrupted is fixed before the computation starts and does not
change. The possible corruption sets are modelled by a given adversary structure
Z ⊆ 2P . Given a set Z ∈ Z, we denote by πZR the real-world resource, where
the set of protocol engines πi, i ∈ Z, are corrupted. The security definition
requires the existence of a simulator σZ that simulates the protocol execution
and has control over the inputs and outputs from corrupted parties. As usual,
in the passive case, the simulator can read these values, while in the active case,
it can also change them.

Definition 8. Protocol π statically constructs specification S from R with error
ϵ and adversary structure Z, if for each possible set of corrupted parties Z ∈ Z,
there exists a simulator σZ such that πZR ⊆ (σZS)ϵ, where πZ indicates that
protocol converters πi, i ∈ Z, are corrupted, and σZ indicates that the simulator
has control over the inputs and outputs of parties in Z.

Lemma 4. CC-adaptive security implies static security.

Proof. Let π be a protocol that constructs S from specification R with error
ϵ and adversary structure Z, with CC-adaptive security. We prove that π also
satisfies static security with the same parameters. Fix a set Z ∈ Z. Consider the
particular corruption strategy, where parties in Z are corrupted at the start of
the protocol execution, and no more corruptions happen.

In this case, EZ ∨ EZ = 0, because no party in Z is corrupted, and the set
of corrupted parties lies within Z. Therefore, for the case where X = Z, there
must exist a simulator σZ (with access to the inputs and outputs of parties in
Z, which are corrupted) that satisfies πZR ⊆ (σZS)E

Z
∨EZ :ϵ = (σZS)ϵ.

In the following, we show that known examples of protocols that separate the
standard notions of static and adaptive security [12, 10], also separate static and
CC-adaptive security, both in the case of passive as well as active corruption.

Lemma 5. For passive corruption and a large number of parties, CC-adaptive
security is strictly stronger than static security.

Proof. We consider the classical example from Canetti et al. [12]. Consider a se-
cure function evaluation protocol with guaranteed output delivery where parties
evaluate the function that outputs ⊥. The adversary structure contains sets of
up to t = O(n) parties.

The protocol π proceeds as follows: A designated party D secret shares its
input to a randomly selected set of parties U (out of all parties except D) of
small size κ parties using a κ-out-of-κ sharing scheme, where κ is the security
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parameter. Then, D makes the set U public (e.g. by sending the set to all parties).
Subsequently, all parties output ⊥.

It is known that π achieves static security. This is because an adversary not
corrupting D only learns D’s secret if U happens to be the predefined set of
corrupted parties, which occurs with probability exponentially small in κ. More
concretely, for each Z ∈ Z not containing D, the probability that U = Z is(

n−1
κ

)−1 = neg(κ). (Note that in the case where U ̸= Z, the simulator trivially
succeeds simply by emulating the shares as random values.)

Now we show that π does not achieve CC-adaptive security. Consider the
singleton set X = {D}, containing only the designated party. Note that U does
not contain D, since D chooses a set of κ parties randomly from the set of parties
without D. The adversary can then corrupt the set of parties in U to find out
D’s secret without corrupting D. Note that the simulator has access to all inputs
from parties in X, but has no access to D’s input. Formally, the simulator σX
has to output shares for parties in U that add up to D’s input, without knowing
the input, which is impossible.

Lemma 6. For active corruption, CC-adaptive security is strictly stronger than
static security, as long as there are at least three parties.

Proof. We consider the example from Canetti et al. [10] with three parties D,
R1 and R2. D has as input two bits b1, b2 ∈ {0, 1}, and R1, R2 have no input.
The ideal resource evaluates the function f that, on input (b1, b2), it outputs b1
to R1, b2 to R2 and ⊥ to D. The adversary structure contains {D, R1}.

The protocol π proceeds as follows: at step 1 D sends b1 to R1. After that,
at step 2 D sends b2 to R2. Finally, at step 3 each Ri outputs the bit that they
received from D and terminates, and D outputs ⊥ and terminates.

It was proven that π achieves static security: for the set Z = {D}, the
simulator gets the values s′

1 and s′
2 from the adversary interface, and it sends

(b′
1, b′

2) to the ideal resource, who forwards each b′
i to Ri. It is easy to see that

this simulator perfectly simulates the protocol execution. The case where Z =
{D, R1} is similar.

