
Reputation at Stake!
A Trust Layer over Decentralized Ledger

for Multiparty Computation and
Reputation-Fair Lottery

Mario Larangeira

Department of Mathematical and Computing Science
School of Computing

Tokyo Institute of Technology
mario@c.titech.ac.jp

IOHK
mario.larangeira@iohk.io

Abstract. This work leverages on the framework of Karakostas et al.
(SCN’20) by extending it to the realm of reputation and trust. At the best
of our knowledge, it is the first to introduce reputation and trust to proof
of stake systems. Namely, we show that their delegation framework can
be repurposed to construct a trust layer over a proof of stake consensus
protocol in addition to its original stake delegation application. Further-
more, we show that such extension yields a concrete reputation system
satisfying the positive results of (1) Asharov et al. (Asiacrypt’13), there-
fore allowing the secure execution of multiparty protocols such as GMW
(STOC’ 87) and Damgard and Ishai (Crypto’05), and (2) Kleinrock et
al. (Indocrypt’20), therefore allowing the construction of Reputation-fair
Lottery and therefore Proof of Reputation. More concretely, our devised
layer is used to construct a concrete reputation system based on arbi-
trary stake distribution. In this layer groups of users can freely “assign
their respective trust” to members of a set of trustees, i.e. participants
that offered themselves as receivers of such assignment. Furthermore, our
work offers the advantage of providing a clear stake based criteria, verifi-
able in the ledger, and, therefore, naturally resistant to sybil attack, that
the set of trustees indeed yields an honest majority. This setting provides
a better situation than a simple assumption of honest majority, since it
involves stake in a decentralized ledger, and the public verifiability of the
reputation score via verification of the stake distribution.

Keywords: Ranking, Reputation, Trust, Proof-of-Stake, MPC.

1 Introduction

Trust between individuals and reputation is ubiquitous to life in society. Human
beings are instinctively designed to take it into account almost in all decisions
that we do in our lives. Surprisingly, despite its fundamental role and numerous



works in the literature, it seems there is still not a thorough solution that satis-
factorily captures it in every detail. A closer look into a more practical situation
may shed some light into the reason why that is the case.

Reputation in Everyday Life. As a practical effect of reputation, or lack
thereof, George Arklof coined the term “Market for Lemons” [1] for the situation
when only low-quality sellers are in the market, after the high-quality sellers left,
due to the inability of the buyers to tell the difference between them, i.e. no
reputation system available. More concretely, high-quality sellers cannot keep
themselves in business, without buyers taking into account the reputation of the
seller, instead of only the price tag, when deciding for a purchase. An even more
concrete example, which may have crossed the reader’s mind is Amazon ranking
system [24] or Google Pagerank algorithm [23], which are designed to harvest
feedback from the users pool and promote good sellers or relevant webpages
to the end user. However, even these widely popular systems have limitations
(as we discuss later, in particular on ranking based approach) and are prone to
manipulation and fraud, requiring extra measures from its maintainers in order
to provide a minimal functional system.

Technical Challenges. Although the straightforward practicality and deceiv-
ingly simplicity of the concept, reputation record has shown itself to be some-
what elusive to formal techniques intended to satisfactorily capture this concept,
and properly embed it in a practical system free from manipulation and general
enough to be used widely. It is natural to expect that such systems would even-
tually be securely incorporated into our lives via information systems that are
increasingly permeating all aspects of our daily routine. For the moment, such
general system does not seem to exist. The explanation seems to rely on the
technical challenges in pursuing such solution, and they can be broken down in
three main areas in the available literature:

– eliciting feedback: Systems based on ranking crucially depend on the feed-
back of the system users. Briefly, a reputation framework needs to continu-
ously gather and process the “opinion” from the parties;

– aggregating/displaying: The feedback from the user has to be aggregated in
order to establish a comprehensible and meaningful value;

– distribution: Each player of such system is subject to receive a “reputation”
value, which others can consult or be used in decision making, in particular,
it can be used in outlining general strategies.

We provide a more thorough discussion on each of the items on Appendix A.
Such systems, as the early mentioned [23,24], also have a shared limitation re-
garding the distribution of the “amount of” reputation or trust. That is, they
are contained in their own silos, e.g. company databases. That is, they do not
belong to a general platform, making it hard comparison even when they are
offering similar services of products.

It is straightforward to understand that reputation system are particularly
needed when parties have a long term expectation of activities, i.e. a set of nodes
is expected to keep interacting with each other in the long term. In the early

2



mentioned main areas, if the problems are solved it paves the way to correctly
capture feedback, process and distribute it, which is valuable in guiding future
interactions. More importantly, they can fundamentally change the interactions
by allowing parties to establish their own strategies for further interactions.
For example, a reliable and available reputation system could be used to guide
participants of a protocol to whom they would choose to interact in order to
perform a joint protocol.

1.1 Related Work
An interesting overlap between reputation and multiparty computation was ob-
served by Asharov et al. [2]. In particular, [2] points out that by observing the
reputation of the protocol participants, in some cases, it is possible to guarantee
an honest majority. It is important to remark, that in the positive cases, a fair
distributed computation can be performed and therefore such scenario is highly
desirable in numerous scenarios.

This early work adds to the rich and long literature of reputation and trust
management [17], even in decentralized form [11,15]. In the set of decentralized
reputation, Kleinrock et al. [22] proposed a new paradigm named Proof of Rep-
utation, following roughly on the analogous idea of Proof of Stake (PoS) and
Proof of Work (PoW). That is, proportionally to the stake, or computational
work, a participant would be more frequently selected to issue the new block.
The authors of [22] propose, that the participants, proportionally to their own
reputation, would be chosen in a reputation-fair lottery: the more reputable user,
the more frequent it would be selected to issue a new block.

The work in [22] remarks that their framework is consensus agnostic, it would
work on any paradigm, either PoS and PoW. Moreover, it would even offer a
Nakamoto Fallback, i.e. the protocol can recover itself by relying on the under-
pinning consensus mechanism. Moreover, [22] introduces a new definition for
reputation-fair lottery which is suitable for Proof of Reputation. Roughly, it
states that given a vector of reputation scores for a set of participants, even
the ones with the lowest reputation can still have a chance of being selected by
the lottery. A definition which differs from another work on Proof of Reputa-
tion by Biryukov et al. [5], which focuses on assuring a more even probability
distribution for the lottery algorithm.

1.2 Our Work
The starting point of our work comes from the observation that the delegation
of stake, as defined in [18], can be interpreted as an assignment of trust. In
other words, when a stakeholder in the PoS environment delegates its stake to a
stake pool, it is in fact, informing publicly that it trusts that entity. Hence, these
especial participants, or trustees as we later denote them, can publicly claim a
higher reputation score by accumulating more votes, or assignments, of trust via
a similar delegation method adapted from [18].

