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Abstract

This paper explores the good-case latency of synchronous Byzantine Fault Tolerant (BFT) consen-
sus protocols in the rotating leader setting. We first present a lower bound that relates the latency
of a broadcast when the sender is honest and the latency of switching to the next sender. We then
present a matching upper bound with a latency of 2∆ (∆ is the pessimistic synchronous delay) with an
optimistically responsive change to the next sender. The results imply that both our lower and upper
bounds are tight. We implement and evaluate our protocol and show that our protocol obtains similar
latency compared to state-of-the-art stable-leader protocol Sync HotStuff while allowing optimistically
responsive leader rotation.

1 Introduction

Byzantine fault tolerant (BFT) consensus protocols provide a consistent service despite some malicious and
arbitrary process failures. These protocols have been particularly useful in developing infrastructures that
span across multiple entities some of which may be incentivized to act maliciously. Thus BFT protocols have
been widely adopted to build decentralized blockchain technologies that promise tamper-proof ledger services
without a central authority. In accordance, this problem has been studied for over 40 years under various
system models and assumptions [25, 2, 7, 21]. Among these, authenticated BFT protocols under synchrony
assumption are particularly interesting as these protocols can tolerate one-half Byzantine failures [13, 14, 17]
compared to partially synchronous or asynchronous protocols which tolerate only upto one-third Byzantine
failures [12].

When consensus is to be achieved for a sequence of values, a particularly well-studied approach among
BFT protocols is the stable-leader approach where a single replica takes lead in coordinating all participating
replicas into reaching consensus [7]. Stable-leader BFT protocols usually provide better performance both in
terms of throughput and latency as they avoid a view-change process to switch leaders which incurs additional
cost. From a practical perspective, an important metric in these protocols is the good-case latency to achieve
consensus. Informally, good-case latency of a BFT protocol is the time for all honest replicas to commit
(over all executions and adversarial strategies), given an honest leader. A recent work [3] provides a complete
categorization of the good-case latency of BFT protocols under different network settings and number of
faults. In particular, assuming synchrony, they provide matching upper and lower bounds of ∆ + O(δ)
good-case latency where ∆ is the known pessimistic network delay and δ is the unknown actual network
delay.

While the stable-leader approach is favored for their better performance, many applications require a
democracy favoring policy where the participating replicas take turn in being leader to coordinate consensus
decisions. We call this a rotating-leader approach. The rationale is to obtain better fairness, censorship
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resistance, and uniform distribution of work. Indeed, several recent protocols have been designed with this
goal in mind [9, 10, 15, 16, 23, 8, 19]. In general, rotating-leader BFT protocols can broadly be classified into
two categories. In the first kind, multiple leaders are selected to propose values concurrently in different slots
wherein each leader proposes a value in their own instance in the common log. While the value proposed
by an honest leader can be decided with a small constant latency in the good-case, the value proposed by
a Byzantine leader can take a linear number of rounds before it gets finalized in the worst case. In many
state machine replication applications, a value proposed in an instance is not useful until all prior instances
in the log have been finalized. Thus, such protocols always have worst-case latency which is linear.

The second kind utilizes the “block chaining” paradigm where a leader proposes a value in the form of a
block which explicitly extends a block B proposed by an earlier leader by including hash of previous block B
called its parent. In this paradigm, when a block B is committed, all its ancestors are also committed and all
blocks in the log up to block B can be safely used. In addition, when the leader of block B is honest, block
B and all its ancestors can be committed with a small constant latency in the good-case. This is a natural
approach adopted by many existing protocols [25, 2, 8, 16, 24]. In this work, we focus on such rotating-
leader BFT protocols that utilize block chaining paradigm. Under this paradigm, existing rotating-leader
BFT protocols such as PiLi [10], Dfinity [16, 1] and Streamlet [8] incur a latency of 65∆, 17∆ and 12∆
respectively to commit a single decision in the good-case. While the good-case latency captures the latency
of a commit given an honest leader, a rotating-leader protocol keeps changing leaders through a view-change
process each time. Thus, the overall latency of a rotating-leader protocol depends on the combination of
good-case latency and the latency of the view-change. In this work, we initiate a study to optimize the
combined latency for rotating-leader protocols. A natural approach to optimize the combined latency is to
spend as little time during the view-change as possible. Ideally, we want to change leaders and have the new
leader propose responsively in O(δ) time compared to waiting Ω(∆) delay during the view-change process.
We refer to such property as optimistically responsive rotating leader chained protocol defined as follows:

Definition 1.1 (Optimistically Responsive Rotating Leader Chained Protocol, Informal). We say that a
rotating-leader chained protocol has optimistically responsive leader change if for any two consecutive honest
leaders pi and pi+1, pi+1 sends its input within O(δ) time after receiving pi’s input.

Allowing consecutive leaders to propose responsively allows a protocol to progress at network speed when
the leaders are honest. In the context of stable-leader approach, a recent work Sync HotStuff [2] allows a fixed
leader to propose responsively. For the rotating-leader approach, few recent works [24, 20] offer solutions
that allow consecutive leaders to propose responsively. However, these protocols require a special optimistic
condition (where > 3n/4 replicas are expected to be honest) to provide responsiveness. Moreover, none of
the prior works formalize this notion to provide theoretical feasibility results w.r.t. the good-case latency for
the rotating-leader approach.

To close this gap, our paper explores the optimal good-case latency for rotating-leader synchronous BFT
protocols with responsive proposals. Specifically we ask,

What is the optimal good-case latency of optimistically responsive rotating-leader chained consen-
sus protocol?

We answer this question by providing a lower bound relating the good-case latency for a single slot with
that of the view-change. Interestingly, we observe that if the protocol performs view-change in O(δ), then
the commit latency for a single slot cannot be < 2∆. We also provide a matching upper bound protocol
with 2∆ +O(δ) latency. In essence, our results are tight (ignoring O(δ) terms). We also evaluate our upper
bound protocol against state-of-the art synchronous protocol and observe that our protocol provides similar
latency metric compared to Sync HotStuff which is the state-of-the art synchronous consensus protocol that
follows stable-leader approach and significantly better compared to its rotating-leader counterpart.

