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Abstract. We argue that for all integers N ≥ 2 and g ≥ 1 there exist
“multiradical” isogeny formulae, that can be iteratively applied to com-
pute (Nk, . . . , Nk)-isogenies between principally polarized g-dimensional
abelian varieties, for any value of k ≥ 2. The formulae are complete:
each iteration involves the extraction of g(g + 1)/2 different Nth roots,
whence the epithet multiradical, and by varying which roots are chosen
one computes all Ng(g+1)/2 extensions to an (Nk, . . . , Nk)-isogeny of the
incoming (Nk−1, . . . , Nk−1)-isogeny. Our group-theoretic argumentation
is heuristic, but it is supported by concrete formulae for several promin-
ent families. As our main application, we illustrate the use of multiradical
isogenies by implementing a hash function from (3, 3)-isogenies between
Jacobians of superspecial genus-2 curves, showing that it outperforms its
(2, 2)-counterpart by an asymptotic factor ≈ 9 in terms of speed.

1 Introduction

In a previous joint work with Vercauteren [10], we introduced the concept of
radical isogenies between elliptic curves, which in low degree allow for a very fast
computation of isogeny chains over finite fields, e.g., of the type used in Charles,
Goren and Lauter’s hash function [12] and in the Couveignes–Rostovtsev–Stolbu-
nov key exchange protocol [14, 42] and its descendant CSIDH [11].

The central observation was that for any integer N ≥ 2 there exist explicit
formulae which, upon input of an elliptic curve E — say given in long Weierstrass
form — over a perfect field K with charK - N and a point P ∈ E of order
N , produce the coordinates of an order-N point P ′ ∈ E′ = E/〈P 〉 such that
the isogeny ϕ′ : E′ → E′/〈P ′〉 cyclically extends ϕ : E → E/〈P 〉. This, of
course, assumes that we have a defining equation for E′ at hand, such as the
one provided by Vélu [45]. Moreover, the formulae can be chosen to enjoy the
following properties.

(1) Radicality. The formulae are algebraic expressions in the coefficients of
E, the coordinates of P and a radical N

√
r1 , where r1 is itself an algebraic

expression in these coefficients and coordinates.

(2) Completeness. By varying the Nth root chosen, i.e., by scaling N
√
r1 with

powers of a primitive Nth root of unity ζN ∈ K, we obtain generators for all
N subgroups G′ ⊆ E′ of order N which are such that E′ → E′/G′ cyclically
extends ϕ.
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(3) Good reduction. The formulae are naturally defined over Z[1/N ], i.e., they
work over any perfect field K with charK - N .

(The last property is in fact conjectural [10, Conj. 1].) Concrete versions of our
radical isogeny formulae for N = 2, . . . , 13 can be found in the GitHub repository
that accompanies [10]. For the sake of illustration, we have included the details
of the case N = 5 in Section 4.

The current paper studies how radical isogenies generalize to principally po-
larized (p.p.) abelian varieties of any given dimension g ≥ 1. That is, we are
looking for formulae which, upon input of a g-dimensional p.p. abelian vari-
ety A over a perfect field K with charK - N and points P1, . . . , Pg ∈ A that
generate an (N, . . . , N)-subgroup1 G ⊆ A, produce the coordinates of points
P ′1, . . . , P

′
g ∈ A′ = A/G generating an (N, . . . , N)-subgroup G′ ⊆ A′ such that

the composition A→ A′ = A/G→ A′/G′ is an (N2, . . . , N2)-isogeny.
When aiming for universally applicable formulae, a major bottleneck is the

lack of an analogue of the long Weierstrass form for p.p. abelian varieties of
dimension g ≥ 2. That is, we do not know of a set of defining equations from
which every g-dimensional p.p. abelian variety A can be obtained by specializing
coefficients. Moreover, in practical applications, we are mostly interested in in-
stances of A that are described in a more implicit form, e.g., as the Jacobian of
some genus-g curve, or as a product of Jacobians of lower-genus curves. Things
are complicated further by the fact that the isogenous p.p. abelian variety A′

may be of a different type, e.g., if A is a Jacobian, then this may not be the case
for A′.

We therefore focus on smaller families, parametrized by the points s of some
quasi-affine set S. We assume to have algebraic formulae at our disposal which
can be evaluated at the coordinates of any point s ∈ S, each time producing
a g-dimensional p.p. abelian variety As together with points Ps,1, . . . , Ps,g that
generate an (N, . . . , N)-subgroup Gs ⊆ As. We furthermore assume that the
family comes equipped with Vélu-like formulae providing an explicit description
of the isogenous p.p. abelian variety A′s = As/Gs. Several examples of such
families can be found in Section 4 and Section 5.

Conjecture 1. Under the above assumptions, there always exist accompanying
formulae which, when evaluated at s, produce points P ′s,1, . . . , P

′
s,g ∈ A′s gener-

ating a subgroup G′s ⊆ A′s such that the composition As → A′s → A′s/G
′
s is

an (N2, . . . , N2)-isogeny. Moreover, these formulae can be chosen to enjoy the
following properties:

(1) Multiradicality. They are algebraic expressions in the coordinates of s and
radicals N

√
r1 , . . . , N

√
rg(g+1)/2 , where in turn the radicands ri are algebraic

expressions in the coordinates of s.

(2) Completeness. By varying the N th roots chosen, i.e., by scaling them with
powers of ζN ∈ K, we obtain generating sets for all Ng(g+1)/2 subgroups
G′s ⊆ A′s such that As → A′s = As/Gs → A′s/G

′
s is an (N2, . . . , N2)-isogeny.

1 See Section 2.2 for a definition.
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(3) Good reduction. If the family S is defined over Z[1/M ] for some multiple
M of N , then so are our formulae, i.e., they work over any perfect field K
with charK -M .

Formulae of the above kind will be called multiradical isogeny formulae. We refer
to Section 3 for a more extensive discussion of Conjecture 1, where we will provide
a group-theoretic heuristic argument in favor of the existence of multiradical
isogeny formulae. However, we stress that each of the above subclaims remains
conjectural. We will also discuss an addendum to Conjecture 1, namely that one
can always take the radicands r1, . . . , rg(g+1)/2 to be representants of the Tate
pairings tN (Ps,i, Ps,j), 1 ≤ i ≤ j ≤ g, in the sense of Frey and Rück [24], as soon
as these are well-defined.

Further support comes from concrete examples of multiradical isogeny for-
mulae, which are discussed in Section 4 and Section 5. For arbitrary N and
in arbitrary dimension g, we discuss fully split (N, . . . , N)-isogenies from g-fold
products of elliptic curves. Other examples focus on Jacobians of genus-2 curves,
where we discuss non-split (2, 2)-isogenies (also known as Richelot isogenies) and
non-split (3, 3)-isogenies as described by Bruin, Flynn and Testa [5]. We also
study the multiradical nature of certain (5, 5)-isogenies that were described by
Flynn [21].

Remark 1. Our eventual goal is the computation of (Nk, . . . , Nk)-isogenies, for
arbitrary k ≥ 2, achieved by an iterated application of our formulae. However,
it is possible, and unavoidable in general, that the isogenous p.p. abelian variety
A′s marked with P ′s,1, . . . , P

′
s,g does not belong to our family. For instance, if S

parametrizes Jacobians of genus-2 curves, we may run into a product of elliptic
curves. In such cases, one needs to resort to different sets of multiradical isogeny
formulae in order to cover the entire isogeny chain.

We illustrate the use of multiradical isogenies in Section 6, by constructing a
Charles–Goren–Lauter style hash function from (3, 3)-isogenies between super-
special p.p. abelian surfaces over a large quadratic finite field Fp2 , similar to the
(2, 2)-construction from our joint work with Smith [9]. In short, each message
determines a walk in the isogeny graph (which is of size about p3/2880), and the
hash of the message is the end point of that walk. One should make sure that
every two consecutive isogenies compose to a (9, 9)-isogeny, to avoid the trivial
collisions described in [22, §2.3]. This is automatically taken care of when using
multiradical isogeny formulae.

In the Richelot hash function from [9], a (2, 2)-isogeny costs about 3 square
root computations, with very little overhead, and can be used to process 3 bits
of the message. In our case, the cost of a (3, 3)-isogeny is dominated by the ex-
traction of 3 cube roots, and now it can be used to process 3 trits (i.e., base-3
digits) of the message. Moreover, if p 6≡ ±1 mod 9 then p2 6≡ 1 mod 9 and com-
puting cube roots in Fp2 is faster than computing square roots (see Section 6.4).
Altogether, this leads to an expected speed-up by a factor 9, roughly. However, a
noticeable difference with [9] is that chaining multiradical (3, 3)-isogenies comes
with some non-negligible overhead; our current implementation even involves
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three small Gröbner basis computations. Despite this overhead, the (3, 3)-hash
function outperforms the Richelot hash function as soon as the field character-
istic p is of cryptographic size (i.e., 86 bits or more). The asymptotic speed-up
factor ≈ 9 becomes visible when p is about 21024.

Two conventions. For any integer N ≥ 2 we denote the ring (or the addit-
ive group) of integers modulo N by ZN ; we thereby follow computer science
customs.2 Also, throughout this paper, we always identify a variety over a per-
fect field K with its set of K-points equipped with the natural Gal(K/K)-action.

Acknowledgments. This work was supported by the Research Council KU
Leuven grant C14/18/067, by CyberSecurity Research Flanders with reference
VR20192203, and by the Research Foundation Flanders (FWO) through the
WOG Coding Theory and Cryptography. We thank Marc Houben, Frederik Ver-
cauteren and the anonymous referees for several helpful remarks.

2 Background

We discuss some of the material needed for what follows, but we stress that this
is not a complete overview. Our main goal is to fix notation and highlight some
statements that may be known to specialists but that we did not manage to
pinpoint in the existing literature, such as Lemma 2, Example 3 and Lemma 4.
For general background on abelian varieties and isogenies we refer to [34, 35].

2.1 Generalized symplectic bases

We consider abelian varieties A of dimension g ≥ 1 over a perfect field K with
algebraic closure K, and we always assume that A comes equipped with a prin-
cipal polarization. Important examples of g-dimensional principally polarized
(p.p.) abelian varieties are Jacobians of smooth projective curves C/K of genus
g. Every p.p. abelian variety of dimension ≤ 3 is K-isomorphic to a product of
Jacobians.

For each integer N ≥ 2 with charK - N , the N -torsion subgroup A[N ] can
be shown to be free of rank 2g over ZN . The principal polarization induces a
perfect bilinear and antisymmetric pairing

eN : A[N ]×A[N ]→ µN ⊆ K
∗
,

known as the Weil pairing. After fixing a primitive Nth root of unity ζN ∈ µN ,
the Weil pairing turns into a symplectic form:

〈·, ·〉N : A[N ]×A[N ]→ ZN : (P,Q) 7→ logζN eN (P,Q).

2 Most pure mathematicians prefer the notation Z/NZ, especially when N is a prime
number p (or a power thereof) in order to avoid confusion with p-adic rings. Our
paper is free of p-adic numbers, so such confusion should not be possible.
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Thus A[N ] admits a symplectic basis, i.e., a ZN -basis P1, . . . , Pg, Q1, . . . , Qg
satisfying 〈Pi, Pj〉N = 〈Qi, Qj〉N = 0 and 〈Pi, Qj〉N = δij for all i, j ∈ {1, . . . , g}.
This allows us to viewA[N ] as Z2g

N equipped with the standard symplectic pairing

〈·, ·〉 : Z2g
N × Z2g

N : (v, w) 7→ vTΩw, Ω =

(
0 Ig
−Ig 0

)
.

Changing between symplectic bases is done using matrices from the symplectic
group Sp2g(ZN ) = {M ∈ GL2g(ZN ) |MTΩM = Ω }.

Note that the notion of a symplectic basis of A[N ] depends on the choice of
ζN . If a basis is symplectic with respect to some choice of ζN , then we call it
a generalized symplectic basis. The matrices of base change between generalized
symplectic bases are now taken from the larger group

GSp2g(ZN ) = {M ∈ GL2g(ZN ) |MTΩM = d(M)Ω for a d(M) ∈ Z∗N }, (1)

which is known as the generalized symplectic group (its elements are often re-
ferred to as symplectic similitudes). An N -level structure on A is an isomorphism
α : A[N ]→ Z2g

N such that

α−1(1, 0, . . . , 0), α−1(0, 1, . . . , 0), . . . , α−1(0, 0, . . . , 1)

is a generalized symplectic basis of A[N ].

2.2 Good chains of (N, . . . ,N)-isogenies

A subgroup G ⊆ A[N ] is called isotropic if 〈P,Q〉N = 0 for all P,Q ∈ G.
Note that this notion does not depend on the choice of ζN . It is called maximal
isotropic if moreover there is no supergroup G′ ) G that is isotropic. This
property ensures that the isogenous abelian variety A′ = A/G comes naturally
equipped with a principal polarization. The subgroup is said to be an

(N, . . . , N︸ ︷︷ ︸
g times

)-subgroup

if it is a (necessarily maximal) isotropic free ZN -submodule of rank g, i.e., an
isotropic subgroup isomorphic to ZgN . In that case, we say that the quotient
isogeny ϕ : A→ A′ is an (N, . . . , N)-isogeny.

