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Abstract: In this paper, the authors construct a new type of cryptographic sequence which is 

named an extra-super increasing sequence, and give the definitions of the minimal super increasing 

sequence {1, 2, …, n} and minimal extra-super increasing sequence {ẕ1, ẕ2, …, ẕn}. Prove that 

the minimal extra-super increasing sequence is the odd-positioned subsequence of the Fibonacci 

sequence, namely {ẕ1, ẕ2, …, ẕn, …} = {F1, F3, …, F2n - 1, …}, which indicates that approaching the 

golden ratio  through the term difference ratio (ẕn +1  ẕn) / ẕn is stabler and faster than through the 

term ratio Fn + 1 / Fn. Further prove that the limit of the term ratio difference between the two cryp-

tographic sequences equals the golden ratio conjugate , namely limn (ẕn + 1 / ẕn  n + 1 / n) = , 

which reveals the beauty of cryptography. 

Keywords: Minimal extra-super increasing sequence, Fibonacci sequence, Golden ratio, Golden 

ratio conjugate, Term ratio difference 

1 Introduction 

In the world of numbers, there exist some interesting and unobservable phenomena. 

A super increasing sequence and analogous sequences are ones about cryptography [1]. The Fibo-

nacci sequence is a fabulous progression [2], and the golden ratio is a glorious irrational number [3]. In 

this paper, the authors discuss the triangular relations among these three things, and propose and prove 

the two new theorems, which designate a smooth and expeditious approach to the golden ratio, and 

display the beauty of cryptography on the golden ratio conjugate. 

Throughout the paper, unless otherwise specified, the sign  denotes the infinity,  signifies the 

golden ratio,  signifies the golden ratio conjugate,  symbolizes an accumulative sum, and x repre-

sents the square root of a positive real number x. 

2 Definitions of the Minimal Super Increasing Sequence and Minimal Extra-

super Increasing Sequence 

In cryptography, we always consider finite sequences. An infinite sequence may be truncated to a 

fitly finite sequence. 

2.1 Four Definitions Relevant to Cryptographic Sequences 

The concept of a super increasing sequence was firstly proposed in 1978 by R. C. Merkle and M. E. 

Hellman [1], and used for the design of the MH knapsack cryptosystems [4]. 

Definition 1: For n positive integers a1, a2, …, and an (n goes infinite), if ai (2  i  n) satisfies 
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ai >  i – 1 
j = 1 aj,                                                                    (1) 

then this integer progression is called a super increasing sequence, denoted by {a1, a2, …, an}, and 

shortly {ai}, which is a known concept. 

For example, {a1, a2, …, a8} = {2, 3, 7, 13, 29, 57, 113, 226} is a super increasing sequence. 

In what follows, we construct a new type of super increasing sequence. 

Definition 2: For n positive integers z1, z2, …, and zn (n goes infinite), if zi (2  i  n) satisfies 

zi >  i – 1 
j = 1 (i – j)zj,                                                                (2) 

then this integer progression is called an extra-super increasing sequence, denoted by {z1, z2, …, zn}, 

and shortly {zi}. 

For example, {z1, z2, …, z8} = {1, 3, 8, 21, 54, 139, 367, 960} is an extra-super increasing sequence. 

Definition 3: For n positive integers 1, 2, …, and n (n goes infinite), if the first term 1 = 1, and i 

(2  i  n) satisfies 

i = 1 +  i – 1 
j = 1 j,                                                                  (3) 

then this integer progression is called the minimal super increasing sequence, denoted by {1, 2, …, 

n}, and shortly {i}, which is a special case of super increasing sequences. 

For example, {1, 2, …, 8} = {1, 2, 4, 8, 16, 32, 64, 128} is the 8th minimal super increasing se-

quence. 

Definition 4: For n positive integers ẕ1, ẕ2, …, and ẕn (n goes infinite), if the first term ẕ1 = 1, and ẕi 

(2  i  n) satisfies 

ẕi = 1 +  i – 1 
j = 1 (i – j)ẕj,                                                            (4) 

then this integer progression is called the minimal extra-super increasing sequence, denoted by {ẕ1, 

ẕ2, …, ẕn}, and shortly {ẕi}, which is a special case of extra-super increasing sequences. 

For example, {ẕ1, ẕ2, …, ẕ8} = {1, 2, 5, 13, 34, 89, 233, 610} is the 8th minimal extra-super increas-

ing sequence. 