A lower bound on the good-case latency of rotating-leader consensus protocols with responsive
proposals. Our first result presents a lower bound on the good-case latency of a rotating-leader consensus
protocols with responsive proposals. Specifically, we show the following:
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Theorem 1 (Lower bound on the good-case latency of an optimistically responsive rotating-leader chained
consensus protocol, Informal). There exists an execution in an optimistically responsive rotating-leader
chained consensus protocol in an unsynchronized start model tolerating f ≥ n/3 faults where the follow-
ing two conditions do not hold simultaneously even in executions where messages between honest parties
arrive instantaneously and all parties start at time 0: (i) the good-case commit latency is less than 2∆, and
(ii) honest senders propose responsively in O(δ) time after receiving a proposal from the previous honest
sender.

Intuitively, our lower bound states that if a protocol performs view-change in O(δ) time, then the commit
latency for a single slot has to be at least 2∆ time; otherwise the safety of a commit cannot be guaranteed.
This lower bound applies to protocols in an unsynchronized start model where parties do not all start the
protocol at the same time (explained later).

Optimal responsively proposing rotating-leader protocol with 2∆-synchronous latency. Our
second result presents a matching upper bound protocol that achieves optimal commit latency of 2∆ with
responsive proposals. Our upper bound result is presented in the form of state machine replication (SMR)
protocol that decides on a sequence of values. In our SMR protocol, the leaders are rotated after each
proposal. A sequence of honest leaders can propose within 2δ of previous proposal thus supporting responsive
proposals. The good-case commit latency for a single slot is optimal, i.e., 2∆. Due to responsive leader
rotation, our protocol changes leaders before prior proposed values have been committed. For a sequence of
k honest leaders, our protocols can commit k values in 2∆ +O(kδ) time.

Implementation and evaluation. We implement and evaluate the performance of our protocol and com-
pare it with Sync HotStuff [2] which is the state-of-art synchronous protocol with stable-leader approach. In
terms of latency, our protocol has similar latency profile compared to Sync HotStuff, i.e., like Sync HotStuff,
our protocol commits k values in 2∆ +O(kδ) time. We validate this in our evaluation by showing a latency
comparable to Sync HotStuff. However, Sync HotStuff being a stable-leader protocol does not provide fair-
ness and censorship resistance. To ensure fair comparison, we evaluate our protocol against Sync HotStuff
with leader rotation where leaders are rotated after each proposal. Compared to this variation, we obtain
four times better latency in all configurations.

2 Model and Definitions

We consider a system consisting of n replicas in a reliable, authenticated all-to-all network, where up to
f < n/2 replicas can be Byzantine faulty. The Byzantine replicas may behave arbitrarily. A replica that is
not corrupted is considered to be honest and executes the protocol as specified.

Communication between honest replicas are synchronous. Thus, if a replica r sends a message x to
another replica r′ at time t, r′ receives the message by time t + δ if r is honest. The delay parameter δ is
upper bounded by ∆. The upper bound ∆ is known, but δ is unknown to the system. δ can be regarded
as an actual delay in the real-world network. We assume all honest replicas have clocks moving at the same
speed.

We make use of digital signatures and a public-key infrastructure (PKI) to validate messages and detect
equivocation. Message x sent by a node p is digitally signed by p’s private key and is denoted by 〈x〉p. In
addition, we use H(x) to denote the invocation of the random oracle H on input x.

Definition 2.1 (Byzantine Fault-tolerant State Machine Replication [22]). A Byzantine fault-tolerant state
machine replication protocol commits client requests as a linearizable log to provide a consistent view of the
log akin to a single non-faulty server, providing the following two guarantees. (i) Safety. Honest replicas
do not commit different values at the same log position. (ii) Liveness. Each client request is eventually
committed by all honest replicas.

Definition 2.2 (Good-case Latency [3]). A Byzantine broadcast (or Byzantine reliable broadcast) protocol
has good-case latency of T , if all honest parties commit within time T since the broadcaster starts the protocol
(over all executions and adversarial strategies), given the designated broadcaster is honest.
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Chained BFT SMR. As mentioned before, our work focuses on BFT protocols that utilize the block
chaining paradigm where a leader proposes a value in the form of a block by explicitly extending a block Bk

proposed by an earlier leader by including hash of previous block Bk called its parent. A block determines a
unique hash chain for all previous blocks in the log. The first block in the chain is called the genesis block,
and the distance from the genesis block to a block B in the chain is called the height of block B. A block Bk

at height k has the format, Bk := (bk, H(Bk−1)) where bk denotes the proposed payload at height k, Bk−1
is the block at height k − 1 and H(Bk−1) is the hash digest of Bk−1. A block Bk is said to extend a block
Bh if Bk = Bh or Bk is a descendant of Bh. All the blocks in the chain from genesis block up to block Bk−1
are the ancestors of block Bk. In this paradigm, when a block Bk is committed, all its ancestors are also
committed.

With leaders proposing responsively in O(δ) time after receiving proposal from a prior leader, an honest
leader may propose a new block by extending on a block proposed by a prior Byzantine leader without
detecting conflicting block proposals made by the Byzantine leader. When such inconsistencies are detected,
a natural solution is to execute some fallback mechanism to collect blocks possibly committed by some
honest replicas as the new leader could have proposed blocks extending conflicting proposals. However, such
fallback mechanisms worsen the good-case latency of a protocol as it involves notifying of misbehavior by
earlier Byzantine leaders and collecting possibly committed blocks to decide on a safe value to extend. In this
work, we focus on responsively proposing rotating leader chained BFT SMR protocols that do not involve any
fallback mechanism and always decide on blocks proposed by honest leaders irrespective of inconsistencies
introduced by an earlier Byzantine leader. This allows our protocol to always commit with a small constant
latency in the good-case when the leader is honest.

Rotating sender chained reliable broadcast. We formalize the rotating-leader chained BFT SMR
protocols in the form of rotating sender chained reliable broadcast as follows. Our lower bound is presented
in the form of rotating sender chained reliable broadcast.

Definition 2.3 (Rotating Sender Chained Reliable Broadcast). In a rotating sender chained reliable broad-
cast, there is a sequence of designated senders p1, . . . , pk for k ≥ 1 sending messages such that when a sender
pi broadcasts Bx at some height x in the log, then the following conditions hold:

1. (Correctness) If some honest party q delivers message Bx at height x in the log, then eventually every
honest party delivers Bx at height x in the log.

