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Abstract—Due to the advent of quantum computers, the security
of existing public-key cryptography is threatened since quantum
computers are expected to be able to solve the underlying
mathematical problems efficiently. Hence, quantum resistant
alternatives are required. Consequently, about 70 post-quantum
scheme candidates were submitted to the National Institute of
Standards and Technology (NIST) standardization effort. One
candidate is the gTESLA signature scheme. We present an effi-
cient shared-memory parallelization of gTESLA’s core routines,
analyze the speedup in-depth and show that it can compete with
the two most commonly used signature schemes RSA and ECDSA
which are quantum-vulnerable. The speed is further increased
by semi-automatic tuning of gTESLA’s configuration parameters
based on results of multi-parameter performance models. We
show how to considerably increase gTESLA’s usability through
the Java Native Interface (JNI) without performance penalty.
The analysis on x86 and ARM architecture employing three
operating systems demonstrates the achieved portability. The
enhanced performance, its straight forward usability and the
high portability of our implementation make it a quantum-safe
replacement for the state-of-the-art schemes.

Index Terms—SMP parallelization, performance modeling, soft-
ware engineering, security, quantum resistance

I. INTRODUCTION

Cryptography and, in particular, public-key cryptography
(PKC) is indispensable for our everyday life. The security of
currently used public-key schemes is based on the hardness of
two mathematical problems: the factorization problem and the
discrete logarithm problem. While these schemes withstand
classical cryptanalysis, it is known since the mid-1990s that
with Shor’s algorithm running on a quantum computer, both
the factorization problem and the discrete logarithm problem
can be solved efficiently [1]. Hence, we need replacements
for currently used PKC as soon as large quantum computers
exist. These replacements are intended to be used on classical
computers and hence have to provide the same function-
ality as classical PKC, but rely on mathematical problems
which resist attacks with quantum computers. Cryptography
that is based on mathematical problems which are assumed
to resist those attacks is called post-quantum cryptography
(PQC). Several types of PQC exist. The five most important
types are lattice-based (e.g. Dilithium, Falcon), hash-based
(e.g. SPHINCS™), isogeny-based (e.g. Sike), code-based (e.g.
FrodoKEM, ROLLO), and multivariate cryptography (e.g.
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GeMSS, LUOV). For further information about the listed
examples and more schemes are available online [2].

Although no one knows when powerful enough quantum com-
puters will be available, many estimates range between 10 and
20 years from now, e.g., [3]. Hence, the era in which we have
to use PQC is approaching, and we have to start the transition
from classical cryptography to PQC immediately. One avenue
to promote the use of PQC is the standardization of post-
quantum algorithms, since the standardization of cryptography
makes the adoption of new schemes easier for practitioners.
The best known PQC standardization effort is taking place at
the US-American National Institute of Standards and Technol-
ogy (NIST) [4].

The two most fundamental cryptographic primitives are en-
cryption and digital signature schemes. While encryption is
used to ensure confidentiality, digital signatures are used
to provide authenticity and data integrity. As such, digital
signatures protect, e.g., secure software updates, also in the
context of high High Performance Computing (HPC). Hence,
the research on post-quantum signatures is very active and
many post-quantum signatures have been submitted to the
NIST PQC standardization process. Most of these signature
schemes belong to the family of lattice-based cryptography.
One of these schemes is gTESLA [5], which made it to the
second round of the standardization process. Building upon
several predecessors, the scheme gTESLA combines the most
relevant features of these and, hence, has several advantages,
as compared to other schemes: the instantiations of gTESLA
are provably secure. Despite this strong security argument,
gTESLA is comparably efficient.

The main contributions of this work are:

e We present a parallelization of the core routines of
gTESLA to increase its efficiency.

« We considerably increase gTESLA’s usability and porta-
bility by employing Java JNI which are demonstrated
with tests on different systems.

« We further reduce gTESLA’s runtimes by semi-automatic
parameter tuning with Extra-P.



o Altogether, our implementation of gTESLA can be a
quantum-safe replacement for state-of-the-art schemes.

II. qTESLA SIGNATURE SCHEME

Digital signature schemes consist of three algorithms: key
generation, signing, and verification.

