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Abstract. Collision attacks on AES-like hashing (hash functions con-
structed by plugging AES-like ciphers or permutations into the famous
PGV modes or their variants) can be reduced to the problem of find-
ing a pair of inputs respecting a differential of the underlying AES-like
primitive whose input and output differences are the same. The rebound
attack due to Mendel et al. is a powerful tool for achieving this goal,
whose quantum version was first considered by Hosoyamada and Sasaki
at EUROCRYPT 2020. In this work, we automate the process of search-
ing for the configurations of rebound attacks by taking related-key dif-
ferentials of the underlying block cipher into account with the MILP-
based approach. In the quantum setting, our model guide the search
towards characteristics that minimize the resources (e.g., QRAM) and
complexities of the resulting rebound attacks. We apply our method to
Saturnin-hash, SKINNY, and Whirlpool and improved results are ob-
tained.

Keywords: Quantum computation · Collision attacks · Rebound at-
tacks · Saturnin· SKINNY· Whirlpool· MILP

1 Introduction

A cryptographic hash function is a primitive that maps a binary string of arbi-
trary length into a short fixed-length digest, enjoying collision resistance, preim-
⋆ Corresponding author.
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age resistance, and second-preimage resistance. One popular approach for build-
ing a cryptographic hash function is to plug a secure block cipher into one of
the twelve secure PGV modes [45] to build the compression function, and then
iterate it with the Merkle-Damgård paradigm [13,40]. In this work, we focus on
the collision resistance of hash functions constructed in this way with AES-like
ciphers (named as AES-like hashing) in both the classical and quantum setting.

The differential attack plays an important role in analyzing the collision
resistance of a hash function H, since a successful collision attack implies a
pair of inputs x and x′ with nonzero difference x ⊕ x′ such that the output
difference H(x)⊕H(x′) is zero. In the context of AES-like hashing, due to the
feed-forward mechanism of the PGV modes, a collision means the identification
of a pair of different inputs conforming a differential of the underlying block
cipher whose input and output differences are the same. To be more concrete,
let us consider the MMO mode (one of the twelve secure PGV modes) shown in
Figure 1: H(x)⊕H(x′) = 0 implies (m⊕ EK(m))⊕ (m⊕∆⊕ EK(m⊕∆)) = 0
or EK(m)⊕EK(m⊕∆) = ∆. Therefore, finding a collision is equivalent to finding
a pair conforming a differential of the underlying block cipher whose input and
output differences are of the same value. One method for achieving this goal is
the so-called rebound attack [38], which is the main technique involved in this
work.

mi−1 EK hi

hi−1

Fig. 1: (MMO) Matyas-Meyer-Oseas

1.1 The Rebound Attack

The rebound attack was first introduced by Mendel et al. at FSE 2009 [38]. Es-
sentially, it is a technique for generating a pair of inputs fulfilling a differential
δ → ∆ for a block cipher. In the rebound attack, the targeted primitive with a
truncated differential trail whose input and output differences share a common
pattern is divided into three parts as shown in Figure 2. Then, the attacker
generates a lot of pairs (named as starting points in the literature) conform-
ing the inbound differential. Finally, the starting points are propagated forward
and backward to identify data pairs fulfilling the outbound differentials and the
additional constraint that the input and output differences of the whole trail
should be equal.

To increase the number of rounds covered by the inbound differential for AES-
like ciphers, the super S-box technique was introduced independently by Gilbert
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Fig. 2: The Rebound Attack

et al. [20] and Lamberger et al. [37], where two consecutive AES-like rounds
are considered as a whole with several super S-boxes. Later, Sasaki et al. [47]
showed that the memory complexity of the rebound attack can be significantly
reduced by exploiting the differential property of non-full-active Super S-boxes.
At CRYPTO 2011, Naya-Plasencia further improved the rebound attack by using
better algorithms for merging large lists and finding solutions of the underlying
differential trail [42]. The Rebound attack has become a basic technique for
collision attacks [48,29,31,30,39,16] and distinguishing attacks on various hash
functions. It even finds applications in the context of DS-MITM attacks [15,14].

The Role of the Key Expansions. In rebound attacks, the generation of
the starting points relies on the degrees of freedom from the encryption data
path of the underlying block cipher. A natural idea is to utilize the degrees of
freedom from the key-schedule algorithm if we do not require the key to be
a prefixed value (e.g., the IV). For the sake of simplicity, let us consider the
MMO mode with a single message block (see Figure 1). A standard collision
message pair (m,m′) satisfies H(IV,m) = H(IV,m′), where the master key
of the underlying block cipher is fixed and thus no degrees of freedom from
the key-schedule algorithm can be used. However, for a semi-free-start collision
H(u,m) = H(u,m′) (u 6= IV ) or a free-start collision H(v,m) = H(v′,m′) (v 6=
v′), the key is allowed to be changed and thus the degrees of freedom from the
key-schedule algorithm may be utilized. At ASIACRYPT 2009, Lamberger et al.
presented some improved semi-free-start collision attacks on reduced Whirlpool
by exploiting the degrees of freedom from the key schedule algorithm [37]. Since
there is no difference introduced into the key schedule data path, this type of
attack can be modeled with the MILP-based method presented in [25,18]. At
ASIACRYPT 2012, Sasaki et al. [48] applied the rebound attack on Whirlpool
with an 8-round related-key truncated differential trail and find an 8-round free-
start collision attack. To the best of our knowledge, no automatic method is
available to find such free-start collisions based on the rebound attack. Finally,
we would like to emphasize the importance of free-start collision attacks: The
Merkle-Damgård security reduction assumes that any type of collision for the
compression function should be intractable for the attacker, including free-start
collisions.
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1.2 Collision Attacks with Quantum Computing

For a long time, it was believed that quantum computing would have a limited
impact on symmetric ciphers due to the quadratic speedup of an exhaustive
search attack based on Grover’s algorithm [24]. In ISIT 2010, Kuwakado and
Morii showed how to break some provable secure schemes in the quantum set-
ting [35], and this naive view started to change. Some follow-up works break
more constructions [36,33]. However, a key step in these attacks involving the
application of Simon’s algorithm on a function with a hidden period related to
the secret key, which requires the access to the keyed quantum oracle of the
target. This is a strong requirement whose practical relevance is questioned.
Hence, quantum attacks with higher complexities are still meaningful if they
do not need to make online queries to superposition oracles of keyed primitives
[7,28,34,43,23,27,6].

As keyless primitives, hash functions can be quantumly implemented offline
and the thus attackers can freely make quantum superposition queries. For a
hash function with n-bit output, classical algorithms find collisions with time
complexity O(2n/2). In the quantum setting, we have the following bounds in-
duced by generic quantum attacks on hash functions.

– The BHT algorithm [8] equipped with a qRAM with size S finds a collision
with a time complexity T = 2n/2

√
S

. It achieves optimal tradeoff when T = 2n/3

and S = 2n/3.
– Since the existence of large qRAM is still doubtful [22,21], there is a time-

space tradeoff attack without qRAM, namely the quantum version of parallel
rho’s algorithm [49,25,4]. It achieves a time complexity of T = 2n/2

S with S
processors.

– The CNS algorithm [10] finds a collision with time complexity T = 22n/5

requiring a classical memory of size 2n/5 and O(n) qubits.

At EUROCRYPT 2020, Hosoyamada and Sasaki [25] introduced the first
dedicated quantum attack on hash functions (a quantum version of the rebound
attack), which reveals that a differential trail whose probability is too low to be
used in the classical setting may be exploitable in quantum attacks. However, the
presented attacks are inferior to the CNS attack when there is no large qRAMs.
At ASIACRYPT 2020, Dong et al. [18] reduced or even avoid the use of qRAM
in the quantum rebound attacks by leveraging the non-full-active Super S-box
technique. Recently, Hosoyamada and Sasaki [26] converted the classical semi-
free-start collision attack on reduced SHA-2 into quantum collision attack and
significantly improved the number of rounds attacked. At ToSC 2021, Chauhan
et al. [11] found quantum collisions on reduced AES-256 in double block length
hashing. Ni et al. [44] investigated the quantum collision attacks on reduced
Simpira v2 in hashing modes.
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1.3 Our Contribution

In this paper, we introduce an automatic tool to determine the related-key dif-
ferentials, which are optimized for rebound attacks. More concretely, we focus
on the free-start collision attacks based on rebound attack technique.

The main task is to increase the probability of the differential trail of the out-
bound part by properly consuming the degrees of freedom of the key. In addition,
we have to deal with the linear incompatibility, which are frequently encountered
in various automatic tools about related-key differential on AES-like ciphers,
such as [5,19,12]. At CRYPTO 2013, Fouque et al. [19] find that the difference
cancellation between the AES-128’s key state and the round state in some round
imposes some linear relationship between the key and state differences. Hence,
difference cancellation in a different round cannot be independently simulated.

On ciphers with linear key schedule, Cid et al. [12] described an MILP model
to search the related-key differentials, i.e., Deoxys-BC [32]. Since the relationship
between Deoxys-BC’s round keys are somewhat weakened by the LFSRs, they
do not need to consider incompatibilities between many rounds. In this paper,
we study a more complex case, i.e., Saturnin [9], a round 2 candidate of NIST
LWC competition, proposed by Canteaut et al. In Saturnin, the round keys
are identical for the even or odd rounds, respectively, and the round key in the
odd rounds are derived by shifting the key in even round by 5 cells. Hence, the
relationships between the round keys in Saturnin are stronger, and Cid et al.’s
model may lead to many incompatible solutions for Saturnin. To deal with the
problem, we build an efficient method to fast abandon the incompatible solutions,
where the incompatibilities come from many rounds, for example, contradictions
between the truncated differentials in round 0 and round 6. In addition, we also
model the inbound phase with key differences, where both the 2-round and 3-
round inbound phases are considered. We build a uniform objective function on
the time complexity to perform the rebound attack, that takes the complexity
of solving the inbound phase and the probability of the outbound phase as a
whole. Thereafter, we find an 8-round trail for the rebound attacks and generate
an 8-round quantum free-start collision attack on the compression function of
Saturnin-hash. In addition, we also identify a 7-round quantum collision attack
on Saturnin-hash based on a 7-round single-key rebound attack trail.

We also apply the automatic model to SKINNY-128-384 [3]. Since SKINNY
adopts non-MDS matrix, we build a dedicated method to solve the super S-
box with non-MDS matrix. Compared to the usual super S-box with MDS ma-
trix, our method explores the details of the non-MDS matrix of SKINNY and
decomposes the super S-box into a sequence of small S-boxes. Our super S-box
technique with non-MDS matrix does not need to precompute the differential
distribution of the super S-box even in the full active case, which works effi-
ciently in quantum attack without qRAM and large classic memory. Concretely,
about

√
2c time is needed to solve the full active super S-box with non-MDS

matrix quantumly without qRAM, while the time is
√
2dc for full active super

S-box with MDS matrix, where d = 4 for SKINNY and AES. Thereafter, we give
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the 16-round free-start quantum collision attacks on the hashing modes with
SKINNY-128-384.

