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Abstract. We present an actively secure threshold scheme in the setting
of Hard Homogeneous Spaces (HHS) which allows fine-grained access
structures. More precisely, we elevate a passively secure isogeny-based
threshold scheme to an actively secure setting. We prove the active secu-
rity and simulatability of our advanced schemes. By characterising the
necessary properties, we open our schemes to a significantly wider field of
applicable secret sharing schemes. Furthermore, we show that Shamir’s
scheme has our generalised properties, and thereby our approach truly
represents a less restrictive generalisation.
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1 Introduction

The principal motivation for a secret sharing scheme is to split private informa-
tion into fragments and securely distribute these shares among a set of sharehold-
ers. Then, any collaborating set with a sufficient number of participants is able to
reconstruct the shared private information, while the secret remains confidential
to any unauthorised, that is not sufficiently large, subset of shareholders.

Since their introduction in the 1970s by Blakley [4] and Shamir [15], the field
of secret sharing schemes, information theoretic and computational, has been
studied extensively. In previous years, due to applications in blockchain and
other scenarios, the interest in new developments and applications for secret
sharing schemes has increased.

Post-quantum schemes have, however, only received little attention with re-
spect to secret sharing. Recently, De Feo and Meyer [11] proposed a key ex-
change mechanism and a signature scheme making use of isogeny based public
key cryptography for which the secret key is stored in a Shamir shared way. Their
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approach enables decapsulation for the key exchange mechanism and signing for
the signature scheme in a round-robin way without reconstructing the secret key
in clear for any sufficiently large set of shareholders. Yet in applying Shamir’s
secret sharing scheme they restrict themselves to simple threshold access struc-
tures. Furthermore, their protocols are only passively secure, in that while a
misbehaving shareholder cannot obtain information on the secret key shares of
other shareholders participating in a decapsulation or a signing execution via
maliciously formed inputs, his deviation from the protocol cannot be detected.

We aim to tackle both caveats by proposing an actively secure isogeny based
key exchange mechanism, for which the secret key is secret shared by a trusted
dealer. We further transform the key exchange mechanism into an actively se-
cure signature scheme with shared secret key.

Our Contribution. Our contribution is manifold. First, we transfer the active
security measures outlined in [2] from their setting of full engagement protocols
to a setting of threshold secret sharing. We thereby open the active security
measures to a wider field of application and improve upon their efficiency sig-
nificantly. Second, we apply the adapted active security measures to propose an
actively secure key exchange mechanism with secret shared secret key. Third, we
present an actively secure signature scheme by applying a Fiat-Shamir transform
to our key exchange mechanism. And fourth, we expand our key encapsulation
mechanism and our signature scheme to a wider field of secret sharing schemes.
For that we characterise the necessary properties for a secret sharing scheme and
give several examples of compatible schemes.

Related work. Secret sharing schemes were first introduced by Blakley [4]
and Shamir [15]. In both their approaches, secrets from the secret space Zp :=
Z mod p for prime p are shared by distributing interpolation points of ran-
domly sampled polynomials. Damgård and Thorbek [9] presented a secret shar-
ing scheme with secret space Z. Thorbek [18] later improved their scheme. Yet
their scheme is only computationally confidential, compared to the information
theoretical confidentiality of Shamir and Blakley’s schemes. Tassa [17] opened
Shamir’s scheme to a more general application by utilising the derivatives of
the sharing polynomial to construct a hierarchical access structure,. These basic
secret sharing schemes rely on the dealer providing honestly generated shares to
the shareholders. Verifiable secret sharing schemes eliminate this drawback by
providing the shareholders with the means to verify the correctness of the re-
ceived shares with varying overhead. Examples of these are [1,13,16]. With minor
efficiency losses, Herranz and Sáez [12] were able to achieve verifiable secret shar-
ing for generalised access structures. Traverso et al. [19] proposed an approach
for evaluating arithmetic circuits on secret shared in Tassa’s scheme, that also
enabled auditing the results. Cozzo and Smart [7] investigated the possibility of
constructing shared secret schemes based on the Round 2 candidate signature
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schemes in the NIST standardization process4. Based on CSI-FiSh [3], De Feo
and Meyer [11] introduced threshold variants of passively secure encryption and
signature schemes in the Hard Homogeneous Spaces (HHS) setting. Cozzo and
Smart [8] presented the first actively secure but not robust distributed signature
scheme based on isogeny assumptions. In [2], the authors presented CSI-RAShi, a
robust and actively secure distributed key generation protocol based on Shamir’s
secret sharing in the setting of HHS, which necessitates all shareholders to par-
ticipate.