For the set Z = {R1}, the simulator obtains the output b1 from the ideal
resource, so it can simply forward this bit to the adversary interface. Again, it
is easy to see that the simulation is successful.

Now let us argue why the above protocol does not satisfy CC-adaptive secu-
rity. To show that, consider the singleton set X = {R2}, containing only party
R2. We will show that the adversary can break correctness of the protocol, by 1)
learning the value s1 that is sent to R1, and 2) depending on the value received
after step 1 from the so-far honest D, possibly corrupt D and modify the value
that is sent to R2 at step 2. More concretely, the adversary strategy is as follows:
Initially corrupt R1, and learn the value s1 from D. If s1 = 1, then corrupt D
and choose the value s′

2 = 0 as the value that is sent to R2 at step 2. With this
strategy, in the real-world protocol, whenever s1 = 1, R2 never outputs 1.

Consider the case where the input to D is (s1, s2) = (1, 1). As argued above,
in the real-world R2 outputs 0. However, since D is honest at step 1, the simulator
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σX (even with knowledge of the input of D) has no power to change the input
of D. Therefore, D inputs (1, 1) to the ideal resource, and therefore the output
of party R2 is 1.

Adaptive Security. In the standard notion of UC-adaptive security, the ideal-
world is described as a single specification that consists of a simulator –with
passive or active capabilities (i.e. can read, or also change the inputs and out-
puts of corrupted parties)– attached to the adversary interface of a fixed ideal
resource. Moreover, guarantees are given as long as the corrupted parties respect
the adversary structure.

Definition 9. Protocol π UC-adaptively constructs specification S from R with
error ϵ and adversary structure Z, if there is a simulator σ, such that πR ⊆
(σS)EZ :ϵ.

Lemma 7. UC-adaptive security implies CC-adaptive security.

Proof. Let π be a protocol that constructs S from specification R with error ϵ
and adversary structure Z, with standard adaptive security. We prove that π
also satisfies CC-adaptive security. For each set X ⊆ P, we have that there exists
a simulator σX such that πR ⊆ (σXS)EZ :ϵ. This is because one can consider the
simulator σX that ignores the inputs from parties in X and simulates according
to the UC-adaptive simulator σ. Moreover, we have that

(σXS)EZ :ϵ ⊆ (σXS)EX ∨EZ :ϵ,

because EZ = 1 implies EX ∨ EZ = 1. Therefore, we have the following:

πR ⊆ (σS)EZ :ϵ ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ.

Lemma 8. For passive corruption and any number of parties, CC-adaptive se-
curity does not imply UC-adaptive security.

Proof. Consider a secure function evaluation protocol where parties evaluate the
function that outputs ⊥. The adversary structure contains sets of up to t = 2
parties. The protocol π proceeds as follows: A designated party D computes
a commitment of its private input, using a (non-equivocable) perfectly hiding
and computationally binding commitment scheme and makes this commitment
public. Then, all parties output ⊥.

The protocol does not achieve standard adaptive security. Consider the cor-
ruption strategy where D is corrupted “after” he sent his commitment. The
simulator then first has to come up with a commitment without knowing D’s in-
put, and then, upon corruption, learns D’s input and has to output randomness
consistent with D’s input. Since the commitment is non-equivocable, this is not
possible. That is, the simulation strategy runs into the commitment problem.

It is easy to see that π satisfies CC-adaptive security. This is because for any
set X not containing D, the simulator can read D’s input, so the simulation is
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straightforward. On the other hand, for any set X containing D, the simulation
is only required until the point in time where D becomes corrupted (without
including the answer to the corruption query, i.e., there is no need to output D’s
private state).

5 Some Ideal Resource Specifications

In this section we introduce some typical ideal specifications that will be used in
later sections, such as the network model, broadcast and MPC. We consider the
setting with open authenticated and asynchronous channels, where the adversary
can choose to drop messages. As a consequence, the ideal building blocks for
broadcast and MPC that we consider achieve so-called security with abort.

5.1 Communication Primitives

Network Model. We consider a multi-party communication network with
point-to-point asynchronous authenticated channels among any pair of parties,
in line with the Fauth functionality in [9]. Asynchronous means that the channels
do not guarantee delivery of the messages, and the messages are not necessarily
delivered in the order which they are sent. Authenticity ensures that a recipient
will only receive a message from a sender if the sender actually sent the message.
In the case of adaptive corruptions, this authenticity requirement holds as long
as both sender and recipient are honest. In particular, a dishonest sender is al-
lowed to modify the messages that have been sent, as long as they have not been
delivered to the recipient yet. We denote N the complete network of pairwise
authenticated channels (see Section C).