On ciphers with nonlinear key schedule, we study the compression function of
ISO standard hash function, Whirlpool [2]. In the automatic model, we place the
3-round inbound phase in both the key schedule path and data encryption path
(we do not find better trail with the two-round inbound phases). In its quan-
tum attack, we nest mutiple Grover’s algorithms to solve several local searching
problems. For Saturnin, the role of the consumption of degrees of freedom for
key schedule is mainly to increase the probability of the outbound phase of the
encryption data path. However, for Whirlpool, we have to consume the degrees
of freedom of the key to increase the probabilities of the outbound phases in both
the key schedule and the encryption data path. Finally, we introduce a 9-round
quantum free-start collision attack on the compression function of Whirlpool,
while the best previous attack is 8-round in classical setting [48]. The results are
summarized in Table 1. Our quantum attacks do not need qRAM or classical
memories, which perform better than the generic quantum collision attacks by
parallel rho’s algorithm [49,25,4]. However, the time complexities may be infe-
rior to the quantum attacks equipped with large classical memory by Chailloux,
Naya-Plasencia, and Schrottenloher’s algorithm [10].

2 Preliminaries

In this section, we give a brief introduction of quantum computation, and fa-
miliarize the readers with the so-called super S-box and non-full-super S-box
technique, etc. employed in our work.

2.1 Quantum Computation and Quantum RAM

The state space of an n-qubit quantum system is the set of all unit vectors in C2n

under the orthonormal basis {|0 · · · 00〉 , |0 · · · 01〉 , · · · , |1 · · · 11〉}, alternatively
written as {|i〉 : 0 ≤ i < 2n}. Quantum computation is achieved by manipulating
the state of an n-qubit system by a sequence of unitary transformations and
measurements.

Superposition Oracles for Classical Circuit. The superposition oracle of
a Boolean function f : Fn

2 → F2 is the unitary transformation Uf acting on an
(n+ 1)-qubit system with the following functionality

Uf

∑
x∈Fn

2

ai |x〉 |y〉

 =
∑
x∈Fn

2

ai |x〉 |y ⊕ f(x)〉 .

Grover’s Algorithm. Given a quantum black-box access to a Boolean function
f : Fn

2 → F2 with 0 < f−1(1) � 2n. Grover’s algorithm finds an element x ∈ Fn
2
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Table 1: A Summary of the results.

Whirlpool

Target Attack Rounds Time C-Mem qRAM Setting Ref.

Hash Collision
4/10 2120 216 - Classic [38]

function

5/10 2120 264 - Classic [20,37]
6/10 2228 - - Quantum [25]
6/10 2248 2248 Classic [17]

Preimage
5/10 2504 28 -

Classic
[46]

6/10 2481 2256 - [48]
7/10 2497 2128 [1]

Compression
Semi-free-start 5/10 2120 216 - Classic [38]

function
Semi-free-start 7/10 2184 28 - Classic [37]
free-start 8/10 2120 28 - Classic [48]
free-start 9/10 2220.5 - - Quantum Sect. 6
any any 2256 - - Quantum [49,25,4]
any any 2170.7 - 2170.7 Quantum [8]
any any 2204.8 2102.4 - Quantum [10]

Saturnin-hash

Hash Collision 5/16 264 266 - Classic Sect. B
7/16 2113.5 - - Quantum Sect. A

Preimage 7/16 2232 248 - Classic [17]

Compression Free-start 6/16 280 266 - Classic Sect. B

function Semi-free 7/16 290.99 - - Quantum Sect. C
Free-start 8/16 2122.5 - - Quantum Sect. 4
any any 2128 - - Quantum [49,25,4]
any any 285.3 - 285.3 Quantum [8]
any any 2102.4 251.2 - Quantum [10]

SKINNY-128-384-MMO/MP

Compression func. Free-start 16 259.8 - Quantum Sect. 5
any any 264 - Quantum [49,25,4]
any any 242.7 - 242.7 Quantum [8]
any any 251.2 225.6 - Quantum [10]

such that f(x) = 1 with O(
√
2n/|f−1(1)|) calls to the quantum oracle Uf that

outputs
∑

x ax |x〉 |y ⊕ f(x)〉 upon input of
∑

x ax |x〉 |y〉. To be more specific,
Grover’s algorithm iteratively apply the unitary transformation (2 |ψ〉 〈ψ|−I)Uf

to the uniform superposition |ψ〉 = 1√
2n

∑
x∈Fn

2
|x〉 of all basis vectors produced

by applying the Hadamard transformation H⊗n to |0〉⊗n. During this process,
the amplitudes of those values x with f(x) = 1 are amplified. Then, a final
measurement gives a value x of interest with an overwhelming probability [24].

Quantum Random Access Memories (qRAM). A quantum random ac-
cess memory (qRAM) uses n-qubit to address any quantum superposition of 2n
memory cells. For a list of classical data L = {x0, · · · , x2n−1} with xi ∈ Fm

2 , the
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qRAM for L is modeled as an unitary transformation UL
qRAM such that

UL
qRAM

(∑
i

ai |i〉 ⊗ |y〉

)
=
∑
i

ai |i〉 ⊗ |y ⊕ xi〉 . (1)

Currently, it is unknown how a large qRAM can be built. Therefore, quantum
algorithms using less or no qRAM are preferred.

2.2 The Full-Active and Non-full-active Super S-box Technique

The super S-box technique proposed by Gilbert et al.[20] and Lamberger et
al. [37] extends the Mendel et al.’s [38] inbound part into 2 S-box layers, by
identifying four non-interfering F32

2 → F32
2 permutations across two consecutive

AES rounds and regarding them as four super S-boxes as shown in Figure 3 (a).
In [47], Sasaki et al. further reduced the the memory complexity by considering
non-full-active super S-boxes as shown in Figure 3 (b).

Z0

MC

W0

X1

SB

Y1

SR

Z1

MC

W1

X2

SB

Y2

SR

Z2

MC

W2

Z0

MC

W0

X1

SB

Y1

SR

Z1

MC

W1

X2

SB

Y2

SR

Z2

MC

W2

(a): Super Sbox (b): Non-full-active Super Sbox

Fig. 3: A differential with non-full-active super S-box

Full-active super S-box. We consider a more general scenario that the internal
state of the cipher is a d× d matrix of c-bit cells. As shown in Figure 3 (a) with
d = 4, for the ith super S-box SSBi and given input difference ∆X(i)

1 , we compute
∆Y

(i)
2 = SSBi(x ⊕ ∆X

(i)
1 ) ⊕ SSBi(x) for x ∈ Fdc

2 . Store the pair (x, x ⊕ ∆X
(i)
1 )

in a table L(i)[∆Y
(i)
2 ]. In the inbound phase, given ∆in = ∆Z0, we compute

∆X
(i)
1 for 0 ≤ i ≤ d − 1, then we compute the d tables L(0), L(1), ..., L(d−1).

For each ∆out = ∆W2 ∈ Fdc
2 , compute ∆Y (i)

2 with 0 ≤ i ≤ d − 1 to access the
table L(i)[∆Y

(i)
2 ] to generate a pair conforming the truncated differential of the

inbound part. Hence, for given ∆in, we need d × 2dc memory to store the four
tables, and will generate |∆out| = 2dc pairs on average satisfying the inbound
part.

At EUROCRYPT 2020, Hosoyamada and Sasaki [25] converted the classical
super S-box technique into a quantum one. They introduced two quantum ways.
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The first one is to use the qRAM to replace the classical memory to store the
super S-box, which needs a exponential size of qRAM. The second one is to
apply the Grover’s algorithm to search a conforming pair for a given input-
output difference (∆X(i)

1 ,∆Y
(i)
2 ) of SSBi. This method needs about 2dc/2 super

S-box computations to find the right pair.
Non-full-active super S-box. For the non-full-active super S-box in Figure 3
(b), the Property 1 of MDS in MC is used. Look at ∆W1 = MC(∆Z1), suppose
there are totally s non-active cells (s < d) and 2d − s active cells in ∆Z1 and
∆W1 (s = 3 in Figure 3 (b)), then by guessing the differences of d−s active cells,
we can determine other differences according to Property 1. Then, for a fixed
input-output differences (∆X(i)

1 ,∆Y
(i)
2 ) of SSBi, we can deduce all the input-

output differences for the 2d − s active cells of two S-box layers for each guess
and then deduce their values by accessing the differential distribution table (DDT)
of the S-box. Now, for the equation W1 = MC(Z1), we have 2d − s known cells
in W1 and Z1, hence it acts of probability 2−(2d−s−d)c = 2(s−d)c. Hence, for a
fixed (∆X(i)

1 ,∆Y
(i)
2 ), we get 2(d−s)c · 2(s−d)c = 1 conforming pair on average.

The time complexity is 2(d−s)c. The memory is 22c to store the DDT of S-box.

Property 1. MC · (Z[1], Z[2], · · · , Z[d])T = (W [1],W [2], · · ·W [d])T can be used to
fully determine the remaining unknowns if any d cells of Z, W are known.

In the quantum setting, Dong et al. [18] converted the non-full-active super
S-box technique into a quantum one by searching the 2(d−s)c differences with
Grover’s algorithm, which gains a square root speedup. Both in quantum and
classical setting, the complexity is determined by the number of inactive cells in
(∆X(i)

1 ,∆Y
(i)
2 ), i.e., s.

2.3 Inbound Part with Three Full Rounds

As shown in Figure 4, given fixed differences ∆Z0 and ∆W3, Jean et al. [29] in-
troduced an algorithm to find the pairs of conforming to the 3-round differential.
At EUROCRYPT 2020, Hosoyamada and Sasaki [25] introduced a memoryless
variant as shown in Algorithm 9 given in Supplementary Material E. The time
complexity of Algorithm 9 is 2d

2c/2+dc and there expect one conforming pair
as output. Hosoyamada and Sasaki [25] also introduced the quantum variant,
which will be discussed in detail in Section 6.

3 Modeling Rebound Attacks in the Related-key Setting

In the related-key setting, taken MMO mode as an example in Figure 1, we
construct free-start collisions using related-key truncated differential trail of EK ,
which meets Equation (2):

(m⊕ EK(m))⊕ (m⊕∆m⊕ EK⊕∆K(m⊕∆m)) = ∆m⊕∆m = 0. (2)

The procedures of the related-key rebound attack are:
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Fig. 4: Details in inbound phase covering 3 rounds

1. Find a related-key truncated differential for EK ,
2. Choose a key pair (K,K ′) which meets the differential in the key-schedule,
3. Perform the rebound attack in the encryption data path with (K,K ′).

The Outbound Phase. In the single-key setting, previous works [25,18] con-
sider the probability of the truncated differential, which is mainly due to the
cancellations of MC operation. In the related-key setting, we try to use simi-
lar method directly, i.e., calculating the probability of differential transition by
counting the number of inactive cells in the output of linear operations (e.g.
MC, AK etc.) whose input is active. We use the round function of AES as an ex-
ample without the SR. In Figure 5(a), the four cells in first column of Yi are
active which are the input to the MC operation. The first column of Zi has one
inactive cell. Assume the differences in all active cells are independent uniform
random, then Prob(Yi → Zi) ≈ 2−c (one cell of the state is of c bits). Similarly,
Prob(Zi → Wi) ≈ 2−c. Thus the probability of the truncated differential trail
in Figure 5(a) is about 2−2c.

The method borrowed from single-key rebound attack seems to work well,
but in related-key setting, this method may lead to a lower probability than the
reality. For example, in Figure 5(b), two active cells are cancelled by AK oper-
ation. Using the above method, we can calculate the probability of the trail is
about 2−2c. Note that in the related-key rebound attack, the key pair is first de-
termined, then perform the rebound attack in the encryption data path, where
key materials act as constants. Hence, the probability of the outbound phase
in the encryption data path is computed under a fixed key difference. There-
fore, ∆Ki[0, 1] = ∆Zi[0, 1] and ∆Zi[0, 1] is fixed. Due to Property 1, all other
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(a): Example I (b): Example II

Fig. 5: AES rounds in forward outbound phase.

active cells of differences in Yi and Zi are determined. Hence, the probability
of the differential is determined by the differential propagation of the S-box,
i.e., Prob(∆Xi[15]

S-box−−−−→ ∆Yi[3]) > 2−c with DDT, which is bigger than 2−2c. In
detail, we derive the relationship between the first column of Yi and Zi from MC
as shown in Equation (3).

