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Abstract. In this paper, we introduce Bandersnatch, a new elliptic curve built over
the BLS12-381 scalar field. The curve is equipped with an efficient endomorphism,
allowing a fast scalar multiplication algorithm. Our benchmark shows that the
multiplication is 42% faster, 21% reduction in terms of circuit size in the form of rank
1 constraint systems (R1CS), and 10% reduction in terms of Plonk circuit, compared
to another curve, called Jubjub, having similar properties. Many zero-knowledge
proof systems that rely on the Jubjub curve can benefit from our result.
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1 Introduction
BLS12-381 is a pairing-friendly curve discovered by Sean Bowe [Bow17] in 2017. Currently,
BLS12-381 is undergoing a standardization process from the IRTF Crypto Forum Research
Group, and is universally used for digital signatures and zero-knowledge proofs by many
projects orbiting in the blockchain universe: Zcash, Ethereum, Filecoin, Anoma, Skale,
Algorand, Dfinity, Chia, and more. The ZCash team introduced Jubjub [Zt18], an elliptic
curve built over the BLS12-381 scalar field FrBLS . This curve is not pairing-friendly,
but leads to constructions where FrBLS arithmetic circuits can be manipulated using the
BLS12-381 curve. The Jubjub curve can be represented in the twisted Edwards coordinates,
allowing efficiency inside zk-SNARK circuits. In order for some cryptographic applications
to scale, it is necessary to have efficient scalar multiplication on the non-pairing-friendly
curve. The main drawback of Jubjub is the slow scalar multiplication algorithm compared,
for example, with the “Bitcoin curve” (SECP256k1). It comes from the fact that the curve
does not have an efficiently computable endomorphism, necessary for computing scalar
multiplications using the GLV method [GLV01] (a technique protected by a US patent
until Sep 2020 [Rob20], but that expired and is freely usable now).

Our contribution. The Jubjub curve is a curve with a large discriminant, meaning
that the GLV method is not possible on this curve. We performed an exhaustive search
of curves of small discriminant, defined over the BLS12-381 scalar field. This way, we
obtain an elliptic curve using the Complex Multiplication method [AM93], where the scalar
multiplication algorithm is efficient thanks to the GLV method [GLV01].

We implement this curve in Rust, using the Arkworks framework [Ark], and release
our code to the open domain [Ban]. Table 1 shows a comparison of the Bandersnatch and
Jubjub curves. Details deferred to Section 4.
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Table 1: Bandersnatch vs Jubjub
multiplication cost R1CS constraints TurboPlonk constraints

Jubjub 75 µs 3177 1865
Bandersnatch 44 µs 2621 1669
Improvement 42% 21% 10%

To demonstrate how a zero-knowledge proof system can benefit form our curve, we
also report the number of constraints one needs to express a group multiplication in the
forms of two commonly used circuit descriptions for zero-knowledge proof systems, namely,
rank one constraint system (R1CS), and the Plonk circuit. A group multiplication takes
2621 and 1669 constraints, respectively, when the point is in affine form over the twisted
Edwards curve, yielding a 21% and 10% improvement over the Jubjub curve.

Organization of the paper. In Section 2, we describe how we obtained several curves
allowing the GLV method together with cryptographic security. Then, we introduce in
Section 3 the Bandersnatch curve in different models (in Weierstrass, Montgomery and
twisted Edwards coordinates). Finally, we compare the scalar multiplication algorithm
over the Bandersnatch and the Jubjub curves in Section 4 from a practical point of view.

2 Small discriminant curves
The GLV method [GLV01] is a well known trick for accelerating scalar multiplication over
particular curve. In a nutshell, it applies to elliptic curves where an endomorphism ψ can
be efficiently computed. The GLV method applies in particular for j-invariant j = 0 (resp.
j = 1728) curves because a non-trivial automorphism can be computed using only one
modular multiplication. The method also applies for other curves where the endomorphism
is slightly more expensive, called small discriminant curves.