2. (Validity) If sender pi is honest, then every honest party eventually delivers the input Bx that pi
broadcasts at height x.

3. (Sequentiality) If an honest sender pj with j < i sends message Bx′ , then the input Bx sent by an
honest sender pi must extend Bx′ .

4. (Extension) When an honest party q delivers a message Bx at height x in the log, it delivers all the
ancestors of message Bx.

Next, we formally define optimistically responsive rotating leader chained reliable broadcast as follows.

Definition 2.4 (Optimistically Responsive Rotating Sender Chained Reliable Broadcast). We say that a
rotating sender chained reliable broadcast is optimistically responsive if for any two consecutive honest senders
pi and pi+1, pi+1 starts the broadcast in the sequence within O(δ) time after receiving pi’s input.

3 A Lower Bound on the Good-Case Latency of Optimistically
Responsive Rotating Sender Chained Reliable Broadcast

In this section, we provide a lower bound on the good-case latency of rotating leader protocols where the next
leaders propose responsively without waiting Ω(∆) time after receiving proposals from previous leaders. In
particular, the lower bound captures the relationship between latency of the view-change and the good-case
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latency of a commit. Essentially, it says that if a consensus protocol tolerating f ≥ n/3 Byzantine faults
allows a new leader to propose responsively in α time, the commit latency for a single slot cannot be less
than 2∆− α. Thus, the sum of latencies has to be at least 2∆.

Unsynchronized starts. Our lower bound assumes an unsynchronized start model [3, 24] where honest
parties may start the protocol execution at different times decided by an adversary such that the following
conditions hold: (i) each honest party starts the protocol at time ≤ ∆ and (ii) an honest party starts the
protocol before receiving a message from any other party. Such a model captures state machine replication
protocols where replicas move to the next view/slot at different times. Byzantine parties, on the other hand,
are assumed to start the protocol execution at time 0. The parties start the protocol with a fixed state
independent of when the protocol execution started; in particular, they do not have access to the execution
start time.

Intuition. Any Byzantine fault tolerant consensus protocol tolerating f Byzantine faults cannot wait to
receive messages from more than n − f parties. For a synchronous consensus protocol tolerating f < n/2,
an honest party can wait for messages from at most f + 1 parties, assuming n = 2f + 1 for simplicity sake.
Consider a set P of f honest parties and a set Q of f honest parties. Suppose the current sender s1 is
Byzantine and sends some value Be which arrives at parties in P at some time 0. The Byzantine sender
s1 also sends conflicting values B′e to honest parties in Q which arrives only at time ∆ − α. Observe that
messages from a single Byzantine party s1 is sufficient for parties in P to form a quorum of f + 1 messages.
In addition, messages between parties in P and Q can be delayed by up to ∆ time. Thus, parties in P may
not learn about conflicting value B′e before 2∆ − α time and will commit to value Be before 2∆ − α time
where 2∆− α is the protocol commit latency.

The next sender s2 ∈ Q receives value B′e at time ∆−α and proposes value Be+1 by time ∆ with α being
the view-change latency. Note that sender s2 may not learn about value Be until time ∆. For sender s2,
the first sender s1 appears to be honest until time ∆. Thus, by sequentiality property (refer Definition 2.3),
honest sender s2 extends B′e and proposes value Be+1 by time ∆. Observe that due to ∆ delay between
messages exchanged between parties in P and Q, parties in P does not receive either B′e or Be+1 before time
2∆ − α and hence cannot prevent parties in P to commit. Similarly, parties in Q does not receive value
Be before ∆ and does not prevent the next sender s2 from extending B′e and proposing Be+1. Since, our
protocol always commits the value proposed by an honest sender, parties in Q eventually commit Be+1 and
by extension property commit Be. An important observation here is that if the commit latency were at least
2∆− α, parties in P would learn about value B′e by time 2∆− α and would not commit. This implies the
sum of responsive view-change latency and good-case latency has to be at least 2∆.

Theorem 2 (Lower bound on the good-case latency of optimistically responsive rotating sender sequenced
reliable broadcast). For any α < ∆, there exists an execution in an optimistically responsive rotating sender
chained reliable broadcast protocol in an unsynchronized start model tolerating f ≥ n/3 faults where the
following two conditions do not hold simultaneously even in executions where messages between honest parties
arrive instantaneously and all parties start at time 0: (i) the good-case commit latency is less than 2∆− α,
and (ii) honest senders broadcast responsively in at most α time after receiving an input from the previous
honest sender.

Proof. Suppose for the sake of contradiction, there exists such a protocol. We will show a sequence of worlds,
and through an indistinguishability argument show a violation in the last execution. Consider the parties
being partitioned into the following 3 sets: (i) P : a set of f parties, (ii) Q: a set of f parties which includes
the second sender s2, and (iii) R: a set of max(1, n− 2f) parties which includes the first sender s1.

World 1 (W1).
Setup. Parties in P ∪R are honest while parties in Q are crashed. An honest sender s1 ∈ R sends value Be

at some height e to all parties. Parties in P and R start at time 0.
Message schedule. Messages exchanged between parties in P and R arrive instantaneously.
Execution and views of honest parties. This execution satisfies (i), so parties in P commit Be before 2∆−α
time.
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Figure 1: Latency of Optimistically responsive rotating sender chained reliable broadcast. Dotted circles
represent Byzantine parties. Crossed circles represent crashed parties. Value of k = n− 2f .

World 2 (W2).
Setup. Parties in Q ∪ R are honest while parties in P have crashed. An honest sender s1 ∈ R sends value
B′e at height e to all parties. Parties in Q and R start at time 0.
Message schedule. Messages exchanged between parties in Q and R arrive instantaneously.
Execution and views of honest parties. The next sender s2 ∈ Q receives B′e at time 0. By sequentiality, the
next sender s2 extends B′e and sends value Be+1 by time α. Since, sender s2 is honest, by validity, parties
in Q ∪R eventually commit Be+1 at height e+ 1. By extension, parties in Q ∪R commit B′e at height e.

World 2-shifted (W2s).
Setup. Parties in Q ∪ R are honest while parties in P have crashed. An honest sender s1 ∈ R sends value
B′e to all parties. All parties start at time ∆− α.
Message schedule. Messages exchanged between parties in Q and R arrive instantaneously.