∆Zi[0]
∆Zi[1]
∆Zi[2]
∆Zi[3]

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×


∆Yi[0]
∆Yi[1]
∆Yi[2]
∆Yi[3]

 . (3)

As three cells in the first column of ∆Yi are 0 and ∆Zi[0, 1] = ∆Ki[0, 1], we
have 

∆Ki[0]
∆Ki[1]
∆Zi[2]
∆Zi[3]

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×


0
0
0
∆Yi[3]

 , (4)

which shows that ∆Yi[3] = ∆Ki[0] = ∆Ki[1]. Hence, ∆Ki[0] and ∆Ki[1] are
related to each other. We call the number of cells in key, whose differences can
be chosen independent randomly, the degree of freedom in the key differential
states. In Figure 5(b), key states have four active cells, among them two cells
meet the condition ∆Ki[0] = ∆Ki[1] that consumes one-cell degree of freedom.
Hence, the degrees of freedom in the key differential states are 4-1=3 in Figure
5(b). Therefore, the degree of freedom in K is reduced to increase the probability
of the trail in Figure 5(b) from 2−2c to about 2−c. The consumption of freedom
in the whole differential trail should not be higher than the number of active
cells in key. Note that similar technique has already been used by Cid et al. [12]
in the cryptanalysis of Deoxys against related-key differential attack. We apply
the technique to the rebound attack by taking the features of rebound attack
into the model.
Degree of Freedom. For a target with linear key schedule algorithms (e.g.
Saturnin [9] and SKINNY [3]), we formulate its degree of freedom in the follow-
ing. Taking Saturnin as an example, if there are t active cells in the master
key, then we say that the initial degree of freedom for the key difference is t-
cell (denoted by DoK=t), since there are about (2c)t different choices for the



12 Xiaoyang Dong, et. al.

key difference. However, as discussed previously, in rebound attacks exploiting
related-key differentials, we may constrain the key difference by a system of lin-
ear equations with the active cells in the master key as variables to increase the
probability of the outbound differentials. Assuming we have l independent linear
equations, then l-cell degree of freedom is consumed (denoted by DoK− = l).
Therefore, to ensure there is at least one solution for the master key difference,
we require DoK ≥ DoK−. Otherwise, we have an over-defined system of equa-
tions for the active cells of the master key, which may have some conflicts.

Besides the degree of freedom from the master key difference, another source
of degree of freedom should be considered. For a given master key difference,
we can form (2c)n̄ key pairs satisfying the given difference, where the key is
of n̄ c-bit cells. Taking the encryption data path into account and supposing
that for a given (∆in,∆out) and key pair (K,K ′), there is one solution for the
inbound part in the data encryption path on average, then we can generate
(2c)DoK−DoK−+n̄(|∆in| · |∆out|) starting points as (K,M,K ′M ′), which is called
the degrees of freedom for the rebound attack [38] (denoted by DoA). To expect
one solution fulfilling the outbound differential with probability p, we require
that

(2c)DoA = (2c)DoK−DoK−+n̄(|∆in| · |∆out|) ≥
1

p
. (5)

3.1 Dedicated Modelings and Case Study on Saturnin-hash

Saturnin is a suite of lightweight symmetric algorithms proposed by Canteaut
et al. [9]. It is among the 2nd round candidates of the NIST LWC. Based on a
256-bit AES-like block cipher with 256-bit key, two authenticated ciphers and a
hash function are designed. In this section, we focus on its hash function, called
Saturnin-Hash. The round function only consists of AK, SB layer and linear
layer, where MixRows (MR) and MixColumns (MC) are applied alternatively in
even or odd number of round. The key schedule is linear and simple. In even
round, K is used and in odd round the K is rotated by 5 cells (denoted as K̃).

Related-key Truncated Differential Model. For an R-round primitive, we
use several binary variables xi,jr and yi,jr to represent the state before and after
the MR (or MC) operations in the r-th round, where i and j mean that the cell is in
i-th row and j-th column. These variables are 1 if and only if the corresponding
cell is active. For the key states, we use Ki,j and K̃i,j to represent the rotated
key and the master key in the same way.

Without loss of generality, we only consider MR operation now. To model the
MR operations (similar constraints are also applied to MC), we use binary variables
bir to express MR operations are active or not in the i-th row of r-th round, and
use branch number to generate constraints just like Mouha et al.’s model [41].

Another operation is key addition. The constraint of key addition are quite
like constraint of XOR, except the result of two active cells addition can be
active or inactive.
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The Outbound Phase. As shown in Figure 5(b), the number of cancelled cells
could not show the real probability in a related-key model. Hence, the constraints
in our model are different from single-key models. We use Probir to represent
the probability of the i-th row in round r.

In forward part of the outbound phase, we use cir to represent the number
of cells cancelled after the r-th round MR operation in row i, and c̃ir to represent
the number of cells cancelled after the next key addition operation in row i.
If
∑j≤3

j=0 x
i,j
r ≥ cir + c̃ir (like the trail in Figure 5(a)), then the probability of

this MR operation in this row is estimated by cir + c̃ir (to show the connection
of probabilities and variables in our MILP model, the probabilities are taken
in −log2c ). If

∑j≤3
j=0 x

i,j
r < cir + c̃ir (like the trail in Figure 5(b)), then the

probability is
∑j≤3

j=0 x
i,j
r , and the degree of freedom in key states is consumed

cir + c̃ir −
∑j≤3

j=0 x
i,j
r . Thus,

Probir = min(cir + c̃ir,

j≤3∑
j=0

xi,jr ). (6)

Ki

Yi+1Yi Zi Xi+1

SBMR AK

⊕

Ki

Yi+1Yi Zi Xi+1

SBMR AK

⊕
(a): Example III (b): Example IV

Fig. 6: Saturnin rounds in backward outbound phase.

Similar to forward part, in backward part, we also use cir to represent the
number of cells that are cancelled by the r-th round MR−1 operation in row i, and
c̃ir to represent the number of cells are cancelled before the next key addition
operation in row i. If

∑j≤3
j=0 x

i,j
r+1 ≥ cir (like the trail in Figure 6(a)), then the

probability of this MR operation in this row is cir + c̃ir. If
∑j≤3

j=0 x
i,j
r+1 < cir(like

the trail in Figure 6(b)), then the cancellation of this MR operation in this row is∑j≤3
j=0 x

i,j
r+1, and the degree of freedom in key states is consumed cir −

∑j≤3
j=0 x

i,j
r .

Thus,

Probir = min(cir + c̃ir,

j≤3∑
j=0

xi,jr+1). (7)

To limit the consumption of freedom, we add the following constraint∑
Forward

(cir + c̃ir − Probir) +
∑

Backward

(cir − Probir) ≤
∑

0≤i,j≤3

Ki,j . (8)
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The Inbound Phase. We use a variable l to determine the inbound part and
outbound part, and the inbound part includes rin rounds. Thus round l + 1 to
l + rin are inbound part, while other rounds are outbound parts. If rin = 2, we
use the super S-box techniques to solve the inbound part. In classical setting,
it usually does not increase the overall time complexity, and only need some
memories as shown in Section 2.2. However, in quantum setting without qRAM,
the overall time complexity is also affected by the super S-box technique. As
shown by Dong et al. [18], if the super S-boxes are not fully active, the time
for quantum attack may be reduced. Following the notations in Section 2.2, the
number of inactive S-boxes in the i-th super S-box SSBi is denoted as si. Then the
quantum time to solve the inbound part is about

√
2d−min{s0,s1,s2,s3} according

to Dong et al. [18], where d is the number of cells in each row, and d = 4 for
Saturnin. In related-key setting, some cells in super S-boxes can be determined
by key difference. As we shown in Algorithm 2 of Section 4, cells with known
difference play the same role as inactive cells in non-full active super S-boxes
technique. Thus si denote the number of cells whose difference is fixed before or
after the MR or MC operation in the middle of a super S-box.

When rin = 3, the inbound phase in solved by the methods of Jean et al. [29]
classically or Hosoyamada et al. [25] quantumly. Both the time complexities are
fixed and independent to the rebound attack trails as shown in Section 2.3. We
will give more details in the attack on Whirlpool, whose rebound trail includes
a 3-round inbound part in both the key schedule and encryption data path.
Time Complexity and Objective Function. In quantum setting without
qRAM, we have two time complexities according to rin:

▶ rin = 2, the time complexity is about√
2(

∑
Probir+

∑
xi,j
0 +d−min{s0,s1,s2,s3}), (9)

where
∑
Probir corresponds to the probability of the truncated difference of

the outbound phase,
∑
xi,j0 are the number of active cells to be collided for

the plaintext and ciphertext, d−min{s0, s1, s2, s3} corresponds to the time
to solve the inbound part. Hence, when rin = 2, the objective function is to
minimize ∑

Probir +
∑

xi,j0 + d−min{s0, s1, s2, s3}. (10)

▶ rin = 3, the objective function is∑
Probir +

∑
xi,j0 . (11)

The Incompatibilities within Many Rounds. Cid et al. [12] described an
MILP model to search the related-key differentials on ciphers with linear key
schedule, e.g., Deoxys-BC [32]. Since the relationship between Deoxys-BC’s round
keys are somewhat weakened by the LFSRs, they do not need to consider in-
compatibilities between many rounds. In Saturnin, the round keys are iden-
tical for many rounds, which lead to strong relationship on the round keys.
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Though we limit the consumption of degree of freedom in our MILP model,
a trail can be incompatible when the same key cell needs to satisfy two dif-
ferent relationships in different rounds. For example, in Figure 7, from Y2 to
X3 we have (∆Z2[2],∆k11,∆k15,∆k0) = MR(∆Y2[2], 0, 0, 0). From Y4 to X5 we
have (∆k7,∆k11,∆k15,∆k0) = MR(∆Y4[2], 0, 0, 0). The above two linear equa-
tions have 6 same cells., Due to Property 1, ∆Z2[2] = ∆k7, then ∆X3[2] should
be 0, which is a contradiction.

Z2

SB MR

AK SB MC

AK SB MR

AK SB MC

⊕

⊕

⊕

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

K

K̃

K̃

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

Fig. 7: An incompatible trail of Saturnin

K

Yi Zi Xi+1

MC AK

⊕
K

Yj Zj Xj+1

MC AK

⊕
Fig. 8: An incompatible trail

K

Yi Zi Xi+1

MC AK

⊕
K

Yj Zj Xj+1

MC AK

⊕
Fig. 9: A compatible trail

Adding more constraints to remove this kind of contradictions in MILP model
is quite hard. According to Property 1, a set of equations of MC (or MR) operation
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has 8 cells of variables, and if two sets of equations have at least 4 same cells,
then all cells of variables in the two sets of equations should be same. We use
this property to fast delete the incompatible trails. Figure 8 and Figure 9 show
examples of incompatible and compatible trails. The inactive cells are in white
and active cells are in gray and green, and the difference in green cells are
determined by key difference. We can encode the truncated difference in Y and
Z to a 8-dimensional vector S = (y0, y1, y2, y3, z0, z1, z2, z3), where ym = 1 if
∆Y [m] is inactive with 0 ≤ m ≤ 3, else ym = 0; zm = 1 if ∆Z[m] is 0 or
equals to key differences, else zm = 0. For example, in Figure 8, we have Si =
(1, 1, 0, 0, 1, 1, 0, 0) for round i and Si = (1, 1, 1, 0, 1, 1, 0, 0) for round j with the
same K. The dot product of two vectors Si and Sj is the number of same cells
of two sets of equations of MC (or MR) operations. For example, 〈Si,Sj〉 = 4 in
Figure 8, hence, due to Property 1, all the cells of differences in Yi and Yj (also
for Zi, Zj and Xi+1, Xj+1) should be the same. However, Yi[2] is active but
Yj [2] is inactive, which leads to contradiction and Figure 8 is an incompatible
trail. In Figure 9, we have Si = (1, 1, 0, 0, 1, 1, 0, 0) and Sj = (1, 0, 0, 0, 1, 1, 0, 0)
with 〈Si,Sj〉 = 3 < 4, hence the trail is compatible.