Let E be an elliptic curve defined over Fp of trace t. E and its quadratic twist Et are
Fp2 -isomorphic curves and their orders over Fp are closely related with the trace t:

#E(Fp) = p+ 1− t #Et(Fp) = p+ 1 + t.

See [Sil86] for a complete introduction to elliptic curves. In this work, we are looking
for cryptographic applications based on ordinary elliptic curves, meaning that we look
for t ̸≡ 0 mod p. The endomorphism ring of these curves have a particular structure:
End(E) is an order of the imaginary quadratic field Q(

√
t2 − 4p). From now, we denote

−D to be the discriminant of End(E), and {Id, ψ} a basis of the endomorphism ring. The
fundamental discriminant corresponds to the discriminant of the maximal order containing
End(E). This way, ψ is of degree D+1

4 or D/4 depending on the value of D modulo 4, and
ψ can be defined using polynomials of degree O(D) thanks to the Vélu’s formulas [Vél71].
Thus, the evaluation of ψ is efficient only for curves of small discriminant.

In this work, we restrict to curves defined over the BLS12-381 scalar field FrBLS . From
now, we denote p = rBLS and we look for curves with a 128-bit cryptographic security.
Curves with −D = −3 and −4 do not have a large prime subgroup defined over Fp. Hence,
we look for small discriminant −D < −4 curves with subgroup and twist-subgroup security.
It means that #E(Fp) has a roughly 256-bit prime factor, as well as #Et(Fp).

As the endomorphism cost is closely related to the discriminant, we restrict to −D ≥
−388 so that ψ can be efficiently computed. Moreover, we restrict on fundamental
discriminants (discriminants of the maximal orders of imaginary quadratic fields). We
denote O−D the maximal order of discriminant −D. Elliptic curves with End(E) ⊂ O−D

are isogenous curves, meaning that there is a rational map between them. Isogenous curves
have the same order so that we can restrict on fundamental discriminants for our search.
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We compute an exhaustive search following the CM method [LZ94, Mor91]. Given
a discriminant −D, we deterministically obtain the corresponding curves using number
theory tools. More precisely, we consider the Hilbert class polynomial H−D(X). The roots
of H−D are the j-invariants of curves defined over a number field whose endomorphism
ring is an order of discriminant D. In practice, for a given discriminant D, roughly half of
the curves are supersingular and hence not relevant to our cryptographic applications. As
we look for an efficient endomorphism, we consider small discriminant curves. We provide
in Algorithm 1 the algorithm we used in order to obtain curves for our interest.

Algorithm 1 Search of curves
1: for each D ∈ {Dmin, . . . , Dmax} do
2: D0 ← fundamental discriminant of −D
3: H−D0(X)← Hilbert class polynomial of degree D0
4: Factor H−D0 and compute the roots R
5: for each j0 ∈ R do
6: for each E elliptic curve of j-invariant j0 (up to isomorphism) do
7: if E is not supersingular then
8: N ← Order(E)
9: Store the factorization of N

10: end if
11: end for
12: end for
13: end for

Starting with −D = −3, we consider elliptic H−D and factor it in order to get the
curves of discriminant −D (up to isomorphism). From the elliptic curve, we obtain the
trace and then the order of the curve defined over Fp, and finally factor it in order to
obtain a cryptographically interesting curve. We considered curves up to Dmax = 388,
corresponding to a fundamental discriminant of −292. We list in Table 2 the ordinary
curves we obtained. In this table, pn denotes a prime of n bits. The generation of these
curves is reproducible using the file at https://github.com/asanso/Bandersnatch/b
lob/main/python-ref-impl/small-disc-curves.py. We finally obtain an interesting
curve for −D = −8 with large prime order subgroups on both the curve and its twist. We
present in Section 3 the curve in several models, together with the endomorphism in order
to apply the GLV scalar multiplication algorithm.