Broadcast with Abort. In our protocols, we assume that parties have access
to an authenticated broadcast channel with abort[27], which guarantees that no
two honest parties receive different messages, and does not guarantee delivery
of messages. We denote the broadcast specification BC a broadcast channel that
allows any party to broadcast. Such a broadcast resource can be constructed
with standard adaptive security and arbitrary number of corruptions in the
communication network N using the protocol by Goldwasser and Lindell [27].7
See Section C for a detailed description.

5.2 MPC with Abort

We briefly describe an ideal resource MPC capturing secure computation with
abort (and no fairness). The resource has n + 2 interfaces, n party interfaces, an
adversary interface A and a free interface W . Via the free interface, the resource
keeps track of the set of corrupted parties. The resource allows each party i to
7 Note that in broadcast with abort, even when the sender is honest, it is allowed that

parties output ⊥.
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input a value xi, and then once all honest parties provided its input, it evaluates
a function y = f(x1, . . . , xn) (corrupted parties can change their input as long
as the output was not evaluated). The adversary can then select which parties
obtain output and which not.

Initialization
1: x1, . . . , xn ← ⊥
2: y, y1, . . . , yn ← ⊥
3: C = ∅

Party Interfaces
1: On input (input, x) at interface i ∈ [n], if xi = ⊥, set xi = x. Output ⊥ at

interface i. Moreover, if xj ̸= ⊥ for each j /∈ C, then set y = f(x1, . . . , xn).
2: On input output at interface i ∈ [n], output yi at interface i.

Adversary Interface
1: On input (deliver, j), j ∈ [n], at interface A, set yj = y. Output ⊥ at

interface A.
2: On input (input, x, i) at interface A, if i ∈ C and y = ⊥, then set xi = x.

Output ⊥ at interface A.
3: On input (leak, j), j ∈ C, at interface A, output xj at interface A.
4: On input leakOutput, at interface A, output y at interface A.

Free Interface
1: On input (corrupt, i) at interface W , set C = C ∪ {i}. Output ⊥ at

interface W .

Resource MPCf

5.3 Multi-Party Zero-Knowledge

Let R be a binary relation, consisting of pairs (x, w), where x is the statement,
and w is a witness to the statement. A zero-knowledge proof allows a prover to
prove to a verifier knowledge of w such that R(x, w) = 1. In our protocols we
will consider the multi-party version, which allows a designated party i to prove
a statement towards all parties according to relation R. Such a resource ZKi,R

can be seen as a special instance of MPC with abort MPCf resource, where the
function f simply takes as input (x, w) from the designated party i, and no input
from any other party, and outputs x in the case R(x, w) = 1, and otherwise ⊥.
We denote ZKR the parallel composition of ZKi,R, for i ∈ [n].

Such a resource can be constructed assuming BC and a CRS even with stan-
dard adaptive security for arbitrary many corruptions (see e.g. [13]). Alterna-
tively, the resource can be constructed less efficiently solely from BC for the case
where t < n/2 (see e.g. [48] with [33]).
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5.4 Oblivious Transfer

An oblivious transfer involves a designated sender s, with input (x1, . . . , xℓ) and
a designated receiver with input i ∈ {1, . . . , ℓ}. The output for the receiver is
xi, and the sender has no output. For our purposes, we can see the resource
as a special instance of MPC with abort MPCf resource, where the function f
simply takes as input (x1, . . . , xℓ) from the designated sender s, an input i from
the designated receiver r, and no other inputs, and it outputs xi to the receiver,
and no output to any other party.

6 Application to the CDN Protocol

In this section we show that the protocol by Cramer, Damgard and Nielsen [17]
based on threshold (additively) homomorphic encryption essentially achieves
MPC with abort and with CC-adaptive security, in the communication network
N of authenticated asynchronous channels. With similar techniques, one could
achieve MPC with guaranteed output delivery and with CC-adaptive security in
a synchronous communication model (assuming a broadcast specification).