Outline. In Section 2 the terminology, primitives and security notions relevant
for this work are introduced. Section 3 presents an actively secure threshold key
exchange mechanism and proves our scheme’s active security and simulatability.
The actively secure signature scheme resulting from applying the Fiat-Shamir-
transform to our key exchange mechanism is discussed in Section 4. Finally,
the necessary properties for a secret sharing scheme to be compatible with our
key exchange mechanism and signature scheme are characterised in Section 5 in
order to enable applying a more general class of secret sharing schemes.

2 Preliminaries

Notation. Throughout this work we use a security parameter λ ∈ N. It is
implicitly handed to a protocol whenever needed, that is protocols with com-
putational security. Information theoretic schemes and protocols such as secret
sharing schemes used in this work do not require a security parameter.

For an indexed set X = {xi}i∈I , we denote the projection onto a subset
I ′ ⊂ I by XI′ = {xi ∈ X : i ∈ I ′}. The same holds for indexed tuples (xi)i∈I .

2.1 Secret Sharing Schemes

A secret sharing scheme is a cryptographic primitive that allows a dealer to share
a secret among a set of shareholders. An instance is thus defined by a secret space
G, a set of shareholders S and an access structure ΓS . A set S′ ∈ ΓS is called
authorised and can from their respective shares reconstruct a shared secret. If the
instance S is clear from the context, we omit the index in the access structure Γ .
In this work, we consider monotone access structures, that is for any A ⊂ B ⊂ S
with A ∈ Γ , we also have B ∈ Γ .

A secret sharing instance S provides two algorithms: Share and Rec. A dealer
executes S.Share(s) to generate shares s1, . . . , sk of a secret s. A share si is
assigned to a shareholder Pϕ(i) via a surjective map ϕ : {1, . . . , k} → {1, . . . , n}
induced by ΓS . A set of shareholders S′ ∈ ΓS executes

S.Rec
(
{si}Pϕ(i)∈S′

)
4 https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-

Cryptography-Standardization
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on their respective shares to retrieve a previously shared secret.

Definition 1 (Superauthorised sets). For a secret sharing instance S =
(G,S, ΓS), we call a set S′ ⊂ S superauthorised, if for any P ∈ S′, we have
S′ \{P } ∈ ΓS . We denote the set of superauthorised sets of shareholders by Γ+

S .

Any superauthorised set is also authorised.

Example 1 (Shamir’s secret sharing). An instance of Shamir’s famous secret
sharing scheme consists of a set of n > 0 shareholders, a secret space Z mod p,
where p is a prime larger than n, and an access structure Γ = {S′ ⊂ S : #S′ ≥ t}
for a threshold t ≤ n. A secret s ∈ Z mod p is shared by handing each shareholder
Pi an interpolation point of a randomly sampled polynomial of degree t−1 with
constant term s. Reconstruction is achieved via Lagrange interpolation, that is

s =
∑

Pi∈S′

Li,S′si =
∑

Pi∈S′

∏
Pj∈S′

j ̸=i

j

j − i
f(i)

for some S′ ∈ Γ and Lagrange interpolation coefficients Li,S′ . The set of super-
authorised sets of shareholders is

Γ+ =
{
S+ ⊂ S : #S+ ≥ t+ 1

}
.

2.2 Hard Homogeneous Spaces

We present our key exchange mechanism and signature scheme in the context
of hard homogeneous spaces (HHS). HHS were first discussed by Couveignes [6]
in 2006. He defines a HHS (E ,G) as a set E and a group (G,�) equipped with a
transitive action ∗ : G × E → E . This action has the following properties:

– Compatibility: For any g, g′ ∈ G and any E ∈ E , we have g ∗ (g′ ∗ E) =
(g � g′) ∗ E.