PoS based Reputation Vector. We show that the framework proposed in [18]
is general enough to be repurposed to a different context, i.e., a trust layer. More
concretely, when a participant wants to receive trust assignments from others,
it would issue a certificate and publish it in the ledger L. Similarly to what is

3



already done with stake pools in [18]. The difference here is that such registration
certificates contains a context identification, i.e. a string IDcontext, which repre-
sents the context that the trust assigners trust that trustee. The string IDcontext

is a unique identifier which can represent a particular service, product, company
or a decentralized identity [26]. Therefore, by assigning trust, again, via delega-
tion procedure similarly to the technique in [18], to the published certificate, a
participant is publicly informing that it trusts the signer of that certificate with
respect to that context. Needless to say, the trust assigning certificate should
also contain the identifier IDcontext. Hence it does not interfere with the critical
PoS delegated consensus protocol, and also to allow multiple contexts.

In comparison to [22], our proposed reputation system is limited to PoS sys-
tems given the adaptation from [18]. On the other hand, [22] lacks the definition
of a concrete reputation system (similarly with [2]), despite of presenting con-
crete results, including a Nakamoto style fallback in case of flawed reputation
ranking. Here, we concretely present a distributed reputation protocol by allow-
ing the participants of the PoS system to freely, and publicly, show their trust,
therefore allowing reputation to be created. Typically, the reputation of a set of
participants, say T , is a vector of (real) values between [0, 1] of size |T |, where
the i-th position indicates the likelihood of the i-th player being honest. Hence
reputation 1 means that the player is assured to behave honestly, or, depending
on the context, has a perfectly good reputation.

In our model, given an unique context identifier, again, IDcontext, partici-
pants can issue, and publish in the L, certificates that tie together IDcontext

and their respective verification keys. In this way, they are perceived by all the
users of the PoS system as members of the pool of potential receivers of delegated
trust, e.g. the set T , in that particular context. Given that these certificates and
verification keys are public, they can be widely advertised by their issuers outside
of the protocol, i.e. in the real world. In this setting, any user of the entire PoS
system, therefore a stakeholder which is a member of the set U , such that T ⊂ U ,
can issue trust votes (delegation certificates in the jargon of [18]) also containing
the context identifier IDcontext. The reputation scores naturally arise by taking
into account the stake associated with each trust assignment combined. For a
fixed context identification string IDcontext, each score of the reputation vector
is the percentage of stake that each participant, in T , was assigned with respect
to the combination of all stake of the set U .
Stake as Trust Weight. Assume, for example, that all participants in U are
assigning trust with the identifier IDcontext for multiple trustees. Furthermore,
assume also that each of them assigns trust for every player in T . In this scenario,
every reputation value in the vector is 1, since they received trust votes from
every player in U . Note that the participants can cast votes for different members
of the T set at the same time, i.e. same context. The reputation percentage, i.e.
score, is taken by considering how much a single address of T has harvest for
its own, with respect to the summation of all the stake in the set U , i.e. the
players voting for that context. More concretely, the overall stake being used
to vote is the summation of all s1, . . . , s|U|, the corresponding shares of the
participants in U , and the resulting reputation score for the i-th member of the

4



T is ri =
sUT

s1+···+sU , where sUT is the combination of the stake of all assigners
to the i-th trustee. Needless to say, that although the system bases the “trust
delegation” in the same fashion of [18], i.e. via certificates, this sort of purposely
tailored delegation does not affect the stake delegation crucially important for
the PoS consensus protocol. Given the context identification, it can be handled
in isolation of the consensus.

This reputation system is compatible with the setting considered in [22].
More formally, each reputation value ri has correlation free, and it is associated
with a binary random variable Hi which tells if the i-th participant behaves
honestly, thus Pr[Hi = 1] = ri. Differently from [22,2], our framework relies
by design on the community of users interested in the context referred by the
IDcontext. Hence, ultimately, the reputation scores of our system reflect how the
set of trust assigners, the set U , perceives the members of the set T . In other
words, this perception can be subject to real world information.

Relying on the stake of the underlying PoS ledger when computing the rep-
utation score has the “good” side effect to guarantee some accountability of the
feedback, arguably increasing the quality of the resulting vector. Furthermore, it
provides a more dynamic environment where the reputation can be verified with
access to the ledger L. On the other hand, our construction does not support
negative feedback, i.e. −1 or “bad” as mentioned earlier in the technical chal-
lenge of modeling reputation. Our proposed system offers only a simple “trust
association” which is already enough for numerous applications. Despite of the
limited functionality, regarding inclusion, our model supports easy addition of
new participants, both as trust assigners and trustees, since any newcomer could
generate a new certificate containing the context identifier, and, therefore, turn-
ing itself in target of trust assignment.

Our proposed system addresses another drawback of handling reputation
information. By relying on the underlying ledger also helps on the reputation
distribution since all the trust assignments are public. In comparison to current
and more common ranking reputation systems, our constructions is not deterred
to a particular silo as a company platform or database. It enjoys the advantages
of distributed systems as long as the consensus security assumptions are valid,
typically honest majority of the stakes in the PoS paradigm. At the same time,
by adopting specific context identifiers, groups of participants, for example, of
the same market, can compare its own reputations by issuing certificates and
publishing them in L, thus competing by the trust delegation.

Trust is Transitive. As already mentioned, our framework allows participants
to assign trust freely and publicly in multiple contexts. However, our work does
not advocate a notion of right reputation. In our setting the correct score reputa-
tion is as correct as the public perceives it. Moreover, in our setting, we consider
that trust is transitive. In other words, if a participant assigns trust to another,
it is assumed that the trustee will behave honestly. Our basic assumptions are:
– Honest participants assign trust only to honest participants;
– The majority of the combined stake of the assigners is honest.

We advocate these two basic assumptions seem reasonable because while the lat-
ter can be assumed from the basic properties of the typical PoS ledgers [3,10,20,21],

5



the former can be assumed since the trust assignments could be revoked (similar
to the regular delegation in [18]). Therefore, via information of the real world,
is expected that once, for a given context, the participants are not willing to
associate their stake to a trustee any longer, they could revoke it. Leaving only
honest trustees with assigned trust. Despite of being an optimistic view, this
puts the reputation system in a better situation of contextualizing the reputa-
tion vector, in comparison to [2,22] which do not provide extra information on
how the scores are obtained.
Concrete Benefits of Stake based Reputation. The concrete benefits of
our novel design is that we can revisit the works in [2,22] in the light of a stake
based reputation system, and derive an alternative criteria, this time based on
stake distribution, in order to obtain honest majority of players while executing
multiparty computation and fair proof-of-reputation protocol. This brings im-
mediate advantages, because the participants can verify if indeed the conditions
are satisfied via stake distribution in L. We summarize our contributions:

– extension of the framework from [18], by providing a functionality FT (ar-
guing also the existence of a protocol that realizes it under Universal Com-
posability Framework [6]) to allow assignment of trust among participants
for multiple contexts;

– introduce a concrete reputation scheme RepmS based on FT and the stake
distribution S of a set of participants T with size m, in a PoS ledger L;

– revisit the work of [2] in the light of RepmS , and show that the early men-
tioned basic assumptions yield an honest majority on the set T except with
negligible probability, and therefore allows the secure execution of protocols
[13] and [9];

– revisit the work of [22] in the light of RepmS , showing that T yields an honest
majority except with negligible probability, therefore T can be used to build
a reputation-fair lottery algorithm, and consequently a proof-of-reputation
system over L.