The lattice-based digital signature scheme gTESLA is de-
signed to be easy to implement. A reference implementation
is available [6]. The fact that Gaussian sampling - a sub-
routine commonly necessary for lattice-based cryptographic
algorithms - is only used for key generation, simplifies, in
particular, the signing and verification procedures. It also
facilitates implementations that are protected against physical
attacks, i.e., side channel and fault attacks. Moreover, the
scheme supports constant-time implementations, which defeat,
for instance, certain power analysis and cache attacks. The
security of gTESLA is proven in the quantum random oracle
model (QROM). This model explicitly considers quantum
adversaries. The authors of gTESLA propose two parameter
sets, gTESLA-p—-I and qTESLA-p-III, cf. [5, Table 2],
which are chosen according to the requirements of the NIST
PQC standardization process [4], and which achieve around
139 and 279 quantum bit hardness, respectively. As their
names suggest, these parameter sets correspond to NIST’s
security categories 1 and 3. An important characteristic of
these parameters is that they are provably secure, i.e., as long
as the underlying mathematical problem provides a certain bit
hardness, the instantiation of the scheme achieves the declared
bit security. While this is a strong security argument, usually
provably secure instantiations of cryptographic schemes are
less efficient than instantiations that are not provably secure.
In the rest of this paper, we always refer to the strongest
parameter set, i.e., gTESLA-p-III.

The security of gTESLA is based on the hardness of a
variant of the learning with errors (LWE) problem. The LWE
problem is a computational problem which finds a linear
function given so-called samples which consist of slightly
perturbed outputs of the function, i.e., some noise has been
added to the correct outputs. It can be shown that the LWE
problem is as hard as certain worst-case lattice problems,
which makes it an attractive computational problem for post-
quantum public-key cryptography. While the LWE problem
originally is defined over the ring of integers modulo some g,
for efficiency reasons nowadays usually the ring-LWE variant
is used, which is the LWE problem working in polynomial
rings over finite fields [7]. gTESLA is also based on ring-
LWE. More concretely, the security of gTESLA is based on
the so-called decisional R-LWE problem, which consists in
distinguishing whether a given sample is an R-LWE sample or
a sample from a uniform distribution. Thus, an adversary who
can forge gTESLA signatures can also solve the decisional
R-LWE problem.

Since qTESLA works in polynomial rings over finite fields
and polynomial multiplication over a finite field is one of its

fundamental operations, in both the key generation algorithm
(cf. Algorithm 1) and in the signing procedure (cf. Algorithm
2) univariate polynomials of a predefined degree have to be
sampled. Two kinds of polynomials are used. The polynomials
sampled by GenA have uniform random integer coefficients
(cf. Algorithm 1 line 4) and Algorithm 2 line 5). The
polynomials sampled by using GaussSampler have discrete
Gaussian distributed integer coefficients (cf. Algorithm 1 lines
6 -11). They are part of the secret key.

Algorithm 1 Key Generation. Taken from [5].

Require: -

Ensure: key pair (sk,pk) with
(s,e1,...,ex,seed,, seedy, g)
pk = (t1,...,tr,seed,)

secret
and

key sk =
public key

1: counter 1

2: pre-seed g {0,1}"

: seed,,seed,, ,...,seed, ,seed,, seed, —
PRF; (pre-seed)

4 ap,...,ar < GenA(seed,)

5: do

6: s < GaussSampler(seeds, counter)

7

8

9

(95}

: counter <— counter 4 1
: while checkS(s) # 0
fori=1,...,k do
10: do
11 e; + GaussSampler(seed,,, counter)
12: counter ¢<— counter 4 1
13: while checkE(e;) # 0
14: t; < a;s+e; mod ¢
15: end for
16: g < G(t1,...,tx)
17: sk < (s,e1,...,ex,seed,, seed,, g)
18: pk < (t1,...,tx,seed,)
19: return sk, pk

In this work, we are concerned with optimizing the efficiency
of gTESLA. We target, in particular, program loops during key
generation (cf. Algorithm 1 lines 5 -8 / 10 - 13) and signing
(cf. Algorithm 2 lines 4-20).