Given an (N, . . . , N)-isogeny ϕ : A→ A′, we say that an (N, . . . , N)-isogeny
ϕ′ : A′ → A′′ is a good extension of ϕ if the composition

A
ϕ→ A′

ϕ′→ A′′

is an (N2, . . . , N2)-isogeny. According to the lemma below, of which special cases
can be found in [22, §2.2], there are Ng(g+1)/2 subgroups of A′[N ] that give
rise to good extensions. The group ϕ(A[N ]) is an (N, . . . , N)-subgroup which is
the kernel of the dual isogeny ϕ̂ : A′ → A. All other (N, . . . , N)-subgroups of
A′[N ] are said to give rise to bad extensions. These are precisely the (N, . . . , N)-
subgroups that differ from ϕ(A[N ]) but that intersect it non-trivially.
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Lemma 2. Consider Z2g
N together with the standard symplectic pairing 〈·, ·〉. Its

number of (N, . . . , N)-subgroups is given by

Ng(g+1)/2
∏

primes
`|N

g∏
i=1

(
1 +

1

`i

)
.

Given an (N, . . . , N)-subgroup G ⊆ Z2g
N , the number of (N, . . . , N)-subgroups

that intersect it trivially equals Ng(g+1)/2.

Proof. For the second count, consider generators P1, . . . , Pg of the given sub-
group G and extend to a symplectic basis P1, . . . , Pg, Q1, . . . , Qg. The free rank-g
submodules that intersect G trivially each admit a unique basis of the form

P ′1 = Q1 + a11P1 + . . .+ a1gPg,

...

P ′g = Qg + ag1P1 + . . .+ aggPg,

(2)

for certain aij ∈ ZN and, conversely, every such basis generates a rank-g submod-
ule intersecting G trivially. One checks that the maximal isotropy assumption
∀i, j : 〈P ′i , P ′j〉 = 0 translates into

(
g
2

)
linear conditions on the aij ’s. These con-

ditions can be used to express the aij ’s with i > j in terms of the other aij ’s.
Thus we are left with g2 −

(
g
2

)
= g(g + 1)/2 degrees of freedom, as wanted.

As for the first count, we start with the case where N = ` is a prime num-
ber. The symplectic group Sp2g(F`) acts transitively on the set of (`, . . . , `)-
subgroups, and our goal is to compute the size of the unique orbit. This can be
done via the orbit-stabilizer theorem, which indeed yields

g∏
i=1

(`i + 1) = `g(g+1)/2

g∏
i=1

(
1 +

1

`i

)
as detailed in [27, §1]. Next, to settle the case N = `n for n > 1, it suffices to
see that the reduction-mod-` map3

{ (`n, . . . , `n)-subgroups of Z2g
`n } → { (`, . . . , `)-subgroups of F2g

` }

is `(n−1)g(g+1)/2-to-1. This works as before: consider generators Q1, . . . , Qg of an
(`n, . . . , `n)-subgroup G, and extend to a symplectic basis Q1, . . . , Qg, P1, . . . , Pg.
The (`n, . . . , `n)-subgroups having the same reduction as G admit a unique basis
of the form (2), where each aij is now an element of `Z`n . Again, the maximal
isotropy condition translates into expressions for the aij ’s with i > j in terms of
the other aij ’s, leaving us with `(n−1)g(g+1)/2 subgroups, as wanted. The count
for arbitrary N then follows from the Chinese remainder theorem. ut
3 Recall from the introduction that Z`n just abbreviates Z/`nZ, the integers modulo
`n, rather than some extension of the ring of `-adic integers.
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2.3 The Tate pairing on (products of) Jacobians

We discuss the Tate pairing on Jacobians, in the sense of Frey and Rück [24, 28],
and its natural extension to products of Jacobians. Let C/K be a curve of genus
g ≥ 1 and let N ≥ 2 be such that charK - N . The Tate pairing is a map

tN : Pic0K(C)[N ]× Pic0K(C)/N Pic0K(C) → K∗/(K∗)N ,

where Pic0K(C) denotes the group ofK-rational degree-zero divisors on C modulo
divisors of functions in K(C)∗, and is defined as follows. Let D1 ∈ Pic0K(C)[N ]
be represented by a divisor D1 and let D2 ∈ Pic0K(C)/N Pic0K(C) be repres-
ented by a divisor D2 with support disjoint from that of D1. Take a function
fN,D1 ∈ K(C)∗ whose divisor is ND1. We then let

tN (D1, D2) := fN,D1(D2) mod (K∗)N .

It can be shown that this is a well-defined bilinear pairing. In many cases of
interest, the natural inclusion

Pic0K(C) ↪→ JC(K)

into the Jacobian JC of C is surjective, i.e., it is a group isomorphism, and we
obtain a pairing

JC(K)[N ]× JC(K)/NJC(K)→ K∗/(K∗)N

that we keep denoting by tN . Known sufficient conditions for surjectivity are
that K has a trivial Brauer group (e.g., this is true if K is finite) [34, Rmk. 1.6],
that C(K) 6= ∅ [25, Thm. 3], or that g = 2 [13, Lem. 3.1 and Lem. 3.2].

In this paper we are mainly interested in the case where K is a certain
function field over Q, which has a non-trivial Brauer group. To avoid resulting
pathologies, we only apply the Tate pairing in cases where C(K) 6= ∅ or where
g = 2. We also consider the Tate pairing

tN : A(K)[N ]×A(K)/NA(K)→ K∗/(K∗)N

on abelian varieties A/K that arise as products of Jacobians of such curves: this
is simply obtained by taking the product of the Tate pairings of the respective
components.

Example 3. For use in Section 4.2, let us consider a genus-2 curve

C : y2 = G1(x)G2(x)G3(x)

over a perfect field K of odd characteristic, where the Gi’s are quadratic poly-
nomials over K whose product is square-free. Each Gi defines an element Di ∈
Pic0K(C), namely the class of

Di = (αi1, 0) + (αi2, 0)−∞1 −∞2,
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with αi1, αi2 ∈ K the two roots of Gi and with∞1,∞2 ∈ C(K) the two points at
infinity. An analysis of L(∞1+∞2) shows thatDi is non-principal, so from 2Di =
div(Gi) we conclude that the Di’s have order 2. Let us compute t2(D1, D2).
Replace D1 by the equivalent divisor

D′1 = (α11, 0) + (α12, 0)−∞1 −∞2 − div(x− c)

for some arbitrary c ∈ K that is not a root of G2. Then we can take f2,D′1 =

G1/(x− c)2 so that

t2(D1, D2) ≡ f2,D′1(D2) ≡ G1(α21)G1(α22)

(α21 − c)2(α22 − c)2 lc(G1)2
≡ resx(G1, G2)

modulo (K∗)2. Here lc(G1) denotes the leading coefficient of G1. By symmetry, it
then follows that t2(Di, Dj) ≡ resx(Gi, Gj) for all pairs of distinct i, j ∈ {1, 2, 3}.

If K is a finite field Fq containing a primitive Nth root of unity, i.e., N | q−1,
then the Tate pairing can be shown to be perfect. We remark that there are ways
of extending Frey and Rück’s definition of the Tate pairing to arbitrary abelian
varieties over Fq, where it remains perfect [6].

2.4 Multiradical field extensions

We say that a field extension K ⊆ L is multiradical if there exist an integer
N ≥ 1 and elements α1, . . . , αr ∈ L such that L = K(α1, . . . , αr) and αNi ∈ K∗
for all i. In this section, we discuss a sufficient Galois-theoretic condition for an
extension to be multiradical. While we suspect that this is a well-known fact,
we did not manage to find an exact reference, even for the case r = 1.

Recall that a group G is the (inner) semi-direct product G1oG2 of a normal
subgroup G1 and a subgroup G2 if the following three equivalent conditions hold:

– G = G1G2 and G1 ∩G2 = {eG},
– every g ∈ G can be written as g = g1g2 for unique g1 ∈ G1 and g2 ∈ G2,
– every g ∈ G can be written as g = g2g1 for unique g1 ∈ G1 and g2 ∈ G2.

The group structure of G is determined by that of G1 and G2 and by how G2

acts on G1 through conjugation.
The prototypical example of a multiradical extension is where K = Q and

L = Q(N
√
p1 , . . . , N

√
pr ) for distinct primes pi, which is a number field of degree

Nr [1]. The Galois closure of L over K is L(ζN ), with ζN ∈ L a primitive Nth
root of unity. Define

G1 = {σi11 ◦ · · · ◦ σirr | 0 ≤ ij < N for all j } ∼= ZrN ,

where σj : N
√
pj 7→ ζN N

√
pj for j = 1, . . . , r. Letting G2 = { τ` : ζN 7→ ζ`N | 0 ≤

` < N, gcd(`,N) = 1 } ∼= Z∗N , one then verifies that

Gal(L(ζN )/K) = G1 oG2,
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where the action is given by τ`◦σi11 ◦· · ·◦σirr ◦τ
−1
` = σi1`1 ◦· · ·◦σir`r . Of course, this

example generalizes to (the Galois closures of) arbitrary multiradical extensions,
as long as charK - N and [L : K] = Nr.

Lemma 4 gives a converse statement:

Lemma 4. Let N, r be positive integers and consider a degree-Nr extension
K ⊆ L of fields whose characteristic does not divide N . Let ζN ∈ L be a primitive
N th root of unity and assume that L(ζN ) is Galois over K with Galois group

Gal(L(ζN )/K) = Gal(L(ζN )/K(ζN )) o Gal(L(ζN )/L),

where the first factor is isomorphic to ZrN , say generated by σ1, . . . , σr, and where
the semi-direct product is according to the rule

τ` ◦ σi11 ◦ · · · ◦ σirr ◦ τ
−1
` = σi1`1 ◦ · · · ◦ σir`r (3)

for all i1, . . . , ir ∈ {0, . . . , N − 1} and all τ` : ζN 7→ ζ`N ∈ Gal(L(ζN )/L). Then
there exist α1, . . . , αr ∈ L such that L = K(α1, . . . , αr) and αN1 , . . . , α

N
r ∈ K∗.

Proof. First assume that r = 1 and write σ instead of σ1. The restricted maps
σi|L : L → L(ζN ) are pairwise distinct. Indeed, if i, i′ ∈ {0, 1, . . . , N − 1} are
such that σi|L = σi

′ |L, then

σi−i
′
∈ Gal(L(ζN )/K(ζN )) ∩Gal(L(ζN )/L) = {id},

which can only be true if i = i′. From [41, Lem. 0CKL] it follows that these
restricted maps are linearly independent over L(ζN ). In particular there exists
some β ∈ L such that

α :=

N−1∑
i=0

ζiNσ
i(β)

is non-zero. From

τ`(α) =
∑
i

ζi`N (τ` ◦ σi)(β) =
∑
i

ζi`N (σi` ◦ τ`)(β) =
∑
i

ζi`Nσ
i`(β) = α

it follows that α ∈ L. Now observe that α was constructed in such a way that
σi(α) = ζ−iN α for i = 0, 1, . . . , N − 1, which has two crucial consequences. On
the one hand, it implies that Gal(L(ζN )/L) is the exact group of automorphisms
fixing K(α), or in other words L = K(α). On the other hand, it implies that
σ(αN ) = σ(α)N = (ζNα)N = αN , so that αN is fixed by the entire Galois group,
i.e., αN ∈ K as wanted.

The general case reduces to the case r = 1, as follows. Each element of our
Galois group Gal(L(ζN )/K) can be written as

σi11 ◦ · · · ◦ σirr ◦ τ`

for unique 0 ≤ ij , ` < N with gcd(`,N) = 1. For each j = 1, . . . , r, let Gj , resp.
Hj , be the subgroup obtained by imposing ij = 0, resp. the normal subgroup
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obtained by imposing ij = 0 and ` = 1. Defining Lj = L(ζN )Gj , it is easy to
check that L(ζN )Hj = Lj(ζN ) and that the chain of inclusions K ⊆ Lj ⊆ Lj(ζN )
satisfies the hypotheses of the lemma for r = 1. From the first part of our proof,
we conclude that there exists an αj ∈ Lj such that Lj = K(αj) and αNj ∈ K∗.
But from ∩jGj = Gal(L(ζ)/L) one sees that L is the compositum of the Lj ’s,
from which the lemma follows. ut

Note that if r = 1 and L contains ζN then Lemma 4 specializes to a standard
statement from Kummer theory; observe that the factor Gal(L(ζN )/L) is trivial
in this case. In fact, our proof is a tweak of that of [41, Lem. 09DX]. In the
current paper, we are mostly interested in the other end of the spectrum, where
〈ζN 〉 ∩ L is as small as possible, i.e., contained in {±1}.

2.5 Charles–Goren–Lauter style hash functions

In [12], Charles, Goren and Lauter introduced a hash function based on isogenies
between supersingular elliptic curves. This construction was generalized to work
for Richelot isogenies between superspecial p.p. abelian surfaces in [9], by fixing
an earlier proposal due to Takashima [44], shown to admit trivial collisions by
Flynn and Ti [22]. We give a rough outline of the general construction.

Fix distinct primes p and `, a dimension g, and let Gp,`,g be the directed
multigraph with vertex set V and edge set E, which are constructed as follows.
V consists of all superspecial p.p. abelian varieties over Fp of dimension g up
to isomorphism, which can always be defined over Fp2 [2, Thm. 2.13A]. The
edges emanating from a vertex v ∈ V are the (`, . . . , `)-isogenies with domain
v, one for each (`, . . . , `)-subgroup of v. One can prove that the graph Gp,`,g
is connected [31, Thm. 43], and in the case of supersingular elliptic curves, the
graph is a Ramanujan graph [12]. Unfortunately, this is no longer the case for
dimension g > 1 [31, §10.1], but those graphs seem to exhibit strong expansion
properties nonetheless; see [20] for an empiric analysis of the case ` = g = 2.
From Lemma 2 we see that Gp,`,g is a

∏g
i=1(`i + 1)-regular multigraph. One can

try and turn this graph into an undirected graph by considering dual isogenies,
but due to p.p. abelian varieties possibly having non-trivial automorphisms, the
multiplicities of the edges and their duals may not coincide. For a more in-depth
discussion regarding this phenomenon, we refer to [9, §4].