Since we can derive the vector Si from the solutions of our MILP model, we
use the PoolSearchMode of Gurobi to get many solutions for our MILP model
and then check if one of the solutions does not have this kind of contradiction.
For 8-round Saturnin with l ≥ 1 and rin = 2, we get thousands of different
truncated differentials from our MILP model through the PoolSearchMode and
after checking them with the above method, none of them are left; for 8-round
Saturnin with l = 0 and rin = 2, we get a hundred of different truncated
differentials and most of them are compatible. For those left solutions, we pick
one trail to launch our rebound attacks. See supplementary materials for the
source code of constructing MILP model and detecting contradiction. We have
put the source code for the automatic model of Saturnin-hash in a public
domain:

https://github.com/rebound-rk/rebound-rk

4 Free-Start Collision on 8-round Saturnin-hash

By applying the MILP model, we find an 8-round truncated differential on
Saturnin as shown in Figure 10(a). We perform the quantum collision attack
based on the truncated differential. The inbound phase covers from Y0 to X3,
including two SB layers. The two outbound phases are from Y0 to the plaintext
and X3 to the ciphertext.

In the inbound phase, there are four parallel non-full active super S-boxes.
The input difference ∆in = ∆X1 is determined by ∆Y0. At round 2 and 3, from
MR(∆Y2)⊕∆K̃ = ∆X3, at the 3rd row, we get

MR−1(∆k7,∆k11,∆k15,∆k0) = (∆Y2[2], 0, 0, 0). (12)

https://github.com/rebound-rk/rebound-rk
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Fig. 10: 8-round Related-key Rebound-attack Trail on Saturnin-hash

For row 3 of the computation from ∆Y4 to ∆X5, and from ∆Y6 to ∆X7, the
same requirement of Equation (12) is also applied, since the subkeys are all K̃
and the truncated form are the same.
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At round 3 to 4, in the first column of the computation from ∆Y3 to ∆X4,
we have ∆Z3[0] = ∆k0 and ∆Z3[1] = ∆k1. Further, we get

MC−1


∆k0
∆k1
∆Z3[2]
∆Z3[3]

 =


0
0
0

∆Y3[3]

 . (13)

The condition of Equation (13) also applies to the computation from ∆Y5 to
∆X6.

Hence, for Equation (13) and (12), if we fixed ∆k0, then ∆k7, ∆k11, ∆k15,
and ∆k1 are determined by Property 1.

As shown in Figure 10(a), at round 0 and 1, ∆X1[2] = ∆k7 ⊕∆Z0[2] = 0, so
∆Z0[2] = ∆k7. From ∆Z0 = MR(∆Y0), for the third row, we have ∆Y0[2, 10, 14] =
0 and ∆Z0[2] = ∆k7 and Equation (14) is derived. Hence, if ∆k7 is fixed, all
other differences in the active cells of ∆Y0 and ∆Z0 in row 3 are deduce by
Property 1.

MR−1(∆k7,∆Z0[6],∆Z0[10],∆Z0[14]) = (0,∆Y0[6], 0, 0). (14)

Algorithm 1: Determine the Differences From the Truncated Form

1 for ∆k0 ∈ F16
2 do

2 Deduce ∆k7, ∆k11, ∆k15, ∆k1 by Equation (13) and (12) and Property 1
3 /* All the differences in the key schedule are determined. */
4 Round 2: Deduce ∆Z2[2, 6, 10, 14], ∆Y2[2]
5 Round 3: Deduce ∆Y3[3] by Equation (13) and Property 1. Then

Z3[0, 1, 2, 3] and X4[2, 3] are fixed.
6 Round 4: Similar to Round 2 to get ∆Z4[2, 6, 10, 14], ∆Y4[2]. In addition,

we have ∆Z4[15] = ∆k1
7 Round 5: Similar to Round 3 to get ∆Y5[3], Z5[0, 1, 2, 3] and X6[2, 3]
8 Round 6: Similar to Round 2 to get ∆Z6[2, 6, 10, 14], ∆Y6[2]. In addition,

we have ∆Z6[15] = ∆k1
9 Round 0: With Equation (14), we deduce ∆Z0[6, 10, 14] and ∆Y0[6]. Then

∆X1[6, 10, 14] are determined.
10 Round 1: Since ∆Z1[0] = ∆k0 and ∆Z1[1] = ∆k1, ∆Z1[0] and ∆Z1[1] is

fixed.
11 Round 7: In Saturnin-hash (MMO hashing mode), the plaintext is

XORed into the ciphertext of the internal block cipher to output the
digest. We have T = P ⊕ C = X0 ⊕K ⊕ Z7 ⊕K = X0 ⊕ Z7. Then, if two
message collide, we have ∆T = 0 = ∆X0 ⊕∆Z7.

12 As shown in Figure 10(b), from ∆X4 to ∆Y5, multiple differential trails
are taken into account.

We derive an 8-round rebound-attack characteristic in Figure 10(b) from the
truncated form in Figure 10(a) by Algorithm 1. By traversing ∆k0 ∈ F16

2 in
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Algorithm 1, we find characteristic with as higher probability as possible. The
best trail is given in Figure 10(b), whose total probability of the outbound phase
is 2−(12+59.8+16+59.8+64) = 2−211.6 including the probability of ∆X0 = ∆Z7. In
round 4, 2−59.8 is the total probability of a cluster differential trails from ∆X4

to ∆Z4. The same happens to round 6.
As shown in Figure 10(b), the 2nd, 3rd and 4th super S-boxes are typical

non-full-active super S-boxes, where there are only 5 active cells among the 8
input-ouput cells between MC in round 1 in each super S-box. However, the first
super S-box is not a typical one. In fact, between MC in round 1 in the first Super-
Sbox, there are one non-active cell and two cells with fixed differences. However,
we can regard the two cells with fixed differences as another two “non-active”
cells to perform the quantum version of non-full active super S-box technique
[18] whose details will be given in Algorithm 2.

For the ith (i = 0, 1, 2, 3) non-full-active super S-box, we define G(i) : F16
2 ×

F3
2 7→ F2 as G(i)(K,K ′,∆X

(i)
1 ,∆Y

(i)
2 ;x, β), where x = X

(i)
1 [0] ∈ F16

2 and β =

β0‖β1‖β2 ∈ F3
2. G(i)(K,K ′,∆X

(i)
1 ,∆Y

(i)
2 ;x, β) = 1 if and only if (x, β) leads to

a valid connection of (∆X(i)
1 ,∆Y

(i)
2 ) under the key pair (K,K ′). The quantum

implementation of UG(0) is given in Algorithm 2.

Complexity of UG(0) is given in Algorithm 2. The time is bounded by Line 7 to
Line 9 of Algorithm 2, which is about (including uncomputing)

3× π

4
·
√
216 · 2 · 2 = 211.24 Sbox evaluations. (15)

Since the probability of the outbound phase is 2−211.6, after traversing 2211.6

starting points computed by the inbound phase, it is expected to find one col-
lision. Given the key difference ∆K = K ⊕ K ′, there are 2256 valid key pairs
(K,K ′). Hence, we have enough degrees of freedom to find the collision. For
simplicity, we just fix the input difference ∆X1 of the inbound phase and com-
pute the starting points by traversing a 212-bit K to find the collision. Define
F : F212

2 × F3
2 7→ F2 as F (∆K,∆X1,∆Y2;x, α), where x = K ∈ F212

2 and α =
α0‖α1‖α2 ∈ F3

2. F (∆K,∆X1,∆Y2;x, α) = 1 if and only if (∆K,∆X1,∆Y2;x, α)
leads a collision. The implementation of UF is given in Algorithm 3.

Complexity of UF in Algorithm 3. There are four Grover searches on G(i) in
Line 4 and 8. There are four calls of Algorithm 2 in Line 5 and Line 9. Those
proceduces bound the time complexity of UF as

4 · π
4
·
√
219 · 211.24 + 4 · 211.24 = 222.39 S-box evaluations. (16)

To find the collision on 8-round Saturnin-hash, we apply Grover search on
F (∆K,∆X1,∆Y2; ·) : F212+3

2 7→ F2 with UF in Algorithm 3, which costs

π

4
·
√
2212+3 · 222.39 = 2129.54 S-box evaluations. (17)
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Algorithm 2: Implementation of UG(0) without using qRAMs
Input: |K,K′,∆X

(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β〉 |y〉 with β = (β0, β1, β2) ∈ F3

2

Output: |K,K′,∆X
(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β〉 |y ⊕G(0)(K,K′,∆X

(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β)〉

1 /* Please focus on the super Sbox marked by blue box in Figure 10
*/

2 Y
(0)
1 [0]← S(X

(0)
1 [0])

3 ∆Y
(0)
1 [0]← S(X

(0)
1 [0]⊕∆X

(0)
1 [0])⊕ S(X

(0)
1 [0])

4 Solving the system of equations MC(∆Y
(0)
1 ) = ∆Z

(0)
1 with the knowledge of

∆Z
(0)
1 [0] = 0xFDE0, ∆Z

(0)
1 [1] = 0x0912 and ∆Y

(0)
1 [2] = 0

5 /* All differences of cells in ∆Y
(0)
1 , ∆Z

(0)
1 are known */

6 Let gj : F16
2 → F2 be a Boolean function such that gj(δin, δout, βj = 0;x) = 1 if

and only if S(x)⊕ S(x⊕ δin) = δout and x ≤ x⊕ δin, and
gj(δin, δout, βj = 1, x) = 1 if and only if S(x)⊕ S(x⊕ δin) = δout, and
x > x⊕ δin.

7 Run the Grover search on the function g0(∆X
(0)
1 [1],∆Y

(0)
1 [1], β0; ·) : F16

2 → F2.
Let X

(0)
1 [1] be the output.

8 Run the Grover search on the function g1(∆X
(0)
1 [3],∆Y

(0)
1 [3], β1; ·) : F16

2 → F2.
Let X

(0)
1 [3] be the output.

9 Run the Grover search on the function g2(∆X
(0)
2 [3],∆Y

(0)
2 [3], β2; ·) : F16

2 → F2.
Let X

(0)
2 [3] be the output.

10 Compute Y
(0)
1 [1], Y (0)

1 [3] and Z
(0)
1 [3] ; /* Y

(0)
1 [0] is known */

11 Solve the equation MC(Y
(0)
1 ) = Z

(0)
1 for other unknown cells, i.e., Y (0)

1 [2],
Z

(0)
1 [0, 1, 2], and X

(0)
1

12 /* the value Y
(0)
1 is known */

13 if S(Z
(0)
1 [2]⊕∆Z

(0)
1 [2]⊕K′[2])⊕ S(Z

(0)
1 [2]⊕K[2]) = ∆Y

(0)
2 [2] then

14 return |K,K′,∆X
(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β〉 |y ⊕ 1〉

15 else
16 return |K,K′,∆X

(0)
1 ,∆Y

(0)
2 ;X

(0)
1 [0], β〉 |y〉

Since there are 16× 8 = 128 Sbox applications, the time complexity to find the
collision is about 2129.54/128 = 2122.54 8-round Saturnin-hash.