– Identity: For any E ∈ E , i∗E = E if and only if i ∈ G is the identity element.
– Transitivity: For any E,E′ ∈ E , there exists exactly one g ∈ G such that

g ∗ E = E′.

Definition 2 (Notation). For a HHS (E ,G) with a fixed g ∈ G, let p|#G be a
fixed prime.We denote [s]E := gs ∗ E for all s ∈ Zp and all E ∈ E.

The following problems are assumed to be efficiently computable in a HHS (E ,G),
i.e., there exist polynomial time algorithms to solve them:

– Group operations on G (membership, inverting elements, evaluating �).
– Sampling elements of E and G.
– Testing the membership of E .
– Computing the transitive action ∗: given g ∈ G and E ∈ E as input, compute

g ∗ E.



On Actively Secure Access Structures from Isogeny Assumptions 5

Whereas the subsequent problems are assumed to be hard in a HHS (E ,G).

Problem 1 (Group Action Inverse Problem (GAIP)). Given two elements E,E′ ∈
E as input, the challenge is to provide g ∈ G with E′ = g ∗ E. Due to the tran-
sitivity property of HHS given instance of the GAIP has a solution.

Problem 2 (Parallelisation Problem). An instance of the Parallelisation Problem
is defined by a triple (E,E′, F ) ∈ E3 with E′ = g∗E. The challenge is to provide
F ′ with F ′ = g ∗ F .

The intuitive decisional continuation of this problem is as follows.

Problem 3 (Decisional Parallelisation Problem). An instance of the Decisional
Parallelisation Problem is defined by a base element E ∈ E and a triple (Ea, Eb, Ec)
with Ea = [a]E, Eb = [b]E and Ec = [c]E. The challenge is to distinguish
whether c = a+ b or c←$Zp was randomly sampled.

Remark 1. It is obvious that the decisional parallelisation problem reduces to
the parallelisation problem, which reduces to the group action inverse problem.

2.3 Threshold Group Action

Let s be a Shamir shared secret among shareholders P1, . . . , Pn, that is each Pi

holds a share si of s, i = 1, . . . , n. To compute E′ = [s]E for an arbitrary but
fixed E ∈ E without reconstructing s, we have an authorised set of shareholders
execute Algorithm 5. If it is executed successfully, we have by the compatibility
property of ∗ and the repeated application of Ek ← [Li,S′si]E

k−1 the result

E#S′
=

[ ∑
Pi∈S′

Li,S′si

]
E = [s]E.

2.4 Piecewise Verifiable Proofs

A piecewise verifiable proof (PVP) is a cryptographic primitive in the context
of hard homogeneous spaces and was first introduced in [2]. It is a compact
non-interactive zero-knowledge proof of knowledge of a witness f ∈ Zq [X] for a
statement

x = ((E0, E1) , s1, . . . , sn) , (2.1)

with statement pieces si = f(i) for i = 0, . . . , n and E1 = [s0]E0 ∈ E . A PVP
provides a proving protocol PVP.P , which takes a statement x of the form (2.1)
and a witness f and outputs a proof

(
π,{πi}i=0,...,n

)
, where (π, πi) is a proof

piece for si, i = 0, . . . , n. The PVP also provides a verifying protocol PVP.V ,
which takes an index i ∈ {0, . . . , n}, a statement piece si and a proof piece
(π, πi) and outputs true or false. Let R = {(x, f)}, where f is a witness for the
statement x. The projection RI for some I ⊂ {0, . . . , n} denotes (xI , f).
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Definition 3 (Completeness). We call a PVP complete, if, for any (x, f) ∈
R and (

π,{πi}i=0,...,n

)
← PVP.P (f, x) ,

the verification succeeds, that is

∀j ∈ {0, . . . , n} : Pr[PVP.V (j, xj , (π, πj)) = true] = 1.