To build a hash function from this graph, we must first fix a superspecial
p.p. abelian variety and will begin a walk in the graph starting from this ver-
tex. From this initial vertex, we label all outgoing edges in some way (e.g., in
lexicographical order with respect to a fixed choice of representation of Fp2).

Out of these
∏g
i=1(`i + 1) edges, we only consider the first κ = `g(g+1)/2 and

we walk along the edge that corresponds to the least significant digit of m when
expressed in base κ.4 We have now arrived at a new p.p. abelian variety and
want to avoid any possible backtracking while walking in the graph, so for our

4 There is no real reason why one cannot consider all edges in this first step. Restricting
to only κ choices however streamlines the algorithm.
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next edge, we should not consider all possible outgoing edges. For elliptic curves,
it suffices to discard the edges corresponding to the dual isogenies [12], but for
g > 1 we must discard all options that have a kernel which intersects the kernel
of the dual isogeny non-trivially [9]. In general, again in view of Lemma 2, this
leaves us with κ possible edges to consider, which correspond to good extensions
of the isogeny corresponding to the first edge we chose. Once again, we label the
κ outgoing edges in some deterministic way and will walk along the one that
corresponds to the second least significant digit of m in base κ. We continue this
until all the digits of the message have been processed. The output of the hash
function is then an invariant of the final p.p. abelian variety we encounter. In
the case of elliptic curves, one can choose the j-invariant for example.

3 On the existence of multiradical isogeny formulae

In this section we give a group-theoretic argument in favor of the existence of
multiradical isogeny formulae. The argument is motivated by Lemma 4.

3.1 A multiradical modular cover

For perfect field K, an integer n ≥ 2 and a subgroup H ⊆ GSp2g(Zn), we
consider the moduli problem of parametrizing pairs (A,α) up to H-equivalence,
where A is a g-dimensional p.p. abelian variety over K and α is an n-level
structure on it. Two pairs (A1, α1) and (A2, α2) are called H-equivalent if there
exists an isomorphism ϕ : A1 → A2 and an element h ∈ H such that α1 =
h ◦ α2 ◦ ϕ. We write [(A,α)]H for the H-equivalence class of (A,α), and denote
the moduli set of such H-equivalence classes by Ag(H). Two extremal cases are
Ag(GSp2g(Zn)), which just parametrizes g-dimensional p.p. abelian varieties up
to isomorphism, and Ag({id}), which parametrizes g-dimensional p.p. abelian
varieties A equipped with a generalized symplectic basis of A[n]. Note that if H ′

is a subgroup of H, then we have a natural map Ag(H ′)→ Ag(H) : [(A,α)]H′ 7→
[(A,α)]H .

We can construct a moduli set of g-dimensional p.p. abelian varieties A to-
gether with marked generators P1, . . . , Pg of an (N, . . . , N)-subgroup by choosing
n = N and letting H be

HN =

{ (
Ig B
0 dIg

) ∣∣∣∣ B ∈ Symg(ZN ), d ∈ Z∗N
}
⊆ GSp2g(ZN ),

where Symg(ZN ) denotes the set of symmetric g × g matrices with entries in
ZN . Another (overcomplicated) way of arriving at a set with the same moduli
interpretation is by instead letting n = N2 and considering the group

Γ1,N =
{
M ∈ GSp2g(ZN2)

∣∣ M mod N ∈ HN

}
.

This creates room for defining the subgroup

Γ ′1,N =
{
M ∈ Γ1,N ⊆ GSp2g(ZN2)

∣∣ lower-left g × g block of M is zero
}
,
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whose associated moduli set parametrizes p.p. abelian varieties together with
marked generators Q1, . . . , Qg of an (N2, . . . , N2)-subgroup, considered modulo
the following equivalence relation: two such sets of marked generators Q1, . . . , Qg
and R1, . . . , Rg are identified if and only if Ri − Qi ∈ 〈NQ1, . . . , NQg〉 for
i = 1, . . . , g. Note that the points Pi := NQi do not depend on the chosen
representants Qi, and neither do the cosets P ′i of Qi modulo 〈P1, . . . , Pg〉.

Said differently, the set Ag(Γ ′1,N ) parametrizes g-dimensional p.p. abelian
varieties A together with marked generators P1, . . . , Pg of some (N, . . . , N)-
subgroup G ⊆ A, as well as with marked generators P ′1, . . . , P

′
g of an (N, . . . , N)-

subgroup G′ ⊆ A/G which are such that the chain of quotient maps

A
ϕ→ A′ = A/G

ϕ′→ A′/G′

is good, i.e., ϕ′ ◦ ϕ is an (N2, . . . , N2)-isogeny. The natural map Ag(Γ ′1,N ) →
Ag(Γ1,N ) just “forgets” about the points P ′i . Thus, the central question of our
paper — given P1, . . . , Pg, how to find P ′1, . . . , P

′
g — is closely related to under-

standing the fibers of this map.

Remark 5. In the above moduli interpretation, the marked generators P ′i have
the additional property that

ϕ̂(P ′i ) = Pi for all i = 1, . . . , g, (4)

where ϕ̂ : A′ → A is the dual of ϕ. This feature was not explicitly asked for in
the introduction. However, every subgroup G′ ⊆ A′ for which A′ → A′/G′ is a
good extension of ϕ admits a unique ZN -basis satisfying (4); we call this basis
distinguished. It suffices to concentrate on such bases. Indeed, once we have found
formulae for these distinguished generators, formulae for other sets of generators
can be found by performing a base change, using arithmetic on A′,5 and this
should not affect features like multiradicality, completeness and good reduction.
Moreover, it seems reasonable to expect that the formulae for the distinguished
generators will stand out in terms of simplicity (although we did not investigate
this in detail).

The multiradical nature of the fibers of Ag(Γ ′1,N )→ Ag(Γ1,N ) is hinted at by
the following lemma, which invokes the notation d(M) from (1), in combination
with Lemma 4. Recall that the normal core CoreG(H) of a subgroup H in a
group G is the largest subgroup of H that is normal in G. For use below we
remark that, under the Galois correspondence, this notion corresponds to the
Galois closure of a separable field extension.

In order to state the lemma, we fix any bijection

k : {1, . . . , g(g + 1)/2} → { (k1, k2) | 1 ≤ k1 ≤ k2 ≤ g }

5 For example, if N is odd, then the formulae for 2P ′1, . . . , 2P
′
g are obtained from those

for P ′1, . . . , P
′
g by feeding the latter to a formula for doubling on A′.
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and for all j = 1, . . . , g(g + 1)/2 and 0 ≤ ` < N , gcd(N, `) = 1 we define the
elements

σj =

(
Ig 0

NSk(j) Ig

)
, τ` =

(
Ig 0
0 `Ig

)
of Γ1,N , where S(k1,k2) denotes the symmetric g×g matrix having a 1 at positions
(k1, k2) and (k2, k1) and 0’s elsewhere.

Lemma 6. The group Γ ′1,N has index Ng(g+1)/2 in Γ1,N . Its normal core can
be computed as

CoreΓ1,N
(Γ ′1,N ) = {M ∈ Γ ′1,N | d(M) ≡ 1 mod N }

which has index ϕ(N) in Γ ′1,N . Every element of Γ1,N/Core(Γ ′1,N ) admits a
unique representant of the form

σi11 · · ·σ
ig(g+1)/2

g(g+1)/2 · τ` (5)

with 0 ≤ ij < N for all j = 1, . . . , g(g + 1)/2, and 0 ≤ ` < N , gcd(N, `) = 1.
More precisely Γ1,N/CoreΓ1,N

(Γ ′1,N ) can be written as

{σijj | 1 ≤ j ≤ g(g + 1)/2, 0 ≤ ij < N }o { τ` | 0 ≤ ` < N, gcd(N, `) = 1 }
∼= Zg(g+1)/2

N o Z∗N ,

where the semi-direct product is taken according to the rule (3).

Proof. It is not hard to check that all matrices M ∈ Γ1,N have symmetric lower-
left g × g blocks, i.e., these blocks belong to N Symg(ZN2). A count shows that
the resulting map

Γ1,N → N Symg(ZN2)

is uniform (i.e., every element in the codomain has the same number of preim-
ages), implying that [Γ1,N : Γ ′1,N ] = Ng(g+1)/2. As for the normal core, con-
jugating Γ ′1,N with suitable matrices (e.g., one can use the matrices σj) reveals
that

CoreΓ1,N
(Γ ′1,N ) ⊆ {M ∈ Γ ′1,N | d(M) ≡ 1 mod N }

and since the right-hand side is a normal subgroup of Γ1,N , equality must hold.
Finally, we have

[Γ ′1,N : CoreΓ1,N
(Γ ′1,N )] = ϕ(N)

because d defines a morphism Γ ′1,N → Z∗N which is surjective, as can be seen by
evaluating it at the τ`’s.

Now assume that some element of Γ1,N/CoreΓ1,N
(Γ ′1,N ) admits two distinct

decompositions

σi11 · · ·σ
ig(g+1)/2

g(g+1)/2 · τ` = σ
i′1
1 · · ·σ

i′g(g+1)/2

g(g+1)/2 · τ`′ .
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Applying d shows that ` ≡ `′ mod N , hence we can assume ` = `′ = 1. We then
find

σ
i1−i′1
1 · · ·σig(g+1)/2−i′g(g+1)/2

g(g+1)/2 =

( Ig 0

N
∑g(g+1)/2
j=1 (ij − i′j)Sk(j) Ig

)
. (6)

But this is contained in Γ ′1,N only if ij ≡ i′j mod N for all j. In particular, the
expansion (5) is unique. Elements of the form (4) are a full set of representants
of Γ1,N/CoreΓ1,N

(Γ ′1,N ) because there are ϕ(N)Ng(g+1)/2 such expansions.
The statement about the semi-direct product is easy to check using (6). ut

We now give more details on how Lemma 6 supports the existence of mul-
tiradical isogeny formulae, although we stress that the discussion below is partly
heuristic. A major ingredient is that the sets Ag(H) are representable by al-
gebraic varieties over Q.6 Indeed, results by Artin and Faltings–Chai show that
the corresponding moduli spaces exist as schemes over Z[1/N ], see [19, §I.4];
it then follows from Geometric Invariant Theory that these spaces are quasi-
projective [36, Thm. 7.9]. Consequently, the chain

Ag({id})→ Ag(Γ ′1,N )→ Ag(Γ1,N )→ Ag(GSp2g(ZN2))

corresponds to an inclusion of function fields

Q(Ag(GSp2g(ZN2)) ⊆ Q(Ag(Γ1,N )) ⊆ Q(Ag(Γ ′1,N )) ⊆ Q(Ag({id}))

where the outer extension is Galois, with Galois group GSp2g(ZN2), and where
Q(Ag(Γ1,N )), resp. Q(Ag(Γ ′1,N )), are the subfields fixed by Γ1,N , resp. Γ ′1,N . This
extrapolates upon well-known statements from the elliptic curve case, which can
be found in [15, 37, 39], for instance. The middle inclusion has Galois closure

Q(Ag({id}))CoreΓ1,N (Γ ′1,N )

which, in the same vein, is obtained from Q(Ag(Γ ′1,N )) by adding a primitive Nth
root of unity ζN . The Galois group of this Galois closure is Γ1,N/CoreΓ1,N

(Γ ′1,N ),
so by Lemma 4 and Lemma 6 we have

Q(Ag(Γ ′1,N )) = Q(Ag(Γ1,N ))(N
√
ρ1 , . . . , N

√
ρg(g+1)/2 )

for certain functions ρ1, . . . , ρg(g+1)/2 on Ag(Γ1,N ).
The line of thought behind multiradical isogenies is then that the coordinates

of our distinguished generators P ′1, . . . , P
′
g can essentially be viewed as functions

on Ag(Γ ′1,N ), therefore they should be expressible in terms of the radicals N
√
ρi .

Since we work over Q, these expressions make sense over any perfect field K, as
long as charK does not divide any denominators; in fact, the idea/hope behind
our good reduction assumption (3) is that all of this can be set up over Z[1/N ]
rather than Q.

6 These varieties may be geometrically reducible; more precisely, for H ⊆ GSp2g(Zn)
we have that Ag(H) decomposes into [Z∗n : d(H)] irreducible components over Q(ζn).
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3.2 Conjectured existence of multiradical isogeny formulae

As we have discussed in the introduction, it only makes sense to talk about
multiradical isogeny formulae at the level of concrete families that come equipped
with formulae of Vélu, Richelot, . . . type for the codomain p.p. abelian varieties.

Let us therefore repeat, in more detail, our main surmise from Conjecture 1.
For integers r, g ≥ 1, N ≥ 2, we consider a smooth family of g-dimensional p.p.
abelian varieties As equipped with marked points Ps,1, . . . , Ps,g that generate an
(N, . . . , N)-subgroup Gs ⊆ As, where the parameter s = (s1, . . . , sr) ranges over
some quasi-affine subset S ⊆ Ar. We assume that we have algebraic formulae
at our disposal, explicitly describing A′s = As/Gs in terms of the si. Then we
believe that there always exist accompanying multiradical formulae, producing
a set of generators P ′s,1, . . . , P

′
s,g of an (N, . . . , N)-subgroup G′s ⊆ A′s which is

such that the extension

As
ϕ−→ A′s = As/Gs

ϕ′−→ A′s/G
′
s

is good. Moreover, we believe that the formulae can be chosen such that they
are complete, and such that they work over any perfect field over which the
parametrization by S makes sense.