Besides the 8-round free-start collision attack, we also identify a 7-round
single-key rebound attack trail for Saturnin-hash, which leads a 7-round colli-
sion attack on Saturnin-hash in Supplementary Material A.
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Algorithm 3: Implementation of UF without using qRAMs
Input: |∆K,∆X1,∆Y2;K,α〉 |y〉 with α = (α0, α1, α2) ∈ F3

2

Output: |∆K,∆X1,∆Y2;K,α〉 |y ⊕ F (∆K,∆X1,∆Y2;K,α)〉

1 Compute K′ = K ⊕∆K
2 for i ∈ {0, 1, 2} do
3 Derive the ∆X

(i)
1 and ∆Y

(i)
2 for SSB(i) from the ∆X1 and ∆Y2

4 Run Grover search on the function G(i)(K,K′,∆X
(i)
1 ,∆Y

(i)
2 ; ·) : F19

2 7→ F2.
Let X

(i)
1 [0] ∈ F16

2 , β(i) ∈ F3
2 be the output.

5 Run Line 2 to Line 11 of Algorithm 2 with X
(i)
1 [0] ∈ F16

2 , β(i) ∈ F3
2 as

input. Let X
(i)
1 as ouput.

6 Let X̃
(i)
1 = max{X(i)

1 , X
(i)
1 ⊕∆X

(i)
1 } if αi = 0, else

X̃
(i)
1 = min{X(i)

1 , X
(i)
1 ⊕∆X

(i)
1 }

7 Derive the ∆X
(3)
1 and ∆Y

(3)
2 for SSB(3) from the ∆X1 and ∆Y2

8 Run Grover search on the function G(3)(K,K′,∆X
(3)
1 ,∆Y

(3)
2 ; ·) : F19

2 7→ F2.
Let X

(3)
1 [0] ∈ F16

2 , β(3) ∈ F3
2 be the output.

9 Run Line 2 to Line 11 of Algorithm 2 with X
(3)
1 [0] ∈ F16

2 , β(3) ∈ F3
2 as input.

Let X
(3)
1 as ouput.

10 Let X̃
(3)
1 = max{X(i)

1 , X
(i)
1 ⊕∆X

(i)
1 }

11 /* Create the starting point (K,X1) with (∆K,∆X1,∆Y2) */
12 X1 ← (X̃

(0)
1 , X̃

(1)
1 , X̃

(2)
1 , X̃

(3)
1 )

13 X ′
1 ← X1 ⊕∆X1

14 Compute forward and backward to the beginning and ending of the 8-round
trail from (X1, X

′
1) with (K,K′)

15 if (X1, X
′
1) and (K,K′) lead to a collision then

16 return |∆K,∆X1,∆Y2;K,α〉 |y ⊕ 1〉
17 else
18 return |∆K,∆X1,∆Y2;K,α〉 |y〉

5 Free-Start Collision on Hashing Modes with
SKINNY-n-3n

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [3].
In this section, we apply our method to SKINNY-n-3n. The overall structure of
SKINNY-n-3n and its round function are given in Figure 11. The MC operation is
non-MDS, which meets:

MC


a
b
c
d

 =


a⊕ c⊕ d

a
b⊕ c
a⊕ c

 and MC
−1


α
β
γ
δ

 =


β

β ⊕ γ ⊕ δ
β ⊕ δ
α⊕ δ

 . (18)

Since SKINNY applies non-MDS matrix in MC, we will adapt the method of
super S-box technique for SKINNY. Different from the super S-box technique
with MDS matrix [20,37], we do not need to an exponential memory to store the
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Fig. 11: The high-level structure of SKINNY-n-3n and its round function (Thanks
to https://www.iacr.org/authors/tikz/)
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Fig. 12: Super S-box with SKINNY’s non-MDS matrix

differential distribution of the super S-box, which is very friendly to quantum
attacks.

5.1 Super S-box with Non-MDS Matrix

As shown in Figure 12 (SR is omitted), the circled numbers indicate the compu-
tation sequence. When computing the super S-box, the key pair is fixed, i.e., K
and K ′ are known.

1. In step ¬, we have D0[1] = C0[0] due to Equation (18), then we have

∆A1[1] = S(D0[1])⊕ S(D′
0[1])

= S(C0[0])⊕ S(C′
0[0])

= S(S(A0[0])⊕K[0])⊕ S(S(A′
0[6])⊕K′[0])

= S(S(A0[0])⊕K[0])⊕ S(S(A0[0]⊕∆A0[0])⊕K′[0]).

(19)

Hence, given input-output differeces (∆A0[0],∆A1[1]), we compute one con-
forming value of A0[0] that satisfy Equation (19) by traversing a space of 2c
for A0[0]. After that, all cells marked by “¬” are determined.

2. In step ­, we have D0[3] = C0[0]⊕C0[2] due to Equation (18), then we have

∆A1[3] = S(D0[3])⊕ S(D′
0[3])

= S(C0[0]⊕ C0[2])⊕ S(C′
0[0]⊕ C′

0[2])
= S(S(A0[0])⊕K[0]⊕ S(A0[2]))⊕ S(S(A′

0[0])⊕K′[0]⊕ S(A′
0[2]))

= S(S(A0[0])⊕K[0]⊕ S(A0[2]))⊕ S(S(A0[0]⊕∆A0[0])⊕K′[0]⊕ S(A0[2]⊕∆A0[2])).
(20)

https://www.iacr.org/authors/tikz/
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Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[0] is determined by in step ¬, only A0[2] is unfixed. We
search A0[2] in a space of 28 to find the right one that make Equation (20)
holds. All cells marked by “­” are fixed.

3. In step ®, we have D0[2] = C0[1]⊕C0[2] due to Equation (18), then we have

∆A1[2] = S(D0[2])⊕ S(D′
0[2])

= S(C0[1]⊕ C0[2])⊕ S(C′
0[1]⊕ C′

0[2])
= S(S(A0[1])⊕K[1]⊕ S(A0[2]))⊕ S(S(A′

0[1])⊕K′[1]⊕ S(A′
0[2]))

= S(S(A0[1])⊕K[1]⊕ S(A0[2]))⊕ S(S(A0[1]⊕∆A0[1])⊕K′[1]⊕ S(A0[2]⊕∆A0[2])).
(21)

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[2] is determined by in step ­, only A0[1] is unfixed. We
search A0[1] in a space of 28 to find the right one that make Equation (21)
holds. All cells marked by “®” are fixed.

4. In step ¯, we have D0[0] = C0[0]⊕C0[2]⊕C0[3] due to Equation (18), then
we have

∆A1[0] = S(D0[0])⊕ S(D′
0[0])

= S(C0[0]⊕ C0[2]⊕ C0[3])⊕ S(C′
0[0]⊕ C′

0[2]⊕ C′
0[3])

= S(S(A0[0])⊕K[0]⊕ S(A0[2])⊕ S(A0[3]))⊕ S(S(A′
0[0])⊕K′[0]⊕ S(A′

0[2])⊕ S(A′
0[3]))

= S(S(A0[0])⊕K[0]⊕ S(A0[2])⊕ S(A0[3]))⊕
S(S(A0[0]⊕∆A0[0])⊕K′[0]⊕ S(A0[2]⊕∆A0[2])⊕ S(A0[3]⊕∆A0[3])).

(22)
Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[0] and A0[2] are already determined by in step ­ and ®,
only A0[3] is unfixed. We search A0[3] in a space of 28 to find the right one
that make Equation (21) holds. All cells marked by “¯” are fixed.

Following the above computing order, given an input-output difference (∆A0,∆A1)
with fixed key pair, we find the conforming pair for the full active super S-box
in time complexity of about 28 two-round computations without any memory.
Note that if the MC operation adopts MDS matrix, without memory, we need 232

classical time to find a conforming pair for full active super S-box.

5.2 Collision on Hashing Modes with Reduced SKINNY-128-384

By applying the model given in Section 3, we find 16-round rebound trail for
SKINNY-128-384 as shown in Figure 19 in Supplementary Materials D. The in-
bound phase covers round 11 and round 12. The probability of the outbound
phase is 2−112. We apply similar technique of super S-box with non-MDS matrix
to the inbound phase of the 16-round rebound trail. To be more clear, we list
the details for solving the inbound phase in Supplementary Materials D.

For each super S-box, there are at most four spaces of size 28 to traverse to
find the conforming pair, where 4 S-boxes are evaluated in each iteration (i.e.,
Equation (34), (35), (36) or (37)). Hence, in worst case, the time complexity
to compute a super S-box is 4 × 28 × 4 = 212 S-boxes evaluations. In quantum
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setting, we embed the Grover’s algorithm to search the solutions. The quantum
time to compute the one super S-box is (including uncomputing)

2 · 4 · π
4
·
√
28 · 4 = 28.65 S-box evaluations, (23)

where in each Grover iteration, about 4 S-boxes are applied. Define F : F112
2 ×

F3
2 7→ F2 as F (∆K,∆X11,∆Y12;x, α), where x = K ∈ F112

2 and α = α0‖α1‖α2 ∈
F3
2. F (∆K,∆X11,∆Y12;x, α) = 1 if and only if (∆K,∆X11,∆Y12;x, α) leads a

collision. The overall time complexity is
π

4
·
√
2112+3 · 4 · 28.65 = 267.8 S-box evaluations, (24)

which is about 267.8/256 = 259.8 16-round SKINNY-128-384, since there are 256
S-boxes in the 16-round SKINNY-128-384.

6 Free-Start Collision Attack on 9-Round Whirlpool

Different from Saturnin and SKINNY, the key schedule of Whirlpool is nonlinear.
Hence, we have to tweak the automatic tool in Section 3 which targets on linear
key schedule ciphers. For Whirlpool, we place the rebound attacks in both the
encryption data path and the key schedule path just like Sasaki et al.’s work [48].
For the inbound part of the key schedule path, we only have input and output
differences ∆K

in and ∆K
out that act as the degrees of freedom to preform the

rebound attack in the key. We expect to get |∆K
in| · |∆K

out| key pairs conforming to
the inbound part of key schedule path. For each key pair, we will get |∆E

in|·|∆E
out|

pairs conforming to the inbound part of the encryption data path. Suppose the
total probability of outbound paths in the key and encryption path is p, then
the condition |∆K

in| · |∆K
out| · |∆E

in| · |∆E
out| ≥ 1/p should be satisfied to finally find

a key pair and data pair fulfilling the whole trails in the key schedule and the
encryption data path. We embed the 2-round full/non-full active super S-box
technique [20,47] or 3-round-inbound technique [29] in the inbound part. The
inbound phase in related-key setting is quite similar to the single-key setting. A
slight different point is to deal with the operation of XOR the key difference into
the internal state, where the constraint [41] for truncated differential in XOR
operation is applied. The outbound phase is also similar to single-key setting,
where only propagations of truncated differential are constrained with MILP.

At ASIACRYPT 2012, Sasaki et al. [48] introduced a free-start collision at-
tack on 8-round Whirlpool. In this section, we find a new 9-round rebound
characteristic in Figure 13, and based on it, we give the quantum free-start
collision on 9-round Whirlpool.