The loop in lines 5 - 8 in Algorithm 1 aims at generating a
secret polynomial s with Gaussian distributed coefficients that
has an additional property that is needed for the security of
the scheme. This requirement is checked with the checkS
function (cf. [5, Algorithm 2]). The check bounds the co-
efficients of the polynomial s and thereby the key space.
It ensures 2?21 max;(s) < Lg for a parameter Lg. Also
in the second loop during key generation, polynomials with
Gaussian distributed coefficients are sampled as well as an
additional property which is related to the correctness of the
signature scheme. It is checked with the checkE function
(cf. [5, Algorithm 1]). The check bounds the coefficients of the
error polynomials e; which are part of the R-LWE samples.
The check ensures 2?21 max;(e) < Lg for a parameter L.
Again, this bounds the key space of gTESLA.



Algorithm 2 gTESLA’s Signature Generation. Taken from [5].
Require: message m, and

(s,e1,...,ex,seedq, seedy, g)
Ensure: signature (z,c’)

secret key sk =

. counter < 1

:r+g {0,1}"

: rand < PRF2(seedy, r, G(m))

: y < ySampler(rand, counter)

ai,...,ar < GenA(seed,)

for:=1,...,k do
Vi = a4y modiq

: end for

c + H(vi,...,vg, G(m),g)

. ¢ = {pos_list, sign_list} + Enc(c)

P24 y+sc

s if z % R[B—S] then

counter <— counter 4 1

Restart at step 4

: end if

cfori=1,...,k do

wW; < V; — €;C modiq

if | [wil, o > 277" = BV willoc > [q/2) — E then
counter <— counter + 1
Restart at step 4

end if

: end for

: return (z,c’)

DO N DD DD = = b e e e e e e
ROV IINRELN 0

In the signing procedure, the signature is computed within
the loop. Again, two requirements regarding security and
correctness have to be fulfilled, and if one of them is not
fulfilled, the signature generation starts again in line 4. The
security check is computed in line 12 of Algorithm 2. It
ensures that the coefficients of a part of the signature come
from a restricted set. The correctness check is computed in
line 18 of Algorithm 2.

III. RELATED WORK

In the realm of post-quantum cryptography, many encryption
and signature schemes have been proposed over the last
few decades. Lattice-based cryptographic schemes make up
the largest part of these proposals. Two lattice-based digital
signature schemes - Dilithium [8] and FALCON [9] - are,
together with gTESLA, especially relevant. As required by
NIST, reference implementations for both schemes are avail-
able online [8], [9].

The advantage of Dilithium, as compared to gTESLA, is
good, balanced efficiency with respect to space and time.
However, the parameters of Dilithium are not provably se-
cure and gTESLA promises to offer better protection against
physical attacks than Dilithium. Dilithium proposes parameters
according to NIST’s security categories 1, 2, and 3. FALCON
proposes three parameter sets which cover all five security
categories from NIST.

Several basic building blocks of gTESLA were further inves-
tigated in related work.

For example, Discrete Gaussian Sampling as employed in
gTESLA’s key generation routine and as required in nearly
all lattice-based security solutions [10]. Micciancio and Wal-
ter [10] presented algorithmic variants which are on the
one hand generic, i.e., their parameter sets are configurable.
On the other hand, they are more resilient to several kinds
of side-channel attacks since a constant time implementa-
tion is possible. In recent work [11], Zhao et al. propose
another scheme for Gaussian Sampling which also allows
constant-time implementation while being compact. It is based
on Rényi divergence and the polynomial approximation of
transcendental functions. A branch of gTESLA was already
employed as a use-case to demonstrate the applicability of
this sampler.

A hotspot in gTESLA is the sparse polynomial multiplication
which is of complexity O(n logn) with n being a bound on
the largest degree. Cole and Hariharan presented a nearly opti-
mal multiplication algorithm in the case that all occurring co-
efficients are positive in 2002 [12]. Recently, Nakos proposed
a multiplication algorithm [13] that removes this limitation and
includes non-positive coefficients. Its complexity is near-linear
in the size of the sum of the input and the output.