A drawback of our work is that, in fact, the guarantees it provides in terms of
honest majority relies heavily on the perception of the public. In other words, it
relies on how much users assign their trust and that can mislead the fact that
the trustee may not be faithfully honest. We argue that this is intrinsic to all
reputation/trust systems. Furthermore, our framework allows a dynamic setting
which once an assigned trustee is identified of being dishonest, users can revoke
their trust assignment in a publicly verifiable fashion via the PoS global ledger.

2 Basic Definitions
The trust in our model is closely tied to the stake, which will translate into honest
majority of users, therefore we need to review previous results for reputation
vectors and basic lemmas as, for example, the Hoeffding Inequality used in [2].
Due to page limitation, we leave the review of the proof of stake ledger L, as it is
given by the Kachina framework [19], and the delegation framework FCoreWallet,
as given by [18], to the Appendices B and C respectively.

Security with Reputation Vector. For completeness we briefly review the
key definitions for secure computation with reputation vector introduced in [2]

6



which suits better our purposes. These definitions rely heavily on the standard
definition available on the literature [6]. Let us start by reviewing the running
time of family of functionality and protocol. For a complete description we refer
the reader to [2]. Moreover, in the next definitions, let PPT mean probabilistic
polynomial-time with respect to the security parameter λ ∈ N.

Definition 1. Let F = {fm}m∈N be an infinite family of functionalities, where
fm is an m-ary functionality. We say that F is a PPT family of functionalities
if there exists a polynomial p(·) and a Turing machine M that on input λ and
m outputs a circuit Cλ,m in time at most p(λ + m) such that for every input
x1, . . . , xm it holds that Cλ,m(x1, . . . , xm) = f (m)(1λ, x1, . . . , xm).

Let the family of protocol π be defined analogously. That is, it is said to be
polynomial time if the running of time of all parties are upper bounded by a
polynomial on λ+m.

The next definition introduces the extra vector parameter x ∈ ({0, 1}∗)m(λ)

corresponding to the information regarding the reputation of the m participants
defined as the function m : N→ N, for a varying number of participants.

Definition 2. Let m : N → N be a function. We say that protocol π t(·)-
securely computes the functionality F = {fm(λ)}λ∈N with respect to m(·), if
for every PPT adversary A, there exists a PPT simulator S, such that for ev-
ery PPT distinguisher D, there exist a negligible function µ(·) such that for
every λ ∈ N, every I ⊆ [m(λ)] with |I| ≤ t(m(λ)), every reputation vector x ∈
({0, 1}∗)m(λ) and z ∈ {0, 1}∗, it holds that

∣∣Pr
[
D(IDEALF,S(z),I(λ,m, x)) = 1

]
−

Pr
[
D(REALπ,A(z),I(λ,m, x)) = 1

] ∣∣ ≤ µ(λ).

Lastly, we review the definition with respect to a reputation system. Assume
Rep is the reputation system which provides rm = (rm1 , . . . , r

m
m). Furthermore,

we denote by I ← rm the subset I ⊆ [m] of parties chosen probabilistically where
every i ∈ I with probability 1− rmi , and the probabilistic choice of I is given to
the distinguisher.

Definition 3. Let m, Rep, F and π be as earlier mentioned. We say π securely
computes F with respect to (m(·),Rep), if for every PPT adversary A, there
exists a PPT simulator S, such that for every PPT distinguisher D, there exist
a negligible function µ(·) such that for every λ ∈ N, every reputation vector x ∈
({0, 1}∗)m(λ) and z ∈ {0, 1}∗, it holds

∣∣PrI←rm(λ)

[
D(IDEALF,S(z),I(λ,m, x)) = 1

]
− PrI←rm(λ)

[
D(REALπ,A(z),I(λ,m, x)) = 1

] ∣∣ ≤ µ(λ).

Feasibility Reputation. Similarly to [2], we focus on the relation between
honest majority of players performing a protocol, despite of stating security
assumptions in terms of stake. Namely, a major difference from our work is that
while we focus on the honest stake, whereas [2] focus on majority in terms of
number of participants running the protocol. Although it is not immediately clear
to establish the relation between stakes and number of players, for the moment
we review Hoeffding Inequality [16], rather than the Chernoff bound, in order to

7



relate to the summation on the individual reputation scores. Later, in Section 3,
we formally clarify the relation between stakes and reputation by introducing
a concrete reputation system. Concretely, given a family of reputations Rep =
{rm(λ)}λ∈N for a number of participants m = m(λ) being assigned trust from
regular stake holders, Hoeffding Inequality allows to state the average of the

reputation should be greater than 1/2 + ω

(√
logm
m

)
, or, equivalently, that the

number of honest parties is greater than m/2 + ω
(√
m · logm

)
.

Lemma 1 (The Hoeffding Inequality). Let X1, . . . , Xm be independent ran-
dom variables, each ranging over the (real) interval [0, 1], and let µ = 1

m . Then
let E[

∑m
i=1Xi] denote the expected value of the mean of these variables. Then

Pr
[∣∣∣∑m

i=1 Xi
m − µ ≥ k

∣∣∣] ≤ 2 · e−2k2·m for every k > 0.

Likewise [2] and, as already outlined earlier, the random variables we consider
only have the values 0 and 1, therefore we rely on a simpler version of the
inequality. The following claim is proven in [2].

Claim. Let m : N → N be such that O(logm(λ)) = O(log λ), let Rep =
{rm(λ)}λ∈N be a family of reputation vectors, and let m = m(λ). If it holds

that
∑m
i=1 r

m
i >

⌊
m
2

⌋
+ ω(

√
m · logm), then there exist a negligible function

µ(λ) such that for every λ PrI←rm

[
|I| ≥

⌊
m
2

⌋]
< µ(λ).

3 Trust Layer over Proof of Stake Ledger
The basic setting we consider has two sets of participants, the regular ones U
and the trustees T , with varying sizes of, respectively, n(λ) and m(λ) for the
trust assigners and the receivers of trust. Here we introduce a framework to deal
with the assignment of trust, via the delegation of stake (as briefly reviewed in
Appendix C). That is, each participant u ∈ U controls an address α, such that
it contains an amount of stake S(α) as it is registered in a decentralized ledger
L. Our proposed reputation system RepmS takes into account the stake of all
the trust assigners, say S(αu1), . . . ,S(αun), to generate the reputation vector as
they access FT , our Trust Assignment Functionality. Before we define the Stake
Reputation System RepmS , we introduce FT .
Trust Assignment Framework. From now we adapt the delegation and ad-
dressing framework of [18], and repurpose it in order to capture the “trust as-
signment” feature. In particular, we extend the functionality FCoreWallet into the
Trust Assignment Functionality FT by adding two new interfaces Assign Trust
and Verify Trust which handle “trust transactions” ttx. We remark that FT
contains the interfaces of FCoreWallet, however we left it out of the next defini-
tion for simplicity of the description. Furthermore, each regular participants u
have verification keys vksu which is used in the trust assignment.