Definition 4 (Soundness). A PVP is called sound if, for any adversary A,
any I ⊂ {0, . . . , n} and any x for which there exists no f with (xI , f) ∈ RI ,

Pr[PVP.V (j, xj , (π, πj)) = true]

is negligible in the security parameter λ for all j ∈ I, where
(
π,{πi}i∈I

)
← A

(
1λ

)
.

Definition 5 (Zero-knowledge). A PVP is zero-knowledge, if for any I ⊂
{1, . . . , n} and any (x, f) ∈ R, there exists a simulator Sim such that for any
polynomial-time distinguisher A the advantage∣∣∣Pr[ASim(xI)

(
1λ

)
= 1

]
− Pr

[
AP (x,f)

(
1λ

)
= 1

]∣∣∣
is negligible in the security parameter λ, where P is an oracle that upon input
(x, f) returns

(
π,{πj }j∈I

)
with

(
π,{πj }j=0,...,n

)
← PVP.P (f, x).

We refer to [2] for the precise proving and verifying protocols and the security
thereof. In combination they state a complete, sound and zero-knowledge non-
interactive PVP. A prover can hence show knowledge of a sharing polynomial f
to a secret s0 = f(0) with shares si = f(i). In Section 3, we adjust [2]’s proving
protocol to our setting of threshold schemes, so that knowledge of a subset of
interpolation points is proven instead of all interpolation points.

2.5 Zero-Knowledge Proofs for the GAIP

We give a non-interactive zero-knowledge proof protocol for an element s ∈ Zp

with respect to the group action inverse problem. That is, a prover shows the
knowledge of s so that E′

i = [s]Ei, for Ei, E
′
i ∈ E and i = 1, . . . ,m, simultane-

ously, without revealing s.
The prover samples bj ∈ Zp and computes Êi,j ← [bj ]Ei for i = 1, . . . ,m

and j = 1, . . . , λ. He then derives challenge bits

(c1, . . . , cλ)← H
(
E1, E

′
1, . . . , Em, E′

m, Ê1,1 . . . , Êm,λ

)
via a hash function H : E(2+λ)m → {0, 1}λ and prepares the answers rj ←
bj − cjs, j = 1, . . . , λ. The proof π = (c1, . . . , cλ, r1, . . . , rλ) is then published.

The verification protocol is straight forward: given a statement (Ei, E
′
i)i=1,...,m

and a proof π = (c1, . . . , cλ, r1, . . . , rλ), the verifier computes Ẽi,j ← [rj ]Ei if
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cj = 0 and Ẽi,j ← [rj ]E
′
i otherwise, for i = 1, . . . ,m and j = 1, . . . , λ. He then

generates verification bits (c̃1, . . . c̃λ) ← H
(
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1 . . . , Ẽm,λ

)
and accepts the proof if (c1, . . . , cλ) = (c̃1, . . . , c̃λ).

We sketch the proving and verifying protocols in Algorithm 6 and Algorithm
7, respectively. Again, we refer to [3] for the proof of completeness, soundness
and zero-knowledge with respect to the security parameter λ.

2.6 The Adversary

We consider a static and active adversary. At the beginning of a protocol execu-
tion, the adversary corrupts a set of shareholders. The adversary is able to see
their inputs and control their outputs. The set of corrupted shareholders cannot
be changed throughout the execution of the protocol.

The adversary’s aim is two-fold. On the one hand it wants to obtain informa-
tion on the uncorrupted parties’ inputs, on the other hand it wants to manipulate
the execution of our protocol towards an incorrect output without detection.

2.7 Communication channels

Both our schemes assume the existence of a trusted dealer in the secret sharing
instance. The shareholders’ communication occurs in the execution of the de-
capsulation protocol of our key exchange mechanism and the signing protocol of
our signature scheme.

The communication from the dealer to a shareholder must not be eaves-
dropped upon or tampered with, we hence assume secure private channels be-
tween the dealer and each shareholder. However, the communication between
shareholders need not be kept private, thus we assume a simple broadcast chan-
nel between the shareholders. The means of how to establish secure private
channels and immutable broadcast channels are out of scope of this work.