The radicands ri appearing in these formulae should be related to the func-
tions ρi from the previous section, as follows. As before, assume we are working
over Q. By the universal property of moduli spaces, we have a natural morphism
σ : S → Ag(Γ1,N ), sending s to the isomorphism class of (As, Ps,1, . . . , Ps,g). This
allows us to pull back the functions ρi ∈ Q(Ag(Γ1,N )) to Q(S); here we assume
that the image of S is not included in the polar locus of ρi. These pull-backs
should be our ri’s. Explicitly,

r1 := ρ1 ◦ σ, . . . , rg(g+1)/2 := ρg(g+1)/2 ◦ σ,

which can indeed be viewed as algebraic expressions in the coordinates si.
We point out that, for the sake of flexibility, we do not require the map

S → Ag(Γ1,N ) to be injective, i.e., up to isomorphism, different s may result
in the same p.p. abelian variety and the same generators of an (N, . . . , N)-
subgroup. Our examples in Section 4 include several families featuring such a
redundance.

Remark 7. Our formulae should make sense at every point of S, therefore the
functions r1, . . . , rg(g+1)/2 should be free of poles. In view of the completeness,
they should also be free of zeroes.

Remark 8. For small families, the extension

Q(S) ⊆ Q(S)(N
√
r1 , . . . , N

√
rg(g+1)/2 )

may not be of degree Ng(g+1)/2. Indeed, when pulled back along σ, several of the
radicands ρi may become interrelated. In such cases it is tempting to compress
the formulae into versions that use fewer radicals, but then the completeness
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property gets lost. For instance, in the example in Section 4.3 below, as many
as g(g− 1)/2 radicands collapse to the constant 1; nevertheless one should allow
the corresponding occurrences of N

√
1 to range independently over the set of Nth

roots of unity if one wants to find all Ng(g+1)/2 good extensions.

If our family of p.p. abelian varieties As consists of (products of) Jacobians of
curves Cs which, when viewed as a single curve over Q(S), is either of genus 2 or
admits a rational point, then Conjecture 1 comes with the following addendum:

(4) Tate pairings as suitable radicands. The radicands r1, . . . , rg(g+1)/2 can
be taken to be representants of the Tate pairings

tN (Ps,i, Ps,j) ∈ Q(S)∗/(Q(S)∗)N

where i ≤ j range over {1, . . . , g}.

This is motivated, again, by our examples below, and by the following observa-
tion. For each 1 ≤ i ≤ j ≤ g, choose a representant ri,j of tN (Ps,i, Ps,j). Let
Q(S)(G′s) denote the field obtained from Q(S) by adjoining the coordinates of
P ′s,1, . . . , P

′
s,g. As discussed in Remark 5, we can assume that ϕ̂(P ′s,i) = Ps,i for

all i. This implies that

ri,j = tN (ϕ̂(P ′s,i), ϕ̂(P ′s,j)) = tN (P ′s,i, P
′
s,j)

N

when viewed as elements of Q(S)(G′s)
∗/(Q(S)(G′s)

∗)N ; the second equality fol-
lows from the compatibility property of the Tate pairing, see [30, Lem. 5]. Thus
Q(S)(G′s) contains Q(S)(N

√
ri,j | 1 ≤ i ≤ j ≤ g ).

We did not manage to prove that these two fields are in fact equal, which
would lend further support for our addendum.7 While for g = 1 equality can
be established using non-degeneracy of the Tate pairing over finite fields con-
taining a primitive Nth root of unity [10, §3], for g > 1 non-degeneracy or even
perfectness does not seem strong enough to mimic that argument.

4 Examples

In this section, we show how multiradical isogeny formulae manifest themselves
for two well-known families: Richelot isogenies, and fully split isogenies from
products of elliptic curves. We also show that multiradical isogeny formulae
apply to a certain (5, 5)-isogeny that was described by Flynn [21]. Our main ex-
ample, namely non-split (3, 3)-isogenies from Jacobians of genus-2 curves, will be
discussed in Section 5. We begin by recalling an elliptic curve example from [10].

7 Note however that the addendum is an even stronger statement, e.g., in view of
Remark 8.
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4.1 Elliptic curves

Consider the family of elliptic curves E with a marked point P ∈ E of order N .
For N ≥ 4 this family is conveniently parametrized by the Tate normal form:8

E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0).

Concretely, we let S ⊆ A2 be the subset of pairs b, c for which E is non-singular
and P has exact order N ; we refer to [43] for how to obtain a concrete equation
for S, which is a model of the modular curve Y1(N) and which is naturally
defined over Z[1/N ]. The existence of radical and complete isogeny formulae
was discussed in [10], where it was argued that one can take r1 = fN,P (−P ),
with fN,P the function on E with divisor N(P )−N(∞), normalized such that
its expansion at∞ with respect to the uniformizer x/y has leading coefficient 1.
As mentioned there, r1 is a representant of tN (P,−P ) = tN (P, P )−1, so in order
to enforce property (4), one should instead work with r−11 . This does not cause
any issues because r1 has no zeroes or poles on S; see also Remark 7.

For the sake of example, let us revisit the case N = 5, where we have r1 = b
and S = { (b, c) ∈ A2 | b = c, b 6= 0, (11 ± 5

√
5)/2 }. Vélu’s formulae yield the

following defining equation for E′ = E/〈P 〉:

y2 + (1− b)xy− by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).

From [10, §4] we see that the point

P ′ = (5 5
√
r1

4
+ (b− 3) 5

√
r1

3
+ (b+ 2) 5

√
r1

2
+ (2b− 1) 5

√
r1 − 2b,

5 5
√
r1

4
+ (b− 3) 5

√
r1

3
+ (b2 − 10b+ 1) 5

√
r1

2
+ (13b− b2) 5

√
r1 − b2 − 11b) (7)

on E′ is of the requested kind, i.e., it is the distinguished generator of a subgroup
G′ ⊆ E[5] such that the composed isogeny E → E′ → E′/G′ is cyclic of degree
25. Varying the choice of 5

√
r1 produces the five subgroups for which this is

true. The formula (7) satisfies the good reduction property and allows for a very
fast computation of chains of 5-isogenies over finite fields; e.g., over Fp with
p 6≡ 1 mod 5 we obtain a speed-up by roughly a factor 40 over more traditional
methods [10, Tbl. 4]. We recall that, for general N , the good reduction property
is conjectural [10, Conj. 1].

4.2 Richelot isogenies

A convenient reference for Richelot isogenies is [40, Ch. 8]. We consider genus-2
curves C equipped with two generators of a (2, 2)-subgroup of JC . Such marked
curves can be parametrized by S = A9\∆, by letting s = (sij)1≤i,j≤3 correspond
to the Jacobian of

C : y2 = G1(x)G2(x)G3(x), Gi(x) = si1x
2 + si2x+ si3

8 See [10, §4] for a discussion of the cases N = 2, 3.
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equipped with the divisor classes D1, D2 from Example 3. Here ∆ is cut out by
the discriminant of G1(x)G2(x)G3(x). The parametrization works over Z[1/2].
We claim that we can take r1 = resx(G2, G3), r2 = resx(G1, G3) and r3 =
resx(G1, G2). By Example 3 we know that

t2(D1, D1) ≡ r2r3

t2(D1, D2) ≡ r3

t2(D2, D2) ≡ r1r2

modulo squares, so the validity of property (4) is not affected by our choice of
radicands. Indeed, formulae in terms of

√
r1,
√
r2,
√
r3 can easily be rewritten

into formulae in terms of
√
r2r3,

√
r3,
√
r1r2, and vice versa.

To proceed, we slightly shrink S by removing the zero locus of the determin-
ant δ = |si,j |1≤i,j≤3. This guarantees that the p.p. abelian surface JC/〈D1, D2〉 is
again a Jacobian. More precisely, Richelot’s formulae show that it is isomorphic
to JC′ with

C ′ : δy2 = H1(x) ·H2(x) ·H3(x),

where H1 := G′2G3 − G2G
′
3, H2 := G′3G1 − G3G

′
1 and H3 := G′1G2 − G1G

′
2.

The reader can verify that disc(Hi) = 4ri, so the two zeroes of Hi are algebraic
expressions in

√
ri and in the sij ’s, and they are obtained from one another

by choosing the other square root of ri; denote these two zeroes by α±i. Then
according to [9, Prop. 2] the classes of

D′1 = (α1, 0) + (α2, 0)−∞1 −∞2, D′2 = (α−1, 0) + (α3, 0)−∞1 −∞2

generate a (2, 2)-subgroup of JC′ that defines a (4, 4)-extension of the incoming
isogeny JC → JC′ . Still according to [9, Prop. 2], the sign flips ±i produce the
eight subgroups for which this is true. Thus we have found formulae that are
multiradical and complete, and they clearly work in any characteristic different
from 2.

Remark 9. One could also try and study the complementary case, namely the
restriction S0 of S to the zero locus of δ. In this case JC/〈D1, D2〉 geomet-
rically splits as a product of two elliptic curves. Concrete equations for these
elliptic curves can be found in [40, p. 119]. The reader can check that they are
defined over the field obtained by adding a square root of discz(discx(G2+zG3))
which, interestingly, turns out to be 16r1. However, for a genuine verification
of Conjecture 1, one would need a model of JC/〈D1, D2〉 over Q(S0) rather
than Q(S0)(

√
r1). This model concerns the Weil restriction to Q(S0) of an el-

liptic curve defined over Q(S0)(
√
r1), which is not easy to describe explicitly; see

also [4].

4.3 Fully split (N, . . . ,N)-isogenies from products of elliptic curves

In this example we consider g-fold products E1 × · · · × Eg of elliptic curves,
marked with generators D1, . . . , Dg of an (N, . . . , N)-subgroup that are of the

18



following kind: each Di is a g-tuple with ∞Ej at entry j, except when j = i
where we then have a point Pi ∈ Ei of order N . Assuming N ≥ 4, such marked
products are naturally parametrized by Sg ⊆ A2g, with S the modular curve
Y1(N) from Section 4.1. Note that the corresponding (N, . . . , N)-isogenies split
completely, i.e., they are of the form

Φ : E1 × . . .× Eg → E′1 × . . .× E′g,

decomposing as the product of cyclic N -isogenies φi : Ei → E′i with kernel 〈Pi〉.
We assume that the elliptic curves E′i are given by Vélu’s formulae.

For each i = 1, . . . , g, we let ri be the representant of the Tate self-pairing
tN (Pi, Pi) whose inverse was described in Example 4.1. We then choose the
following representants of the Tate pairings tN (Di, Dj), 1 ≤ i ≤ j ≤ g: we pick
1 as soon as i < j, and we pick ri if i = j.

We are interested in identifying all (N, . . . , N)-subgroups of (E′1×· · ·×E′g)[N ]
that have trivial intersection with the kernel of the dual of Φ. Indeed, these are
precisely the subgroups that can occur as kerΨ for a good extension Ψ of Φ. To
get a handle on the kernel of Φ̂, which is just the product of the φ̂i’s, we rely on
Lemma 10 below. When applied over Q(S), it implies that for each i = 1, . . . , g
we can find a formula P ′i (

N
√

1 ) which, when reading N
√

1 as ζN , produces a

generator P ′i of ker φ̂i and which, when reading N
√

1 as ζkN , produces the point

kP ′i for 0 ≤ k ≤ N − 1. Then ker Φ̂ can be written as 〈C ′1, . . . , C ′g〉, where each
C ′i is a g-tuple with ∞E′j

at each entry, except at j = i where we have P ′i .

Lemma 10. Let E be an elliptic curve over a perfect field K with charK - N
and let P ∈ E(K) be a point of order N . Let φ : E → E′ = E/〈P 〉 be the
corresponding quotient isogeny, where E′ is given by Vélu’s formulae. Let P ′ be
a generator of the dual isogeny. Then there exist polynomials F,G,H ∈ K[z]
such that

[F (ζkN ) : G(ζkN ) : H(ζkN )] = kP ′

for all 0 ≤ k ≤ N − 1.

Proof. The Weil pairing gives a group isomorphism between ker φ̂ and µN that
is compatible with the action of Gal(K/K). In particular P ′ has coordinates in
K(ζN ). Define F (z) to be the classical Lagrange polynomial that interpolates
the x-coordinates of kP ′ for 0 ≤ k ≤ N − 1. More precisely,

F (z) =

N−1∑
k=0

x(kP ′)`k(z), with `k(z) =
∏

0≤m≤N−1
m6=k

z − ζmN
ζkN − ζmN

.