Owing to 

                       ẕi = 1 +  i – 1 
j = 1 (i – j)ẕj 

                          = 1 + (i – 1)ẕ1 + (i – 2)ẕ2 + …+ 2ẕi - 2 + 1ẕi - 1 

= (1 + ((i – 1) – 1)ẕ1 + ((i – 1) – 2)ẕ2 + …+ 1ẕi - 2) + (ẕ1 + ẕ2 + … + ẕi - 1), 

Formula (4) may be expressed as 

ẕi = ẕi 1 +  i – 1 
j = 1 ẕj,                                                               (4′) 

which will be employed in the following text. 

2.2 Cryptographic Meanings of Extra-super Increasing Sequences 

An extra-super increasing sequence bears a useful property. 

Property 1: Assume that {z1, z2, …, zn} is an extra-super increasing sequence. Then, for the term zi 

(1 < i  n) and any positive integer k, there exists  

(k + 1) zi >  i - 1 
j = 1 (k + i – j) zj.                                                          (5) 

Proof: 

According to Definition 2, we have zi >  i – 1 
j = 1 (i – j)zj, and its development is 

zi > (i – 1)z1 + (i – 2)z2 + … + 1zi 1.                                                (2′) 

Naturally, 

zi > z1 + z2 + … + zi 1. 

 

Further, there exists 

k zi > k z1 + k z2 + … + k zi 1,                                                       (5′) 
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where k (> 0) is an arbitrary integer. 

Adding (5′) to (2′) obtains 

k zi + zi > (k z1 + (i – 1)z1) + (k z2 + (i – 2)z2) +  … + (k zi 1 + 1zi 1), 

namely 

(k + 1) zi >  i - 1 
j = 1 (k + i – j) zj. 

Hence, Property 1 holds.                                                                                                                       

Property 1 makes extra-super increasing sequences (including the minimal extra-super increasing 

sequence) possess cryptographic meanings. 

Let b1b2…b8 = 11011001 be a plaintext block, and Li =  8  
j = ibj (1  i  8). 

Again let {ẕ1, ẕ2, …, ẕ8} = {1, 2, 5, 13, 34, 89, 233, 610} be an extra-super increasing sequence 

(also the 8th minimal extra-super increasing sequence).  

Then the anomalous subset sum 

                        S =  8  
i = 1bi Li ẕi  

= 151 + 142 + 035 + 1313 + 1234 + 0189 + 01233 + 11610 

                           = 730 

is a ciphertext. 

If {ẕ1, ẕ2, …, ẕ8} = {1, 2, 5, 13, 34, 89, 233, 610} is known, and L = 0 set, the plaintext b1b2…b8 can 

be recovered as follows: 

Due to S = 730  (L + 1) (ẕ8 (= 610)), there are b8 = 1, L = 0 + 1 = 1, and S = 730 – 610 = 120. 

Due to S = 120 < (L + 1) (ẕ7 (= 233)), there are b7 = 0, L = 1 + 0 = 1, and S = 120 – 0 = 120. 

Due to S = 120 < (L + 1) (ẕ6 (= 89)), there are b6 = 0, L = 1 + 0 = 1, and S = 120 – 0 = 120. 

Due to S = 120  (L + 1) (ẕ5 (= 34)), there are b5 = 1, L = 1 + 1 = 2, and S = 120 – 234 = 52. 

Due to S = 52  (L + 1) (ẕ4 (= 13)), there are b4 = 1, L = 2 + 1 = 3, and S = 52 – 313 = 13. 

Due to S = 13 < (L + 1) (ẕ3 (= 5)), there are b3 = 0, L = 3 + 0 = 3, and S = 13 – 0 = 13. 

Due to S = 13  (L + 1) (ẕ2 (= 2)), there are b2 = 1, L = 3 + 1 = 4, and S = 13 – 42 = 5. 

Due to S = 5  (L + 1) (ẕ1 (= 1)), there are b1 = 1, L = 4 + 1 = 5, and S = 5 – 51 = 0. 

In this way, the ciphertext b1b2…b8 = 11011001 is recovered. 

During the above process, {ẕ1, ẕ2, …, ẕ8} is equivalent to a private key. In practicable asymmetrical 

cryptosystem, a private key should be converted into a related public key. 

Understandably, super increasing sequences and extra-super increasing sequences are referred as the 

cryptographic sequences. 