Claim 3. Parties in Q ∪R cannot distinguish between World 2 and World 2-shifted.

Proof: Observe that in an unsynchonized start model, parties start with a fixed state independent of when
the protocol execution started and parties do not have access to the starting time. Moreover, all parties in
Q∪R start at time ∆−α in World 2-shifted. Thus, for parties in Q∪R, this execution is indistinguishable
to World 2. �
Execution and views of honest parties. By Claim 3, parties in Q ∪ R cannot distinguish between World 2
and World 2-shifted. Thus, the next sender s2 sends value Be+1 by time ∆ − α + α = ∆ by extending on
B′e. Since, this execution is identical to World 2, parties in Q ∪R eventually commit Be+1 at height e+ 1.

World Hybrid (WH).
Setup. Parties in R are Byzantine. All other parties are honest. The Byzantine sender s1 ∈ R sends value
Be to parties in P and value B′e to parties in Q. Parties in P start at time 0 while parties in Q start at time
∆− α.
Message schedule. Parties in P receive sender’s value at time 0 while parties in Q receive sender’s value at
time ∆− α.
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Parties in R perform a split-brain attack where they behave like World 1 towards parties in P , and
behave like World 2-shifted towards parties in Q. We denote each brain of R as R1 and R2 such that R1
only communicate with P and R2 only communicate with Q.

Messages between parties in P and R1 arrive instantaneously (like in World 1). Parties in R2 sends
messages to parties in Q only after time ∆−α and messages between Q and R2 arrive instantaneously (like
in World 2-shifted). Messages exchanged between parties in P and Q is delayed by ∆.

Claim 4. The parties in P cannot distinguish between World 1 and World Hybrid until 2∆− α time.

Proof: In World 1, parties in P start at time 0 and messages exchanged with parties in R arrive instan-
taneously. Since, parties in Q are crashed, parties in P do not receive any messages from parties in Q.
Similarly, in World Hybrid, parties in P start at time 0 and messages exchanged with parties in R1 arrive
instantaneously where parties in R1 behave identical to World 1 for parties in P . Moreover, since parties
in Q start at time ∆ − α and messages between parties in P and Q are delayed by ∆, parties in P do not
receive any messages from parties in Q until 2∆ − α time. Thus, parties in P cannot distinguish between
World 1 and World Hybrid until 2∆− α time. �

Claim 5. The parties in Q cannot distinguish between World 2-shifted and World Hybrid until time ∆.

Proof: In World 2-shifted, parties in Q start at time ∆−α and messages exchanged with parties in R arrive
instantaneously. Since, parties in P are crashed in World 2-shifted, parties in Q receive no messages from
parties in P . Similarly, in World Hybrid, parties in Q start at time ∆ − α. Parties in R2 send messages
only at time ∆−α and messages between R2 and Q arrive instantaneously. Observe that parties in P start
at time 0 and messages between P and R are delayed by ∆. Thus, parties in Q receive no messages from
parties in P until time ∆. Thus, parties in Q cannot distinguish between World 2-shifted and World Hybrid
until time ∆. �
Execution and views of honest parties. By Claim 4, parties in P cannot distinguish between World 1 and
World Hybrid until 2∆− α time. Thus, parties in P commit Be by time 2∆− α at height e.

By Claim 5, parties in Q cannot distinguish between World 2-shifted and World Hybrid until ∆ time.
Thus, the next sender s2 ∈ Q sends input Be+1 that extends B′e by time ∆. By validity, parties in Q
eventually commit B′e+1 at height e+1. By extension, parties in Q also commit B′e at height e. This violates
correctness property between parties in P and Q at height e. A contradiction.

4 Optimal Rotating-Leader BFT SMR with 2∆-synchronous La-
tency

In this section, we present a rotating-leader chained BFT SMR protocol with optimal 2∆- synchronous
latency that allows responsive leader rotation while tolerating f < n/2 Byzantine faults. Prior synchronous
protocols such as Sync HotStuff follow stable-leader paradigm and can make progress at network speed in
the steady-state i.e., it can commit k proposals in 2∆ +O(kδ) where 2∆ is the commit latency for a single
proposal. However, when the protocol changes leaders, they require a synchronous wait of Ω(∆) time during
view-change process. Protocols such as OptSync [24] can perform responsive leader rotation. However, they
require optimistic conditions where > 3n/4 replicas behave honestly. In the absence of optimistic conditions,
they incur a synchronous delay of Ω(∆) time. In contrast, our protocol support responsive leader rotation
in the absence of optimistic conditions while still tolerating f < n/2 Byzantine faults.

In addition, the commit step in our protocol is non-blocking i.e., we do not require replicas to commit
before moving into higher epoch. Thus, our protocol can make progress at network speed while supporting
responsive leader rotation and can commit k proposals in 2∆ +O(kδ) time with different leaders when there
is a sequence of honest leaders. In this regard, our protocol can be viewed as rotating-leader version of
Sync HotStuff.

Epochs. Our protocol progresses through a series of numbered epochs with each epoch e coordinated by
a distinct leader Le. Epochs are numbered by non-negative integers starting with 1. The leaders for each
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epoch are rotated irrespective of the progress made in each epoch. For simplicity, we use round-robin leader
election and the leader of epoch e, represented as Le, is determined by e mod n. The leaders can also be
selected at random by using public known function such as random beacons [11] which allows leader election
in O(δ) time. When the leader of an epoch is honest, the protocol progresses through epoch responsively,
i.e., in O(δ) time; otherwise each epoch lasts for 7∆ time.

Blocks and block format. We represent a proposal in an epoch in the form of a block. Each block
references its predecessor with the exception of the genesis block which has no predecessor. A block Bk is
said to be valid if (i) its predecessor block is valid, or if k = 1, predecessor is ⊥, and (ii) the payload in the
block meets the application-level validity conditions. Note that a leader Le proposes a single block in an
epoch.

Certified blocks, and locked blocks. A block certificate on a block Bk consists of t+1 distinct signatures
in an epoch e and is represented by Ce(Bh). We define a simple ranking rule as leaders propose a single block
in each epoch. Block certificates are ranked by epochs, i.e., blocks certified in a higher epoch has a higher
rank. During the protocol execution, each replica keeps track of all certified blocks and keeps updating the
highest certified block to its knowledge. Replicas will lock on highest ranked certified blocks and do not vote
for blocks that do not extend highest ranked block certificates to ensure safety of a commit.