The CDN protocol is perhaps the iconic example that suffers from the com-
mitment problem, and the goal of this example is to conceptually distil out at
which steps the protocol is subject to relevant adaptive attacks, and conclude
that the CDN-approach of broadcasting encrypted inputs in the first step and
computing on ciphertexts, actually achieves strong adaptive security guarantees,
even when the encryption commits to the plaintext. We showcase the applica-
bility of our definition with two versions of CDN, for passive corruption below,
and active corruption in the full version [28].

Finally, note that the protocol is typically described assuming a synchronous
network, where the protocol advances in a round to round basis, and messages
send at round r are assumed to arrive by round r + 1. However, our assumed
network N is asynchronous. To address this, we follow the standard approach of
executing a synchronous protocol over an asynchronous network (see [33]). The
idea is simply that each party waits for all round r messages before proceeding
to round r + 1. The consequence is that the CDN protocol, which achieves full
security under a synchronous network, achieves security with abort under an
asynchronous network.

6.1 Passive Corruption Case

The protocol relies on an adaptively secure threshold homomorphic encryption
scheme (see for example the scheme by Lysyanskaya and Peikert [36], which is
based on the Paillier cryptosystem [44]). In such a scheme, given the public key,
any party can encrypt a message. However, decrypting the ciphertext requires the
collaboration of at least t + 1 parties, where t is a parameter of the scheme. The
scheme is additively homomorphic in the sense that one can perform additions
on ciphertexts without knowing the underlying plaintexts (see Section B).
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For a plaintext a, let us denote a an encryption of a. Given encryptions a,
b, one can compute (using homomorphism) an encryption of a + b, which we
denote a� b. Similarly, from a constant plaintext α and an encryption a one can
compute an encryption of αa, which we denote α � a. For concreteness, let us
assume that the message space of the encryption scheme is the ring R = ZN , for
some RSA modulus N .

Let us first describe a version of the protocol for the passive case (see the
section below for a complete description in the active case). The protocol Πpcdn
starts by having each party publish encryptions of its input values. Then, parties
compute addition and multiplication gates to obtain a common ciphertext, which
they jointly decrypt using threshold decryption. Any linear operation (addition
or multiplication by a constant) can be performed non-interactively, due to the
homomorphism property of the threshold encryption scheme. Given encryptions
a, b of input values to a multiplication gate, parties can compute an encryption
of c = ab as follows:
1. Each party i chooses a random di ∈ ZN and distribute encryptions di and

dib to all parties.
2. Parties compute a � (�idi) and decrypt it using a threshold decryption.
3. Parties set c = (a +

∑
i di) � b � (�idib).

The main problem that arises when dealing with standard adaptive security,
even in the passive case, is that of the commitment problem: the simulator
has to first output encryptions on behalf of the so-far honest parties during
the input stage, and then if one of these honest parties is later corrupted, the
simulator learns the real input of this party and must reveal its internal state to
the adversary. However, the simulator is now stuck, since the real input is not
consistent with the encryption output earlier. To overcome this issue, protocols
usually make use of non-committing encryption schemes. An exception to this, is
the protocol by Damgard and Nielsen [19], which is a variant of the CDN protocol
that even achieves standard adaptive security, and overcomes the commitment
problem by assuming a CRS which is programmed in a very clever way.

We show that this issue does not arise when aiming for CC-adaptive secu-
rity. Technically, for each subset of parties X ⊆ P, the simulator only needs
to lie about the inputs of parties in X, since it knows the inputs of the other
parties. Moreover, the simulation is only until the point where a party in X gets
corrupted, and so we do not need to justify the internal state of this party. We
propose CC-adaptive security as a natural security goal to aim for, providing
strong security guarantees against adaptive corruption, and at the same time
overcoming the commitment problem. Conceptually, this example shows that
the CDN-approach achieves such strong adaptive security guarantees, without
the need to use non-committing encryption tools or erasures. Note that in the
passive case, the protocol assumes solely a setup for threshold homomorphic
encryption, whereas the protocol in [19] requires in addition a CRS.

Key Generation. As usual, we model the setup for the threshold encryption
scheme with an ideal resource KeyGen that generates its keys. The resource
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KeyGen simply generates the public key ek and private key dk = (dk1, . . . , dkn)
for the threshold encryption scheme, and outputs to each party i the public key
ek and its private key share dki, and to the adversary the public key ek.