Then it suffices to show that for any σ ∈ Gal(K(ζN )/K) it holds that F (z) =
Fσ(z). Note that σ : ζN 7→ ζaN for some a coprime to N . One verifies that

`σk(z) =
∏

0≤m≤N−1
m 6=k

z − ζamN
ζakN − ζamN

=
∏

0≤m≤N−1
m 6=ak

z − ζmN
ζakN − ζmN

= `ak(z).
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Furthermore, we can assume that the x-coordinates of the points of ker φ̂ within
the same Galois orbit were chosen compatibly, i.e. σ(x(kP ′)) = x(σ(kP ′)) for
all σ ∈ Gal(K(ζN )/K) and for all 0 ≤ k ≤ N − 1. Then because of the afore-
mentioned isomorphism we must have σ(x(kP ′)) = x(akP ′), such that indeed
F (z) = Fσ(z) as wanted. An analogous argument applies to the polynomials G
and H. ut

We also know that, for each i = 1, . . . , g, there exists a formula Q′i(
N
√
ri )

producing a point Q′i that extends P ′i to a basis of E′i[N ]. Furthermore, we know
that by scaling N

√
ri with ζkN for 0 ≤ k ≤ N − 1, we cycle through all elements

Q′i + kP ′i .
We are ready to give multiradical and complete formulae that produce g-

tuples D′1, . . . , D
′
g ∈ E′1 × · · · × E′g generating the kernel of a good extension Ψ

of Φ. Fix
D′1 = (Q′1(N

√
r1 ), P ′2(

N
√

1 ), . . . , P ′g(
N
√

1 )),

which has g degrees of freedom. Next, choose

D′2 = (∞E′1
, Q′2(N

√
r2 ), P ′3(

N
√

1 ), . . . , P ′g(
N
√

1 )),

where we fixed the first coordinate at ∞E′1
in order to avoid repetitions in the

subgroups generated by D′1 and D′2. This results in g − 1 degrees of freedom.
Continuing this inductively, we end up with

D′g = (∞E′1
, . . . ,∞E′g−1

, Q′g(N
√
rg ))

with only 1 degree of freedom left. In total, we have
∑g
j=1 j = g(g+1)/2 degrees

of freedom as wanted, and running through all possible interpretations of the
radicals (including the g(g− 1)/2 occurrences of N

√
1 ) provides the kernels of all

possible good extensions.

4.4 Flynn’s family of (5, 5)-isogenies from genus-2 curve Jacobians

Consider the family of genus-2 curves with given (5, 5)-subgroup from [21], in-
volving a single parameter r. In this section, we illustrate that multiradical
isogeny formulae apply to this family. We do not aim at a full analysis including
completeness, etc; in fact, for simplicity we will restrict to the curve at r = 1.
We remark that the absolute Igusa invariants of Flynn’s family are in fact para-
meterless, so up to isomorphism this is the only curve in the family.

In order for the generators of the (5, 5)-subgroup to be rational (and not just
the subgroup), we will fix the base field as Q(ζ5), where ζ5 is a fifth root of
unity.9 Writing γ1 =

√
5 = 2ζ35 + 2ζ25 + 1 ∈ Q(ζ5), we have

C : y2 = x5 + 25x4 − 200x3 + 560x2 − 640x+ 256,

T1 = (4, 16γ1)−∞, T2 = (0, 16)−∞,
9 Remark that the quadratic extension Q(

√
5) would suffice, but adding ζ5 makes for

easier notation up ahead.
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where T1, T2 ∈ JC [5]. Writing γ2 =
√

2(1/γ1 − 1) =
2ζ35−6ζ

2
5−4ζ5−2
5 ∈ Q(ζ5),

the genus-2 curve associated with the isogenous abelian surface obtained by
quotienting out 〈T1, T2〉 can be written as

C̃ : y2 = x5 − 125x4 + 5000x3 − 175000x2 + 1250000x− 81250000,

T̃1 = (10γ1, 10000γ2)−∞, T̃2 = (−10γ1, 5000γ2(γ1 + 1))−∞,

where 〈T̃1, T̃2〉 is the kernel of the dual isogeny (in particular, T̃1, T̃2 ∈ JC̃ [5]). In

order to extend 〈T̃1, T̃2〉 to a basis for the 5-torsion of the Jacobian of C̃, with
conjectured property (4) in mind we compute the following Tate pairings:

t5(T1, T1) ≡ γ1, t5(T1, T2) ≡ (γ1 − 1)/2, t5(T2, T2) ≡ 1.

Defining r1 = γ1 and r2 = (γ1 − 1)/2, Conjecture 1 predicts that we can expect
to find the 5-torsion of JC̃ in Q(ζ5, 5

√
r1, 5
√
r2). In order to compute this 5-torsion,

we use techniques from [26] that build upon the work of [8].

Concretely, a typical 5-torsion point is expected to be represented by a divisor
D = P1+P2−2∞ = (x1, y1)+(x2, y2)−2∞, for two affine points (x1, y1), (x2, y2)
on C̃. We read the condition 5D ≡ 0 as 5(P1−∞) ≡ −5(P2−∞). In [8], recursive
formulae are derived to express 5((x1, y1)−∞) in function of x1, y1 and the coeffi-
cients of our genus-2 curve C̃. The same can be done for −5((x2, y2)−∞) and the
aforementioned equality results in a system of equations that can be solved by a
Gröbner basis computation. Note that for D to be rational over a certain field,
x1, y1, x2, y2 need not necessarily be defined over that same field. In Mumford

coordinates, we can write D =
(
x2 − (x1 + x2)x+ x1x2, y1 + (y2 − y1) x−x1

x2−x1

)
and it suffices for the coefficients of these polynomials to be defined over the
field. In practice, it is most convenient to simply add an extra variable and
corresponding equation to the Gröbner basis computation from before, such as
X − (x1 + x2), and then compute the minimal polynomial of X (i.e., put it last
in a lexicographic monomial ordering for the Gröbner basis computation). The
roots of this polynomial will then correspond to all possible x1 + x2 such that
the class of D is 5-torsion.

There are 54 − 1 = 624 nontrivial elements in JC̃ [5], but since D and −D
correspond to the same x1 + x2, we expect the minimal polynomial of X to be
of degree 312 generically. In this specific case though, we have multiple 5-torsion
divisors of the form (x1, y1)−∞ rather than (x1, y1) + (x2, y2)− 2∞ (e.g., this

is the case for T̃1 and T̃2). The techniques of [26] do not capture such points.
Nonetheless, all other 5-torsion divisors can be found this way and the minimal
polynomial of X turns out to be of degree 305. Factoring this polynomial over
Q(ζ5, 5

√
r1, 5
√
r2)[X] we see that it splits completely as expected, thereby lending

support to Conjecture 1.
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A similar computation can be done for the other coefficients of the Mumford
coordinates, which allows us to define

T̃3 =

(
x2 + 100

(
α4
2 − (ζ5 + 1)2α3

2 − (ζ45 + 1)α2
2 + (ζ35 − 2ζ5 − 2)α2

γ1ζ35 (ζ5 + 1)2
+ 1

)
x+

500

(
10α4

2 − 2(ζ5 − 1)2α3
2 − 2(7ζ35 + 11ζ25 + 7ζ5)α2

2 + 10(ζ35 − 2ζ5 − 2)α2

γ1ζ35 (ζ5 + 1)2
+ 1

)
,

100
(

(7ζ25 − ζ5 + 7)α4
2 − (2ζ35 + 5ζ25 + 2ζ5)α3

2 + (7ζ35 + 5ζ5 + 5)α2
2−

(6ζ35 + 7ζ25 + 7ζ5 + 6)α2 − 7
)
x+ 5000

(
− (3ζ25 + 3ζ5 + 3)α4

2−

(2ζ35 − ζ25 + 2ζ5)α3
2 + (ζ35 − ζ5 − 1)α2

2 + (6ζ35 + 3ζ25 + 3ζ5 + 6)α2 − 5
))

,

where α2 = 5
√
r2. One can easily verify that T̃3 ∈ JC̃ [5]\ 〈T̃1, T̃2〉. The expression

for a fourth element T̃4 that completes a basis for Jac(C̃)[5] is too voluminous
to reproduce here, but can be found online in our repository at https://gith

ub.com/KULeuven-COSIC/Multiradical-Isogenies. From this basis, the 125
maximal isotropic (5, 5)-subgroups that determine a kernel which intersects the
kernel of the dual isogeny trivially can easily be computed.

5 Multiradical (3, 3)-isogenies

5.1 The parametrization by Bruin, Flynn and Testa

Over any perfect field K with charK - 6, we consider A3 with coordinates r, s, t,
and we let S ⊆ A3 be the joint complement of the zero loci of10

δ1 = t,

δ2 = s,

δ3 = st+ 1,

δ4 = r3 − 3rt+ t2 + t,

δ5 = r3s− 3rst+ st2 + st+ t,

δ6 = r3s2 − 3rs2t− 3rs+ s2t2 + s2t+ 2st+ s+ 1,

δ7 = r3s2t+ r3s− 3rs2t2 − 3rst+ s2t3 + s2t2 + 2st2 + t,

∆ = r6s2 − 6r4s2t− 3r4s+ 2r3s2t2 + 2r3s2t+ 3r3st+ r3s+ r3

+ 9r2s2t2 + 6r2st− 6rs2t3 − 6rs2t2 − 9rst2 − 3rst− 3rt+ s2t4

+ 2s2t3 + s2t2 + 2st3 + 3st2 + t2 + t

10 Note that [5] define δ1 = s and δ2 = t, so some care is needed when comparing our
formulae with the ones from this reference.
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and also of r− 1, r2− t and rs− st− 1 (we don’t give a name to these last three
polynomials since their role is less essential, see Remark 12 below). Following
Bruin, Flynn and Testa [5], to r, s, t we then attach the genus-2 curve Crst : y2 =
Frst(x), where

Frst(x) = G1(x)2 + λ1H1(x)3 = G2(x)2 + λ2H2(x)3

and

H1(x) = x2 + rx+ t,

λ1 = 4s,

G1(x) = (s− st− 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 + t,

H2(x) = x2 + x+ r,

λ2 = 4st,

G2(x) = (s− st+ 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 − t.

One can calculate that disc(Frst) = −21236δ31δ
3
2δ3δ

3
4δ5δ

3
6δ

3
7 6= 0, so Crst is a

genus-2 curve. We write Jrst for the Jacobian of Crst.

Proposition 11. For i = 1, 2, write Ti ∈ Jrst(K) for the divisor class of

(Hi, Gi) := (αi1, Gi(αi1)) + (αi2, Gi(αi2))−∞1 −∞2,

where αi1, αi2 ∈ K denote the zeroes of Hi(x). Then 〈T1, T2〉 is a maximal
isotropic subgroup of Jrst, and the quotient Jrst/〈T1, T2〉 is isomorphic over K

to the Jacobian J
(−3)
r′s′t′ of the genus-2 curve

C
(−3)
r′s′t′ : −3y2 = Fr′s′t′(x)

where (r′, s′, t′) = ψ0(r, s, t) :=(
−s(r − 1)(r2 − t)(δ5 − r)

(rs− st− 1)2δ4
,

(rs− st− 1)3δ24
st(r − 1)3∆

,
s2(r − 1)3(r2 − t)3

(rs− st− 1)3δ24

)
.

Writing Fr′,s′,t′(x) = G′1(x)2 + λ′1H
′
1(x)3 = G′2(x)2 + λ′2H

′
2(x)3 as above, the

kernel of the dual isogeny is generated by the corresponding points T ′i , by which
we mean the divisor classes of

(H ′i, G
′
i/
√
−3) = (α′i1, G

′
i(α
′
i1)/
√
−3) + (α′i2, G

′
i(α
′
i2)/
√
−3)−∞1 −∞2,

with α′i1, α
′
i2 ∈ K the zeroes of H ′i(x), for i = 1, 2.

Proof. This follows from [5, Thm. 6 & Lem. 10]. ut

We call (Hi, Gi) the Mumford coordinates of Ti, because of the clear analogy with
the Mumford coordinates in the case of hyperelliptic curves with an imaginary
Weierstrass model, i.e., with a unique place at infinity.11

11 For an even better analogy, one should reduce the degree of the second component
by writing (Hi, Gi mod Hi).
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All sufficiently general triples (C, T1, T2) with C a genus-2 curve and T1, T2
generating a (3, 3)-subgroup of JC are reached by the above parametrization.
One exception is where the effective parts of (the natural representants of) the
divisor classes corresponding to the generators T1, T2 have non-disjoint supports.
This is how one should understand the role of r−1, r2− t, rs−st−1: if any one
of these expressions is zero, then one can still consider Crst, T1, T2 as above,12

but the formulae of [5] will produce generators of the kernel of the dual isogeny
that have non-disjoint supports.

Remark 12. While for certain curves the parametrization misses certain pairs
T1, T2 generating a (3, 3)-subgroup, every (3, 3)-subgroup is reached. Indeed, by
[5, Lem. 3] in combination with the paragraph preceding [5, Thm. 6], at least
one choice of basis with generators from {T1, T2, T1 + T2, T1 − T2} will be in
sufficiently general form.

The role of ∆ is more fundamental: it should not vanish because otherwise
Jrst/〈T1, T2〉 is K-isomorphic to a product of elliptic curves.

We discuss the multiradical isogeny formulae corresponding to the family S
in Section 5.2. First, as an intermezzo, let us elaborate and discuss how to handle
the case ∆ = 0, as well as how to walk away from products of elliptic curves.
None of the material below is new, however, to the best of our knowledge, there
is no article containing all these formulae, so we felt it was worth gathering them.

From Jacobians to products If ∆ = 0, then any algebraic software package
can easily verify that the polynomial Frst(x) factors in two cubic polynomials
over the ring Q(r, s, t, ζ3)[x]/(∆), where ζ3 is a primitive cubic root of unity.
This factorization induces an isogeny to a product of elliptic curves, and we
refer to [33] for the general construction for (`, `)-split Jacobians. In the specific
case of a (3,3)-split Jacobian, we mention the complete characterization by [3,
Prop. A.2].