3 Bandersnatch
The Bandersnatch is obtained from a discriminant −D = −8, meaning that the endomor-
phism ring is Z[

√
−2]. We obtain the curve j-invariant using the Complex Multiplication

method, based on the Hilbert class polynomial H−D(X). The roots of H−D are j-invariants
of elliptic curves whose endomorphism ring is of discriminant −D. From a j-invariant,
we obtain the curve equation in different models. Before looking into the details of three
different representations, we briefly recall how to exhibit the degree 2 endomorphism ψ.

Degree 2 endomorphism. The endomorphism ψ has a kernel generated by a 2-torsion
point. Hence, we can obtain the rational maps defining ψ by looking at the curves 2-
isogenous to Bandersnatch. Only one has the same j-invariant, meaning that up to an
isomorphism, Vélu’s formulas [Vél71] let us compute ψ. For cryptographic use-cases, we
are interested in computing ψ on the p253-order subgroup of the curve. On these points, ψ

https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/small-disc-curves.py
https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/small-disc-curves.py


4 Bandersnatch

Table 2: Curves for discriminants −3 ≥ −D ≥ −292.
−D Curve sec. Curve order
−3 65-bit 22 · 3 · 97 · 19829809 · 2514214987 · 423384683867248993 · p131

14-bit 264 · 9063494 · p4
28

77-bit 7 · 43 · 1993 · 2137 · 43558993 · 69032539613749 · p154
41-bit 3 · 7 · 13 · 79 · 2557 · 33811 · 1645861201 · 75881076241177·

86906511869757553 · p82
13-bit 32 · 112 · 192 · 101772 · 1255272 · 8592672·

25084092 · 25294032 · p2
26

118-bit 836509 · p236
−4 59-bit 232 · 5 · 73 · 9063492 · 2547602932 · p119

37-bit 22 · 29 · 233 · 34469 · 1327789373 · 19609848837063073·
159032890827948314857 · p74

37-bit 2 · 32 · 112 · 13 · 1481 · 101772 · 8592672·
524378992 · 346160718017 · p74

57-bit 2 · 5 · 192 · 1709 · 1255272 · 25084092 · 25294032 · p114
−8 122-bit 27 · 33 · p244

126-bit 22 · p253
−11 69-bit 5 · 191 · 5581 · 18793 · 48163 · 46253594704380463613 · p138

73-bit 33 · 112 · 9269797 · 17580060420191283788101 · p147
−19 110-bit 7 · 112 · 19 · 23 · 397 · 419 · p220

74-bit 32 · 5 · 503 · 10779490483 · 433275286013779991 · p149
−24 53-bit 22 · 32 · 7 · 192 · 127 · 29402034080953·

2970884754778276642175743 · p106
86-bit 25 · 5 · 39628279 · 1626653036429383 · p172

−51 112-bit 32 · 5 · 61223923 · p224
120-bit 232 · 41 · p241

−67 67-bit 3479887483 · 56938338857 · 8474085246072233 · p135
79-bit 32 · 8478452882270519617659314063 · p159

−88 61-bit 22 · 11 · 16984307 · 24567897636186592260640293583411 · p122
66-bit 29 · 32 · 31 · 6133 · 116471 · 69487476515565975361139 · p133

−132 73-bit 2 · 1753 · 101235113104036296384208928969 · p147
92-bit 2 · 32 · 72 · 11 · 23 · 587 · 701 · 32299799971 · p184

−136 62-bit 23 · 73 · 193 · 10939 · 11131315086725327441688173207 · p125
87-bit 22 · 5 · 5741 · 30851 · 533874022134253 · p175

−228 114-bit 2 · 32 · 19 · 89 · 5189 · p228
81-bit 2 · 947 · 277603 · 28469787063396608749 · p162

−244 89-bit 22 · 13 · 523 · 1702319 · 2827715661581 · p179
88-bit 28 · 32 · 5 · 71 · 907 · 2749 · 146221 · 2246269 · p176