Theorem 1. Protocol Πpcdn CC-adaptively constructs MPCf from [N , KeyGen],
with error ϵ and up to t < n/2 passive corruptions, where ϵ reduces distinguishers
to the corresponding advantage in the security of the threshold encryption scheme
and is described in the proof.

Proof. Let R = [N , KeyGen] and S = {MPCf }. Fix a set X ⊆ P. We need to
show that there is a simulator σX such that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵ. At any
point in time, if the event EX ∨ Et = 1, the simulator halts. The simulator works
as follows.

Key Generation. The simulator σX simulates this step by invoking the simu-
lator for the threshold encryption scheme. Let ek denote the public key, and dki

denote the decryption key share for party i. It then outputs ek at the adversary
interface.

Network Messages. The simulator simulates each step of the protocol, given
that all messages before that step have been delivered by the adversary i.e.,
the simulator receives all the corresponding deliver messages at the adversary
interface. If not, it simply keeps waiting. The messages in the steps below are
output to the adversary at the corresponding steps, upon receiving the corre-
sponding leak messages at the adversary interface.

Input Stage. For each party i that is honest at this step and gave input to
the ideal resource, σX outputs an encryption ci on behalf of this party at the
adversary interface. If i ∈ X , then the simulator does not know its input, and
computes the ciphertext ci = Encek(0) as an encryption of 0. Otherwise, i /∈ X
and the simulator knows its input xi, so it computes xi = Encek(xi) as the
ciphertext.

For each party i that is corrupted at this point, the simulator knows its input
xi, and forwards this input to the ideal resource.

Addition Gates. This step can be simulated in a straightforward manner,
performing local homomorphic operations on behalf of each honest party.

Multiplication Gates. Let a and b denote the ciphertexts input to the mul-
tiplication gate. The simulator σX can execute the honest protocol. That is, it
generates a random value di on behalf of each honest party i, and locally com-
putes di = Encek(di), and dib = di � b. It then outputs the pair of ciphertexts
to the adversary interface. For each corrupted party at this step, the simulator
obtains the pair of ciphertexts di and dib.

Upon receiving the pairs of ciphertexts from all parties, compute the cipher-
text a � (�idi), and simulate an honest threshold decryption protocol of this
ciphertext. That is, the simulator outputs a decryption share of the ciphertext
to the adversary interface. Upon computing t + 1 decryption shares, reconstruct
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the plaintext. Let a +
∑

i di be the reconstructed plaintext. Then, compute the
ciphertext c = (a +

∑
i di) � b � (�idib).

Output. The simulator inputs to the ideal resource (deliver, j), for each party
j that obtains an output in the protocol. It also obtains the output with the
instruction leakOutput. Then, upon obtaining an output y from the ideal re-
source, use the simulator of the (adaptively secure) threshold decryption protocol
to compute decryption shares on behalf of the honest parties (see [36], where one
can simply choose as the inconsistent party one of the parties in X).

Corruptions. On input a command leak, at interface A.i, if i is corrupted, the
simulator outputs the internal state of party i. Note that this is easily done since
for parties not in X, the simulator has access to its input. And if any party in X
gets corrupted, the corresponding MBO is triggered, EX = 1, and the simulator
halts.

We now prove that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵ, for the simulator σX described
above. For that, we first describe a sequence of hybrids.

Hybrid H1. In this system, we assume that the simulator has access to all
inputs from the parties. It then executes the real-world protocol, except that the
key generation and the decryption are executed using the respective simulators
for the threshold encryption scheme. By security of the threshold encryption
scheme, we have that untilEX ∨Et

(
ΠpcdnR

)
is ϵ1-close to untilEX ∨Et

(H1). That is:

untilEX ∨Et

(
ΠpcdnR

)
⊆ (untilEX ∨Et

(H1))ϵ1 ,

where ϵ1 is the advantage of the distinguisher (modified by the reduction)
to the security of the threshold encryption scheme. Moreover, by definition we
have that untilEX ∨Et

(H1) ∈ H
EX ∨Et]
1 . Therefore:

untilEX ∨Et

(
ΠpcdnR

)
⊆

(
H

EX ∨Et]
1

)ϵ1
⇐⇒ ΠpcdnR ⊆ HEX ∨Et:ϵ1

1 .