For simplicity, let P = U ∪ T , the next functionality keeps a list P of both
regular participants and trustees. Moreover for each participant, it also keeps a
list S of tuples (ttx, σ, f), respectively, a trust transaction string, a signature and
the result of the signature verification. Lastly, for each participant P , it keeps
lists KP which contains the corresponding verification key vks.

8



Assign Trust: Upon receiving (Trust, sid, ttx) from P , such that ttx =
(vks,m) for a metadata string m, forward the message to S. Upon receiv-
ing the message (Trusted, sid, ttx, σ) from S, if ∀(ttx′, σ′, b′) ∈ S :
σ′ 6= σ, (ttx, σ, 0) 6∈ S, and vks ∈ KP , add (ttx, σ, 1) to S and return
(Trusted, sid, ttx, σ) to P .
Verify Trust: Upon receiving (VerifyTrust, sid, ttx, σ) from P ∈ P, for-
ward to S and wait for (VerifiedTrust, sid, ttx, σ, φ), with ttx = (vks,m).
Then find Ps, such that vks ∈ KPs , and:

– if (ttx, σ, 1) ∈ S, set f = 1
– else if Ps is not corrupted and (ttx, σ, 1) 6∈ S, set f = 0 and insert

(ttx, σ, 0) to S
– else if exists an entry (ttx, σ, f ′) ∈ S, set f = f ′

– else set f = φ and insert (ttx, σ, φ) to S.

Finally, return (VerifiedTrusted, sid, ttx, σ, f) to P .

Functionality FT

Fig. 1. The trust interface which extends the delegation framework of [18].
Trustee Registration Certificate. We approach it, as follows: any trustee
interested in receiving “trust” from regular participants generates a Registration
Certificate Σreg and publishes it in the ledger L in similar fashion as outlined
in Section C for stake pools. This certificate introduces the address whose keys
are controlled by the trustee, say αTi , and it contains the metadata which is
instantiated with an arbitrary string IDcontext of the choice of Ti, that is Ti sets
m ← IDcontext. This string works as a unique identifier of the context which
Ti is expected to be assigned trust. In other words, Ti publishes the transaction
tx = (αTi , Σreg), for Σreg = ((vksTi ,m), σ) where vksTi is verification key for Ti.
Other participants can issue similar certificates, and they also would be potential
receivers of “trust” of regular participants.
Publicly Assigning Trust. The assignment is done via the issuing of “trust
transactions” ttx, and then publishes a corresponding certificate in the ledger. A
trust assigning certificate, is similar to the delegation certificate from Section C,
it is a tuple d = (vksUj , 〈vksTi ,m〉) with m ← IDcontext, for a pre-existing
Trustee Registration Certificate with metadata m = IDcontext to identify in
which context Uj trusts Ti. The first element is the verification key of the re-
ceiver of the trust assignment vksUj which assigns trust, while the second is
the verification key vksTi of the receiver of the rights, i.e. the delegate, while
the third element is the certificate’s metadata which contains the identification
of the context IDcontext. In order to sign the delegation certificate, the Uj ac-
cesses FT via the Assign Trust interface and then publishes Σ = (d, σ) on the
ledger. The trust assignment is publicly verifiable via the Verify Trust interface.
Therefore we have the following definition.

Definition 4 (Trust Assignment). It is said that the participant u assigns
trust to T for a context ID when there is a Registration Certificate Σreg =

9



((vksT , ID), σT ) published in the ledger L, and u publishes the certificate Σtrust =
(du, σu) such that du = (vksu, 〈vksT , ID〉).

Protocol and Security. As early mentioned, the functionality FT is an exten-
sion of FCoreWallet from [18]. Likewise, FCoreWallet, which has a corresponding
protocol πCoreWallet, we claim, without giving a concrete construction, that there
is a corresponding protocol πT which UC realizes FT , given

– the signature scheme Σ = 〈KeyGen,Verify,Sign〉 is Existential Unforgeability
under Chosen Message Attack security (EUF-CMA);

– internal building blocks described in [18] and its security properties, i.e.
RTagGen, HKeyGen, and GenAddr functions.

Presenting πT and fully proving its security here would be tedious for the
reader since it contains the basic technique of πCoreWallet, thus we present the
following theorem (without proof), assuming our claim that there is a protocol
πT . Our next theorem states that πT realizes FT .

Theorem 1. Let the protocol πT be parameterized by a signature scheme Σ =
〈KeyGen,Verify,Sign〉 and the RTagGen, HKeyGen, and GenAddr be functions.
Then πT securely realizes the ideal functionality FT if and only if Σ is EUF-CMA,
GenAddr is collision resistant and attribute non-malleable, RTagGen is collision
resistant, and HKeyGen is hierarchical for Σ.

A proof for the earlier theorem derives very closely to the main theorem
in [18] given that our adapted FT contains only minor changes to the original
functionality definition. Therefore, as mentioned earlier, we skip a detailed proof.

Concrete Stake Based Reputation System. In order to concrete instantiate
a stake based reputation system RepmS , assume there are two sets U and T ,
respectively the sets of regular participants and trustees, then assume there
are n regular participants u1, . . . , un who have respectively the following shares
S(α1), . . . ,S(αn) with respect to the ledger L, for their respective addresses.
Moreover, we assume that for a particular context (to be formally defined later),
there are m trustees T1, . . . , Tm which are target of the trust from the regular
participants. Each single regular participant can publicly assign its own trust to
multiple trustees.

Definition 5 (Stake based Reputation System). Let S be the combination,
the sum S(u1) + · · · + S(un), of all the shares of participants. The reputation

system RepmS = (rm1 , . . . , r
m
m) such that rmi = S(Ti)

S , and S(Ti) is the combination
of the stake assigned to Ti.

Note that the earlier definition is handy because stakes are used to quantify
the amount of trust assigned. Thus RepmS provides the percentile of how much
stake a trustee receives as trust assigned with respect to all stake assigned for that
context. Thus, once a participant ui assigns trust to several trustees, its stake
is taken into account only once in the total combination s, however it is taken
multiple times on each value Ti. We stress that with access to the functionalities
L and FT , respectively to verify the stakes of each address and the validity of
the assignment of trust, any participant can compute the reputation vector, with
respect to a context identification string IDcontext.

10



Feasibility of Honest Majority with Respect to Stakes. Next, we take a
closer look on RepmS and the guarantees it offers in order to provide a honest
majority. Our approach is similar to the one in [2, Claim 3.2], which relates to
the reputation values and the number of participants. In the terminology of our
work, it is equivalent to the reputation values and the number of honest trustees.
However, given our concrete reputation system RepmS , we provide a lemma that
relates the honest stake of the regular participants and the number of honest
trustees. In the following, we slightly abuse the notation by denoting S(U) as
the combination, i.e. sum, of stakes in the set U .
Lemma 2. Let m : N → N be such that O(logm(λ)) = O(log λ), let RepmS =
{rm(λ)}λ∈N be a family of reputation vectors, m = m(λ), and m trustees T1, . . . , Tn
and n regular participants u1, . . . , um . If the two following conditions hold

– given that all honest regular participants Uh ⊆ U assign trust only to honest
trustees Ti;

– for the subset of honest regular participants Uh, it holds that

S(Uh)

S
>
⌊m

2

⌋
+ ω(

√
m · logm),

then there exist a negligible function µ(λ) such that for every λ

Pr
I←rm

[
|I| ≥

⌊m
2

⌋]
< µ(λ).