−264 83-bit 23 · 11 · 131 · 12543757399 · 2818746796297 · p167
82-bit 22 · 3 · 52 · 2287 · 2134790941497418864559 · p165

−276 70-bit 2 · 112 · 8839 · 78797899 · 323360863688748558301 · p140
88-bit 2 · 3 · 5 · 6197 · 138617 · 16664750312513 · p177

−292 92-bit 2 · 54983 · 5220799 · 2671917733 · p185
86-bit 2 · 112 · 149 · 354689 · 24012883 · 32483123 · p172

acts as a scalar multiplication by the eigenvalue

λ = 0x13b4f3dc4a39a493edf849562b38c72bcfc49db970a5056ed13d21408783df05

By construction, ψ is the endomorphism
√
−2 ∈ O−8. Thus, λ satisfies λ2 + 2 = 0 mod

p253. In the following sections, we provide details on the curve equation, the ψ rational
maps, and a generator of the p253-order subgroup in the case of the affine Weierstrass,
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projective Montgomery and projective twisted Edwards representations. The parameters
are reproducible using the script available at https://github.com/asanso/Bandersnat
ch/blob/main/python-ref-impl/get_params.py.

3.1 Weierstrass curve
Curve equation. The Bandersnatch curve can be represented in the Weierstrass model
using the equation

EW : y2 = x3 − 3763200000x− 78675968000000.

Elliptic curves, such as Jubjub and Bandersnatch, have traditionally been represented
in the Montgomery or Edwards form. However, recent advancements in research, notably
the closed-form formulas presented in [RCB16], have enabled the efficient and secure
utilization of prime order curves.

Endomorphism. The endomorphism ψ can obtained using the method detailed above.
We obtain the following expression:

ψW(x, y) =(
u2 · x

2 + 44800x+ 2257920000
x+ 44800 , u3 · y · x

2 + 2 · 44800x+ t0
(x+ 44800)2

)
,

where

u = 0x50281ac0f92fc1b20fd897a16bf2b9e132bdcb06721c589296cf82245cf9382d

t0 = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffffef10be001

Subgroup generator. The generator of the p253-order subgroup is computed by finding
the lexicographically smallest valid x-coordinate of a point of the curve, and scaling it by
the cofactor 4 such that the result is not the point at infinity. From a point with x = 2,
we obtain a generator EW (xW , yW ) where:

xW = 0xa76451786f95a802c0982bbd0abd68e41b92adc86c8859b4f44679b21658710,

yW = 0x44d150c8b4bd14f79720d021a839e7b7eb4ee43844b30243126a72ac2375490a.

3.2 Twisted Edwards curve
Curve equation. Bandersnatch can also be represented in twisted Edwards coordinates,
where the group law is complete. In this model, the Bandersnatch curve can be defined by
the equation

ETE : −5x2 + y2 = 1 + dx2y2,

d = 138827208126141220649022263972958607803
171449701953573178309673572579671231137 .

Twisted Edwards group law is more efficient with a coefficient a = −1 (see [HWCD08]
for details). In our case, −5 is not a square in Fp. Thus, the curve with equation
−x2 +y2 = 1−dx2y2/5 is the quadratic twist of Bandersnatch. We provide a representation
with a = −5, leading to a slightly more expensive group law because multiplying by −5 is
more expensive than a multiplication by −1, but this cost will be neglected compared to
the improvement of the GLV method. See Section 4 for details.

https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/get_params.py
https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/get_params.py
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Endomorphism. From this representation, we exhibit the degree 2 endomorphism in
twisted Edwards coordinates:

ψTE(x, y, z) = (f(y)h(y), g(y)xy, h(y)xy)

with

f(y) = c(z2 − y2),
g(y) = b(y2 + bz2),
h(y) = y2 − bz2,

and

b = 0x52c9f28b828426a561f00d3a63511a882ea712770d9af4d6ee0f014d172510b4,

c = 0x6cc624cf865457c3a97c6efd6c17d1078456abcfff36f4e9515c806cdf650b3d.