3 The Fibonacci Sequence and the Golden Ratio 

The Fibonacci sequence is a famous progression, and the golden ratio is a famous irrational number. 

There exists a relation between them. 

3.1 The Fibonacci Sequence and Its Three Properties 

The Fibonacci sequence may be defined recursively. 

Definition 5: Let {F0, F1, …, Fn, …} be a sequence, where 

 Fn = Fn - 1 + Fn - 2 (recursion formula) 

 F0 = 0,   F1 = 1   (initial conditions), 

and then {F0, F1, …, Fn, …} is called the Fibonacci sequence [5][6]. 

Under the circumstances of having no divergence, F0 = 0 is ignored. 

Generally, we have the Fibonacci sequence 

{F1, F2, …, F17, …} = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, …}. 
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The Fibonacci sequence has many properties, of which three are concerned. 

Property 2: There are 

Fn + 1 / Fn  , and limn(Fn + 1 / Fn) = , 

where n is comparatively large, and  is the golden ratio [5]. 

Property 3: Summing consecutive odd-positioned Fibonacci numbers, beginning with F1, will yield 

a number which is the next Fibonacci number following the last term in the sum [5]. Namely there is 

F1 + F3 + … + F2n - 1 = F2n , 

where n is equal to or bigger than 1. 

For example, there is F1 + F3 + F5 + F7 = 1 + 2 + 5 + 13 = 21 = F8. 

Property 4: For the Fibonacci sequence {F1, F2, …, Fn, …}, there is 

Fn = (5)1(n – (–1)n), 

where Fn is n-th Fibonacci number,  and  is likewise the golden ratio [5]. 

The proofs of Property 2, 3, and 4 can be found in Reference [5]. 

3.2 The Golden Ratio and Golden Ratio Conjugate 

The golden ratio exists in art, nature, and science. 

Definition 6: The golden ratio is such a ratio of two quantities that it satisfies equivalently that the 

ratio of the sum of the two quantities to the larger is equal to the ratio of the larger to the smaller [7][8]. 

Let  = a / b be a ratio with a > b > 0. Then, a and b are said to be in the golden ratio if 

(a + b) / a = a / b = , 

namely 

1 + 1 /  = ,                                                                    (6) 

and further 

2 =  + 1.                                                                    (6′) 

Formula (6) indicates that  is an irrational constant number, and equals approximately to 

1.618033988749 [3]. Other names frequently used for the golden ratio are the golden section, golden 

mean, divine proportion, etc [9]. 

Again let  = b / a be a ratio with a > b > 0. Then, we can derive from Formula (6) the equation 

1 +  = 1 / .                                                                   (7) 

Commonly,  is called the golden ratio conjugate [10]. Furthermore, we have 

 =   1,                                                                     (7′) 

which can easily be inferred from Formula (6) and (7). 

Besides,  may be represented as a continued fraction [11] 

 = [1; 1, 1, 1, …],                                                              (8) 

and also represented as an infinite series [12] 

 = 13 / 8 +  

 
n=0 ((–1)n + 1(2n + 1)!) / (42n + 3n!(n + 2)!).                                  (9) 

Evidently, an approximation of  can be fetched from Formula (8) or (9). 

4 Relations among Cryptographic Sequences, Fibonacci Sequence, and 

Golden Ratio 

The Fibonacci sequence is a bridge between the cryptographic sequences and the golden ratio. 

4.1 Term Ratio of the Minimal Extra-super Increasing Sequence 

A term ratio of one positive integer sequence is a current term to its preceding term. 
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The i-th term ratio of the minimal super increasing sequence is defined as i +1 / i (for i = 1, 2, …, 

n, …). 

Property 5: Let {1, 2, …, n, …} be the minimal super increasing sequence, and then there exists 

i +1 / i =  2 (for i = 1, 2, …, n, …), 

that is to say, the term ratio i +1 / i (for i = 1, 2, …, n, …) is a constant number evaluated as 2. 

Proof: 

According to Definition 3, we have 

i = 1 +  i – 1 
j = 1 j (for i = 2, 3, …, n, …), 

and its development is 

i = 1 + (1 + 2 + … + i -1). 

Adding i to either of the above expression obtains 

i + i = 1 + (1 + 2 + … + i -1 + i), 

namely 

2i = i +1,  i +1 / i = 2. 