Hybrid H2. The simulator in addition sets the input encryption of the honest
parties in X at the Input Stage to an encryption of 0. By semantic security of the
threshold encryption scheme, and following the same reasoning as above, we have
that H1 ∈ HEX ∨Et:ϵ2

2 , where ϵ2 is the advantage of the distinguisher (modified by
the reduction) to the semantic security of the encryption scheme. Moreover, the
hybrid specification {H2} corresponds exactly to the ideal specification (σXS).

Combining the above steps, we have that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵX , where
ϵX = ϵ1 + ϵ2. Therefore, choosing the function ϵ where ϵ(D) = supX⊆P{ϵX(D)},
the statement follows. ⊓⊔

7 Application to the CLOS Protocol

In this section, we show another application of our new definition, with the iconic
CLOS protocol [13], which is based on the classical GMW protocol [25].
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We show that the CLOS protocol can be used to achieve a CC-adaptively
secure protocol for arbitrary number of active corruptions, assuming a CRS
resource, and the existence of enhanced trapdoor permutations. Note that, since
CC-adaptivity implies static security, and some form of setup is required even for
static security, then it is impossible to achieve CC-adaptivity in the plain model
(where only the network is assumed) for the dishonest majority setting. However,
note that in contrast to the UC-adaptive version of the CLOS protocol, the
construction does not require the use of augmented non-committing encryption.
In fact, to the best of our knowledge, all UC-adaptively secure protocols in the
dishonest majority setting require some form of non-committing encryption.

Theorem 2. Assume that enhanced trapdoor permutations exist. Then, there
exists a non-trivial8 protocol that CC-adaptively constructs MPCf from [N , CRS],
for appropriate error ϵ (as defined by the steps below) and for any number of
active corruptions.

We only sketch the proof of the above theorem. We follow the steps of the
CLOS protocol. First, a construction of a passively secure protocol assuming the
asynchronous communication network N is shown. This construction is achieved
by first constructing an ideal oblivious transfer (OT), and then designing a secure
computation protocol assuming an ideal OT. The following lemma shows that
the protocol Πot of [25] achieves CC-adaptive security. We describe the protocol
and the proof of the following lemma in the full version [28].

Lemma 9. Assume that enhanced trapdoor permutations exist. Then, Πot CC-
adaptively constructs OT from N , for error ϵ (described in the proof), and for
any number of passive corruptions.

Given that UC-adaptive security implies CC-adaptive security by Lemma 7,
and there is a UC-adaptively secure MPC protocol assuming an ideal OT re-
source [13], we have the following lemma:

Lemma 10. There exists a non-trivial protocol that CC-adaptively constructs
MPCf from [N , OT], with no error, and for any number of passive corruptions.

As a corollary of the above two lemmas and the composition guarantees from
Lemma 3, we have:

Corollary 1. Assume that enhanced trapdoor permutations exist. There exists
a non-trivial protocol that CC-adaptively constructs MPCf from N , for error ϵ
(defined by the composition Lemma 3 and error from Lemma 9), and for any
number of passive corruptions.
8 The ideal specification does not require any of the simulators to deliver the mes-

sages to the parties. This implies that a protocol that “hangs” (i.e., never sends any
messages and never generates output) securely realizes any ideal resource, which is
uninteresting. Following [13], we therefore let a non-trivial protocol be one for which
all parties generate output if the adversary delivers all messages and all parties are
honest.

23



Second, we use the CLOS compiler that transforms any passively secure
protocol operating in the network N , to an actively secure protocol assuming in
addition an ideal commit-and-prove CP resource (see the full version [28] for a
description). One can see that the compiler preserves the adaptivity type in the
sense that if the passive protocol is CC-adaptively secure, the compiled protocol
is CC-adaptively secure.

Corollary 2. Let Π be a multi-party protocol and let Π ′ be the protocol obtained
by applying the CLOS compiler. Then, the following holds: if Π CC-adaptively
constructs MPCf from N for error ϵ and any number of passive corruptions,
then Π ′ CC-adaptively constructs MPCf from [N , CP] for error ϵ′ defined in the
proof and any number of active corruptions.

Proof (Sketch). The proof in CLOS (Proposition 9.6) shows that a malicious
adversary cannot cheat in the compiled protocol because the resource CP checks
the validity of each input received. In particular, they show that for any adversary
interacting in the compiled protocol Π ′, there is a passive adversary interacting
in protocol Π that simulates the same view.