This map can be computed in 3 additions and 9 multiplications by first computing xy,
y2, z2 and bz2.

Subgroup generator. The generator of the p253-order subgroup obtained in Section 3.1
has twisted coordinates of the form ETE(xTE, yTE, 1) with

xT E = 0x29c132cc2c0b34c5743711777bbe42f32b79c022ad998465e1e71866a252ae18,

yT E = 0x2a6c669eda123e0f157d8b50badcd586358cad81eee464605e3167b6cc974166.

3.3 Montgomery curve
Curve equation. A twisted Edwards curve is always birationally equivalent to a Mont-
gomery curve. We obtain the mapping between these two representations following [CS18].
While the twisted Edwards model fits better for Fp circuit arithmetic and more generally
for the zero-knowledge proof context, we provide here the Montgomery version because
the scalar multiplication is more efficient in this model:

EM : By2 = x3 +Ax2 + x

B = 0x300c3385d13bedb7c9e229e185c4ce8b1dd3b71366bb97c30855c0aa41d62727,

A = 0x4247698f4e32ad45a293959b4ca17afa4a2d2317e4c6ce5023e1fd63d1b5de98.

Endomorphism. Montgomery curves allow efficient scalar multiplication using the
Montgomery ladder. We provide here the endomorphism ψ in this model:

ψM(x,−, z) = (−(x− z)2 − cxz,−, 2xz)

with

c = 0x4247698f4e32ad45a293959b4ca17afa4a2d2317e4c6ce5023e1fd63d1b5de9a.

Subgroup generator. The generator of the p253-order subgroup given above is of the
form EM (xM ,−, 1) with:

xM = 0x67c5b5fed18254e8acb66c1e38f33ee0975ae6876f9c5266a883f4604024b3b8.
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3.4 Security of Bandersnatch
The Bandersnatch curve order is 22 · r for a 253-bit long prime r. Its quadratic twist has
order 27 · 33 · r′, where r′ is another prime of 244 bits. Hence, the Bandersnatch curve
satisfies twist security after a quick cofactor check. We estimate that the Bandersnatch
curve (resp. its quadratic twist) has 126 bits of security (resp. 122 bits of security).

4 Comparison
The twisted Edwards representation is the most used in practice, and we now focus on the
comparison between Jubjub and Bandersnatch in this model.

4.1 Scalar multiplications for a variable base point
Because of its large discriminant, the scalar multiplication on Jubjub is a basic double-
and-add algorithm, meaning that it computes a multiplication by n in logn doublings and
logn/2 additions (in average) on the curve.

The endomorphism ψ lets us compute the scalar multiplication faster than a double-
and-add algorithm with few precomputations. For a point P and a scalar n, we first
evaluate ψ at P and decompose n = n1 + λn2. Then a multi scalar multiplication is
computed in logn/2 doublings and 3 logn/8 additions (in average) on the curve.

We benchmarked our implementation with both GLV enabled and disabled, and
compared it with Arkworks’ own Jubjub implementation. Our benchmark is conducted
over an AMD 5900x CPU, with Ubuntu 20.04, rust 1.52 stable version, and Arkwork 0.3.0
release version. We used criterion micro-benchmark toolchain, version 0.3.0, for data
collection. We compile Arkworks with two options, namely default and asm, respectively.
The default setup relies on num_bigint crate for large integer arithmetics, while asm
turns on assembly for finite field multiplication.

Arkworks use the aforementioned double-and-add multiplication methodology, without
side channel protections such as Montgomery ladders. Our non-GLV implementation also
follows this design. For our GLV implementation, there are three components, namely, the
endomorphism, the scalar decomposition, and the multi scalar multiplication (MSM). We
implement those schemes and present the micro-benchmarks in Table 3. Specifically, we
do not use the MSM implementation in Arkworks: our scalars, after the decomposition,
contain roughly 128 bits of leading zeros, and our own MSM implementation is optimized
for this setting.