6.1 Comparison between Sasaki et al’s Trail and Ours
The number of active S-boxes in Sasaki et al’s 8-round trail is shown below:Key : 64

1stR−→ 8
2ndR−→ 1

3rdR−→ 8
4thR−→ 64

5thR−→ 8
6thR−→ 1

7thR−→ 8
8thR−→ 64,

Data : 0
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 0
5thR−→ 8

6thR−→ 1
7thR−→ 8

8thR−→ 64.
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The number of active S-boxes in our 9-round trail is shown below:Key : 64
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8

8thR−→ 8
9thR−→ 64,

Data : 0
1stR−→ 8

2ndR−→ 1
3rdR−→ 0

4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8

8thR−→ 8
9thR−→ 64.

In the key schedule, Sasaki et al’s inbound phase “8 4thR−→ 64
5thR−→ 8” is replaced

by a longer inbound phase “8 4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8” in our trail, namely

we gain a 2-round extension in the inbound phase. In the meantime, Sasaki et
al.’s outbound part “8 6thR−→ 1

7thR−→ 8
6thR−→ 64” is shortened to “8 8thR−→ 8

9thR−→ 64”
to gain enough degrees of freedom. In Sasaki et al.’s 8-round trail, the full active
state to match in the inbound phase only happens to the key schedule data path.
In the inbound part of the encryption data path, many cells are inactive, so that
one can assign arbitrary values. Hence, we do not worry about the degree of
freedom for Sasaki et al.’s trail. However, in our 9-round trail, both the key and
data path adopt full state active inbound part, so that the internal states are
fully determined by a match-in-the-middle approach and the degree of freedoms
only comes from the possible input and output differences of the inbound part.
Hence, the outbound phase is different to gain enough degrees of freedom for
the collision attack.

In the key schedule path, the inbound part covers from ∆B3 to ∆C6 that
includes 3 SB layers. We apply Jean et al.’s [29] 3-round-inbound technique and
their quantum version by Hosoyamada and Sasaki [25] to perform the attack.
Following Section 2.3, we build the dedicated quantum algorithm for the 3-
round inbound part with d = 8, c = 8 as shown in Figure 4. We first define G in
Algorithm 4 which marks the compatible cells in Figure 4 for (X1, X

′
1) for a

given input difference ∆X1 and output difference ∆Y3.

Complexity of UG in Algorithm 4 . Taken uncomputing into account, there are
32× 2× 2× 2 = 128 S-boxes operations in Line 3. In Line 5 to Line 9, we need

8 · π
4
·
√
264 · 16× 2 = 239.65 S-boxes operations. (25)

In Line 11 of Algorithm 4, only the cells are needed to compute backward to
X1, hence, 32× 2× 2× 2 = 128 S-boxes operations are needed. Totally, we need
about 239.65 S-boxes operations to implement UG.

Given (∆X1,∆Y3), run Grover’s algorithm on UG to find the correct cells
for (X1, X

′
1) in Figure 4. UG outputs 1 with probability of 2−256. Hence, the time

complexity to find the correct value with Grover’s algorithm is
π

4
·
√
2256 · 239.65 = 2167.3 S-boxes operations. (26)

6.2 Free-Start Collision on 9-round Whirlpool

Classical Analysis on the 9-round Rebound Trail. As shown in Figure
13, in the key schedule part, given an input-output difference ∆B3 and ∆C6
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Fig. 13: Free-start collision attack on 9-round Whirlpool
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Algorithm 4: Implementation of UG without using qRAMs
Input: |∆X1,∆Y3;X1[ ]〉 |y〉
Output: |∆X1,∆Y3;X1[ ]〉 |y ⊕G(∆X1,∆Y3;X1[ ]〉

1 /* X1[ ] means the value of 32 cells in state X1 shown in Figure
4, and X ′

1[ ] is for state X ′
1 */

2 Compute X ′
1[ ] = ∆X1 ⊕X1[ ]

3 Compute Z2[ ] and Z′
2[ ] by X1[ ] and X ′

1[ ], respectively
4 Define gj : F8×8

2 7→ F2 for row j = 0, 1, 2..., 7 of Z2. E.g., for row 0, define
g0(Z2[ ], Z′

2[ ];x), where x is the cells of Z2 and Z′
2 in row 0, i.e.,

x = Z2[1, 2, 3, 4]‖Z′
2[1, 2, 3, 4] ∈ F8×8

2 . g0(Z2[ ], Z′
2[ ];x) = 1 if and only if

SB(MR(Z2[0, 1, ..., 7]))⊕ SB(MR(Z′
2[0, 1, ..., 7])) = ∆Y3[0, 1, ..., 7]. Similar

property holds for other gj
5 Run the Grover search on g0(Z2[ ], Z′

2[ ]; ·) : F8×8
2 7→ F2. Let

Z2[1, 2, 3, 4]‖Z′
2[1, 2, 3, 4] be the output.

6 Run the Grover search on g1(Z2[ ], Z′
2[ ]; ·) : F8×8

2 7→ F2. Let
Z2[10, 11, 12, 13]‖Z′

2[10, 11, 12, 13] be the output.
7 Run the Grover search on g2(Z2[ ], Z′

2[ ]; ·) : F8×8
2 7→ F2. Let

Z2[19, 20, 21, 22]‖Z′
2[19, 20, 21, 22] be the output.

8
...

9 Run the Grover search on g7(Z2[ ], Z′
2[ ]; ·) : F8×8

2 7→ F2. Let
Z2[56, 57, 58, 59]‖Z′

2[56, 57, 58, 59] be the output.
10 /* Now the whole states Z2 and Z′

2 are fixed. */
11 Compute backward from Z2 and Z′

2 to X1 and X ′
1

12 if X1[ ]⊕X ′
1[ ] = ∆X1[ ] then

13 return |∆X1,∆Y3;X1[ ]〉 |y ⊕ 1〉
14 else
15 return |∆X1,∆Y3;X1[ ]〉 |y〉

of the inbound part, we call Algorithm 9 to find a conforming pair on average.
In the outbound phase of the key schedule, the probability that the truncated
differential ∆C2 propogates to ∆B2 is 2−56. Hence, there will be 264×2−56 = 272

valid key pairs that meet the truncated differential in the key schedule path.
For each valid key pair, we look at the encryption data path. ∆X4 is fixed
by ∆C3, and there are 264 possible differences in ∆W6. There is also a 3-round
inbound phase in the encryption data path with input difference ∆X4 and output
difference ∆W6. With a given (∆X4, ∆W6), it is expected to find one data
pair (X4, X

′
4). Together with the key pair, we compute backward with the data

pair (X4, X
′
4). Since ∆W2 = ∆C2 and ∆B2 = MR−1(∆C2) whose row 0 is of

(∗, 0, 0, 0, 0, 0, 0, 0), ∆Z2 is also of the truncated form (∗, 0, 0, 0, 0, 0, 0, 0) with
probability 1. At round 0, ∆W0 = ∆C0 ⊕ ∆X1 = 0 holds with probability of
2−64. At the last round, ∆B8 = ∆Z8 holds with probability 2−64, which finally
leads to a collision. The total degrees of freedom are derived from ∆B3, ∆C6 and
∆W6, which consists of 2192 possible differences (24-byte). The probability to
generate a collision is 2−56−128 = 2−184. To compute the 3-round inbound phase
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with Algorithm 9, the time complexity is about 2320. Obviously, the classical
complexity will be much larger that a generic birthday attack, which only needs
2256 time to find the 512-bit collision.

Quantum Free-Start Collision Attack on 9-round Whirlpool. In the key
schedule path, for given C6[U] with U = {0, 15, 22, 29, 36, 43, 50, 57} positions of
active cells in C6, we define f : F8×8

2 7→ F2 as f(∆C6[U];x), where x = ∆B3[V] ∈
F8×8
2 with V = {0, 9, 18, 27, 36, 45, 54, 63}. f(∆C6[U];x) = 1 if and only if the key

pair derived by solving the 3-round inbound satisfies the truncated differential
from ∆C2 to ∆B2. The implementation of Uf is given in Algorithm 5.

Complexity of Uf . The time is bounded by Line 2 of Algorithm 5, which is about
2167.3 S-boxes operations according to Equation (26).

Algorithm 5: Uf of the quantum attack on 9-round Whirlpool
Input: |∆C6[U];∆B3[V]〉 |y〉
Output: |∆C6[U];∆B3[V]〉 |y ⊕ f(∆C6[U];∆B3[V])〉

1 Compute ∆C3 and ∆A6 from ∆B3[V] and ∆C6[U]
2 Run Grover’s algorithm on G(∆C3,∆A6; ·) with UG implemented in

Algorithm 4. Let A4[ ] be the output
3 /* A4[ ] are the cells in A4 in Figure 13 */
4 Run Line 2 to Line 11 of Algorithm 4 with input (∆C3,∆A6;A4[ ]). Let

(C3, C
′
3) be the output

5 Compute backward from (C3, C
′
3) to (B2, B

′
2)

6 if row 0 of ∆B is of the truncated form (∗, 0, 0, 0, 0, 0, 0, 0) then
7 return |∆C6[U];∆B3[V]〉 |y ⊕ 1〉
8 else
9 return |∆C6[U];∆B3[V]〉 |y〉

Run Grover’s algorithm on f(∆C6[U]; ·), we will find a key pair (K,K ′) that
conforms to the truncated differential in Figure 13. In encryption data path, for
the computed key pair (K,K ′), we define f̃ : F8×8

2 7→ F2 as f̃(K,K ′;x), where
x = ∆W6[U] ∈ F8×8

2 . f̃(K,K ′;x) = 1 if and only if a collision occurs in the digest
that happens with probability of 2−128. The implementation of Uf̃ is given in
Algorithm 6.

Complexity of Uf̃ . The time complexity is bounded by Line 3 of Algorithm 6,
which is also 2167.3 S-boxes operations according to Equation (26).

We define F : F8×8
2 7→ F2 as F (x), where x = ∆C6[U] ∈ F8×8

2 with U =
{0, 15, 22, 29, 36, 43, 50, 57}. F (x) = 1 if and only if the digests of two messages
collide. The implementation of UF is given in Algorithm 7.
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Algorithm 6: Uf̃ of the quantum attack on 9-round Whirlpool
Input: |K,K′;∆W6[U]〉 |y〉
Output: |K,K′;∆W6[U]〉 |y ⊕ f̃(K,K′;∆W6[U])〉

1 Compute ∆X4 from (K,K′)
2 Compute ∆Y6 from ∆W6[U]
3 Run Grover’s algorithm on G(∆X4,∆Y6; ·) with UG implemented in Algorithm

4. Let Y4[ ] be the output
4 /* Y4[ ] are the cells in Y4 in Figure 13 */
5 Run Line 2 to Line 11 of Algorithm 4 with input (∆X4,∆Y6, Y4[ ]). Let

(X4, X
′
4) be output

6 Together with (K,K′), compute backward from (X4, X
′
4) to (X1, X

′
1) and

forward to (W8,W
′
8)

7 Compute (C0, C
′
0) and (C8, C

′
8) by (K,K′)

8 if ∆X1 = ∆C0 and ∆W8 = ∆C8 then
9 return |K,K′;∆W6[U]〉 |y ⊕ 1〉

10 else
11 return |K,K′;∆W6[U]〉 |y〉

Complexity of UF . The time complexity of the implementation of UF in Algo-
rithm 7 is bounded by Line 1 and Line 4, which is

π

4
·
√
264−8 · 2167.3 + π

4
·
√
264 · 2167.3 = 2199.04 S-boxes operations. (27)

UF returns |∆C6[U]〉 |y ⊕ 1〉 with probability of 264−128 = 2−64. Hence, applying
Grover’s algorithm on F (x) will finally find the collision. Since only the correct
state ∆C6[U] is output, we have to re-run Line 1 to Line 6 of Algorithm 7 to
finally find the collision. The total time complexity is bounded by the step of
applying Grover’s algorithm on F (x), which is

π

4
·
√
264 · 2199.04 = 2230.7 S-boxes operations. (28)

Since there are 128 × 9 = 1152 S-boxes operations in the 9-round Whirlpool,
the total time complexity of the quantum collision attack is 2230.7/1152 = 2220.5

9-round Whirlpool.