Hence, the term ratio i +1 / i =  2 (for i = 1, 2, …, n, …) is a constant number.                                 

Similarly, the i-th term ratio of the minimal extra-super increasing sequence is defined as ẕi +1 / ẕi (for 

i = 1, 2, …, n, …). 

In addition, the i-th term difference ratio of the minimal extra-super increasing sequence is defined 

as (ẕi +1  ẕi) / ẕi (for i = 1, 2, …, n, …). 

Conforming to Definition 4, we are able to easily calculate 

{ẕ1, ẕ2, …, ẕ17} 

= {1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578}. 

Now, compute the term ratio ẕi +1 / ẕi (i = 1, 2, …, 16). 

As i = 1, ẕ2 / ẕ1 = 2 / 1 = 2. 

As i = 2, ẕ3 / ẕ2 = 5 / 2 = 2.5. 

As i = 3, ẕ4 / ẕ3 = 13 / 5 = 2.6. 

As i = 4, ẕ5 / ẕ4 = 34 / 13  2.61538. 

As i = 5, ẕ6 / ẕ5 = 89 / 34  2.6176471. 

As i = 6, ẕ7 / ẕ6 = 233 / 89  2.617977528. 

As i = 7, ẕ8 / ẕ7 = 610 / 233  2.61802575107. 

As i = 8, ẕ9 / ẕ8 = 1597 / 610  2.6180327868852. 

As i = 9, ẕ10 / ẕ9 = 4181 / 1597  2.618033813400125. 

As i = 10, ẕ11 / ẕ10 = 10946 / 4181  2.61803396316670652. 

As i = 11, ẕ12 / ẕ11 = 28657 / 10946  2.6180339850173579389. 

As i = 12, ẕ13 / ẕ12 = 75025 / 28657  2.618033988205325051471. 

As i = 13, ẕ14 / ẕ13 = 196418 / 75025  2.61803398867044318560479. 

As i = 14, ẕ15 / ẕ14 = 514229 / 196418  2.6180339887383030068527324. 

As i = 15, ẕ16 / ẕ15 = 1346269 / 514229  2.618033988748203621343798191. 

As i = 16, ẕ17 / ẕ16 = 3524578 / 1346269  2.61803398874964810153097189343. 

Afterward, calculate the term difference ratio (ẕi +1  ẕi) / ẕi (i = 1, 2, …, 16). 

As i = 1, (ẕ2  ẕ1) / ẕ1 = (2  1) / 1 = 1. 

As i = 2, (ẕ3  ẕ2) / ẕ2 = (5  2) / 2 = 1.5. 

As i = 3, (ẕ4  ẕ3) / ẕ3 = (13  5) / 5 = 1.6. 

As i = 4, (ẕ5  ẕ4) / ẕ4 = (34  13) / 13  1.61538. 

As i = 5, (ẕ6  ẕ5) / ẕ5 = (89  34) / 34  1.6176471. 

As i = 6, (ẕ7  ẕ6) / ẕ6 = (233  80) / 89  1.617977528. 

As i = 7, (ẕ8  ẕ7) / ẕ7 = (610  233) / 233  1.61802575107. 
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As i = 8, (ẕ9  ẕ8) / ẕ8 = (1597  610) / 610  1.6180327868852. 

As i = 9, (ẕ10  ẕ9) / ẕ9 = (4181  1597) / 1597  1.618033813400125. 

As i = 10, (ẕ11  ẕ10) / ẕ10 = (10946  4181) / 4181  1.61803396316670652. 

As i = 11, (ẕ12  ẕ11) / ẕ11 = (28657  10946) / 10946  1.6180339850173579389. 

As i = 12, (ẕ13  ẕ12) / ẕ12 = (75025  28657) / 28657  1.618033988205325051471. 

As i = 13, (ẕ14  ẕ13) / ẕ13 = (196418  75025) / 75025  1.61803398867044318560479. 

As i = 14, (ẕ15  ẕ14) / ẕ14 = (514229  196418) / 196418  1.6180339887383030068527324. 

As i = 15, (ẕ16  ẕ15) / ẕ15 = (1346269  514229) / 514229  1.618033988748203621343798191. 

As i = 16, (ẕ17  ẕ16) / ẕ16 = (3524578  1346292) / 1346269  1.61803398874964810153097189343. 

In what follows, we evaluate the term ratio difference ẕi +1 / ẕi  i +1 / i (i = 1, 2, …, 16). 