Table 3 presents the full picture of the benchmark. When GLV is disabled, we observe
a similar but a little worse performance for Bandersnatch curve, compared to the Jubjub
curve, due to the slightly larger coefficient a = −5 and a larger scalar field of 253 bits
(Jubjub curve has a = −1 and a scalar field of 252 bits). When GLV is enabled, we report
a 45% improvement of the Bandersnatch curve, and a 42% improvement over the Jubjub
curve.

Table 3: Bandersnatch vs Jubjub: Performance
default asm

Jubjub 75 µs 69 µs
Bandersnatch without GLV 78 µs 72 µs
Bandersnatch with GLV 44 µs 42 µs

Endomorphism 2.4 µs 1.8 µs
Scalar decomposition 0.75 µs 0.7 µs
multi scalar multiplication 42 µs 40.8 µs

Overall Improvement 42% 39%

https://docs.rs/criterion
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To make a meaningful comparison, we benchmark the cost of the group multiplication
over the default generators. Note that Arkworks do not implement optimizations for fixed
generators nonetheless. We then sample field elements uniformly at random, for each new
iteration, and the benchmark result is consolidated over 100 iterations.

4.2 Multi scalar multiplications
This section reports the performance of variable-base multi-scalar multiplications (MSM).
It is important to note that this MSM is compatible with, but distinct from, the MSM
inside the GLV. Specifically, for a sum of k scalar multiplications, we present the data
points for:

• invoking the MSM over the k base scalars randomly sampled, expected to be around
256 bits;

• using GLV endomorphism to break the k base scalars into 2k new base scalars, of
halved size, i.e. of 128 bits.

The data is presented in Figure 1. Specifically, as a baseline, the trivial solution, captained
by GLV without MSM, is the product of the number of bases and the cost of doing a single
GLV multiplication. Note that the MSM algorithms incur an overhead to build some
tables, which make them less favorable compared to the trivial solution when dimension is
really small. For a dimension greater than 4, MSM algorithms begin to out-perform trivial
solutions. For dimension greater than 128, it is more efficient to invoke the MSM directly,
rather than doing it over the GLV basis.

The most popular algorithm to compute MSM is the Pippenger algorithm [Pip80]. In
theory, for λ bits of scalars and n bases, the algorithm takes (1 + o(1)) 2λn

log λn to execute
[Boo]. Notice that whether the endomorphism is adapted, the product λn remains the
same. in other words, we halved the bit-length of the scalars, in exchange of doubling the
dimension. However, we observe that the Pippenger algorithm used by our underlying
elliptic curve library, namely, Arkworks version 0.3.0 [Ark] does not scale as expected. We
believe this is due to two reasons. First, notice that the bucket sizes in the Pippenger
algorithm are rounded. For small dimensions, it is optimized via benchmarks results, while
for larger dimensions it is derived from theoretical analysis. The latter may introduce a
larger rounding error. Secondly, we have ignored the memory cost in this analysis which
contributes a noticeable but not significant component in the total cost.

4.3 SNARK constraints
The Bandersnatch curve is zk-SNARK friendly: its base field matches the scalar field for
the BLS12-381 curve, a pairing-friendly curve, on top of which people build zk-SNARK
systems, such as Groth16 [Gro16] or Plonk [GWC19]. In such a setting, the prover can
sufficiently argue certain relationships over arithmetic circuits rather than binary circuits.

There are two common ways to express operations in SNARK-friendly circuits, namely

• Rank-1 constraint system (R1CS)

• Plonk circuit.