7 Conclusion

In this paper, by taking the degrees of freedom of the key materials into consider-
ation, we build the automatic tools for the so-called related-key rebound attack,
where the degrees of freedom are used to increase the probability of the outbound
phase. We develop the new technique to deal with the incompatibilities when
searching rebound-attack trails on Saturnin, whose subkeys have very strong
relationships. Besides the automatic model, we build new super S-box technique



30 Xiaoyang Dong, et. al.

Algorithm 7: UF of the quantum attack on 9-round Whirlpool
Input: |∆C6[U]〉 |y〉
Output: |∆C6[U]〉 |y ⊕ F (∆C6[U])〉

1 Run Grover’s algorithm on f(∆C6[U]; ·) with implementation of Uf in
Algorithm 5. Let ∆B3[V] as output

2 /* Note that the truncated differential ∆C2 to ∆B2 holds with
probability of 2−56, hence, about π

4

√
256 Grover iterations on

f(∆C6[U]; ·) are needed to find a good one. */
3 Run Line 1 to Line 5 of Algorithm 5 to get (C3, C

′
3), then compute the key

pair (K,K′)
4 Run Grover’s algorithm on f̃(K,K′; ·) with implementation of Uf̃ in

Algorithm 6. Let ∆W6[U] as output
5 /* Note that since Uf̃ returns 1 with probability of 2−128, however,

the size of its domain is 264. Then after 232 Grover iterations,
if a right ∆W6[U] is in the domain, then it will output. If all
the ∆W6[U] are wrong, then a random ∆W6[U] will output. */

6 Run Line 1 to Line 7 of Algorithm 6 to get (X1, X
′
1), then compute the

message pair (M,M ′) with (K,K′)
7 if (M,K)’s digest collides with (M ′,K′)’s then
8 return |∆C6[U]〉 |y ⊕ 1〉
9 else

10 return |∆C6[U]〉 |y〉

with non-MDS matrix for SKINNY, which is not seen before. For Whirlpool, mul-
tiple nested Grover’s algorithms are applied to deal with the complex case that
both the key schedule path and encryption path adopt rebound attacks. All in
all, we achieve certain best free-start collision attacks.
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Supplementary Material

A Quantum Collision Attack on 7-round Saturnin

Our model also applies to single-key model by trivially let the key difference be
0. As shown in Figure 14, the inbound phase covers two SB layers from states Y2
to Z4. In the outbound phase, the probability of the truncated differential from
∆Z1 to∆Y1 and from∆Y5 to∆Z5 are both 2−48. The differences in plaintext and
ciphertext collide with probability 2−64 when the truncated differential holds.
Hence, the overall probability to find the collision is 248×2+64 = 2−160, which
can not be used in classical setting but works in quantum setting.

We need 2160 starting points computed by the inbound phase. However, the
number of possible values for the input and output difference ∆Y2 and ∆Z4 is
only 264×2 = 2128. Hence, we apply similar method by Dong et al. [18] that
leverages two blocks to find the collision as shown in Figure 15. The rebound
attack is placed in the second block. We need 2160−128 = 232 m0 to generate 232

h1 to build enough starting points in the second block. In the inbound phase,
for a given h1 and input-output difference (∆Y2,∆Z4), we use the quantum ver-
sion super S-boxes technique by Hosoyamada and Sasaki [25] to generate the
conforming pairs. Similar to Hosoyamada and Sasaki’s analysis [25], for given
input-output difference (∆Y2,∆Z4), we get (x, x′) for each SSBi (0 ≤ i ≤ 3)
and we will obtain (2 · 2 · 2 · 2)/2 = 8 starting points for each (∆Y2,∆Z4).
Hence, a 3-bit auxiliary variable is used to mark which to pick. Hence, we de-
fine F (IV ;m0,∆Y2,∆Z4, α) : F163

2 7→ F1
2, where F (IV ;m0,∆Y2,∆Z4, α) = 1

if (m0,∆Y2,∆Z4, α) leads a collision. Given (m0,∆Y2,∆Z4, α), we apply the
four embedded Grover’s algorithm to solve the SSB defined by Hosoyamada and
Sasaki’s analysis [25]. The overall attack is quite similar to Hosoyamada and
Sasaki’s analysis [25] on 7-round AES without qRAM. At last, we need about
2163/2 × 264/2 = 2113.5 7-round Saturnin-hash to build the collision attack
without qRAM.
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B Classic Collision Attack on Reduced Saturnin
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Fig. 16: Classic collision attack on 5-round Saturnin

When searching trails for classic rebound attack on Saturnin, we just tweak
the target of the model in Section 3 by removing the factor of the complexity of
inbound part. Namely, the new target for rin = 2 is∑

Probir +
∑

xi,j0 . (29)

As discussed in [25] and also in Section 6.2, when rin = 3, the classic time
complexity to solve Jean et al’s 3-round inbound part is too large to be useful
in the classic rebound attack. Hence, we only consider the case rin = 2. The
probability of the outbound phase has to be larger than 2−n/2.
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Classic collision on 5-round Saturnin. We find a 5-round trail as shown in
Figure 16. The probability to collide the plaintext and ciphertext is 2−64. The
inbound part covers 2 round from state Y1 to state Z3. The attack procedures
are:

1. For fixed ∆Y1, and compute the ∆X2.
2. For each 64-bit value X2[0, 4, 8, 12], compute X ′

2[0, 4, 8, 12], Y3[0, 4, 8, 12] and
Y ′
3 [0, 4, 8, 12]. Insert X2[0, 4, 8, 12] into table L0[∆Y3[0, 4, 8, 12]].

3. Similarly, build table L1, L2, L3.
4. For each ∆Z3,

(a) Compute ∆Y3 and access L0, L1, L2, L3 to get the pair (X2, X
′
2).

(b) Check if the pair (X2, X
′
2) leads to a collision.

Since in Step 4, we have 264 possible differences for ∆Z3, we are expected to
check 264 (X2, X

′
2). Since the probability of the outbound phase is 2−64, we are

expected to get one collision. The time complexity is about 264 and the memory
is about 264 × 4 = 266.

Classic free-start collision on 6-round Saturnin. As shown in Figure 17,
the inbound phase covers two rounds from state Z1 to Z3. The trail in Figure
17 is much easier than Figure 10 and there are no conditions on the key. Hence,
we just randomly pick a difference for the key ∆K and a key pair (K,K ′) with
K ⊕ K ′ = ∆K to perform the rebound attack. Then, the probability of the
outbound phase is 2−16−64 = 2−80 (note that the difference in both plaintext
and ciphertext is equal to the difference in K). The procedures are:

1. Chosen a fixed difference for the key, i.e., ∆K and a fixed pair (K,K ′).
2. For each ∆Y1, compute ∆X2,

(a) Build super S-box tables L0, L1, L2, L3.
(b) For each ∆X4,

i. Compute ∆Y3,
ii. Access L0, L1, L2, L3 to get the the pair (X2, X

′
2),

iii. Check if (X2, X
′
2) leads to a collision.

We have 216+64 = 280 possible differences for (∆Y1, ∆X4). Since the proba-
bility of the outbound phase is 2−80, we are expected to find one collision. The
time complexity is about 280 and the memory complexity is 266.
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Fig. 17: Classic free-start collision attack on 6-round Saturnin
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C Semi-free Start Collision Attack on 7-round Saturnin

In this section, we tweak the trail of the 7-round quantum collision in Figure 14
by extending the inbound phase, we get Figure 18 to perform a quantum semi-
free-start collision attack on 7-round Saturnin. The inbound phase covers ∆Y2
to ∆Z5. The probability of the outbound phase (to lead a collision) is 2−64−48 =
2−112. Our quantum attack needs about 290.99 time complexity without qRAM
or classical memory, which is better than CNS algorithm.

Note that, as shown in Figure 10 and according to the key schedule of
Saturnin, the last column of K̃ is only related to the first column of K. Denote
K(1,2,3) as the 2nd, 3rd, 4th column of K and the first column as K(0).

We define F (∆Y2,∆Z4,∆Z5;K
(1,2,3), α, β) : F192

2 × F3
2 × F4

2 7→ F1
2, where

K(1,2,3) ∈ F192
2 , α ∈ F3

2, β ∈ F4
2. F (∆Y2,∆Z4,∆Z5;K

(1,2,3), α, β) = 1 if and
only if we get a collision with the input (∆Y2,∆Z4,∆Z5;K

(1,2,3), α, β). The
implementation of UF is given in Algorithm 8.

Complexity of UF . According to Hosoyamada and Sasaki’s method [25] of com-
puting super S-box quantumly, the complexity of Line 6 Line 8 is

3 · π
4
·
√
264 · 32 = 238.24 S-box applications. (30)

The complexity of Line 12 to Line 15 is

4 · π
4
·
√
216 · 4 = 211.65 S-box applications. (31)

The complexity of Line 18 is

π

4
·
√
264 · 32 = 236.65 S-box applications. (32)

Totally, the complexity to implement UF is about 238.24+211.65+236.65 = 238.65

S-box applications.
Since the inbound phase covers ∆Y2 to ∆Z5, the probability of the outbound

phase is 2−64−48 = 2−112. Hence, the success probability of UF is 2−112−3−4 =
2−119 with 3-bit α and 4-bit β auxiliary variables. Run Grover’s algorithm on
UF to get the collision, we have time complexity

π

4
·
√
2119 · 238.65 = 297.8 S-box applications. (33)

Since we have 16 × 7 = 112 S-boxes for 7-round Saturnin, the complexity
to perform the quantum semi-free-start collision attack is 297.8/112 = 290.99 7-
round Saturnin without any memory, which is better than CNS algorithm (time
= 2102.4, classical memory = 251.2).
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Fig. 18: Quantum semi-free-start collision attack on 7-round Saturnin
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Algorithm 8: Implementation of UF for 7-round semi-free-start colli-
sion on Saturnin

Input: |∆Y2,∆Z4,∆Z5;K
(1,2,3), α, β〉 |y〉 with α = (α1, α2, α3) ∈ F3

2,
β = (β0, β1, β2, β3) ∈ F4

2

Output: |∆Y2,∆Z4,∆Z5;K
(1,2,3), α, β〉 |y ⊕ F (∆Y2,∆Z4,∆Z5;K

(1,2,3), α, β〉

1 Compute ∆X3 from ∆Y2

2 Compute ∆Y5 from ∆Z5

3 Compute ∆Y4 from ∆Z4

4 /* Compute conforming pairs of X3 for 2nd, 3rd, 4th super S-boxes
with quantum memoryless method by Hosoyamada and Sasaki [25] */

5 Let G(i) : F64
2 7→ F1

2 be a Boolean function such that
G(i)(∆X

(i)
3 ,∆Y

(i)
4 , αi = 0;X

(i)
3 ) = 1 if and only if

SSB(i)(X
(i)
3 )⊕ SSB(i)(X

(i)
3 ⊕∆X

(i)
3 ) = ∆Y

(i)
4 and X

(i)
3 ≤ X

(i)
3 ⊕∆X

(i)
3 ;

G(i)(∆X
(i)
3 ,∆Y

(i)
4 , αi = 1;X

(i)
3 ) = 1 if and only if

SSB(i)(X
(i)
3 )⊕ SSB(i)(X

(i)
3 ⊕∆X

(i)
3 ) = ∆Y

(i)
4 and X

(i)
3 > X

(i)
3 ⊕∆X

(i)
3

6 Run Grover’s algorithm on G(1)(∆X
(1)
3 ,∆Y

(1)
4 , α1; ·) : F64

2 7→ F1
2. Let X

(1)
3 be

the output
7 Run Grover’s algorithm on G(2)(∆X

(2)
3 ,∆Y

(2)
4 , α2; ·) : F64

2 7→ F1
2. Let X

(2)
3 be

the output
8 Run Grover’s algorithm on G(3)(∆X

(3)
3 ,∆Y

(3)
4 , α3; ·) : F64

2 7→ F1
2. Let X

(3)
3 be

the output
9 Deduce Y

(1,2,3)
4 from X

(1,2,3)
3

10 /* With ∆X5 = ∆Z4 and ∆Y5, we compute the pair (X
(3)
5 , X

′(3)
5 ) */

11 Let gj : F16
2 → F1

2 be a Boolean function such that gj(δin, δout, βj = 0;x) = 1 if
and only if S(x)⊕ S(x⊕ δin) = δout and x ≤ x⊕ δin, and
gj(δin, δout, βj = 1;x) = 1 if and only if S(x)⊕ S(x⊕ δin) = δout, and
x > x⊕ δin.