Block extension and equivocation. A block Bk extends a block Bl (k ≥ l) if Bl is an ancestor of Bk.
Note that a block Bk extends itself. Two blocks Bk and B′k′ proposed in the same epoch equivocate one
another if they are not equal.

4.1 Protocol Details

For each epoch e = 1, 2, · · · :, replica r performs following operations:

1. Epoch Advancement. When epoch-timere reaches 0, broadcast 〈clock, e+1〉r. Replica r advances to epoch
e + 1 using following rules:

- On receiving f + 1 votes for epoch e block.

- On receiving f + 1 epoch e clock messages.

Upon entering epoch e+1, broadcast an epoch e certificate and send highest ranked block certificate to Le+1,
set epoch-timere+1 to 7∆ and start counting down. Abort epoch-timere.

2. Propose. If leader Le of epoch e has Ce−1(Bl) propose immediately; otherwise wait for 2∆ time. Broadcast
〈propose, Bk, e, Ce′(Bl)〉L where Bk extends highest certified block Bl known to Le.

3. Vote. Upon receiving the first proposal 〈propose, Bk, e, Ce′(Bl)〉L, if Bk extends the highest ranked certificate
known to replica r, broadcast a vote in the form of 〈vote, Bk, e〉r.

4. (Non-blocking) Commit. If epoch-timere > 2∆ and replica r receives Ce(Bk), set commit-timere to 2∆ and
start counting down. When commit-timere reaches 0, if no epoch-e equivocation has been detected, commit
Bk and all its ancestors.

5. Equivocation. Forward the equivocating hashes signed by Le and abort commit-timere. While still in epoch
e, broadcast 〈clock, e + 1〉r.

Figure 2: Rotating-leader BFT SMR

Our protocol (refer Figure 2) is simple and includes following five steps for an epoch e.

Epoch advancement. Each replica r keeps track of epoch duration epoch-timere for epoch e. When
its epoch-timere−1 expires, replica r broadcasts an epoch e clock message, i.e., 〈clock, e〉r to all replicas.
Replica r enters epoch e when it receives either f + 1 distinct 〈clock, e〉 messages (i.e., an epoch e clock
certificate) or when it receives an epoch e block certificate Ce(Bl) for some block Bl. Upon entering epoch
e, replica r broadcasts an epoch e certificate (either clock certificate or block certificate) to perform epoch
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synchronization among all honest replicas. Replica r also sends its highest ranked certificate Ce(Bl) to the
leader Le if it sent a clock certificate while entering epoch e. In addition, it aborts all timers below epoch e
and sets epoch-timere to 7∆ and starts counting down.

Propose. Upon entering epoch e, if Leader Le has an epoch e−1 block certificate, it proposes immediately;
otherwise, it waits for 2∆ time to ensure it can receive the highest ranked certificate from all honest replicas.
The leader Le proposes a block Bk := (bk, H(Bk−1)) by broadcasting 〈propose, Bk, v, Ce′(Bl)〉Le

where Ce′(Bl)
is the highest ranked certificate known to Le.

Vote. When a replica r receives the first proposal for Bk either from Le or through some other replica,
if r hasn’t received a proposal for an equivocating block, i.e., it has not detected a leader equivocation in
epoch e, it forwards the proposal to all replicas. If block Bk extends the highest ranked certificate known to
replica r, it broadcasts a vote for Bk in the form of 〈vote, Bk, e〉r.; otherwise, replica r does not vote for the
proposed block. Voting for blocks that extends the highest ranked certificate ensures safety of committed
blocks.

Commit. When replica r receives f + 1 distinct vote messages for an epoch e block Bk (denoted by Ce(Bk))
and when epoch-timere is large enough (2∆), it sets its commit-timere to 2∆ and starts counting down. Note
that replica r moves to epoch e + 1 as soon as it receives Ce(Bk) while its commit-timere for block Bk is
still running. When commit-timere reaches 0, if no equivocation for epoch-e has been detected, replica r
commits Bk and all its ancestors. Waiting for 2∆ wait before commit ensures no honest replica has voted
for an equivocating block in epoch e. In addition, honest replicas start their commit-timere only when their
epoch-timere ≥ 2∆. This ensures no honest replica entered an higher epoch without receiving Ce(Bk).

Equivocation. At any time in epoch e, if a replica r detects an equivocation, it broadcasts equivocating
hashes signed by leader Le along with an epoch e clock message. Replica r also stops performing epoch e
operations.

How does our protocol support responsive leader rotation? In general, consensus protocols require
that all honest replicas receive and lock on a unique certificate for a block to be committed in an epoch before
moving to higher epoch and not vote for blocks that do not extend this unique certificate to ensure safety of a
commit. Prior synchronous protocols such as Sync HotStuff [2] achieve this property by adding a synchronous
wait of at least 1∆ while moving to higher epoch. In Sync HotStuff [2], a replica starts its commit-timer
of 2∆ as soon as it votes for the proposed block and commits when it does not detect any equivocation
in the epoch before its commit-timer expires. While the replica that committed may not have detected an
equivocation before its commit, other honest replicas might have detected an equivocation. Waiting for ∆
time before moving to higher epoch ensures all honest replicas receive at least f + 1 votes for the committed
block. However, a synchronous wait of full ∆ during epoch-change makes protocols non-responsive. To
achieve responsive epoch-change, our protocol instead waits for a certificate for the proposed block before
starting the commit-timer and forwards the received certificate. Thus, replicas can responsively receive the
certificate. In addition, a single block is proposed in an epoch. Thus, if the next leader receives the certificate
for the current proposed block, it can propose immediately as it is already the highest ranked block certificate
and all honest replicas will vote for the block extending this certificate. Initiating the commit-timer only
upon receiving a certificate for the proposed block has also been explored in prior protocols such as Flexible
BFT [18] which works in hybrid model (with both synchronous and partial synchronous assumptions) and
follows stable-leader approach. In contrast, our protocol follows rotating-leader approach under synchrony
assumption.