In general, the complexity is determined by the number of constraints for both cases. The
R1CS is universal, in that it is compatible with multiple prover front-ends. The Plonk
circuit is usually bounded to a specific Plonk proving system, since Plonk prove system
allows for customized selectors, and thus, customized circuits descriptions. For Plonk
circuit, our analysis is based on an ECC optimized Plonk system, with efficient range
proofs from dynamic lookup tables [GW20].
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Figure 1: Multi-scalar-multiplications

Precisely, we list the breakdown numbers in Table 4; the Bandersnatch with GLV
constraints count is a little higher than the sum of its components due to some overhead
during setup phase.

Table 4: Bandersnatch vs Jubjub: Constraints count
R1CS Constraints Plonk Constraints

Jubjub 3177 1865
Bandersnatch without GLV 3177 1865
Bandersnatch with GLV 2621 1669

Endomorphism 6 7
Scalar decomposition 405 375
multi scalar multiplication 2176 1285

Overall Improvement 21% 10%

The Rust implementation of the Bandersnatch scalar multiplication algorithm confirms
our estimations: the circuit for GLV method is 21% smaller than the Jubjub implementation
with R1CS, and 10% smaller with Plonk.

4.3.1 R1CS

We evaluate the number of constraints for a variable base group multiplication. For
a double-and-add algorithm, our code reports 3177 constraints in total. We use the
default double-and-add circuit framework from Arkworks [Ark]. A sketch of the scheme is
presented in Algorithm 2. As a sanity check, within the core logic, it takes 6 constraints
per addition, 5 constraints per doubling and 2 constraints per bit selection. This adds up
to 13 constraints per bit, or 3177 constraints per group multiplication (and we reasonably
assume some system overhead consumes another 10 constraints).

https://github.com/zhenfeizhang/bandersnatch
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Algorithm 2 Double-and-Add algorithm in circuit
Require: G,H, two group elements
Require: x, a scalar field element
Ensure: Constraints that H == xG

(x0, ...x254)← BitDecompose(x) ▷ Decomposition circuit
H ′ = InfinityPoint
for i ∈ [0, 254] do

if x254−i == 1 then ▷ Binary Selection circuit
H ′ ← H ′ +G ▷ Affine Curve Group Add circuit

end if
H ′ ← H ′ +H ′ ▷ Affine Curve Group Double circuit

end for
EnforcePointEq(H,H ′) ▷ Equality circuit

Now, in the case of GLV, the endomorphism is almost free: it requires 6 constraints.
The MSM inside the GLV can also be done with 2176 constraints using the above double-
then-add techniques. The difficult part is the circuit for scalar decomposition, which is to
prove n = n1 + λn2 mod r where n and λ are around 256 bits, n1 and n2 are around 128
bits, and r is the order of the scalar field. We implemented this part of the code with 405
constraints via hand optimized circuits.

4.3.2 TurboPlonk

We apply a similar analysis for our customized, ECC-friendly Plonk system [XCZ+22].
This custom gate design allows us to express a group add or double operation within 2 gates.
As a result, in a double-and-add circuit, each bit in the scalar takes 7 constraints in total,
i.e., 2 for point selection, 2 for addition, 2 for doubling, and 1 for binary decomposition.
For a scalar length of 256 bits, this is roughly 1800 constraints.

In comparison, with GLV, per bit we account for 4 constraints for 2x point selections,
4 constraints for 2x point additions, and 2 constraints for doubling. There is also a bit
decomposition cost which was done during scalar decomposition. The gain comes from the
fact that our scalars are only 128 bits each.

5 Conclusion
Tne last decade has seen great improvements on practical zk-SNARK systems. An essential
stepping stone of these schemes is an efficient elliptic curve whose base field matches the
scalar field for some pairing-friendly curve. On this note, we present Bandersnatch as an
alternative to the commonly used base curve Jubjub. Due to the existence of an efficiently
computable endomorphism, the scalar multiplication over this curve is 42% times faster
than the Jubjub curve. For multi scalar multiplications, we report a narrowed advantage
over Jubjub curve when the dimension is small, but it vanishes for larger dimensions. We
also do not observe any improvement in terms of number of constraints in the corresponding
R1CS circuit.
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