3 Key Exchange Mechanism

A key exchange mechanism is a cryptographic public key scheme that provides
three protocols: KeyGen, Encaps and Decaps. These enable a party to establish
an ephemeral key between the holder of the secret key. We present our actively
secure key exchange mechanism with private key that is secret shared among
a set of shareholders. An authorised subset can execute the Decaps protocol
without reconstructing the secret key.

3.1 Public Parameters

We fix the following publically known parameters.

– A secret sharing instance S with shareholders S = {P1, . . . , Pn}, secret space
Zp and access structure Γ .
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– A hard homogeneous space (E ,G) with a fixed starting point E0 ∈ E .
– A fixed element g ∈ G with ordg = p for the mapping [·]· : Zp × E → E ; s 7→

gsE.

We give our key exchange mechanism in the context of Shamir’s secret sharing
scheme and elaborate possible extensions to other, more general secret sharing
schemes in Section 5.

3.2 Key Generation

A public and secret key pair is established by a trusted dealer (even an un-
trusted dealer is feasible by employing verifiable secret sharing schemes) execut-
ing Algorithm 1. For that he samples a secret key s and publishes the public key
pk← [s]E0. The secret key s is then shared among the shareholders {P1, . . . , Pn}
via S.Share(s). The dealer shares each share si, i = 1, . . . , n, once more with a
sharing polynomial fi. Each shareholder Pi, i = 1, . . . , n, eventually receives si,
fi and fj(i), that is his share si of s, the polynomial fi and a share fj(i) of each
other sj , j 6= i.

Algorithm 1: Key generation
Input: S
s←$Zp

pk← [s]E0

{s1, . . . , sn} ← S.Share(s)
for i = 1, . . . , n do

fi←$Zp [X]≤k−1 : fi(0) = si

publish pk
for i = 1, . . . , n do

send
{
si, fi,{fj(i)}j=1,...,n

}
to Pi

This key generation protocol can be regarded as a "two-level sharing", where
each share of the secret key is itself shared again among the shareholders. While
this is not necessary for De Feo and Meyer’s passively secure protocol, we require
the two-level sharing in ensuring the active security of our key encapsulation
mechanism.

3.3 Encapsulation

With a public key pk ∈ E as input, the encapsulation protocol returns an
ephemeral key K ∈ E and a ciphertext c ∈ E . Our encapsulation protocol is
identical to the protocol of [11], thus we just give a short sketch and refer to De
Feo’s and Meyer’s work for the respective proofs of security.
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Algorithm 2: Encapsulation
Input: pk
b←$G
K ← b ∗ pk
c← b ∗ E0

return (K, c)

3.4 Decapsulation

A decapsulation protocol takes a ciphertext c and outputs a key K. De Feo and
Meyer [11] applied the threshold group action (Algorithm 5) so that an autho-
rised set S′ ∈ Γ decapsulates a ciphertext c and produces an ephemeral key
[s] c = [s] (b ∗ E0) = b ∗ ([s]E0). For that, the shareholders agree on an arbitrary
order of turns. With E0 := c, the kth shareholder Pi outputs Ek = [Li,S′si]E

k−1

for k = 1, . . . ,#S′. The last shareholder outputs the decapsulated ciphertext
E#S′

= [s] c. Their approach is simulatable. It does not leak any information on
the shares si, yet it is only passively secure. Thus, a malicious shareholder can
provide malformed input to the protocol and thereby manipulate the output of
the computation towards incorrect results without the other parties recognising
this deviation from the protocol. We extend their approach to enable the de-
tection of misbehaving shareholders in a decapsulation. For that we maintain
the threshold group action and apply the PVP and zero-knowledge proof for the
group action inverse problem as layed out in Section 2.

3.5 Amending the PVP

In the PVP protocol sketched in Section 2, a prover produces a proof of knowl-
edge for a witness polynomial f of the statement ((E0, E1) , s1, . . . , sn) , where
E0←$ E , E1 = [s0]E0 and si = f(i) for i = 0, . . . , n. He thereby proves knowl-
edge of the sharing polynomial f of s0 = f(0).