How does 2∆ wait ensure safety? Consider an honest replica r that commits a block Bk in epoch e at
time t. Replica r must have received Ce(Bk) at time t− 2∆ and did not detect any block e equivocation by
time t. This implies no honest replica either received or voted for an equivocating block in epoch e by time
t − ∆; otherwise, replica r would have detected an epoch e equivocation by time t. In addition, since all
honest replicas receive proposal for Bk by time t−∆, no honest replica will vote for an equivocating block in
epoch e. This ensure the certificate for block Bk is unique. In addition, since replica r committed in epoch e,
its epoch-timere must have been epoch-timere > 2∆ at time t− 2∆. Since, honest replicas are synchronized
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withing ∆ time, honest replicas that are still in epoch e must have epoch-timere > ∆ by time t−2∆. Replica
r broadcasts Ce(Bk) at time t−2∆ when it starts its commit-timer at t−2∆. Thus, these replicas will receive
Ce(Bk) before entering epoch e + 1. This ensures all honest replicas receive Ce(Bk) before entering epoch
e + 1 and hence, no honest replica will vote for blocks that do not extend Ce(Bk). This ensures safety of
committed block Bk.

Note that it is not required for all honest replicas to commit block Bk in the same epoch e. A Byzantine
leader may send equivocating blocks to other honest replicas after time t−∆ and replica r may not receive
such equivocation before its commit-timer expires. However, if an honest replica r commits a block Bk, our
protocol ensures that all honest replicas receive a unique certificate for Bk before entering epoch e+ 1 and
no honest replica vote for blocks that do not extend Bk in higher epoch. Eventually, due to leader rotation,
there will an honest leader and this honest leader will propose block Bh extending Bk. All honest replicas
will commit block Bh proposed by an honest leader and all honest replicas will commit Bk via ancestor rule
(since Bh extends Bk).

Remark. Our protocol can be extended with an additional commit rule that commits a block B` proposed
in epoch e− f at the end of epoch e if the highest ranked chain in epoch e extends B`, assuming there is a
set of unique f + 1 leaders in the last f + 1 epochs. Such a commit rule can be used to commit faster when
there is a set of f + 1 consecutive honest leaders and progressing through f + 1 epochs is faster than waiting
for 2∆ time and obtain better commit latency.

The rationale behind the commit rule is the following. Out of last f +1 honest leaders, there will at least
one honest leader between epochs e − f and e. Consider an epoch e′ (with e − f < e′ < e and its honest
leader Le′ . The leader Le′ will extend on the highest ranked chain certificate and propose some block Bk in
a timely manner. Assume Bk extends B`. Thus, all other honest replicas will vote for the proposed block
Bk and all honest replicas will receive and lock on Ce′(Bk) before entering epoch e′+ 1. Hereafter, no honest
replica will vote for a block that does not extend Bk, and all certified blocks after epoch e′ must extend Bk,
i.e., a conflicting chain of rank higher than Ce′(Bk) cannot form. Thus, the highest ranked chain in epoch e
must extend Bk and since Bk extends B`, B` is safe to commit. A recent work, Apollo [4] uses such a commit
rule to obtain better latency when there are a sequence of consecutive honest leaders. In their work, the
protocol proposes without waiting for a certificate and can obtain O(fδ) latency with a sequence of honest
leaders. In contrast, our protocol requires waiting for a certificate to obtain a good-case latency of 2∆

5 Safety and Liveness

We say a block Bk is committed directly in epoch e if it is committed as a result of its own commit-timere
expiring. We say a block Bk is committed indirectly if it is a result of directly committing a block Bl (l > k)
that extends Bk.

Claim 6. If an honest replica enters an epoch e at time t, then all honest replicas enter epoch e by time
t+ ∆.

Proof. Suppose an honest replica r enters epoch e at time t and broadcasts an epoch e − 1 certificate.
Suppose for the sake of contradiction, an honest replica r′ does not enter epoch e by time t + ∆. Since
replica r broadcasts epoch e− 1 certificate at time t, the epoch e− 1 certificate arrives all honest replicas by
time t + ∆. This implies replica r′ receives epoch e − 1 certificate and moves to epoch e by time t + ∆. A
contradiction.

Corollary 7. The epoch timers of two honest replicas may differ by up to ∆ time.

Claim 8. If an honest replica broadcasts 〈clock, e+ 1〉 in epoch e, no honest replica directly commits a block
in epoch e.

Proof. Suppose an honest replica r sends 〈clock, e + 1〉r in epoch e. Replica r sends 〈clock, e + 1〉r on two
cases (i) when its epoch-timere expires before receiving epoch e block certificate, and (ii) when it receives an
epoch e equivocation while still in epoch e.
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Suppose for the sake of contradiction, an honest replica, say replica r′, commits a block Bk in epoch e at
time t. Since replica r′ committed block Bk in epoch e at time t, it must have received a Ce(Bk) such that
its epoch-timere ≥ 2∆ at time t− 2∆ and did not detect an epoch e equivocation by time t. By Corollary 7,
replica r’s epoch-timere must be ≥ ∆ at time t−2∆ in the worst case. In addition, no honest replica detected
an epoch e equivocation by time t − ∆ and sent a 〈clock, e + 1〉r due to epoch e equivocation; otherwise
replica r′ would have detected epoch e equivocation by time t and would not commit. All honest replicas
will receive an epoch e certificate for Bk by time t − ∆. Thus, replica r would not send 〈clock, e + 1〉r in
epoch e. A contradiction.

Corollary 9. If a clock certificate exists in epoch e, no honest replica directly commits a block in epoch e.

Lemma 10. If an honest replica commits a block Bk in epoch e, then (i) an equivocating block certificate
does not exist in epoch e (ii) every honest replica receives Ce(Bk) before entering epoch e+ 1.

Proof. Suppose an honest replica r directly commits an epoch-e block Bk at time t. Replica r must have
received a Ce(Bk) at time t − 2∆ such that its epoch-timere ≥ 2∆. All honest replicas receive the proposal
for Ce(Bk) by time t− 2∆.

For part (i), observe that after time t−∆, no honest replica will vote for an equivocating block in epoch
e. If an honest replica voted for an equivocating block B′k′ before t − ∆ in epoch e, replica r would have
received the equivocating proposal for B′k′ by time t and would not commit. This contradicts the hypothesis
of r committing Bk directly in epoch e. Therefore, an equivocating block will not get any honest vote and
will not be certified in epoch e.