Proof. Since all honest regular participants assign trust only to honest trustees

as given by hypothesis, and the reputation system RepmS is defined as rmi = S(Ti)
S

then
m∑
i=1

rmi = |Uh| ·
S(Uh)

S
+ (m− |Uh|) ·

S− S(Uh)

S
.

Given the security assumption S(Uh)
S ≥

⌊
m
2

⌋
+ ω(

√
m · logm), we infer that

m∑
i=1

rmi ≥
⌊m

2

⌋
+ ω(

√
m · logm).

The claim stated in Section 2 gives the proof.

4 Secure MPC and Reputation-Fair Lottery

From now we argue that our Lemma 2 translates the main positive results
from [2] to the setting of PoS by considering the stakes of each participant,
i.e. secure computation and subset with honest majority. Later, we also explore
the consequences of the previous lemma with respect to [22].

4.1 Revisiting the Positive Results of [2]
Concretely, a set of parties willing to run a secure protocol that requires honest
majority, like, for example, GMW [13], would need access to a ledger L and FT ,
in order to compute the functionality F . In order to present the next general
theorem, likewise [2], we need to review a known fact.

11



Fact. [2] Let F = {fm}m∈N be a functionality and let π denote the GMW
protocol for F . Then, for every polynomial m(·) : N → N, the protocol Π(m,λ)
m(λ)

2 - securely computes F with respect to m(n).
The earlier fact is required by the following theorem.

Theorem 2. Given the two sets of regular participants U and trustees T with
access to a ledger L and a trust assignment functionality FT , and |T | = m.
Let F = {fm}m∈N be a functionality, and assume π = {π(m,λ)} be the GMW
protocol as stated in the earlier Fact. Moreover assume m(·) is a function such
that O(logm(λ)) = O(log λ), let m = m(λ) and RepmS be as given by Definition 5.
If the two following conditions hold

– given that all honest regular participants Uh ⊆ U assign trust only to honest
trustees Ti;

– for the subset of honest regular participants Uh, it holds that

S(Uh)

S
>
⌊m

2

⌋
+ ω(

√
m · logm),

then π securely computes F with respect to (m(·),RepmS ).

As expected the proof of the theorem is immediate given the similarity with
the equivalent result in [2]. The crucial observation for the proof is that our
Lemma 2 guarantees honest majority, albeit considering the assignment of stake,
with negligible probability in λ. Hence the ideal and real execution, as stated by
Definition 3, are indistinguishable.

Subset Honest Majority. For completeness, we also state the result regarding
finding a subset honest majority which is motivated by [9], which states that
in order to achieve secure computation with complete fairness, it suffices to
have a subset of participants that with negligible probability contains an honest
majority. In order to explore this subset, we slightly depart from our initial
model by assuming a subset T ⊆ U which, in the setting of [9], would perform the
computation. We emphasize that it is equivalent to say, given our framework with
L, FT and a arbitrary context given by a string IDcontext, that the subset means
basically that the regular participants U are issuing Registration Certificates and
publishing them in L in order to receive trust within members of the U .

Thus, from [9], as long as T contains an honest majority except with negligible
probability, there is a protocol for U and a family of reputation vectors. In terms
of stake, we can state

Lemma 3. Let n(·), m(·), F , U and RepnS be defined as before. If there exists a
negligible function µ(·), such that

– for every λ there exists a subset Tλ ⊂ U , with |Tλ| = m, for which

Pr
I←rn(λ)

[
|Tλ ∩ I| ≤

|Tλ|
2

]
≤ µ(λ),

12



– given that all honest regular participants Uh ⊆ U , with |U| = n, assign trust
only to honest participants within U ;

– for the subset of honest regular participants Uh, it holds that

S(Uh)

S
>
⌊m

2

⌋
+ ω(

√
m · logm);

then there exists a (non-uniform) protocol π that securely computes F with respect
to (m(·),RepnS ).

The proof for this lemma is similar to the one from Theorem 2, therefore we skip
it. Moreover, likewise [2] and as highlighted there, the subset Tλ may differ across
the values of λ, which results in the claim that the protocol π is non-uniform.

Reputation Vector Criteria for RepnS . The earlier Lemma 3 shows that
given a subset of parties T it is possible to compute a functionality F with
respect to RepnS . However it says nothing regarding when RepnS gives a subset
with honest majority except with negligible probability. Here, once again due to
the similarity of the proofs, in particular with the Lemma 2, we will skip them
for the next lemmas.
Lemma 4. Let m(·), n(·) and RepnS be defined as earlier. For every λ and subset
Tλ ⊆ U . If there is a series of subsets {Tλ}λ∈N, with |Tλ| = m, and

– all honest regular participants Uh ⊆ U , with |U| = n, assign trust only to

honest participants within U , and ∆Tλ
def
= S(Uh)

S − |Tλ|2 , such that
(∆Tλ )

2

|Tλ| =

ω(log λ);
– for the subset of honest regular participants Uh, it holds that

S(Uh)

S
>
⌊m

2

⌋
+ ω(

√
m · logm),

then there exists a negligible function µ(·) such that for every λ,

Pr
I←rn(λ)

[
|Tλ ∩ I| ≤

m

2

]
≤ µ(λ).

Given the Lemmas 3 and 4, which, respectively, give us the existence of a
suitable subset T , and a criteria for finding such subset, thus we can conclude,
analogously to Theorem 2, but now for subsets, the following
Theorem 3. Given the set of regular participants U with access to a ledger L
and a trust assignment functionality FT . Let F = {fm}m∈N be a functional-
ity, m(·), n(·) and RepnS be defined as earlier. Now assume that the following
conditions hold

– there is a series of subsets {Tλ}λ∈N, with |Tλ| = m, such that ∆Tλ
def
=

S(Uh)
S − m

2 and
(∆Tλ )

2

m = ω(log λ);
– all honest regular participants Uh ⊆ U assign trust only to honest participants

within U ;
– for the subset of honest regular participants Uh, it holds that

S(Uh)

S
>
⌊m

2

⌋
+ ω(

√
m · logm),

then there is (non-uniform) protocol π which securely computes F with respect
to (m(·),RepnS ).

13



Finding a Conservative Subset T via Stake. The generation of the subset
Tλ or an equally valid subset given the non-uniformity of the protocol, is as
straightforward as presented in [2]. The idea is to sort out the participants U in
decreasing order of reputation, and then selecting the highest reputable members
of the set. What differs from [2] is that, here, we rely primely on the stakes of
each member of the set as they are published on L. Concretely, let ui1 , . . . , uin be
the members of U sorted in decreasing order of reputation, as they were provided
by RepnS , and each respective stake S(ui1), . . . ,S(uin) in L. Then

1. for every j = 1, . . . , n, compute ∆j =
∑j
k=1

S(uik )
S − b j2c;

2. if j∗ is the index such that
(∆∗ )

2

j∗ is maximum over all indexes j, then output

the set T = {i1, . . . , ij∗}.