This approach does not agree with the threshold group action, for which
a shareholder Pi’s output in the round-robin approach is Ek ← [Li,S′si]E

k−1

rather than Ek ← [si]E
k−1, where Ek−1 denotes the previous shareholder’s

output. Futhermore, authorised sets need not contain all shareholders. Example 2
illustrates a further conflict with of the PVP with the threshold group action.

Example 2. Let sk be a secret key generated and shared by KeyGen. That is each
shareholder Pi holds {

si, fi,{fj(i)}Pj∈S

}
.

Also let S′ ∈ Γ be a minimally authorised set executing Algorithm 5, i.e., for any
Pi ∈ S′, S′\{Pi} is unauthorised. Thus, for any arbitrary but fixed s′i ∈ Zp, there
exists a polynomial f ′

i ∈ Zp [X]k−1 so that f ′
i(j) = Li,S′fi(j) and R′ = [f ′

i(0)]R
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for any R,R′ ∈ E and all Pj ∈ S′ \{Pi}. Therefore, Pi can publish(
π,{πj }Pj∈S

)
←PVP.P

((
(R,R′) , (Li,S′fi(j))Pj∈S

)
, f ′

i

)
which is indistinguishable from

PVP.P
((

(E0, E1) , (Li,S′fi(j))Pj∈S

)
, Li,S′fi

)
to S′\{Pi} with E0←$ E and E1 = [Li,S′si]E0. Thus, for a minimally authorised
set S′, the soundness of the PVP does not hold with respect to Pi ∈ S′ and fi.

We resolve the conflicts by amending [2]’s PVP protocol, so that a shareholder
Pi ∈ S∗ proves knowledge of a witness polynomial Li,S∗fi for a statement(

(R,R′) , (fi(j))Pj∈S∗

)
,

to a superauthorised set S∗, where R←$ E , R′ = [Li,S∗fi(0)]R = [Li,S∗si]R.
The inputs of our amended proving protocol are the proving shareholder’s index
i, the witness polynomial fi, the superauthorised set S∗ ∈ Γ+ and the statement(
(R,R′) , (fi(j))Pj∈S∗

)
. The protocol can be found in Algorithm 8, in which C

denotes a commitment scheme. The verifying protocol in turn has the prover’s
and the verifier’s indices i and j, respectively, a set S∗ ∈ Γ+, a statement piece
xj and a proof piece (π, πj) as input, where xj = (R,R′) ∈ E2 if j = 0 and
xj ∈ Zp otherwise. The verifying protocol is given in Algorithm 9.

It is here, that the two-level sharing we introduced in Section 3.2 comes into
play. We will have each shareholder Pi engaged in an execution of Decaps provide
a PVP with respect to its share si of the secret key sk, that is then verified by
each other participating shareholder with its respective share of si.

The definitions of soundness and zero-knowledge for a threshold PVP scheme
carry over from the non-threshold setting in Section 2 intuitively, yet we restate
the completeness definition for the threshold setting.
Definition 6 (Completeness in the threshold setting). We call a threshold
PVP scheme complete if, for any S′ ∈ Γ , any (x, f) ∈ R, any Pi ∈ S′ and(
π,{πj }Pj∈S′

)
← PVP.P (i, f, S′, xS′), we have

Pr[PVP.V (i, j, S′, xj , (π, πj)) = true] = 1 for all Pj ∈ S′.

The proofs for soundness, correctness and zero-knowledge for Beullens et al.’s [2]
approach are easily transferred to our amended protocols, thus we do not restate
them here.

We arrive at our decapsulation protocol, executed by a superauthorised set
S∗: The partaking shareholders fix a turn order. A shareholder Pi’s turn consists
of the following steps.
1. If the previous shareholder’s output Ek−1 is not in E , Pi outputs ⊥ and

aborts. The first shareholder’s input E0 is the protocol’s input ciphertext c.
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2. Otherwise Pi samples Rk←$ E and computes R′
k ← [Li,S∗si]Rk.