Enhancements in those building blocks are complementary to
the optimizations presented in this paper and, hence, can be
integrated supplementary.

IV. IMPLEMENTATION AND OPTIMIZATION

All different versions of our gTESLA implementations ex-
plained in this section are available at https://github.com/
tudasc/qTESLA.

A. Parallelization approach in C

Here, we describe the modifications applied to the original
gTESLA code [14] and justify our decisions. The major
challenge is that all routines already run very fast so that
parallelization overhead may not be neglected.

a) Key generation: As explained in Section II, key generation
is composed of two successive polynomial sampling routines
where the first one samples five error polynomials and the
second one the secret polynomial (cf. Algorithm 1).

The abortion of the first while-loop checkE is controlled by
parameter L and checkS by Lg respectively. Code profiling
reveals that the second while-loop always succeeds in very few
attempts and only consumes a very small portion of the overall
key generation time. Hence, the overhead of spawning the par-
allelization is higher than the resulting speedup. Consequently,
we decided to execute the for-loop in line 9 in parallel and to
distribute the random seeds across the different threads.

b) Signature generation: An abstract C-like sign algorithm is
given in Listing 1.

generateRandmonessOfSecretKey (chars skey, [...]);
polynomial a = generatePolynomalFromKey (chars skey);
randomness r = randomnessByHashingMessage (chars me);
int seed = 0;

while (true) {
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polynomial y = sampleY (r, ++seed);
polynomial ytt = numberTheoreticTransformNTT (y);
polynomial v = multiplciation(a, ytt);

hashing , encoding
if (!testRejectionCriteria())
polynimial arithmetic

continue ;

if (!testCorrectness()) continue;
break;
1

return encodeSignature ();

Listing 1. Abstracted signature generation algorithm

The while-loop randomly samples the polynomial besides
deterministic operations that check if the polynomial can
be employed for signature generation. We parallelize it by
first executing all deterministic processes at function entry.
Afterward, a parallel region is spawned which includes the
while-loop and shares information about the random seed seed
and the randomness. Each thread executes iterations of the while-
loop and an asynchronous shared flag is employed to notify
the other threads about termination in the case of success
by another thread. If a thread succeeds, all others cancel
their work after the current iteration or directly before the
testRejectionCriteria ()-call and perform an early exit. Profiling
revealed that this point splits the workload of the loop in about
equal parts. After the implicit barrier of the parallel region, the
master thread takes the polynomials found by the last thread
that sets the shared flag and encodes the signature.
¢) Signature verification: In contrast to the two generation
algorithms, the verification does not include random elements.
An abstracted summary is given by Listing 2.

decodeSignature (charx sign);
if (!testConditionl)
return false;

decodePublicKey (chars= pkey);
polynomial arithmetic

for (int i=0; i < 5; i++) {
polynomial arithmetic with
the error polynomials
1
// ... do shaking and hashing
if (! checkIfValuesMatchSignature ())
return false;

Listing 2. Abstracted verification algorithm of gTESLA

Our parallelization strategy is to distribute the work of the
for-loop between the threads employed.

B. Java version

For comparison reasons, we consider a pre-existing gTESLA
implementation from https://github.com/uel7apyt/qTESLA
which is also part of the Bouncy Castle library [15]. The code
tries to translate the C reference implementation directly. How-
ever, the available version works with a deprecated parameter
set which was updated in [5, Table 1]. This also influences
the efficiently implemented encode and decode routines for the

signatures and the public and private keys. These are based on
bit operations which depend on the parameter set. Hence, we
updated all parameters within the code, re-implemented the
encode and decode with the appropriate bit arithmetic, and
unified the mapping of C to Java data types. We validated
the correctness by exchanging and signing/verifying messages
between the C reference version and our new Java implemen-
tation. We also tried to apply similar parallelization strategies
as employed for C, but the overhead of Java Threads is too
high and employing more than one thread always reduces the
overall speed. Fully implementing gTESLA in a programming
language focused on parallelization like Go is out of the scope
of this paper.