By part(i) of the Lemma, there does not exists an equivocating block certificate and by Corollary 9,
epoch-e certificate must be a block certificate. Thus, all honest replicas receive Ce(Bk) and enter epoch
e+ 1.

Lemma 11 (Unique Extensibility). If an honest replica directly commits Be in epoch e, then any certified
block that ranks higher than Ce(Bk) must extend Be.

Proof. The proof is by induction on epochs e′ > e. For an epoch e′, we prove that if Ce′(Bk′) exists then it
must extend Bk . A simple induction shows that all later block certificates must also extend Bk.

For the base case, where e′ = e + 1, the proof that Ce′(Bk′) extends Bk follows from Lemma 10. The
only way Ce′(Bk′) forms is if some honest replica votes for Bk′ using Step 3 in Figure 2. Honest replica votes
in epoch e′ only if it extends a highest certified block. By Lemma 10, there does not exist an equivocating
block certificate in epoch e and all honest replicas receive Ce(Bk) before entering epoch e + 1. Thus, no
honest will vote for a block that does not extend Bk.

Given that the statement is true for all epoch below e′, the proof that Ce′(Bk′) extends Bk follows from
the induction hypothesis because the only way such a block certificate forms is if some honest replica votes
for it. Since honest replicas vote in epoch e′ with a valid epoch e′−1 certificate and by induction hypothesis
on certificates of epoch e < e” < e′, Ce′(Bk′) must extend Bk.

Theorem 12 (Safety). Honest replicas do not commit conflicting blocks for any epoch e.

Proof. Suppose for the sake of contradiction two distinct blocks Bk and B′k are committed in epoch e.
Suppose Bk is committed as a result of Bk′ being directly committed in epoch e′ and B′k is committed as a
result of B′k′′ being directly committed in epoch e′′. Without loss of generality, assume k′ < k′′. Note that
all directly committed blocks are certified. By Lemma 11, B′k′′ extends Bk′ . Therefore, Bk = B′k.

Theorem 13 (Liveness). All honest replicas keep committing new blocks.

Proof. Each epoch lasts for 7∆ time. If the leader is Byzantine and does not propose any blocks or proposes
equivocating blocks, an epoch change will trigger and change the leader. Due to round robin leader election,
there will be an honest leader.

Consider an honest epoch e and its leader Le. Let t be the time when the first honest replica enters epoch
e. By Claim 6, all honest replicas enter epoch e by time t+ ∆. If Le has Ce−1(Bl), it proposes immediately,
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otherwise it waits for 2∆ to receive the highest ranked block certificate Ce′(Bl). In any case, Le proposes by
time t+ 3∆ which arrives all honest replicas by time t+ 4∆.

Since, leader Le is honest, it proposes a block Bk that extends highest ranked certificate Ce′(Bl), all
honest replicas will vote for it by time t+ 4∆. Thus, all honest replicas will receive Ce(Bk) by time t+ 5∆
and move to epoch e+ 1. Observe that epoch-timere ≥ 2∆ for all honest replicas by time t+ 5∆. Thus, all
honest replicas start their commit-timere. Since leader Le is honest, an epoch e equivocation does not exist.
Thus, all honest replicas will commit.

6 Evaluation

In this section, we compare the performance of our protocol with state-of-art synchronous protocol Sync Hot-
Stuff in both stable leader mode and rotating-leader mode.

6.1 Implementation Details and Methodology

Our implementation is an adaption of the open-source implementation of Sync HotStuff. We modify the
core consensus logic to our protocol and extend it to support leader rotation. We also extend Sync HotStuff
protocol to support leader rotation after each block proposal. In this modified version, the leader is rotated
every 5∆ time (2∆ wait for the next leader before proposing in the new epoch, 2∆ time to commit a block
and 1∆ wait during epoch-change.)

Each block consists of a batch of client commands. Each command contains a unique command identifier
and an associated payload. The number of commands in a block determines its batch size. The throughput
and latency results were measured from the perspective of external clients that run on separate machines
from that of the replicas. The clients broadcast a configurable number of commands to every replica at
certain configurable time interval. In all of our experiments, we ensure that the performance of replicas are
not limited by lack of client commands.
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Figure 3: Throughput vs. latency at varying batch sizes and payload at ∆ = 50ms and f = 1.

Experimental Setup. All our replicas and clients were installed on Amazon EC2 c5.2xlarge instances.
Each instance has 8 vCPUs supported by Intel Xeon Platinum 8000 processors with maximum network
bandwidth of upto 10Gbps. The network latency between two machines is measured to be less than 1ms.
We used secp256k1 for digital signatures in votes and a quorum certificate consists of an array of f + 1
signatures.

Baselines. We make comparisons with the state-of-the-art synchronous protocol (Sync HotStuff) in two
modes: (i) Sync HotStuff with a stable leader which is the default protocol, and (ii) Sync HotStuff with
rotating-leaders with each leader making one block proposal per epoch. In general, stable leader protocols
have better performance in terms of throughput. For fair comparision with our rotating-leader protocol,
we also compare against a rotating-leader version of Sync HotStuff protocol where a new leader proposes a
block every 5∆ time.
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6.2 Basic Performance

We first evaluate the basic performance of our protocol when tolerating f = 1 fault at ∆ = 50ms. We
measure the observed throughput (i.e., number of committed commands per second) and the end-to-end
latency for clients. In our first experiment (Figure 3a), each command has a zero-byte payload and we vary
batch size at different values: 100, 400, and 800 as represented by the three lines in the graph.

Each point in the graph represents the measured throughput and latency for a run with a given load
sent by clients. The load is increased by sending more number of commands in a given time interval. As
seen in the graph, the throughput increases with increasing load without increasing latency upto a certain
point before reaching saturation. After saturation, the latency increases while the throughput either remains
consistent or slightly degrades. We observe that the throughput is maximum at around 113 Kops/sec when
the batch size is 400 with a latency of around 107ms. We set the batch size to be 400 for our following
experiments.

In our second experiment (Figure 3b), we vary the command request/response payload at different values
in bytes 0/0, 128/128 and 1024/1024 with a fixed batch size of 400. We observe that as the payload size
increases, the throughput, measured in number of commands, decreases. We also observe a marginal drop
in latency with increasing payload.
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Figure 4: Performance as function of faults at ∆ = 50ms, optimal batch size, and 0/0 payload.