3. Pi computes and publishes(
πk,

{
πk
j

}
Pj∈S∗

)
← PVP.P

(
i, fi, S

∗,
(
(Rk, R

′
k) , (fi(j))Pj∈S∗

))
.

4. Pi computes Ek ← [Li,S∗si]E
k−1 and the zero-knowledge proof

zk ← ZK.P
(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗si

)
.

He publishes both.
5. Each shareholder Pj ∈ S∗ \{Pi} verifies

PVP.V
(
i, j, S∗, fi(j),

(
πk, πk

j

))
∧ PVP.V

(
i, 0, S∗, (Rk, R

′
k) ,

(
πk, πk

0

))
(3.1)

and
ZK.V

(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, zk

)
. (3.2)

If (3.1) fails, Pj issues a complaint against Pi. If Pi is convicted of cheating by
more than #S∗

/2 shareholders, decapsulation is restarted with an S∗′ ∈ Γ+,
so that Pi 6∈ S∗′. If (3.2) fails, the decapsulation is restarted outright with
S∗′ ∈ Γ+, so that Pi 6∈ S∗′.

6. Otherwise, Pi outputs Ek and finalises its turn.
7. The protocol terminates with the last shareholder’s E#S∗ as output.

The combination of the PVP and the zero-knowledge proof in steps 3 and 4
ensure, that Pi has knowledge of the sharing polynomial Li,S∗fi and also inputs
Li,S∗fi(0) to compute Ek. We give the precise protocol in Algorithm 3.

Definition 7. A key exchange mechanism with secret shared private key is cor-
rect, if for any authorised set S′, any public key pk and any (K, c)← Encaps(pk),
we have K = K′ ← Decaps(c, S′).

The correctness of our key exchange mechanism presented in Algorithm 1, Al-
gorithm 2 and Algorithm 3 follows from the correctness of the threshold group
action (Algorithm 5). Let sk be a secret key and pk = [sk]E0 be the respective
public key, that have been generated by KeyGen, thus each shareholder Pi holds
a share si of sk, i = 1, . . . , n. For an authorised set S′ we therefore have

sk =
∑

Pi∈S′

Li,S′si.

Furthermore, let (K, c) ← Encaps(pk). To show correctness, K′ = K has to
hold, where K′ ← Decaps(c, S′). Now, after executing Decaps(c, S′), we have
K′ = E#S′ emerging as the result of the threshold group action applied to c.
This gives us

K′ =

[ ∑
Pi∈S′

Li,S′si

]
c = [sk] (b ∗ E0) = b ∗ pk = K.
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Algorithm 3: Decapsulation
Input: c, S∗

E0 ← c
k ← 0
for Pi ∈ S∗ do

if Ek 6∈ E then
Pi outputs ⊥ and aborts.

k ← k + 1
Rk←$ E
R′

k ← [Li,S∗si]Rk(
πk,

{
πk
j

}
Pj∈S∗

)
← PVP.P

(
i, fi, S

∗, ((Rk, R
′
k), (fi(j))Pj∈S∗)

)
Pi publishes (Rk, R

′
k) and

(
πk,

{
πk
j

}
Pj∈S∗

)
Ek ← [Li,S∗si]E

k−1

zkk ← ZK.P
(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗si

)
Pi publishes

(
Ek, zkk

)
for Pj ∈ S∗ \{Pi} do

if ZK.V
(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, zkk

)
= false then

return Decapsulation
(
c, S∗′) with S∗′ ∈ Γ ∧ Pi 6∈ S∗′

if PVP.V
(
i, j, S∗, fi(j),

(
πk, πk

j

))
= false∨

PVP.V
(
i, 0, S∗, (Rk, R

′
k) ,

(
πk, πk

0

))
= false then

Pj publishes fi(j)
if Pi is convicted then

return Decapsulation
(
c, S∗′) with S∗′ ∈ Γ ∧ Pi 6∈ S∗′

return K ← Ek

The decapsulation is executed by superauthorised sets S∗ ∈ Γ+ ⊂ Γ . This shows
that our key exchange mechanism is correct.