C. JNI and JCA

Since the focus of this work is not only to improve the
performance of gTESLA but also to enhance its usability, we
also employ the Java Native Interface (JNI) [16], allowing
to access the C-code as a shared library by Java code. Our
interface provides all required methods to practically employ
gTESLA as a stand-alone application or as a library. The
keys, the signatures and the messages are passed as Java
byte[] and automatically converted to the required format.
This avoids the former usage of pointers and their explicit
allocation with the appropriate size and their manual deletion.
Hence, the usage is now less error prone and memory leaks
are prevented. Sophisticated error-handling is also integrated
through the novel interface. Additionally, the parameters of the
underlying gTESLA implementation can be queried which is
important if they change in the future. Furthermore, the degree
of parallelism to employ can be set easily without employing
environment variables.

To make the usage of gTESLA more straightforward, we em-
ploy the Java Cryptography Architecture (JCA) and implement
gTESLA as a Cryptographic Service Provider (CSP). In that
way, using gTESLA is realizable with only a few lines of Java
code which is demonstrated in Listing 3.

byte[] message = createRandomMessage (length);
// Generate public and private key
KeyPairGenerator keyGenerator =
KeyPairGenerator. getInstance ("qTESLA-P3");
KeyPair kp = keyGenerator. generateKeyPair ();

// Sign the message

Signature sig = Signature.getlnstance ("qTESLA-P3");
sig.initSign (kp. getPrivate ());

sig.update (message);

byte[] signature = sig.sign();

// Verify the signature
sig.initVerify (kp. getPublic ());
sig.update (message);

if (!sig.verify(signature))

System.err.printf ( "Signature not verified!");

Listing 3. Using gTESLA as CSP

The JCA and the CSPs are in widespread use and their
interface is well documented. Consequently, users already
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familiar with the concepts can directly employ PQC or adapt
existing JCA-code to its usage by just changing a few lines of
code. Beginners is provided an easy entry point by the existing
documentation.

D. Security Implications

We are not aware of any security vulnerabilities introduced by
the parallelization or the JNI/CSP usage.

JNI is the de facto standard for addressing C code with Java
and is used for decades for performant integration of native
code into Java applications [17]. Additionally, it avoids the
usage of Java third party tools and only employs the core
functionalities of Java which have been proven to be very
safe [18]. Potential security vulnerabilities, hence, would not
only affect gTESLA, but any code that is implemented in C
and addressed with Java JNI. To the best of our knowledge,
such vulnerabilities are not known. The same applies to the
CSP interface and all signature schemes implemented with it,
respectively.

Regarding physical attacks, the best case from an attacker’s
point of view is to isolate a single thread and get side channel
information for it, e.g., power or timing information. Then,
however, the attacker has only as much information as he could
gain from a serial implementation. Therefore, we are confi-
dent that our parallelization does not enable additional attack
vectors. On the contrary, we believe that the parallelization
improves the physical security, since significantly more effort
is required from an attacker to get side channel information
of a single thread.

V. PARAMETER OPTIMIZATION

We also investigated the parameter set of our parallelized
gTESLA C version. To that end, we employed a special
version of gTESLA which allows to modify the parameters
Lr and Lg. As explained in Section II, they influence the
success rate for the sampling procedures in the key and the
signature generation process. The dependent parameters of L
and Lg are calculated by a SageMath script before compiling
gTESLA.

To optimize the parameter configuration, we performed auto-
mated runs profiled with Score-P [19] which vary the param-
eters in a step size of 4 in the range 880 <= Lg = Lp < 940
and create five measurements for each configuration. The
whole key and signature generation and the verification func-
tion are instrumented. The measurements are stored as cubex
files. A tool written in C++ extracts the runtime of the slowest
thread for each instrumented function as indicator for its
performance. In that way, we directly take our parallelization
for modeling into account. The results are exported as json
files in a special format for the performance modeling tool
Extra-P [20].

Those json files can be used as input for Extra-P which is able
to generate models that relate the runtime (i.e. also the runtime
of our slowest thread) to both input parameters Ly and Lg.

Following the model and visual inspection of the measurement
points, increasing Lg and Lg decreases the runtime of key
generation in the investigated range while decreasing them
considerably increases the runtime.