When i = 1, ẕ2 / ẕ1  2 / 1 = 0. 

When i = 2, ẕ3 / ẕ2  3 / 2 = 0.5. 

When i = 3, ẕ4 / ẕ3  4 / 3 = 0.6. 

When i = 4, ẕ5 / ẕ4  5 / 4 = 0.61538. 

When i = 5, ẕ6 / ẕ5  6 / 5 = 0.6176471. 

When i = 6, ẕ7 / ẕ6  7 / 6 = 0.617977528. 

When i = 7, ẕ8 / ẕ7  8 / 7 = 0.61802575107. 

When i = 8, ẕ9 / ẕ8  9 / 8 = 0.6180327868852. 

When i = 9, ẕ10 / ẕ9  10 / 9 = 0.618033813400125. 

When i = 10, ẕ11 / ẕ10  11 / 10 = 0.61803396316670652. 

When i = 11, ẕ12 / ẕ11  12 / 11 = 0.6180339850173579389. 

When i = 12, ẕ13 / ẕ12  13 / 12 = 0.618033988205325051471. 

When i = 13, ẕ14 / ẕ13  14 / 13 = 0.61803398867044318560479. 

When i = 14, ẕ15 / ẕ14  15 / 14 = 0.6180339887383030068527324. 

When i = 15, ẕ16 / ẕ15  16 / 15 = 0.618033988748203621343798191. 

When i = 16, ẕ17 / ẕ16  17 / 16 = 0.61803398874964810153097189343. 

From the above data, we observe that limn(ẕn +1 / ẕn  n +1 / n) is approaching a certain number, 

and limn((ẕn +1  ẕn) / ẕn) is also approaching a certain number. 

4.2 The Minimal Extra-super Increasing Sequence Being a Regular Subsequence of 

the Fibonacci Sequence 

Let {ẕ1, ẕ2, …, ẕ9, …} = {1, 2, 5, 13, 34, 89, 233, 610, 1597, …} is the minimal extra-super increasing 

sequence. 

{F1, F2, …, F17, …} = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, …} is the 

Fibonacci sequence. 

It is not difficult to watch ẕ1 = F1, ẕ2 = F3, ẕ3 = F5, …, and ẕ9 = F17. 

Theorem 1: The minimal extra-super increasing sequence {ẕ1, ẕ2, …, ẕn, …} is the odd-positioned 

subsequence of the Fibonacci sequence {F1, F2, …, Fn, …}, namely there exists {ẕ1, ẕ2, …, ẕn, …} = 

{F1,  F3, …, F2n - 1, …}. 

Proof (by induction): 

 When n = 1, it holds that {ẕ1} = {1} = {F2  1 - 1} = {F1}. 

 When n = 2, it holds that {ẕ1, ẕ2} = {1, 2} = {F2  1 - 1, F2  2 - 1} = {F1, F3}. 

 When n = 3, it holds that {ẕ1, ẕ2, ẕ3} = {1, 2, 5} = {F2  1 - 1, F2  2 - 1, F2  3 - 1} = {F1, F3, F5}. 

 Assume that when n = k, it holds that {ẕ1, ẕ2, …, ẕk} = {F1, F3, …, F2  k - 1}. 

 In succession, we need to proof that when n = k + 1, it holds that 
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{ẕ1, ẕ2, …, ẕk, ẕk + 1} = {F1, F3, …, F2  k - 1, F2  k + 1}. 

In light of Formula  (4′), there exists 

ẕk + 1 = ẕk +  k 
j = 1 ẕj 

                                                                            = ẕ1 + ẕ2 + … + ẕk + ẕk. 

Again in light of the assumption at , there exists 

                                                  ẕk + 1 = ẕ1 + ẕ2 + … + ẕk + ẕk 

= F1 + F3 + … + F2  k - 1 + F2  k - 1. 

By Property 3, we have 

ẕk + 1 = F1 + F3 + … + F2  k - 1 + F2  k - 1 

                                                             = F2  k + F2  k - 1. 

Again by Definition 5, we have 

ẕk + 1 = F2  k + F2  k - 1 = F2  k + 1. 

Namely 

{ẕ1, ẕ2, …, ẕk, ẕk + 1} = {F1, F3, …, F2  k - 1, F2  k + 1}. 

Hence, {ẕ1, ẕ2, …, ẕn, …} is the odd-positioned subsequence of {F1, F2, …, Fn, …}.                         