More precisely, the proof shows that the specification ΠτN and Π ′[N , CP]
are the same, where τ is the translation converter attached at the adversary inter-
face, which translates from the adversary in Π ′ to the adversary in Π. (Typically
the translation is called a simulator, and it happens between a real resource and
an ideal resource. Here, the translation is between two real resources.)

Fix a set X ⊆ P. Since Π CC-adaptively constructs MPCf from N for error
ϵ and any number of passive corruptions, we have that ΠN ⊆ (σXMPCf )EX :ϵ.

Using Lemma 2, this implies the desired result:

Π ′[N , CP] = ΠτN ⊆ τ(σXMPCf )EX :ϵ ⊆ (τσXMPCf )EX :ϵ′ := (σ′
X

MPCf )EX :ϵ′
,

where ϵ′ = ϵτ . ⊓⊔

It was also shown in [13] that CP can be constructed with UC-adaptive
security assuming a zero-knowledge resource ZK and broadcast BC. Given that
ZK can be constructed assuming a resource CRS and broadcast BC, and BC can
be constructed from N , the authors conclude that CP can be constructed from
CRS and N . Therefore, since UC-adaptive security implies CC-adaptive security,
Lemma 7 shows:

Corollary 3. There exists a non-trivial protocol that CC-adaptively constructs
CP from [N , CRS], for error ϵ (as in [13]), and for any number of active corrup-
tions.

From Corollaries 1, 2 and 3, and the composition Lemma 3 we achieve the
theorem statement.
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Supplementary Material

A Proof of Lemma 3

The proof of the lemma follows from the properties of the ϵ-relaxation and the
until-relaxation, and is in line with the composition theorem for interval-wise
relaxations in [31].

We start from the first property, which shows sequential composition. That
is, if π constructs S from R with error ϵ, and π′ constructs T from S with
error ϵ′, then one can construct T from R with a new error ϵ̃, corresponding
essentially to the sum of ϵ and ϵ′.

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ ∧ π′S ⊆

∩
X⊆P

(σ′
X

T )EX ∨EZ :ϵ′
=⇒

π′πR ⊆
∩

X⊆P
(σ′

X
σXT )EX ∨EZ :ϵ̃,

for ϵ̃ := supX⊆P{(ϵπ′)EX ∨EZ + (ϵ′
σ

X
)EX ∨EZ }, where (ϵπ′)EX ∨EZ is the advan-

tage of the distinguisher that first attaches π′ to the given resource, and then
interacts with the projected resource, and analogously for (ϵ′

σ
X

)EX ∨EZ .
Let X ⊆ P be a set. From the first part, Lemma 2 and composition order

invariance, we have:

π′πR ⊆ π′ (
(σXS)EX ∨EZ :ϵ) ⊆

(
(π′σXS)EX ∨EZ :ϵπ′

)
⊆

(
(σXπ′S)EX ∨EZ :ϵπ′

)
.

Moreover, from the second part we have:

(σXπ′S) ⊆ σX

(
(σ′

X
T )EX ∨EZ :ϵ′

)
⊆ (σXσ′

X
T )EX ∨EZ :ϵ′

σ
X .

Combining both statements and using Lemma 1 yields:

π′πR ⊆
(

(σXσ′
X

T )EX ∨EZ :ϵ′
σ

X

)EX ∨EZ :ϵπ′

⊆ (σXσ′
X

T )EX ∨EZ :ϵ̃.
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The second property ensures that the construction notion achieves parallel
composition. That is, if π constructs S from R, then it also constructs [S, T ]
from [R, T ].

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ =⇒ π[R, T ] ⊆

∩
X⊆P

(σX [S, T ])EX ∨EZ :ϵT ,

for ϵT (D) := supT ∈T ϵ(D[·, T ]), where D[·, T ] denotes the distinguisher that
emulates T in parallel to the given resource, and then executes D.

Let X ⊆ P be a set. From composition order invariance and Lemma 2, we
have:

π[R, T ] = [πR, T ] ⊆ [(σXS)EX ∨EZ :ϵ, T ]

⊆ [σXS, T ]EX ∨EZ :ϵT =
(
σX [S, T ]

)EX ∨EZ :ϵT
.

B Threshold Homomorphic Encryption

We recall the definition of a threshold encryption scheme. A threshold encryption
scheme with standard adaptive security can be found in [36], based on the Paillier
cryptosystem.