For the signature generation, the model and the points show
that increasing the parameter Lg will increase the sum of the
runtime of all threads in the parallel region but the runtime of
the slowest thread slightly decreases in the range 920 < Lg =
Lg <930.

Since both parameters do not directly influence the verifica-
tion, Extra-P can not create a consistent model and the points
do not have a recognizable pattern.

From the above we deliver the prediction that setting Ly =
Lg = 929 results in a faster signature scheme.

VI. EVALUATION

Here, we perform an in-depth analysis of our gTESLA imple-
mentations with different compilers and operating systems. We
compare its performance to RSA and ECDSA as the state-of-
the-art schemes. Since gTESLA-p-III has a bit security of 160
bit, we employ RSA-6144 and ECDSA with the SECP384R1 -
curve which provide a comparable security level on classical
hardware.

A. Methodology

a) Test systems: The x64 computer employed has an AMD
Ryzen 9 3900, with 12 cores (24 threads) running at a base
clock of 3.1 GHz and a turbo clock of up to 4.3 GHz. We in-
tentionally keep turbo clock and simultaneous multi-threading
(SMT) active to simulate real world situations although this
may cause variations in the measurements. The system has 32
GB of main memory. It runs Windows 10 (Build 1909) and
CentOS 7.2. For Windows, we employ the Microsoft Visual
Studio 2019 C compiler and for Linux GCC 10.1 and Clang
10.0. Oracle javac is used in Windows (1.8.0_221-b11) and
Linux (1.8.0_262). The OpenSSL library in version 1.1.1 is
used for both systems compiled with its standard CMAKE
Release x64 build.

The ARMVS-A system is a Xiaomi Redmi 8 Pro with a
Mediatek Helio G90T SoC (2x 2.05GHz Cortex-A76 and 6x
2.00GHz Cortex-A55) and 6 GB of RAM. Android 10 is
installed. The Android applications are compiled with Android
Studio 4.0 with latest updates from 22th July 2020. The
OpenSSL library has version 1.1.1.

For the visualization of the runtime measurements, we employ
box plots since all schemes are based on random elements and
we want to catch the statistical behavior. Additionally, we want
to catch the variations induced by the usage of turbo clock
and SMT. The colored boxes represent the values between the
25- and 75-percentile (@25 and (Q75) meaning that 50% of the
measurements lie in that range. The lines below and above the
boxes represent the whiskers whose ends give the lowest and
highest measurement point, respectively, which lies within 1.5-



(Q75 — Q25) of the lower and upper quartile, respectively. The
median ()50 is shown by the black horizontal lines. Outlying
measurement points are drawn as circles.

For each box of the x64 diagrams we ran 15 iterations of our
benchmarks. During this benchmark, 50 random messages of
length 280 (maximum length for twitter messages) are created
and 50 random key pairs are generated. Each message is signed
50 times with the same key and 50 times verified. For ARM,
we perform 10 iterations with 25 keys and 25 sign/verify-
operations for each.

The median is the employed metric when comparing the times.
We consider runtimes as stable if the box plots are of small
extent and no outliers far the median occur.

B. Evaluation of the runtime on Windows and Linux

Here, we compare the performance of gTESLA on two oper-
ating systems and with three compilers.

a) Performance comparison for C: First, we compare the
performance of the three schemes when they are called within
an executable without convenient interfaces for the users. We
also want to investigate the influence of our parallelization on
the performance compared to the baseline performance of the
reference code. The results are summarized in Figure 1.
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Fig. 1. Single-threaded runtime on Linux (top) and Windows (bottom) of

C code. Difference to the reference implementation given in percent at the
respective box.

The upper part of Figure 1 shows the runtime obtained on
Linux. The key generation (KeyGen) shows that the Clang
compiler (-cla suffix) results in slightly faster runtimes com-
pared compiling with GCC (-gce suffix). ECDSA, as expected,

generates the most keys per second. gTESLA lies in the same
order of magnitude and is about two times slower. RSA, on
the other hand, is considerably slower. Its median for the
key generation is 0.45 ops/s. For all schemes considered, the
runtimes are relatively stable and just a few outliers with
acceptable distance to the whiskers occur.