Proposition 13. Let C be a genus-2 curve over a perfect field K with char K -
6, and J the Jacobian of C. If J is (3, 3)-isogenous to a product of elliptic curves
E1 × E2, then there exist elements a, b, c, d, t ∈ K with

12ac+ 16bd = 1, ∆1 = a3 + b2 6= 0, ∆2 = c3 + d2 6= 0, t 6= 0,

such that C is isomorphic to Cabcdt : ty2 = f(x) and Ei is isomorphic to Ei,abcdt :
ty2 = fi(x) for i ∈ {1, 2}, with

f(x) = (x3 + 3ax+ 2b)(2dx3 + 3cx2 + 1),

f1(x) = x3 + 12(2a2d− bc)x2 + 12(16ad2 + 3c2)∆1x+ 512∆2
1d

3,

f2(x) = x3 + 12(2bc2 − ad)x2 + 12(16b2c+ 3a2)∆2x+ 512∆2
2b

3.

12 As long as no δi vanishes.
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The corresponding morphisms ϕi : Cabcdt → Ei,abcdt are given by

ϕ1(x, y) 7→
(

12∆1
−2dx+ c

x3 + 3ax+ 2b
, y∆1

16dx3 − 12cx2 − 1

(x3 + 3ax+ 2b)2

)
,

ϕ2(x, y) 7→
(

12∆2
x2(ax− 2b)

2dx3 + 3cx2 + 1
, y∆2

x3 + 12ax− 16b

(2dx3 + 3cx2 + 1)2

)
.

As mentioned, the Jacobian of a genus-2 curve is generically not (3, 3)-split. If
it is, however, the curves E1,abcdt and E2,abcdt will typically be unique up to
isomorphism, i.e., the Jacobian should not be expected to split in more than
one way. Up to isomorphism, there are only two genus-2 curves which are (3, 3)-
isogenous to distinct products of elliptic curves [38].

Ideally, we would like more uniform formulae to identify the curves Crst and
Cabcdt with one another in the case ∆ equals zero. Unfortunately, these formulae
would be extremely lengthy and finding an isomorphism from one to the other
in practice can be done relatively easily by a Gröbner basis computation since
isomorphisms between genus-2 curves are well-understood.

Isogenies from products Let E1 × E2 be a product of elliptic curves, both
defined over a perfect field K with charK - 6, and T1, T2 ∈ (E1 × E2)(K)[3]
such that 〈T1, T2〉 is maximal isotropic with respect to the 3-Weil pairing. Then
(E1×E2)/〈T1, T2〉 is again a product of elliptic curves in two scenarios. The first
scenario is the most common one, where T1, T2 correspond to 3-torsion points on
the separate elliptic curves E1, E2. The codomain of the isogeny can be computed
using Vélu’s formulae.

Proposition 14. Consider elliptic curves E1, E2 over a perfect field K with
charK - 6, with non-trivial T1 ∈ E1[3], T2 ∈ E2[3]. Then Ei can be written as
Ei : y2+aixy+biy = x3 for i ∈ {1, 2}, where the Ti have been translated to (0, 0)
on the respective curves. Write G = 〈(T1,∞E2), (∞E1 , T2)〉. Then the codomain
of the isogeny with kernel G is again a product of elliptic curves E′1×E′2, where
for i ∈ {1, 2} we can write

E′i : y2 + aixy + biy = x3 − 5aibix− a3i bi − 7b2i .

The second situation where the codomain of a (3, 3)-isogeny with domain E1×E2

is again a product of elliptic curves, is the relatively rare occurrence when there
exists a 2-isogeny θ : E1 → E2. In this case, the isogeny is the endomorphism

φ : E1 × E2 → E1 × E2

(P,Q) 7→ (P + θ̂(Q),−Q+ θ(P )),

with kernel the graph of the 2-isogeny θ|E1[3], see for example [23, §1].
In all other scenarios, (E1 ×E2)/〈T1, T2〉 is the Jacobian of a genus-2 curve,

where the kernel is the graph of an anti-isometry with respect to the 3-Weil
pairing (see for example [16, Prop. 5.6] or [32, Thm. 3]). By this we mean that
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there exists an isomorphism ψ : E1[3] → E2[3] such that e3(ψ(P ), ψ(Q)) =
e3(P,Q)−1 for all P,Q ∈ E1[3]. The formulae in this case are simply the dual
isogenies of the split Jacobians in Proposition 13.

Of the 40 (3, 3)-isogenies with domain E1×E2, generically there are 16 with
codomain a product of elliptic curves, and 24 with codomain the Jacobian of
a genus-2 curve. The only exception to this is by means of an aforementioned
2-isogeny θ : E1 → E2.

5.2 Multiradical formulae

We are interested in finding good extensions of our (3, 3)-isogeny

Jrst −→ J
(−3)
r′s′t′ = Jrst/〈T1, T2〉. (8)

In view of the conjectured property (4), let us compute the relevant Tate pair-
ings. The reader might want to compare the following lemma with the Weil
pairing computation from [5, Lem. 4].

Lemma 15. Let
C : y2 = G2

1 + λ1H
3
1 = G2

2 + λ2H
3
2

be a genus-2 curve over K with G1, G2, H1, H2 ∈ K[x] and H1, H2 quadratic,
and consider the corresponding points T1 = (H1, G1), T2 = (H2, G2) ∈ JC [3].
Then t3(T1, T2) ≡ resx(G1 −G2, H2)/λ1.

Proof. Write α11, α12, resp., α21, α22, for the roots of H1(x), resp., H2(x). It is
easy to check that G1(x) − y has divisor 3(H1, G1); however, in order to move
away from infinity, as we did in Example 3, we instead work with (G1(x)−y)/(x−
c)3 for some c ∈ K that is different from α21, α22. Evaluating this function in
(H2, G2) yields

t3(T1, T2) ≡ − (G1(α21)−G2(α21)(G1(α22)−G2(α22))

(α21 − c)3(α22 − c)3λ1 lc(H1)3
≡ resx(G1−G2, H2)/λ1

modulo (K∗)3. ut

Applying this to our instances of T1, T2, one checks that resx(G1−G2, H2)/λ1
equals δ4/δ2. As for the other pairings: Bruin, Flynn and Testa have also provided
an explicit Mumford representation (H3, G3) for T3 := T1 + T2, see [5, Thm. 6],
and the analogous computations yield t3(T1, T3) ≡ δ27 and t3(T3, T2) ≡ δ1δ

2
6 .

From these outcomes it follows that

t3(T1, T1) ≡ δ2δ24δ27 , t3(T1, T2) ≡ δ22δ4, t3(T2, T2) ≡ δ1δ2δ24δ26 .

We will instead work with the radicands

r1 = δ7 ≡ t3(T1, T1)t3(T1, T2),

r2 = δ2δ
2
4 ≡ t3(T1, T2)−1,

r3 = δ1δ
2
6 ≡ t3(T1, T2) · t3(T2, T2),
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which does not affect the validity of property (4). Indeed, formulae in terms
of 3
√
r1, 3
√
r2, 3
√
r3 can easily be rewritten into formulae in terms of 3

√
r1r2 =

3
√
t3(T1, T1), 3

√
1/r2 = 3

√
t3(T1, T2), 3

√
r2r3 = 3

√
t3(T2, T2), and vice versa.

The good extensions of (8) are characterized by the fact that their kernel
intersects the kernel 〈T ′1, T ′2〉 of the dual isogeny trivially. In order to find such
kernels, we are first and foremost interested in extending T ′1, T

′
2 to a basis of the

3-torsion. To this end, we try to find all b1, . . . , b7 such that

Fr′s′t′(x) = (b4x
3 + b3x

2 + b2x+ b1)2 + b7(x2 + b5x+ b6)3. (9)

Indeed, every such tuple produces a divisor D with Mumford coordinates

(x2 + b5x+ b6, (b4x
3 + b3x

2 + b2x+ b1)/
√
−3)

satisfying 3D = (b4x
3+b3x

2+b2x+b1−
√
−3y), hence D ∈ J (−3)

r′s′t′ [3]. Conversely,
every 3-torsion point arises in this way, see for example [7, §3.1]. Over an algeb-
raic closure of the base field, 80 nontrivial 3-torsion elements exist and hence 80
tuples (b1, . . . , b7) satisfy the above equation. We remark that for every solution
(b1, b2, b3, b4, b5, b6, b7) corresponding to a divisor D, there exists another solu-
tion (−b1,−b2,−b3,−b4, b5, b6, b7) corresponding to the opposite divisor, whose
class is −D.

The parametrization from Section 5.1 already gives rise to eight solution
tuples (b1, . . . , b7) corresponding to the elements in {iT ′1+jT ′2 : 0 ≤ i, j ≤ 2}\{0}.
To find the rest of the tuples, one can write out the equation of Fr′s′t′(x) as well
as the right-hand side of (9), and equate coefficients of the degree-six polynomials
found. One can then compute a reduced Gröbner basis of these seven expressions
with respect to the lexicographic monomial order.13

Assuming we put b4 last in the monomial ordering, the last polynomial of the
Gröbner basis will be a degree-80 polynomial in just b4, whose roots correspond
to possible solutions for b4 in (9). Up to some constant factor, this minimal
polynomial of b4 is of the form

M(b4) =

4∏
i=1

(b24 − β2
i )

4∏
k=1

fk(b4),

where the fk(b4) are polynomials of degree 18, and the βi are the (necessarily
rational) solutions corresponding to {iT ′1 + jT ′2 : 0 ≤ i, j ≤ 2} \ {0}. These βi
appear in pairs, which on the level of divisors coincides with the correspondence
between D and −D, and for the same reason one can see that the polynomials
fk ought to be even. We will write f ′k(b4) for the polynomial obtained by halving
the exponents of the monomials of fk(b4).

13 Performing a straightforward Gröbner basis computation in Q[r, s, t, b1, . . . , b7] will
quickly result in memory issues. Instead, one can first transform Fr′s′t′ to the more
generic form x6 + ax4 + bx3 + cx2 + dx+ e to suppress the high degrees of r′, s′, t′.
Next, one can compute the Gröbner basis over Fp[a, b, c, d, e, b1, . . . , b7] for many p,
then lift the solution to Q[a, b, c, d, e, b1, . . . , b7] with the Chinese remainder theorem.
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One can verify that the polynomials f ′k(b4) ∈ Q(r, s, t)[b4] all have Galois
group (Z3×Z3)oZ∗3, but the action of Z∗3 originates from a cubic root of unity,
and their Galois groups over Q(r, s, t, ζ3) are thus Z3 × Z3. Writing α1 = 3

√
r1,

α2 = 3
√
r2, α3 = 3

√
r3, it turns out that they split completely when extending

the field Q(r, s, t, ζ3) with {α1, α2}, {α1, α3}, {α2, α3} or {α1α2, α1α3}. All roots
of one specific f ′k(b4) can be obtained from a single given root, by scaling the
cubic roots with powers of ζ3. On the level of divisors, these associated roots
correspond to adding a linear combination of T ′1 and T ′2. More precisely, if xk
denotes a root of f ′k(b4), we can make the following identification:

x1(ζi3α1, ζ
j
3α2)←→ T ′3 + iT ′1 + jT ′2 for 0 ≤ i, j ≤ 2,

x2(ζi3α1, ζ
j
3α3)←→ T ′4 + iT ′1 + jT ′2 for 0 ≤ i, j ≤ 2,

x3(ζi3α2, ζ
j
3α2)←→ T ′3 + T ′4 + iT ′1 + jT ′2 for 0 ≤ i, j ≤ 2,

x4(ζi3α1α2, ζ
j
3α1α3)←→ T ′3 − T ′4 + iT ′1 + jT ′2 for 0 ≤ i, j ≤ 2,

for any T ′3, T
′
4 that extend 〈T ′1, T ′2〉 to a basis of J

(−3)
r′s′t′ [3]. This correspondence can

be seen from the fact that all f ′k(b4) split over different fields, yet T ′1 and T ′2 are ra-
tional over the ground field. Furthermore, for any fixed choice of i, j, k ∈ {0, 1, 2},
any two distinct divisors from this correspondence coinciding with the choice
of ζi3α1, ζ

j
3α2, ζ

k
3α3 generate a (3, 3)-subgroup that intersects 〈T ′1, T ′2〉 trivially.

Hence, to find the 27 (up to sign) distinct b4 that correspond to a (3, 3)-subgroup
which is the kernel of a good extension relative to the original isogeny, it suffices
to scale the radicands with cubic roots of unity.

In the appendix, we have included two expressions for b4 which we believe
are the easiest amongst the b4 in terms of arithmetic. Alternatively, the formulae
can also be extracted from the code of our hash function from Section 6, which
can be found in our online repository at https://github.com/KULeuven-CO

SIC/Multiradical-Isogenies. One can derive closed algebraic expressions
for bi in function of b4 for i ∈ {1, 2, 3, 5, 6, 7}. However, in practice, it is more
efficient to only partially do this for the easier expressions, and the remainder
by means of a small Gröbner basis computation. Finding the 27 distinct pairs of
tuples (b1, . . . , b7) corresponding to good extensions is done by simply scaling the
radicands in the expressions of the b4 with cubic roots of unity before computing
the rest of the bi.

Remark 16. Observe that our formulae involve a factor
√
−3 (called twist), but

this factor disappears when considering the corresponding Mumford coordinates.