Section 4.1 and Theorem 1 show together that the term difference ratio (ẕn +1  ẕn) / ẕn is a stabler faster 

approach to  than the term ratio Fn + 1 / Fn, which saves the half of storage space and addressing time. 

4.3 Limit of Term Ratio Difference (ẕn +1 / ẕn  n +1 / n) Being Equal to  

By the medium of the Fibonacci sequence {F1, F2,…, Fn, …}, the term ratio difference (ẕn +1 / ẕn  

n +1 / n) between the two cryptographic sequences corresponds to the golden ratio conjugate . 

Theorem 2: Let {ẕ1, ẕ2, …, ẕn, …} be the minimal extra-super increasing sequence, and {1, 2, …, 

n, …} be the minimal super increasing sequence; then there is limn(ẕn +1 / ẕn  n +1 / n) = . 

Proof. 

By Theorem 1, we have {ẕ1, ẕ2, …, ẕn, …} = {F1, F3, …, F2n - 1, …}, and by Property 5, n +1 / n =  2. 

Thus, there exists 

limn (ẕn +1 / ẕn  n +1 / n) = limn(F2n + 1 / F2n - 1  n +1 / n) 

                                                                              = limn (F2n + 1 / F2n - 1  2) 

                                                                              = limn (F2n + 1 / F2n - 1)  2. 

Again by Property 4, we have 

                                  limn (F2n + 1 / F2n - 1) 

= limn ((5)1(2n + 1 – (–1)2n + 1)) / ((5)1(2n - 1 – (–1)2n - 1)) 

                               = limn(2n + 1
 – (–1)2n + 1) / (2n - 1 – (–1)2n - 1) 

                               = limn(2(2n - 1
 – (–1)2n + 3)) / (2n - 1 – (–1)2n - 1) 

                               = 2 limn (2n - 1
 – (–1)2n + 3) / (2n - 1 – (–1)2n - 1) 

                               = 2 limn (2n - 1(1 + (1)4n + 2)) / (2n - 1(1 + (1)4n - 2)) 

                               = 2 limn (1 + (1)4n + 2) / (1 + (1)4n - 2) 

                               = 2 limn (1 + 0) / (1 + 0) 

                               = 2. 

In terms of Formula (6′), there exists 2 =   + 1. 

Further, there exists 

limn (F2n + 1 / F2n - 1) =   + 1. 

Again In terms of Formula (7′), there exists 

limn (F2n + 1 / F2n - 1)  2 =   + 1  2 =    1 = . 

Hence, the limit limn (ẕn +1 / ẕn  n +1 / n) =  holds.                                                                      
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Corollary 1: Let {ẕ1, ẕ2, …, ẕn, …} be the minimal extra-super increasing sequence; then there exists 

limn ((ẕn +1  ẕn) / ẕn) =  . 

Corollary 2: Let {F1, F2, …, F2n - 1, F2n, F2n + 1, …} be the Fibonacci sequence; then there exists 

limn ((F2n + 1  F2n - 1) / F2n - 1) =  . 

Theorem 2 manifests very exquisite relations between the cryptographic sequences and the golden 

ratio. Corollary 1 or 2 suggests one new approach to the golden ratio through the freshly constructed 

increasing sequence or the odd-positioned numbers of the classical Fibonacci sequence. 

5 Conclusion 

The paper constructs a new type of cryptographic sequence which is named an extra-super increas-

ing sequence, and gives the definitions of the minimal super increasing sequence {1, 2, …, n} and 

minimal extra-super increasing sequence {ẕ1, ẕ2, …, ẕn}. 

The paper discusses the triangular relations among the cryptographic sequences, the Fibonacci se-

quence, and the golden ratio. Theorem 1 tells us {ẕ1, ẕ2, …, ẕn, …} = {F1, F3, …, F2n - 1, …}, which 

indicates that approaching  through the term difference ratio (ẕn +1  ẕn) / ẕn is more smooth and expe-

ditious than through the term ratio Fn + 1 / Fn. Theorem 2 tells us limn (ẕn +1 / ẕn  n +1 / n) = , which 

reveals the beauty of cryptography. 

Our intended tasks have not been completed by now. At the next step, we will research extra-super 

increasing sequences thoroughly, and devise new asymmetrical cryptosystems based on extra-super 

increasing sequences. 
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