The situation in Windows is similar to Linux. However,
ECDSA is about 25 % faster and gTESLA about 25 % slower.
This makes ECDSA three times faster than gqTESLA. The
small box of RSA has median 0.2 and it is highlighted by
a Cross.

The middle part shows the signature generation (Sign).
gTESLA and ECDSA again perform in the same order of
magnitude with the Clang version being 2.5 times slower. RSA
is 8 times slower than gTESLA and 14.5 times slower than
ECDSA. All runtimes are stable. Under Windows the behavior
is identical with the runtimes being the same for RSA, ECDSA
and gTESLA compared to the Clang version.

Finally, the right side of Figure 1 shows the signature verifica-
tion (Verify). In Linux, all schemes perform in the same order
of magnitude, with RSA being three times faster than gTESLA
and more than six times faster than ECDSA. In Windows,
gTESLA and ECDSA have identical runtimes compared to
the Linux equivalents, while RSA is 30 % faster.

In summary, we see that gTESLA is already competitive
with the state-of-the-art signature schemes. Additionally, we
see only a minor influence of compiler and platform. In
general, Clang performs better than GCC and the Windows
versions deliver comparable performance. The difference to
the baseline reference version is very small. In most cases the
re-arrangement of the code and the added pragmas even lead
to slightly faster execution. Hence, we neglect the reference
version in the following experiments.

b) Scaling behavior: Figure 2 summarizes the parallel scaling
behavior of our new version.

In Linux, the KeyGen becomes about 1.7 times faster when
employing two threads for both compilers. This increase
is smaller for the MVC which is 1.4 times. When further
increasing the number of threads, the performance increases
slightly for Clang and MVC. GCC saturates for three threads.
This behavior is not surprising since only five iterations of
a loop are parallelized within KeyGen. When comparing the
fastest configurations per OS, Linux (Clang, 4 threads) is 1.7
times faster than Windows (4 threads).

Considering Sign, Clang and GCC profit from employing three
threads and increase their performance by a factor of 1.9 and
1.7, respectively. The MVC speeds up by a factor of 1.5 when
employing two threads, has the same performance for three
threads and becomes slower for four threads. In the case of
sign, the fastest Linux configuration (Clang, 4 threads) is 1.1
times faster than Windows (MVC, 3 threads).
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Fig. 2. Scaling behavior on different platforms. GCC/Clang are used under Linux, Microsoft Visual C under Windows.

For Verify, the compilers gain a speedup for three threads, with
a factor of 1.5 for GCC, 1.4 for Clang, and 1.3 for MVC. Four
threads do not improve the performance, as a loop with just
five iterations is parallelized.

We sum up that employing parallelism with an adjusted
number of threads considerably improves gTESLA’s perfor-
mance. The parallelism is only employed in appropriate parts,
while the measurements consider the overall functions. In
the respective parts, the parallel efficiency is higher and the
additional consume of hardware resources is justified.

c) JCA/CSP evaluation: Here, we present the performance
results when our optimized C implementation is wrapped
behind the Java Cryptography Architecture (JCA). To that
end, we choose the fastest C versions per operation system,
i.e., Clang (4 threads) and MVC (3 threads) as reference.
We also evaluate our Java version of gTESLA and employ
the JCA-JRE implementations of RSA-6144 and ECDSA for
comparison in Figure 3.

The most important point is that the performance of gTESLA
is not significantly influenced by JNI and JCA. The worst case
is Verify in Linux which is about 10 % slower than the straight
C code. For all other cases, this deviation is smaller than 5 %.
This demonstrates that the performance of the optimized C
implementation is efficiently combined with the useability and
flexibility of the JCA.

Comparing our C and our Java versions shows that for all three
tasks the C version performs considerably better than the Java
code. KeyGen in Linux is 6.5 times faster, while the factor
is 2.6 in Windows. For Sign, C is faster by a factor of 4.1
and 1.8, respectively, while for Verify C is faster by a factor
of 3.1 and 6.8. In general, the gTESLA Java code runs faster
on Windows, in particular, for Sign which is nearly twice as
fast.