Iterated application. Using this new (3, 3)-subgroup 〈T ′3, T ′4〉 as kernel for a
new isogeny is easiest if we first transform Cr′s′t′ into an isomorphic curve CRST ,
where T ′3 and T ′4 have now taken the role of the T1 and T2 from Section 5.1 again.
This isomorphism allows us to only need to perform the rational transformation
ψ0(R,S, T ) from Proposition 11 to compute the next isogenous curve. To find
this isomorphism, one can use the construction of [5] that has been implemented
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in Magma in [22]. This construction makes use of somewhat expensive field
extensions though, and in practice, a Gröbner basis computation is more efficient.

6 Hash function from (3, 3)-isogenies

We can use the (3, 3)-isogenies from the previous section to construct a hash
function similar to the hash function from [9]. We start by describing a general
outline, then present a more in-depth discussion regarding choices that must be
made.

6.1 The graph Gp

For a large prime p, we denote the (directed multi-)graph Gp,3,2 from Section 2.5
as Gp and recall its construction. The vertices are all the Fp2-isomorphism classes
of superspecial p.p. abelian surfaces, which can always be defined over Fp2 . In
practice we assume p ≡ 2 mod 3 and work with representants A/Fp2 on which
Frobenius acts as multiplication with −p; see [2]. A consequence of this choice is
that A[3] ⊆ A(Fp2); indeed, on 3-torsion points Frobenius acts as multiplication
by −p ≡ 1 mod 3. The edges are all possible (3, 3)-isogenies between these p.p.
abelian surfaces (in the sense of Section 2.5), where multiplicities need to be
taken into account. Given that only the superspecial surfaces are considered,
the graph Gp is a directed 40-regular finite multigraph. In order to hash a given
message in this graph, we first choose an arbitrary — yet fixed — starting vertex.
Next, we order the 40 outgoing edges from this vertex according to some fixed
order (e.g., lexicographic), and choose the first 27 to continue with. The message
that needs to be hashed is then converted into a base-3 number, of which the
digits are called trits. We choose to walk along the edge that corresponds to
the three least significant trits of the message towards the next vertex. At this
vertex, we consider the 27 outgoing edges that correspond to (3, 3)-isogenies
whose kernel intersect the kernel of the dual of the previous isogeny trivially.
Now we follow the edge that corresponds to the next three trits of the message.
By excluding the other 13 (3, 3)-isogenies, we avoid trivial cycles in our path by
not (partially or fully) backtracking. This process is repeated until the entire
message has been hashed. As output, an invariant of the resulting p.p. abelian
surface is then returned.

Given that we will have to compute cubic roots in the computations, p should
ideally be chosen such that the valuation of p2 − 1 at 3 is 1 in order to speed
up the computations. In combination with our assumption p ≡ 2 mod 3, this
means we want p ≡ 2, 5 mod 9. Of course, we want p large enough to provide
ample security. The graph Gp was proven to be connected, see for example [31,
Thm. 43]. Even though the graph is not Ramanujan, in the (2, 2)-case it still
exhibits strong expander properties so we assume this to be the case for (3, 3)-
isogenies as well. The set of edges of the graph is of size O(p3), of which the
majority consists of p.p. abelian surfaces corresponding to Jacobians of genus-2
curves, and only O(p2) corresponding to products of elliptic curves.
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Remark 17. Since p2 ≡ 1 mod 3 we have
√
−3 ∈ Fp2 . Consequently, we can

ignore the twisting factor −3 from Proposition 11 and identify Jrst/〈T1, T2〉 with
Jr′s′t′ . This comes at the (negligible) expense of carrying an extra factor

√
−3

in our multiradical isogeny formulae (called twist in our code); see Remark 16.

6.2 Starting p.p. abelian surface

It is still an open problem whether one can generate a supersingular elliptic
curve over a large prime field in reasonable time without knowing its endomorph-
ism ring. This knowledge can in fact compromise the security of the associated
cryptographic protocols, see for example [18]. Even though this has not been
explicitly written down yet for superspecial p.p. abelian surfaces, it is not too
far-fetched to assume the knowledge of its endomorphism ring can pose similar
security risks. On the same note, it is not known how to generate a genus-2
curve over a large prime field whose Jacobian is superspecial in reasonable time
without knowing its endomorphism ring. Some exceptional curves are known, see
for example [29, §1]. Note that all of these are curves with many automorphisms,
possibly leading to small collisions at the start of the hash function. Therefore, a
better starting vertex in our graph should be obtained by taking a long enough
random walk in the graph starting from one of these exceptional cases. Given
that the isomorphism classes corresponding to products of elliptic curves repres-
ent a negligible proportion of vertices in Gp for cryptographically large p, we can
assume our starting vertex to be the Jacobian of a genus-2 curve. Furthermore,
we are interested in only 27 of the 40 (3, 3)-subgroups of this Jacobian. Hence
our starting point can be chosen as an (r, s, t)-parametrization from Section 5.1,
where the 27 (3, 3)-subgroups correspond precisely to those that intersect the
(3, 3)-subgroup determined by the (r, s, t)-parametrization trivially. Making this
choice can be seen as having performed a step 0 in the hash function, where
the kernel of the dual isogeny corresponding to this step is determined by this
(r, s, t)-parametrization.

6.3 Genus-2 curves versus products of elliptic curves

Vertices corresponding to the Jacobians of genus-2 curves or the product of
two elliptic curves will of course need to be handled differently with regard to
computing the next edge in our walk. Apart from this internal code distinction,
it is more user-friendly for a hash function to have a fixed size as output. The
isomorphism class of the Jacobians of genus-2 curves can be classified by their
absolute Igusa invariants, which are ordered triplets of elements in Fp2 , whereas
products of elliptic curves are completely determined by an unordered pair of j-
invariants in Fp2 . In order to unify these two types of invariants in one output, we
first note that the number of possible output values is only 3 log p, and not 6 log p
as the absolute Igusa invariants may suggest. If the application for the hash
function is not impeded by taking values in a set that is sparse in a much larger
set, one can apply the following method during the hashing. Whenever we arrive
at a vertex corresponding to a product of elliptic curves, we (deterministically)
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take one more step in the graph without processing information, to a vertex
corresponding to the Jacobian of a genus-2 curve again. Alternatively, if one
only wants an output of the same length as there is entropy, one needs to choose
a function to reduce both the absolute Igusa invariants as well as the pair of
j-invariants to something of size 3 log p.

6.4 Implementation

We implemented our (3, 3)-hash function in Magma (version 2.26-1) and ran it
on an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 128 GB of memory.
For every prime size considered we averaged the computation times over 100
random inputs of 1000 bits. A summary of our timed results can be found in
the following table, where we included the timings of the (2, 2)-hash function
from [9] for comparison. The security claims in the table are the same as in [9,
§7.4] and to the best of our knowledge, no advancements have been made in
that area. In particular, the best known classical attack is based on the general
Pollard-ρ attack, whereas the best known quantum attack is based on Grover’s
claw-finding algorithm.

p ≈ 286 p ≈ 2128 p ≈ 2171 p ≈ 2256

bits of classical security 128 192 256 384
bits of quantum security 86 128 170 256

output bits 516 768 1026 1536
time per bit processed (2, 2) 5.01ms 6.52ms 9.33ms 15.70ms

time per bit processed (3, 3) (this work) 4.70ms 4.87ms 5.54ms 6.36ms

To understand why the (3, 3)-hash function scales much better than the (2, 2)-
hash function, we take a look at the decomposition of the computation cost in
the following table.

p ≈ 286 p ≈ 2128 p ≈ 2171 p ≈ 2256

1) Tate pairings (cubic roots) 7.0% 8.5% 11.2% 14.3%
2) Compute b4’s (arithmetic) 20.5% 18.9% 18.9% 17.0%
3) Find other bi’s (two GCD’s) 16.4% 15.9% 15.8% 15.2%
4) Reparametrize r, s, t (Gröbner basis) 54.6% 55.3% 52.7% 52.2%
5) Isogenous curve (arithmetic) 1.5% 1.4% 1.4% 1.3%

As p grows, the degrees of the polynomials involved in steps 3 and 4 in this
table don’t change, hence the complexity of these steps depends only on the
arithmetic of the field Fp2 . Asymptotically, root finding over finite fields Fp2 for
large p, e.g., with the Tonelli–Shanks algorithm, scales a lot worse than addition
and multiplication. Therefore, in the (3, 3)-hash function step 1 in the table takes
up a larger relative amount of work as p grows. For p large enough, this part of
the computation will dominate the total cost. In the (2, 2)-hash function on the
other hand, the computation is already heavily dominated by the three (square)
roots for small p, with only a handful of basic arithmetic operations.
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Furthermore, the valuation of p2 − 1 at N determines the complexity of
finding an Nth root of an element in Fp2 , see for instance [17, Thm. 1]. One can
choose p such that 9 - p2 − 1 but at the very least we always have 8 | p2 − 1,
which means cubic roots can be computed significantly faster than square roots.
In practice, Magma can compute cubic roots over Fp2 faster than square roots
with a factor of about 2.7 for large enough p.

Additionally, for every three computed roots, the (3, 3)-hash function can
process 3 trits, whereas the (2, 2)-hash function can only process 3 bits. Asymp-
totically we can thus expect the (3, 3)-hash function to outperform the (2, 2)-hash
function by a total factor of 2.7 · (3/2)3 ≈ 9. For Fp2 with p = 21024 + 643 for
example, we see that (2, 2)-hashing a 100-bit message takes about 20.4 seconds,
whereas (3, 3)-hashing a 100-bit message takes about 2.26 seconds.
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[3] Reinier Bröker, Everett W. Howe, Kristin E. Lauter, and Peter Stevenhagen.
Genus-2 curves and Jacobians with a given number of points. LMS Journal of
Computation and Mathematics, 18(1):170–197, 2015.

[4] Nils Bruin and Kevin Doerksen. The arithmetic of genus two curves with (4, 4)-
split Jacobians. Canadian Journal of Mathematics, 63(5):992–1021, 2011.

[5] Nils Bruin, E. Victor Flynn, and Damiano Testa. Descent via (3, 3)-isogeny on
Jacobians of genus 2 curves. Acta Arithmetica, 165(3):201–223, 2014.

[6] Peter Bruin. The Tate pairing for abelian varieties over finite fields. Journal de
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[45] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie
des Sciences, Série I, 273:238–241, 1971.

Appendix: code for 3-torsion

The following is the Magma code that accompanies Section 5.2. The formulae
can be extracted as part of the hash function code found in our online repository
at https://github.com/KULeuven-COSIC/Multiradical-Isogenies, but we
deem the formulae important enough to be displayed in the appendix as well.

The variables r,s,t in the code represent the domain of the (3, 3)-isogeny,
whereas R,S,T represent the codomain.14 The variables a,b,c represent cubic
roots of factors of the Tate pairings. The variables b4ab and b4bc represent
solutions for b4 in (9). Note that we work with b4 instead of b5 since in practice

14 Remark that we want the codomain curve to have small integer parameters, so in
the code these are defined first, after which we use the dual isogeny to compute the
more elaborate rational parameters of the domain curve.
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we want to be able to distinguish between a divisor and its opposite. From
these two solutions for b4, we compute a Gröbner basis to find solutions for the
other coefficients bi. Note that the formulae are general, but Magma struggles
to work over a degree-54 extension of a function field in 3 variables. Hence,
to make the code work standalone, we opted to work with a concrete example
where (R,S, T ) = (2, 5,−3). To verify the formulae in general, one works over
Q(R,S, T ) and adjoin only the cubic roots a,b, for example. Then, one checks
that one of the degree-18 factors from the minimal polynomial of b4 coincides
with the product

∏3
i=1

∏3
j=1(x2 − b4(ζi3a, ζ

j
3b)), where the product ranges over

all possible cubic roots a,b.

clear;
Q := Rationals();
R := 2; S := 5; T := -3;
Qx<x> := PolynomialRing(Q);
Q<twist> := ext<Q | x^2 + 3>;
Qx<x> := PolynomialRing(Q);

D1 := T;
D2 := S;
D3 := S*T + 1;
D4 := R^3 - 3*R*T + T^2 + T;
D5 := R^3*S - 3*R*S*T + S*T^2 + S*T + T;
D8 := R^2 - T;
D9 := R - 1;
D10 := R*S - S*T - 1;
D11 := S*T - S + 1;
DELTA := R^6*S^2 - 6*R^4*S^2*T - 3*R^4*S + 2*R^3*S^2*T^2 + 2*R^3*S^2*T
+ 3*R^3*S*T + R^3*S + R^3 + 9*R^2*S^2*T^2 + 6*R^2*S*T
- 6*R*S^2*T^3 - 6*R*S^2*T^2 - 9*R*S*T^2 - 3*R*S*T - 3*R*T + S^2*T^4
+ 2*S^2*T^3 + S^2*T^2 + 2*S*T^3 + 3*S*T^2 + T^2 + T;

r := -D2*D9*D8*(D5-R)/(D10^2*D4);
s := D10^3*D4^2/(D1*D2*D9^3*DELTA);
t := D2^2*D9^3*D8^3/(D10^3*D4^2);

d1 := t;
d2 := s;
d4 := r^3 - 3*r*t + t^2 + t;
d6 := r^3*s^2 - 3*r*s^2*t - 3*r*s + s^2*t^2 + s^2*t + 2*s*t + s + 1;
d7 := r^3*s^2*t + r^3*s - 3*r*s^2*t^2 - 3*r*s*t + s^2*t^3 + s^2*t^2 + 2*s*t^2 + t;