Roughly the above routine shows a conservative approach. That is, it selects
always the highest reputation among the reputation vector. Without a change
in the reputation vector, the output of the selected T set remains the same.

4.2 Revisiting Reputation-Fair Lottery [22]

Given the early description for finding a subset T with the guarantees it con-
tains an honest majority with high probability. However, as already mentioned,
and also pointed out in [22], the earlier method for finding T is not suitable be-
cause members with low reputation score, would not be selected. An alternative
method was introduced by [22] and it is not based on the conservative approach
from [2], but on partition of the candidate set, which in our case is U . Each
partition, or tier, Pi would aggregate users uj ∈ U with similar reputation score,
such that for a number of w tiers, U =

⋃w
i=1 Pi. The procedure associates, for

each set Pi, a fixed number `i ∈ N representing the number of participants to
be picked in a random fashion on each sampling.

Given this setting, roughly, the procedure would progress in rounds. In the

first round it randomly picks the set P̂1
$← P1 with |P̂1| = `1, in the second round

it randomly picks the set P̂2
$← P1

⋃
P2, with |P̂2| = `2, until i = n. It is not

hard to understand the difference from the previous method, since this approach
would even provide chances for participants with lower reputation score, given
that the tiers are sorted in decrease order, i.e. members of Pn have the lowest
reputation scores.

The authors in [22] formally showed that, with access to a reputation system
Rep that presents the so called feasibility property, i.e. guarantee of an honest
majority under right conditions, their introduced algorithm for lottery, say LRep,
which is based on partitioning the set U is fair for suitable definition of reputation
fairness they provide. Given that the analogous feasibility property in our work
is the Lemma 4, we have the following corollary.

Corollary 1. Let n(·), U and RepnS , with |U| = n, be defined as before. For
every λ, there is a series of subsets {Tλ}λ∈N with |Tλ| = m. If the following hold

– all honest regular participants Uh ⊆ U , assign trust only to honest partici-

pants within U , and ∆Tλ
def
= S(Uh)

S − m
2 , such that

(∆Tλ )
2

m = ω(log λ);

14



– for the subset of honest regular participants Uh, it holds that

S(Uh)

S
>
⌊m

2

⌋
+ ω(

√
m · logm),

then there is a lottery algorithm L(·), such that LRep
n
S is reputation-fair.

The proof of the corollary is immediate as one should notice that given the
initial conditions, which are the same of Lemma 4, the set U yields a subset
with honest majority which is the only requirement for the reputation system
from the Theorem 1 in [22]. Thus, LRep

n
S is reputation-fair as L(·) is the lottery

algorithm given in [22].

5 Final Remarks

We have extended the Core Wallet Functionality from [18]. In addition to its
regular stake delegation use, our proposed FT allows a participant of the PoS
consensus protocol to “assign trust”, without harming the ledger consensus pro-
tocol. The immediate consequence is that we could proposed in this work the
creation of a reputation system based on stake of the “trust assigners”. This
concrete design of a reputation system allowed us to revisit the works of [2]
and [22] which deals with the performing of relevant MPC protocols and the
construction of proof of reputation protocol resistant to sybil attacks given the
stake distribution underpinning the system, i.e. the PoS consensus protocol.

Our work is relevant because given existing global PoS ledger in place, groups
of users can gather and build reputation around a context of their choice. Fur-
thermore, each honest participant, based on which of the other participants it
trusts, can individually verify whether a certain group of players, say T , who
jointly received the trust assignments from a community of other players, yields
an honest majority. This verification can be done just by simple checking of the
ledger and verifying the stake distribution with respect to the trust assignments.
This is an enhancement in comparison to [2,22]. Although these works do deal
with reputation, they do not provide insights on how the reputation score is
computed nor how it can be verified. Let alone to integrate them in concrete,
and deployed, PoS ledgers.

A drawback of the work is that the guarantees of honest majority are based
on the public perception of honesty of the trustees, which can be misleading.
However, given that the trust assignment of our construction is very dynamic and
publicly verifiable, once a misbehavior trustee is identified, the trust assignment
can be easily revoked by the users, which promotes accountability of actions by
the trustees.

The introduction of the stake, from a PoS system, into the area of reputation
systems may suggest analysis based on rational adversaries or game theory. Such
approach was also suggested in [2]. We leave this next step for future work.

15



References

1. G. Akerlof. The Market for “Lemons”: Quality Uncertainty and the Market Mech-
anism, pages 175–188. Macmillan Education UK, London, 1995.

2. Gilad Asharov, Yehuda Lindell, and Hila Zarosim. Fair and efficient secure multi-
party computation with reputation systems. In Kazue Sako and Palash Sarkar, ed-
itors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 201–220. Springer,
Heidelberg, December 2013.

3. Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 913–930, New York, NY, USA, 2018.
ACM.

4. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356.
Springer, Heidelberg, August 2017.

5. Alex Biryukov, Daniel Feher, and Dmitry Khovratovich. Guru: Universal rep-
utation module for distributed consensus protocols. Cryptology ePrint Archive,
Report 2017/671, 2017. http://eprint.iacr.org/2017/671.

6. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, January 2000.

7. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

8. EOS Community. Eos.io technical white paper v2, 2018. https://github.com/

EOSIO/Documentation/blob/master/TechnicalWhitePaper.md.
9. Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using

a black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

10. Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology
ePrint Archive, Report 2017/573, 2017. http://eprint.iacr.org/2017/573.

11. Tassos Dimitriou. Decentralized reputation. Cryptology ePrint Archive, Report
2020/761, 2020. https://eprint.iacr.org/2020/761.

12. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. Cryptology ePrint Archive, Report 2014/765, 2014.
http://eprint.iacr.org/2014/765.

13. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

14. LM Goodman. Tezos—a self-amending crypto-ledger white paper, 2014.
15. Andreas Gutscher. A trust model for an open, decentralized reputation system.

In IFIP International Conference on Trust Management, pages 285–300. Springer,
2007.

16. Wassily Hoeffding. Probability Inequalities for sums of Bounded Random Variables,
pages 409–426. Springer New York, New York, NY, 1994.

17. Audun Josang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618–644,
2007.

16

http://eprint.iacr.org/2017/671
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://eprint.iacr.org/2017/573
https://eprint.iacr.org/2020/761
http://eprint.iacr.org/2014/765


18. Dimitris Karakostas, Aggelos Kiayias, and Mario Larangeira. Account manage-
ment in proof of stake ledgers. In Clemente Galdi and Vladimir Kolesnikov, edi-
tors, SCN 20, volume 12238 of LNCS, pages 3–23. Springer, Heidelberg, September
2020.

19. T. Kerber, A. Kiayias, and M. Kohlweiss. Kachina - foundations of private smart
contracts. In 2021 2021 IEEE 34th Computer Security Foundations Symposium
(CSF), pages 47–62, Los Alamitos, CA, USA, jun 2021. IEEE Computer Society.

20. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE Sympo-
sium on Security and Privacy, pages 157–174. IEEE Computer Society Press, May
2019.

21. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

22. Leonard Kleinrock, Rafail Ostrovsky, and Vassilis Zikas. Proof-of-reputation
blockchain with nakamoto fallback. In Karthikeyan Bhargavan, Elisabeth Oswald,
and Manoj Prabhakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS,
pages 16–38. Springer, Heidelberg, December 2020.

23. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

24. Lakshmi Ramachandran. Behavior-based popularity ranking on amazon video. In
Fourteenth ACM Conference on Recommender Systems, RecSys ’20, page 564–565,
New York, NY, USA, 2020. Association for Computing Machinery.

25. Steem. Steem whitepaper, 2018. https://steem.com/steem-whitepaper.pdf.

26. Peter Wuille. Decentralized identifiers (dids) v1.0. https://en.bitcoin.it/wiki/
BIP_0032, 2021. [Online; accessed 23-February-2021].

A Technical Challenges for Reputation Systems

The major technical challenges for reputation systems can be divided in three
major areas.

– eliciting feedback: Systems based on ranking crucially depend on the feed-
back of the system users. Briefly, a reputation framework needs to continu-
ously gather and process the “opinion” from the parties;

– aggregating/displaying: The feedback from the user has to be aggregated in
order to establish a comprehensible and meaningful value;

– distribution: Each player of such system is subject to receive a “reputation”
value, which others can consult or be used in decision making, in particular,
it can be used in outlining general strategies.

Eliciting Feedback. In general, participants are entitled to decide in providing
feedback or not. Therefore without proper incentive we may be led to the situ-
ation that we would have a highly biased view of the reputation of a particular
target, since only parties willing to spread bad reputation, for some particular

17

https://steem.com/steem-whitepaper.pdf
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/BIP_0032


reason, would bother to interact with the system in order to feed with its opin-
ion. The quality of the feedback is also subject to problems. Ideally, the desirable
feedback are the honest ones, reporting bad or good behavior alike, however it is
notoriously hard to obtain or verify. Furthermore, bad report, if public, can even
cause retaliation from the feedback target in future interactions. One approach
to incentivize “good feedback”, or at least “valid feedback”, may be to somehow
tie together some sort of stake to the participant providing such feedback.

Aggregating and Displaying. A highly popular technique to process feedback is
simply associate a score with the target node, with respect to some service/inter-
action. In extreme cases, the nodes have only two options “good” or “bad”, i.e.
1 or −1. In this binary feedback scenario, reputation aggregators would apply a
simple technique named netfeedback. Basically it is the simple sum of the feed-
backs in order to provide a straightforward “good” or “bad” status , which, later,
can be used to assemble a ranking, for the target nodes. This approach is widely
deployed in major Internet websites, however it has clear setbacks, since it does
not take into account the type of interaction which led to the reported score.
More concretely, the target node which interacted with several other feedback
providers but with respect with difference services/products,

Reputation Distribution. Once a reputation is established, as, for example, a
simple score, a major challenge is to bind it with the parties and allow pub-
lic availability, including compatibility with other systems. In an environment
where users/identities can easily be created, participants with bad reputation
can create new identities effectively erasing past history, and bad reputation,
i.e. whitewashing. The newly created node would be free of the bad effects of
its past actions. Here, once again some sort of relation with a stake, have the
potential to minimize such erasure. A large amount of work was dedicated to
minimizing such effects in game theory. A common strategy is to penalize the
newcomer until it has enough history within the system. Previous work had
shown that given the risk of whitewashing, the system as whole has to carry the
burden in the form of penalties for every newcomer.

B The Proof of Stake Ledger

The main novelty of our work is that we base our reputation system on the use of
stake of each participants have in a proof of stake L. For our purposes, it suffices
that we assume that the consensus protocol performs in a predefined number of
rounds which compose a slot, besides each block is associated with a single slot.
In our reputation system, stakeholders, i.e. participants of the PoS system who
have stake in it, can publicly assign trust to other participants via a mechanism
similar to the delegation mechanism of [18], which will be clarified in Section 3.
In a nutshell, each participant, as a regular user of the PoS system, have access
to a wallet functionality, which in our case, is an extension of the one in [18],
i.e. it has extra features to assign trust.

18



For completeness, we now describe the model for our protocol. As a regu-
lar participant of a PoS system, the parties are assumed to have synchronous
communication where messages sent by honest players are delivered by the be-
ginning of the following round. Besides we also assume the presence of a rushing
adversary [6], which can actively corrupt parties. Regarding communication ca-
pabilities, we assume all the players have access to a diffusion (multicast) channel
which can be built by standard flooding/gossip protocols.

B.1 Transactions, Blocks, and the Global Ledger

Our protocol relies on the Kachina framework [19]. In particular we rely on its
formulation of ledger due to its simplicity.

The Simple Ledger Functionality. Our trust model assumes each user in-
teracts with a ledger functionality in a hybrid execution, and a secure ledger is
described as follows.

Definition 6. A secure distributed ledger [12] satisfies the following properties:

– Persistence: A transaction which is part of a block at least k blocks away
from the ledger’s head, i.e. a block which is part of the chain which results
from removing the last k blocks of the current chain, is stable, i.e. every
honest party reports it in the same position in the ledger.

– Liveness: A transaction which is provided continuously as input to the par-
ties is stable after u rounds.

One option is Bitcoin’s formalization from [4]. However, this functionality
is local, while we would prefer a global functionality, following the Global UC
Framework [7], hence we will use the GsimpleLedger functionality from Kachina [19],
which we denote in this work by L. The functionality is available in Figure 2,
where ≺ defines the prefix operation, i.e. Ω ≺ Ω′ means the state Ω is included
in Ω′, and, for readability and consistency purposes, we rename transaction (τ)
to block (b).

The functionality L is generic enough to abstract transactions and blocks,
focusing on the ledger’s properties. In general, that is enough for our purposes,
however, for the sake of completeness and formality, we need to define, more
concretely, the entries in the ledger in order to better formulate a real-world
blockchain.

Typically a transaction is the tuple tx = (Θ,αs, αr, v, f), where

1. αs, αr ∈ {0, 1}∗ are the sender’s and receiver’s addresses respectively, for the
tradable asset set Θ,

2. v ∈ R is the value transferred from αs to αr, and
3. f ∈ R is the fees of the transaction.

A block consists of an ordered list of transactions. In order to organize transac-
tion in blocks, we assume a function blockify which, given a set of transactions
and a chain, returns a block which can extend the chain.

19



The functionality keeps a state Ω and a mapping M of parties to states,
both initially empty.

– When receiving a message (SUBMIT, b) from a party P , query A with
(BLOCK, b).

– When receiving a message READ from a party P , return M(P ); if P is
A, it returns Ω.

– When receiving a message (EXTEND, Ω′) from A, set Ω ← Ω||Ω′.
– When receiving a message (ADVANCE, P,Ω′) from A, if
M(P ) ≺ Ω′ ≺ Ω then set M(P )← Ω′.

Global Ledger Functionality L

Fig. 2. The Simple Global Ledger Ideal Functionality.