For RSA and ECDSA, we see the opposite behavior since
the runs under Linux deliver double the operations per sec-
ond compared to Windows. Concerning the practicability,
gqTESLA, and in particular the C version, can compete with the

standard schemes and offers the same interface, which allows
quick adoption.

d) Optimized parameter set: Figure 4 shows the evaluation
for the Clang version of gTESLA with optimized parameters
derived in Section V.

KeyGen is considerably faster in the single-threaded case (1.9
times faster) as well as when employing 4 threads (double as
fast), demonstrating the efficiency of the optimization.

For the Sign, we notice that the serial version becomes slightly
slower. This is a consequence of increasing parameters Lp
and Lg and is the expected behavior. However, we also see
that the parallel version is about 10 % faster which practically
validates the predictions drawn from Extra-P. In this case, we
move more work into the parallelized code, i.e., the chance
of being successful in a low number of iterations for the
sampling loop decreases and a parallelization pays off earlier.
By including the real runtime information, the modeler was
able to automatically take this fact into account.

The single-threaded Verify does not change its performance
at all. The parallelized version is slightly slower than the
original version likely due to side effects of the parameter
choice.

e) Results on Android: Finally, we also evaluated gTESLA on
an ARMv8-A device. Since Android also has support for JNI,
we can employ the same interface to the C code and compile
the C part with Android Studio which internally employs
Clang. ECDSA and RSA were again called from the OpenSSL
library which is compiled as a static library with the Android
Studio. The results are shown in Figure 5.

The C versions of all schemes in the upper part run consid-
erably slower on the x64 computer than on the ARMvS-A
device. We also see that gTESLA takes advantage of using 2
threads. For the Sign this nearly doubles the performance. The
serial execution has the same speed as ECDSA for KeyGen
and Sign, while the multi-threaded version is faster. For the
Verify gTESLA is faster than ECDSA at all. RSA-6144 works
very slow for all tasks.
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Fig. 3. Performance of JCA implementations of gTESLA in C and Java on Windows and Linux with the JCA versions of RSA and ECDSA.
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Fig. 4. Performance of original parallel and parameter optimized parallel
version compiled with Clang.

Finally, the lower part of Figure 5 compares the perfor-
mance of our Java implementation employing a logarithmic
y-axis. For KeyGen, the Java gqTESLA only executes half
the operations per second than the C version (median 10.8
versus 24.5). However, for Sign the performance of the single-
threaded gTESLA Java version is nearly at par with the
parallel C implementation (median 34.4 versus 39.3). This
indicates that the C compiler fails to create efficient code for
the device. When verifying, the Java version is nearly four
times slower than the parallel C code (median 46.9 versus
168.65). The very fast processing of ECDSA demonstrates
that the functionality it depends on is efficiently realized in
the Android runtime environment and future research must
aim at optimizing gTESLA for ARM.

VII. CONCLUSION

We presented optimizations for the post-quantum signature
scheme gTESLA. Regarding performance, this includes the
parallelization of the three signature functions which are
sped up despite their inherent serial parts and their overall
short running times. Concerning usability and portability, we
showed how to use qTESLA in Java behind the JNI and
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Fig. 5. Runtime comparison for C (top) and Java (bottom) on ARM.

CSP interfaces. The performance on different architectures
with different compilers and operating systems demonstrates
that gTESLA competes with established signature schemes
when they provide the same security level on classical hard-
ware.

gqTESLA implementations will be integrated into the Cog-
niCrypt framework [21] to further increase its availability and
usability. CogniCrypt is an intelligent Eclipse plugin developed
within the DFG collaborative research center CROSSING at



TU Darmstadt. CogniCrypt provides a task-based code gener-
ation for developers on top of a state-of-the-art static analysis
to identify cryptography misuses. Due to its significance it
is an official Eclipse plug-in and is financially supported by
various companies.

We

will increase the serial performance of gTESLA by

tackling the hotspot of sparse polynomial multiplication by
replacing the implementation with more specialized algorithms
to make gTESLA even more competitive.
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