6.3 Scalability and Comparison with Prior Work

Next, we evaluate our protocol scales as the number of replicas increase. We compare our protocol against
standard Sync HotStuff (Sync-HS) and rotating-leader version of Sync HotStuff (Sync-HS-R). First, we
evaluate the protocol performance with zero-payload commands to understand the raw overhead incurred by
the underlying consensus mechanism at different values of f (Figure 4). Then, we study how the protocols
perform at a higher payload of 1024/2024 (Figure 5). We use a batch size of 400 and ∆ of 50ms for both
these experiments. For Sync-HS-R, we use a batch size of 2000. Each data point in the graphs represent the
throughput and latency at the saturation point without overloading the replicas.

Comparison with Sync HotStuff. Figures 4 and 5 compares the throughput and latency of Sync Hotstuff
with our protocol at two different payloads: 0/0 and 1024/1024. We observe the latency of the our protocol is
similar to Sync HotStuff as both protocols have 2∆ commit latency. However, Sync HotStuff has much better
throughput compared to our protocol. This is due to following reasons: (i) the performance of Sync HotStuff
depends on the f+1 fastest replicas in the system, (ii) being a stable-leader protocol, the leader can schedule
block proposals as soon as sufficient commands to form a block are available. In contrast, the performance
of our protocol is bottlenecked due to following reasons: (i) the performance depends on the slowest replica
in the system due to round-robin leader rotation (ii) a leader can only schedule a block proposal after it
has been elected as a leader, and (iii) since commands arrive in a different order at different replicas, an
additional processing is required to filter out proposed commands (the additional processing incur around
150µs). Although, the stable-leader Sync HotStuff provides better throughput, it is worth to note the stable-
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Figure 5: Performance as function of faults at ∆ = 50ms, optimal batch size, and 1024/1024 payload.

leader approach does not provide fairness and censorship resistance. Next, we compare our protocol against
Sync HotStuff with leader rotation after each block proposal which provides better fairness and censorship
resistance.
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Figure 6: Latency of Sync HotStuff with
leader rotation at varying batch sizes at
∆ = 50ms and f = 1.

Comparison with Sync HotStuff with leader rotation.
In Sync HotStuff with leader rotation, a leader proposes a block
every 5∆ time i.e., every 250ms at ∆ = 50ms. Thus, the
throughput of the protocol is essentially 4 times the proposal
batch size. We first perform an experiment (Figure 6) to find
a batch size for which the latency does not adversely worsen.
We observe that at the batch size of 2000, the latency is similar
to the latency at batch size of 400. At higher batch sizes, the
latency of the protocol worsens as can be seen in the figure.
For other experiments (Figures 4 and Figure 5), we set the
batch size to be 2000; thus the throughput of the protocol was
always 8000. The latency of the protocol is also very high at
around 400ms. This is because the leader proposes a block
every 5∆ while clients sent commands much earlier. Since, our
protocol supports responsive leader rotation, the next leader
can propose as soon it receive a certificate for previous block. Thus, our protocol performs much better
compared to Sync HotStuff with leader rotation in terms of latency and throughput.

7 Related Work

There has been a long line of work in designing efficient BFT SMR protocol [10, 8, 24, 20, 4, 3, 2, 24, 5]. Most
of these BFT SMR solutions [2, 3, 24] focus in increasing the performance of the system during steady state
and hence follow a stable-leader paradigm. Our work focuses in improving the performance of system while
rotating-leaders every epoch as rotating-leader protocol provide better fairness and censorship resistance
compared to stable leader protocols. We review the most recent and closely related works below. Compared
to all of these protocol, our work commits in 2∆ time when the leaders are honest and the new leaders can
propose responsively in O(δ) time. In addition, we do not require optimistic conditions to change leaders
responsively.

The protocols due to PiLi [10] and Streamlet [8] provide BFT SMR protocols that change leaders after
every epoch. Their leader selection is randomized. Both of these protocol assume lock-step execution in
epochs. In PiLi, each epoch lasts for O(δ) (resp. 5∆) under optimistic (resp. synchronous) conditions. PiLi
commits 5 blocks after 13 consecutive honest epochs. PiLi has a responsive (resp. synchronous) latency of
at least 16δ-26δ (resp. 40∆-65∆). Streamlet commits a single blocks after 6 consecutive honest epochs with
each epoch taking 2∆ time. However, under f < n/2 corruption, getting 6 or 13 consecutive honest epochs
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is extremely unlikely and these protocols may never progress. In contrast, our protocol requires a single
honest epoch to make progress.

The protocols due to OptSync [24] and Hybrid-BFT [20] provide rotating-leader BFT SMR protocols.
However, they change leaders responsively only during optimistic conditions. During normal conditions when
f < n/2 Byzantine faults are present, these protocol wait for at least 7∆ in an epoch before moving to the
next leader even when there is a sequence of honest leaders. With a sequence of honest leaders, our protocol
can progress through epochs in O(δ) time despite tolerating f < n/2 Byzantine faults.

Apollo [4] provides a rotating-leader BFT SMR protocol. In their protocol, the leader is rotating after
every proposal in δ time and the proposed blocks are committed after f+1 epochs irrespective of whether the
leader is honest or Byzantine. If all the leaders in the next f + 1 epochs are honest, their protocol commits
with a latency of (f + 1)δ. However, when f = O(n), even in the good-case O(f) out of the next f + 1
leaders may be Byzantine, thus yielding a latency of O(f∆) even when messages between honest parties are
instantaneous. Thus, in the good-case, they fail to satisfy the first condition (latency of a single-slot) of our
lower bound.

RandPiper [5] also provides a rotating-leader BFT SMR protocol. In their protocol, they present a BFT
SMR protocol that achieve quadratic communication without using threshold signatures. However, it incurs
11∆ in every epoch and cannot progress responsively.

A recent work Internet Computer Consensus [6] provides a rotating leader BFT SMR in partially syn-
chronous model. Similar to our work, their protocol also progresses to higher epoch as soon as a certificate
is formed in the current epoch while the committing a block in the hindsight only when sufficient parties
acknowledge the block certificate. In our protocol, we commit only when no equivocation is detected for 2∆
time after receiving a block certificate. In both cases, the protocols check to see if the block certificate is
unique and sufficient parties have received the block certificate.
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