Q<a> := ext<Q | x^3 - d7>;
Q<b> := ext<Q | x^3 - d2*d4^2>;
Q<c> := ext<Q | x^3 - d1*d6^2>;

cofab1 := D1^2 *D4^4 *D10^8 /(D2^3*D8^6*D9^2*DELTA^2);
cofab2 := D1^2 *D4^4*D8 *D10^7 *D11 /(D2^2*D8^6*D9^2*DELTA^2);
cofab3 := D1 *D4^4*D8^2*D10^6 /(D2 *D8^6*D9^2*DELTA^2);
cofab4 := D1^2 *D4^2* D10^5 *D11 /(D2^2*D8^4*D9 *DELTA);
cofab5 := D1 *D4^2*D8* D10^4 /(D2 *D8^4*D9 *DELTA);
cofab6 := D1 *D3 *D4^2*D8^2*D10^3 /( D8^4*D9 *DELTA);
cofab7 := D1^2 *D10^2 / D8^2;
cofab8 := D1 *D10 / D8;
cofab9 := D11;

cofab1 *:= -6*S*T-2;
cofab2 *:= -2;
cofab3 *:= 6*S*T+4;
cofab4 *:= 2;
cofab5 *:= -6*S*T-2;
cofab6 *:= -6;
cofab7 *:= 6;
cofab8 *:= 6*S*T+4;
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cofab9 *:= 2*S*T+1;

b4ab := twist* ((cofab9 + cofab8*a + cofab7*a^2) + (cofab6 + cofab5*a + cofab4*a^2)*b
+ (cofab3 + cofab2*a + cofab1*a^2)*b^2);

cofbc1 := 1 /(D2 *D4^3);
cofbc2 := D1^2 *D9 *D10 /(D2 *D4^3 *D8);
cofbc3 := D1^3 *D9^2*D10^2 /(D2 *D4^3*D5 *D8^2);
cofbc4 := D1 *D10^3 /(D2^2*D4 *D8^2*D9 *DELTA);
cofbc5 := D1^2 *D10^4 /(D2^2*D4 *D8^3 *DELTA);
cofbc6 := D1^3 *D9 *D10^5 /(D2^2*D4 *D5 *D8^4 *DELTA);
cofbc7 := D1 *D4 *D10^6 /(D2^3 *D8^4*D9^2*DELTA^2);
cofbc8 := D1^2*D4 *D10^7 /(D2^3 *D8^5*D9 *DELTA^2);
cofbc9 := D1^4*D4 *D10^8 /(D2^3 *D5 *D8^6 *DELTA^2);

cofbc1 *:= R^9*S^2*T + R^9*S^2 - R^9*S - 6*R^8*S^2*T - 3*R^7*S^2*T^2 - 3*R^7*S^2*T
- 5*R^7*S*T + R^6*S^2*T^3 + 40*R^6*S^2*T^2 + R^6*S^2*T + 13*R^6*S*T^2 + 13*R^6*S*T
- 2*R^6*T - 21*R^5*S^2*T^3 - 21*R^5*S^2*T^2 + 3*R^5*S*T^2 + 6*R^4*S^2*T^4 - 54*R^4*S^2*T^3
+ 6*R^4*S^2*T^2 - 52*R^4*S*T^3 - 52*R^4*S*T^2 - 6*R^4*T^2 - R^3*S^2*T^5 + 64*R^3*S^2*T^4
+ 64*R^3*S^2*T^3 - R^3*S^2*T^2 + 11*R^3*S*T^4 + 103*R^3*S*T^3 + 11*R^3*S*T^2 + 14*R^3*T^3
+ 14*R^3*T^2 - 33*R^2*S^2*T^5 - 48*R^2*S^2*T^4 - 33*R^2*S^2*T^3 - 15*R^2*S*T^4 - 15*R^2*S*T^3
- 18*R^2*T^3 + 9*R*S^2*T^6 + 15*R*S^2*T^5 + 15*R*S^2*T^4 + 9*R*S^2*T^3 + 7*R*S*T^5
- 40*R*S*T^4 + 7*R*S*T^3 - 6*R*T^4 - 6*R*T^3 - S^2*T^7 - 2*S^2*T^6 - 2*S^2*T^5
- 2*S^2*T^4 - S^2*T^3 - 3*S*T^6 + 9*S*T^5 + 9*S*T^4 - 3*S*T^3 - 2*T^5 + 14*T^4 - 2*T^3;
cofbc2 *:= -2*R^7*S + 8*R^6*S - 6*R^5*S + 6*R^5 + 2*R^4*S*T^2 - 22*R^4*S*T - 12*R^4*T
+ 22*R^3*S*T^2 + 28*R^3*S*T + 6*R^3*T - 18*R^2*S*T^3 - 24*R^2*S*T^2 - 6*R^2*S*T
+ 6*R^2*T^2 - 12*R^2*T + 4*R*S*T^4 + 20*R*S*T^3 - 2*R*S*T^2 + 6*R*T^3 + 6*R*T^2 -
4*S*T^4 - 2*S*T^3 + 2*S*T^2 - 12*T^3 + 6*T^2;
cofbc3 *:= 2*R^8*S - 6*R^7*S + 4*R^6*S*T - 8*R^5*S*T^2 + 16*R^5*S*T + 6*R^5*T
- 30*R^4*S*T^2 - 12*R^4*T + 44*R^3*S*T^3 + 14*R^3*S*T^2 + 6*R^3*T^2 - 10*R^2*S*T^4
- 32*R^2*S*T^3 - 22*R^2*S*T^2 - 12*R^2*T^3 + 6*R^2*T^2 - 6*R*S*T^4 + 36*R*S*T^3
+ 6*R*S*T^2 + 6*R*T^3 + 6*R*T^2 + 4*S*T^5 - 4*S*T^4 - 8*S*T^3 + 6*T^4 - 12*T^3;
cofbc4 *:= 2*R^9*S^2 - 2*R^8*S^2*T - 4*R^8*S^2 + 4*R^8*S - 8*R^7*S^2*T + 2*R^7*S^2
- 10*R^7*S + 16*R^6*S^2*T^2 + 26*R^6*S^2*T - 4*R^5*S^2*T^3 - 18*R^5*S^2*T^2 - 20*R^5*S^2*T
- 10*R^5*S*T^2 + 32*R^5*S*T + 6*R^5*T - 22*R^4*S^2*T^3 - 24*R^4*S^2*T^2 + 4*R^4*S^2*T
- 38*R^4*S*T^2 - 2*R^4*S*T - 12*R^4*T + 14*R^3*S^2*T^4 + 72*R^3*S^2*T^3 + 40*R^3*S^2*T^2
+ 60*R^3*S*T^3 + 6*R^3*S*T^2 + 6*R^3*T^2 - 2*R^2*S^2*T^5 - 32*R^2*S^2*T^4 - 64*R^2*S^2*T^3
- 16*R^2*S^2*T^2 - 14*R^2*S*T^4 - 40*R^2*S*T^3 - 26*R^2*S*T^2 - 12*R^2*T^3 + 6*R^2*T^2
+ 4*R*S^2*T^5 + 22*R*S^2*T^4 + 20*R*S^2*T^3 + 2*R*S^2*T^2 - 10*R*S*T^4 + 52*R*S*T^3
+ 8*R*S*T^2 + 6*R*T^3 + 6*R*T^2 - 2*S^2*T^5 - 4*S^2*T^4 - 2*S^2*T^3 + 6*S*T^5
- 6*S*T^4 - 12*S*T^3 + 6*T^4 - 12*T^3;
cofbc5 *:= -2*R^7*S + 4*R^6*S*T + 4*R^6*S - 2*R^6 - 6*R^5*S*T - 10*R^4*S*T^2 - 10*R^4*S*T
- 6*R^4*T + 2*R^3*S*T^3 + 46*R^3*S*T^2 + 2*R^3*S*T + 14*R^3*T^2 + 14*R^3*T - 24*R^2*S*T^3
- 24*R^2*S*T^2 - 18*R^2*T^2 + 10*R*S*T^4 + 2*R*S*T^3 + 10*R*S*T^2 - 6*R*T^3 - 6*R*T^2
- 2*S*T^5 - 2*S*T^2 - 2*T^4 + 14*T^3 - 2*T^2;
cofbc6 *:= 2*R^8*S - 6*R^7*S*T + 4*R^6*S*T + 16*R^5*S*T^2 - 8*R^5*S*T + 6*R^5*T
- 30*R^4*S*T^2 - 12*R^4*T^2 + 14*R^3*S*T^3 + 44*R^3*S*T^2 + 6*R^3*T^2 - 22*R^2*S*T^4
- 32*R^2*S*T^3 - 10*R^2*S*T^2 + 6*R^2*T^3 - 12*R^2*T^2 + 6*R*S*T^5 + 36*R*S*T^4
- 6*R*S*T^3 + 6*R*T^4 + 6*R*T^3 - 8*S*T^5 - 4*S*T^4 + 4*S*T^3 - 12*T^4 + 6*T^3;
cofbc7 *:= 2*R^9*S^2 - 4*R^8*S^2*T - 2*R^8*S^2 + 4*R^8*S + 2*R^7*S^2*T^2 - 8*R^7*S^2*T
- 10*R^7*S*T + 26*R^6*S^2*T^2 + 16*R^6*S^2*T - 20*R^5*S^2*T^3 - 18*R^5*S^2*T^2 - 4*R^5*S^2*T
+ 32*R^5*S*T^2 - 10*R^5*S*T + 6*R^5*T + 4*R^4*S^2*T^4 - 24*R^4*S^2*T^3 - 22*R^4*S^2*T^2
- 2*R^4*S*T^3 - 38*R^4*S*T^2 - 12*R^4*T^2 + 40*R^3*S^2*T^4 + 72*R^3*S^2*T^3 + 14*R^3*S^2*T^2
+ 6*R^3*S*T^3 + 60*R^3*S*T^2 + 6*R^3*T^2 - 16*R^2*S^2*T^5 - 64*R^2*S^2*T^4 - 32*R^2*S^2*T^3
- 2*R^2*S^2*T^2 - 26*R^2*S*T^4 - 40*R^2*S*T^3 - 14*R^2*S*T^2 + 6*R^2*T^3 - 12*R^2*T^2
+ 2*R*S^2*T^6 + 20*R*S^2*T^5 + 22*R*S^2*T^4 + 4*R*S^2*T^3 + 8*R*S*T^5 + 52*R*S*T^4
- 10*R*S*T^3 + 6*R*T^4 + 6*R*T^3 - 2*S^2*T^6 - 4*S^2*T^5 - 2*S^2*T^4 - 12*S*T^5
- 6*S*T^4 + 6*S*T^3 - 12*T^4 + 6*T^3;
cofbc8 *:= -2*R^7*S + 8*R^6*S*T - 6*R^5*S*T^2 + 6*R^5*T - 22*R^4*S*T^2 + 2*R^4*S*T
- 12*R^4*T + 28*R^3*S*T^3 + 22*R^3*S*T^2 + 6*R^3*T^2 - 6*R^2*S*T^4 - 24*R^2*S*T^3
- 18*R^2*S*T^2 - 12*R^2*T^3 + 6*R^2*T^2 - 2*R*S*T^4 + 20*R*S*T^3 + 4*R*S*T^2 + 6*R*T^3
+ 6*R*T^2 + 2*S*T^5 - 2*S*T^4 - 4*S*T^3 + 6*T^4 - 12*T^3;
cofbc9 *:= -8*R^7*S + 10*R^6*S*T + 10*R^6*S - 2*R^6 + 12*R^5*S*T - 40*R^4*S*T^2 - 40*R^4*S*T
- 6*R^4*T + 8*R^3*S*T^3 + 64*R^3*S*T^2 + 8*R^3*S*T + 14*R^3*T^2 + 14*R^3*T - 6*R^2*S*T^3
- 6*R^2*S*T^2 - 18*R^2*T^2 + 4*R*S*T^4 - 28*R*S*T^3 + 4*R*S*T^2 - 6*R*T^3 - 6*R*T^2
- 2*S*T^5 + 6*S*T^4 + 6*S*T^3 - 2*S*T^2 - 2*T^4 + 14*T^3 - 2*T^2;

b4bc := twist* ((cofbc1 + cofbc2*c + cofbc3*c^2) + (cofbc4 + cofbc5*c + cofbc6*c^2)*b
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+ (cofbc7 + cofbc8*c + cofbc9*c^2)*b^2);

Qbi<b1,b2,b3,b5,b6,b7> := PolynomialRing(Q,6);
Qx<x> := PolynomialRing(Qbi);

H1 := x^2 + R*x + T;
lambda1 := 4*S;
G1 := (S - S*T - 1)*x^3 + 3*S*(R - T)*x^2 + 3*S*R*(R - T)*x - S*T^2 + S*R^3 + T;
F := G1^2 + lambda1*H1^3;

bis := [];
for b4 in [b4ab,b4bc] do

Fbi := (b4*x^3 + b3*x^2 + b2*x + b1)^2 + b7*(x^2 + b6*x + b5)^3;
I := {Eltseq(F)[i] - Eltseq(Fbi)[i] : i in [1..7]};
GB := GroebnerBasis(I);
roots := [Roots(UnivariatePolynomial(GB[i]))[1][1] : i in [1..6]];
bi := roots[1..3] cat [b4] cat roots[4..6];
Append(~bis, bi);

end for;

C := HyperellipticCurve(F);
J := Jacobian(C);

for bi in bis do
T := J ! [Qx ! (bi[5..6] cat [1]), Qx ! bi[1..4]];
assert 3*T eq J ! 0;

end for;
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