12 Run Grover’s algorithm on g0(∆X5[12],∆Y5[12], β0; ·) : F16
2 7→ F1

2. Let X5[12]
be the output

13 Run Grover’s algorithm on g1(∆X5[13],∆Y5[13], β1; ·) : F16
2 7→ F1

2. Let X5[13]
be the output

14 Run Grover’s algorithm on g2(∆X5[14],∆Y5[14], β2; ·) : F16
2 7→ F1

2. Let X5[14]
be the output

15 Run Grover’s algorithm on g3(∆X5[15],∆Y5[15], β3; ·) : F16
2 7→ F1

2. Let X5[15]
be the output

16 /* After guessing K̃(3), we can compute Z
(3)
4 . Together with Y

(1,2,3)
4

and Property 1, we get Y
(0)
4 . Moreover, we deduce K(0) from K̃(3).

Then, X
(0)
3 is computed. We check if the computed ∆X

(0)
3 is equal

to that given in Line 1 */
17 Let f : F64

2 7→ F1
2 be a Boolean function such that

f(∆X
(0)
3 ,∆Z

(3)
4 , Y

(1,2,3)
4 , X

(3)
5 ; K̃(3)) = 1 if and only if the computed ∆X

(0)
3 is

equal to that given in Line 1
18 Run Grover’s algorithm on f(∆X

(0)
3 ,∆Z

(3)
4 , Y

(1,2,3)
4 , X

(3)
5 ; ·) : F64

2 7→ F1
2. Let

K̃(3) be the output
19 /* Together with K(1,2,3), the full state of K is fixed */
20 Compute X

(0)
3 with K̃(3)

21 /* Now, we get one starting point (X3, X
′
3), which already fullfils

the trail from ∆Y2 to ∆Z5 with the computed K */
22 Compute backward and forward to the plaintext (P, P ′) and ciphertext (C,C′)
23 if (P, P ′) and (C,C′) lead to a collision then
24 return |∆Y2,∆Z4,∆Z5;K

(1,2,3), α, β〉 |y ⊕ 1〉
25 else
26 return |∆Y2,∆Z4,∆Z5;K

(1,2,3), α, β〉 |y〉
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Fig. 20: Inbound part of the rebound attack on SKINNY

D Solving the Inbound Part of SKINNY

Now we solve the inbound part of the 16-round rebound trail in Figure 19. To
be more clear, we pick out the inbound part in Figure 20. Since the inbound
part are not fully active, we tweak some procedures for solving the super S-box
to achieve better time complexity. For given key pair, we solve the inbound part
(Figure 20) to get a starting point for the outbound part. Since the probability
of the outbound part is 2−112, we have to traverse 2112 key pairs.

Precomputation. We first precompute the solution for S(x⊕∆X11[3])⊕S(x) =
∆Y11[3], where ∆X11[3] = 0x88 and ∆Y11[3] = 0x32. We random choose a value
for the inactive cell X11[9] and compute W11[11] = Y11[9] = S(X11[9]). This
step is precomputed and X11[3], X11[9], W11[11], Y11[9] = S(X11[9]), Y11[3] =
S(X11[3]) and Y ′

11[3] = S(X11[3]⊕ 0x88) are fixed for all the 2112 key pairs and
through all the steps of the rebound attack.

For each key pair, we compute the inbound part as follows.

Computing the SSB3. For SSB3, (marked by blue boxes in Figure 20), due
to Equation (18), we have ∆X12[11] = ∆W11[7] ⊕ ∆W11[11] = ∆W11[7], and
S(X11[6])⊕ S(X11[6]⊕ 0x8) = ∆W11[7].

∆Y12[11] = 0x40 = S(X12[11])⊕ S(X ′
12[11])

= S(W11[7]⊕W11[11])⊕ S(W ′
11[7]⊕W ′

11[11])
= S(S(X11[6])⊕ STK[6]⊕ Y11[9])⊕ S(S(X11[6]⊕ 0x8)⊕ STK ′[6]⊕ Y11[9]),

(34)
where only X11[6] is unfixed, Y11[9] and the STK are fixed. Hence, by traversing
X11[6] with four S-boxes evaluations in each iteration, we get one value of X11[6]
that meets the Equation (34).

Due to MC of SKINNY, we have ∆X12[3] = ∆W11[15], since ∆W11[3] = 0 and
∆W11[11] = 0. Similar to Equation (34), we get

∆Y12[3] = 0x46 = S(X12[3])⊕ S(X ′
12[3])

= S(W11[3]⊕W11[11]⊕W11[15])⊕ S(W ′
11[3]⊕W ′

11[11]⊕W ′
11[15])

= S(Y11[3]⊕ STK[3]⊕ Y11[9]⊕ S(X11[12]))⊕
S(Y ′

11[3]⊕ STK ′[3]⊕ Y11[9]⊕ S(X11[12]⊕ 0x4a)),

(35)
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where Y11[3], Y ′
11[3], Y11[9] are pre-fixed, and only X11[12] is the variable. Hence,

by traversing X11[12] with four S-boxes evaluations in each iteration, we are
expected to find one X11[12] that meets the Equation (35).

Computing SSB2. The input and output column (W (2)
11 ,X(2)

12 ) of MC have four
active cells and and three active cells. With the property of MC by Equation (18),
we know X12[6] =W11[2]. Then, we get

∆Y12[6] = 0x78 = S(X12[6])⊕ S(X ′
12[6])

= S(W11[2])⊕ S(W ′
11[2])

= S(S(X11[2])⊕ STK[2])⊕ S(S(X11[2]⊕ 0x8)⊕ STK ′[2]),
(36)

where only X11[2] are unfixed, hence, by traversing X11[2], we get a value of
X11[2] to meet the Equation (36). After X11[2] is determined, we compute
Y11[2] = S(X11[2]) and Y ′

11[2] = S(X11[2]⊕ 0x8), then we have

∆Y12[14] = 0x40 = S(X12[14])⊕ S(X ′
12[14])

= S(W11[2]⊕W11[10])⊕ S(W ′
11[2]⊕W ′

11[10])
= S(Y11[2]⊕ STK[2]⊕ S(X11[8]))⊕ S(Y ′

11[2]⊕ STK ′[2]⊕ S(X11[8]⊕ 0xde))
(37)

where Y11[2] and Y ′
11[2] are fixed. Hence, the only unfixed cell is X11[8], by

traversing it, we find a value X11[8] to meet the Equation (37). Similarly, we
determine X11[5] and X11[15] by traversing a space of 28, respectively.

The computing of SSB0 and SSB1 is very similar to the above procedures
in computing SSB2 and SSB3, which only traverses some small space of 28. For
each super S-box, there are at most four spaces of size 28 to traverse to find the
conforming pair, where 4 S-boxes are evaluated in each iteration (i.e., Equation
(34), (35), (36) or (37)). Hence, in worst case, the time complexity to compute
a super S-box is 4 × 28 × 4 = 212 S-boxes evaluations. In quantum setting, we
embed the Grover’s algorithm to search the solutions similar to Dong et al.’s [18]
in computing the non-full-active super S-box. The quantum time to compute the
one super S-box is

2 · 4 · π
4
·
√
28 · 4 = 28.65 S-box evaluations, (38)

where in each Grover iteration, about 4 S-boxes are applied, e.g. Equation (34),
(35), (36) or (37), and uncomputing is considered.

E Memoryless Method to Solve the 3-Round Inbound
Part

Suppose the state is of d × d c-bit cells. As shown in Figure 4, ∆X1 is linearly
computed from ∆Z0. Similar to super S-box technique, one computes d super
S-boxes SSB

f
j (0 ≤ j < d) covering X1 to Y2. Each SSB

f
j contains 2dc pairs with
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fixed input differences. Similarly, the attacker computes d inverse super S-boxes
SSBbj (0 ≤ j < d) from Y3 to Y2.

Match 2d lists by the exhaustive search of SSBf0 , SSB
f
1 , ..., SSB

f
d/2−1. Then, a

pair of d2/2 cells at Y2 are fixed. The attacker then checks if the pair of fixed
values can be produced by SSBbj . In each SSBbj , d-cell values have been fixed,
which acts as a dc-bit filter. Since the degrees of freedom in each SSBbj is 2dc,
there expects one match on average for each SSBbj . Now, the pair at Y2 is fully
fixed. Then, compute the pair backward to X1 to verify if the pair conforms
to the fixed difference ∆X1, which acts as a filter of 2−d2c/2. Hence, by the
exhaustive search of the 2d

2c/2 values of SSBf0 , SSB
f
1 , ..., SSB

f
d/2−1, one expects to

find a solution for the 3-round inbound phase, which conforms to the fixed input
and output differences.

At EUROCRYPT 2020, Hosoyamada and Sasaki [25] introduced a memory-
less variant as shown in Algorithm 9 , and then converted it into a quantum
variant. The time complexity of Algorithm 9 is 2t

2c/2+tc and there expect one
conforming pair as output.

Algorithm 9: Memoryless variant of the 3-round inbound phase
Input: ∆Z0 and ∆W3

Output: (Z0, Z
′
0) and (W3,W

′
3), with ∆Z0 = Z0 ⊕ Z′

0 and ∆W3 = W3 ⊕W ′
3

1 Compute ∆X1 from ∆Z0

2 Compute ∆Y3 from ∆W3

3 for 2d
2c/2 values for the cells in X1 as shown in Figure 4 do

4 Compute cells of X ′
1 by X ′

1 = ∆X1 ⊕∆X1

5 Compute forward to get the cells of Z2 and Z′
2

6 for row j ∈ 0, 1, 2, ..., d− 1 in Z2 do
7 for at row j: 2dc values of cells in Z2 and Z′

2 do
8 Together with the cells in row j, compute row j of Y ′

3 , Y3 and
∆Y3

9 if the derived row j of ∆Y3 is not equal to that computed from
∆W3 in Step 2 then

10 go to Step 7

11 In this step, all the cells of Z2 and Z′
2 are fixed, compute backward to get

∆X1

12 if the cells of ∆X1 computed from Z2 are equal to that computed from
Z0 in Step 1 then

13 return the pair as output
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