Definition 10. A homomorphic threshold encryption scheme consists of five
algorithms:

– (Key generation) The key generation algorithm is parameterized by (t, n) and
outputs (ek, dk) = Keygen(t,n)(1κ), where ek is the public key, and dk = (dk1,
. . . , dkn) is the list of secret keys.

– (Encryption) There is an algorithm Enc, which on input public key ek and
plaintext m, it outputs an encryption m = Encek(m; r) of m, with random
input r.

– (Partial decryption) There is an algorithm that, given as input a decryption
key dki and a ciphertext, it outputs di = DecSharedki

(c), a decryption share.
– (Reconstruction) Given t + 1 decryption shares {di}, one can reconstruct the

plaintext m = Rec({di}).
– (Additively Homomorphic) There is an algorithm which, given public key

ek and encryptions a and b, it outputs a uniquely-determined encryption
a + b. We write a + b = a � b. Likewise, there is an algorithm performing
substraction: a − b = a � b.

– (Multiplication by constant) There is an algorithm, which, given public key
ek, a plaintext a and a ciphertext b, it outputs a uniquely-determined en-
cryption a · b. We write a · b = a � b.
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C Description of Communication Primitives

C.1 Network Model

We first describe a single-message authenticated channel AUTHi,j from party i
to party j. A multi-message authenticated channel is then accordingly obtained
via parallel composition of single-message resources. The resource has n + 2
interfaces, n party interfaces, an adversary interface A and a free interface W .

The channel expects an input message m at interface i, which is stored upon
receipt. The adversary can learn the message that is input, and can choose to
deliver the message by making it available at interface j. Moreover, if party i
is corrupted, it can inject a new message, as long as the message has not been
delivered yet.

Initialization
1: mi, mj ← ⊥
2: CorruptSender = 0

Party Interfaces
1: On input (send, m) at interface i, if mi = ⊥, set mi = m. Output ⊥ at

interface i.
2: On input receive at interface j, output mj at interface j.
3: On any input at interface k ∈ [n] \ {i, j}, output ⊥ at the same interface.

Adversary Interface
1: On input leak at interface A, output mi at interface A.
2: On input deliver at interface A, set mj = mi. Output ⊥ at interface A.
3: On input (inject, m) at interface A, if CorruptSender = 1 and mj ̸= ⊥, set

mi = m.

Free Interface
1: On input (corrupt, i) at interface W , set CorruptSender = 1. Output ⊥ at

interface W .

Resource AUTHi,j

Let N be the complete network of pairwise authenticated channels, i.e., the
parallel composition of AUTHi,j , for i, j ∈ [n].

C.2 Broadcast with Abort

The resource has n + 2 interfaces, n party interfaces, an adversary interface A
and a free interface W . As a first step, we model a broadcast resource BCi where
party i is the sender. We then define the broadcast specification BC that allows
any party to broadcast as the specification containing the parallel composition
of broadcast resources BCi, for each i ∈ [n].
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The broadcast specification BC we consider corresponds to that of broadcast
with abort [27], and does not guarantee delivery of messages. It only guarantees
that no two uncorrupted parties will receive two different messages.

As pointed out by Hirt and Zikas [29], traditional broadcast protocols do
not construct the stronger broadcast functionality which simply forwards the
sender’s message to all parties, since they are subject to adaptive attacks, where
the adversary can corrupt an initially honest sender depending on the broad-
casted message, and change the broadcasted message. Therefore, we consider
the “relaxed” version, which allows an adaptively corrupted sender to change
the message sent, as long as the message was not delivered to any party.

Initialization
1: m∗ = ⊥
2: m1, . . . , mn ← ⊥
3: CorruptSender = 0

Party Interfaces
1: On input (bc, m) at interface i, if m∗ = ⊥, set m∗ = m. Output ⊥ at

interface i.
2: On input receive at interface j ∈ [n], output mj at interface j.

Adversary Interface
1: On input leak at interface A, output m∗ at interface A.
2: On input (deliver, j), j ∈ [n], at interface A, set mj = m∗. Output ⊥ at

interface A.
3: On input (inject, m) at interface A, if CorruptSender = 1 and mj = ⊥ for all

j ∈ [n], set m∗ = m.

Free Interface
1: On input (corrupt, i) at interface W , set CorruptSender = 1. Output ⊥ at

interface W .

Resource BCi
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