C The Stake Delegation Framework

In a nutshell [18] introduces a mechanism for issuing address strings which con-
tain attributes. The immediate purpose of the framework is to capture the prop-
erty of delegated PoS system, where users can delegate the right of its own
stakes to special consensus protocol participants named stake pools. The pro-
posed framework was presented as a universally composable functionality capa-
ble of generating addresses.

More concretely, their framework defines a core-wallet functionality FCoreWallet,
representing the key management capabilities of a concrete wallet. That is, every
PoS has an internal core which manages the private information with respect to
that wallet, and therefore all its addresses, forming a account. Intuitively, the
functionality FCoreWallet offers all the actions that a PoS wallet needs to perform
the basic actions such as staking, recover, initialization and etc, including the
creation of addresses α, while keeping an internal central registry of transactions,
i.e. T . For completeness the full description of FCoreWallet is given by Figures 3
and 4.

Their framework introduces a predicative M for malleability of addresses
and describes three types of addresses, i.e. base, pointer and exile, according to
a list of attributes δ (which can contain cryptographic keys). The intuition of the
predicative M is that it outputs correctly if the address is rightfully generated,
i.e., it is not a result of malicious change in a previously generated address
string. Briefly, it can be set to output 1 for correctly generated addresses or
0 otherwise, casting FCoreWallet a functionality that does not accept malleable
addresses. Other definitions for M are possible which sets FCoreWallet to operate
with different malleability tolerant modes. We refer the reader to [18] for a
complete discussion on the topic.

20



Initialization: Upon receiving (Init, sid) from P ∈ P, forward it to S and
wait for (InitOk, sid). Then initialize the empty lists LP of addresses and
attribute lists and KP of staking keys, and send (InitOk, sid) to P .
Wallet Recovery: Upon receiving (RecoverWallet, sid, i) from P ∈ P,
for the first i elements in LP return (Tag, sid, δ2).
Address Recovery: Upon receiving (RecoverAddr, sid, α, i) from P , if
(α, l) is one of the first i elements of LP or M(LP , “recover”, α) = 1, return
(RecoveredAddr, sid, α).
Address Generation: Upon receiving (GenerateAddress, sid, aux) from
P ∈ P, forward it to S. Upon receiving (Address, sid, α, lα) from S, parse
lα as (δ1, . . . , δg) and ∀P ′ ∈ P check if ∀(α′, (δ′1, . . . , δ

′
g)) ∈ LP ′ it holds that

α 6= α′, δ′2 6= δ2, and ∀j ∈ [i, . . . , g] : δ′j 6= δj , i.e. the address, recovery tag,
and private attributes are unique. If so, then:

– if aux = (“base”), check that ∀(α′, (δ′1, . . . , δ
′
g)) ∈ LP : δ′1 6= δ1,

– else if aux = (“pointer”, vks), check that δ1 = vks,
– else if aux = (“exile”), check that δ1 = ⊥.

If the checks hold or P is corrupted, then insert (α, lα) to LP and return
(Address, sid, α) to P . If aux = (“base”) also insert δ1 to KP and return
(StakingKey, sid, δ1) to P .
Issue Transaction: Upon receiving (Pay, sid,Θ, αs, αr,m) from P ∈ P, if
∃lα : (αs, lα) ∈ LP forward it to S. Upon receiving (Transaction, sid, tx, σ)
from S, such that tx = (Θ,αs, αr,m), check if ∀(tx′, σ′, b′) ∈ T : σ′ 6= σ,
(tx, σ, 0) 6∈ T , and M(LP , “issue”, αr) = 1. If all checks hold, then insert
(tx, σ, 1) to T and return (Transaction, sid, tx, σ).
Verify Transaction: Upon receiving (VerifyPay, sid, tx, σ) from P ∈ P,
with tx = (Θ,αs, αr,m) for a metadata string m, forward it to S and wait
for a reply message (VerifiedPay, sid, tx, σ, φ). Then:

– if M(LP , “verify”, αs) = 0, set f = 0
– else if (tx, σ, 1) ∈ T , set f = 1
– else, if P is not corrupted and (tx, σ, 1) 6∈ T , set f = 0 and insert

(tx, σ, 0) to T
– else, if (Θ,αs, αr,m, σ, b) ∈ T , set f = b
– else, set f = φ.

Finally, send (VerifiedPay, sid, tx, σ, f) to P .

Functionality FMCoreWallet (First Part)

Fig. 3. The first part of the full Core Wallet Functionality from [18].

21



Issue Staking: Upon receiving (Stake, sid, stx) from P , such that stx =
(vks,m) for a metadata string m, forward the message to S. Upon receiving
(Staked, sid, stx, σ) from S, if ∀(stx′, σ′, b′) ∈ S : σ′ 6= σ, (stx, σ, 0) 6∈ S, and
vks ∈ KP , add (stx, σ, 1) to S and return (Staked, sid, stx, σ) to P .
Verify Staking: Upon receiving (VerifyStake, sid, stx, σ) from P ∈ P,
forward it to S and wait for (VerifiedStake, sid, stx, σ, φ), with stx =
(vks,m). Then find Ps, such that vks ∈ KPs , and:

– if (stx, σ, 1) ∈ S, set f = 1
– else if Ps is not corrupted and (stx, σ, 1) 6∈ S, set f = 0 and insert

(stx, σ, 0) to S
– else if exists an entry (stx, σ, f ′) ∈ S, set f = f ′

– else set f = φ and insert (stx, σ, φ) to S.

Finally, return (VerifiedStake, sid, stx, σ, f) to P .

Functionality FMCoreWallet (Second Part)

Fig. 4. The second part of the full Core Wallet Functionality from [18].

Stake Pool Registration and Delegation. The stake pools are identified
by a registered staking key generated by accessing its internal FCoreWallet, to
compute a new staking key (vks, sks) pair, respectively verification and secret
keys, in order to issue a registration certificate (vks,m), where m is the pool’s
metadata. By accessing its internal functionality FCoreWallet, it receives back
((vks,m), σ), where σ is the signature corresponding to sks of the tuple (vks,m).
Next, it publishes in the ledger the registration certificate Σreg = ((vks,m), σ)
via a regular transaction tx = (αreg, Σreg), where αreg is the special address of
the pool. The stake delegation is also achieved with certificates via a process
similar to the staking pool registration described. A delegation certificate is a
tuple d = (vkss, 〈vksd,m〉). The first element is the staking key vkss which assigns
of the rights of the stake to someone else, i.e. the owner, while the second is the
staking key vksd of the receiver of the rights, i.e. the delegate, while the third
element is the certificate’s metadata. In order to sign the delegation certificate,
the participant accesses its internal FCoreWallet and then publishes Σ = (d, σ)
on the ledger.

For our purposes, this is a fair description of the delegation methods. However
the framework proposes different types of procedure, for a complete description,
we refer the reader to the work on [18].

Our trust platform, described in the body of the work, is based on similar
ideas for delegation. In particular, we adapt the early mentioned FCoreWallet,
by adding interfaces for special sort of delegation, i.e. the “trust assignment”
(details on Section 3).

22


	Reputation at Stake!  A Trust Layer over Decentralized Ledger for Multiparty Computation and Reputation-Fair Lottery