3.6 Security

There are two aspects of security to consider:
– Active security: A malicious shareholder cannot generate his contribution to

the decapsulation protocol dishonestly without being detected. We prove this
by showing that an adversary that can provide malformed inputs without
detection can break the PVP or the zero-knowledge proof of knowledge.

– Simulatability: An adversary that corrupts an unauthorised set of sharehold-
ers cannot learn any information about the uncorrupted shareholders’ inputs
from an execution of the decapsulation protocol. We show this by proving
the simulatability of Decaps.
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Active security

Theorem 1. Let S∗ ∈ Γ+ and let (pk, sk)← KeyGen be a public/secret key pair,
where sk has been shared. Also let (K, c)← Encaps(pk). Denote the transcript of
Decaps(c, S∗) by(

Ek, (Rk, R
′
k) ,

(
πk,

{
πk
j

}
Pj∈S∗

)
, zkk

)
k=1,...,#S∗

.

Let Pi ∈ S∗ be an arbitrary but fixed shareholder. If Decaps(c, S∗) terminated
successfully and Pi′ ’s output was generated dishonestly, then there exists an al-
gorithm that breaks the soundness property of PVP or ZK.

Proof. Let Pi′ be the malicious shareholder and let k′ be the index of Pi′ ’s output
in the transcript. Since Decaps(c, S∗) terminated successfully, we have

PVP.V
(
i′, j, S∗, fi′(j),

(
πk′

, πk′

j

))
=true (3.3)

PVP.V
(
i′, 0, S∗, (Rk′ , R′

k′) ,
(
πk′

, πk′

0

))
=true (3.4)

ZK.V
((

Ek′−1, Ek′
)
, (Rk′ , R′

k′) , zkk
′
)
=true (3.5)

for all Pj ∈ S∗ \{Pi′ }. Ek′ was generated dishonestly, thus we have

Ek′
= [α]Ek′−1, for some α 6= Li′,S∗si′ .

We distinguish two cases: R′
k′ 6= [α]Rk′ and R′

k′ = [α]Rk′ .
In the first case, Pi′ published a zero-knowledge proof zkk′ so that (3.5) holds,

where Ek′
= [α]Ek′−1 yet R′

k′ 6= [α]Rk′ . Pi′ thus broke the soundness property
of the zero-knowledge proof.

In the second case, Pi′ published
(
πk′

,
{
πk′

j

}
Pj∈S∗

)
so that (3.3) and (3.4)

hold for all Pj ∈ S∗ \ {Pi′ } and for j = 0. Thus, Pi′ proved knowledge of a
witness polynomial f ′ with

f ′(j) = Li′,S∗fi′(j) (3.6)

for all Pj ∈ S∗\{Pi′ } and R′
k′ = [f ′(0)]Rk′ , that is f ′(0) = α. Since f ′ has degree

at most k − 1, it is well-defined from (3.6). Thus, we have f ′ ≡ Li′,S∗fi′ , where
fi′ is the polynomial with which si′ was shared, i.e., fi′(0) = si′ . This gives us
α = f ′(0) = Li′,S∗fi′(0) = Li′,S∗si′ . We arrive at a contradiction, assuming the
soundness of the PVP.

Simulatability We show that an adversary who corrupts an unauthorised sub-
set of shareholder does not learn any additional information from an execution
of the decapsulation protocol.
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Definition 8 (Simulatability). We call a key exchange mechanism simulat-
able, if for any HHS (E ,G) with security parameter λ and any compatible secret
sharing instance S, there exists a polynomial-time algorithm Sim so that for any
polynomial-time adversary A the advantage

Advdist−transcript
A,Sim ((E ,G) ,S) :=

∣∣∣∣Pr[Expdist-transcript
A,Sim (S)

]
− 1

2

∣∣∣∣
in the security game Expdist-transcript

A,Sim (S) (Algorithm 10) is negligible in λ.

Theorem 2. If the PVP protocol and the GAIP ZK protocol employed are zero-
knowledge, then the decapsulation protocol (Algorithm 3) is simulatable.

Proof. We give a finite series of simulators, the first of which simulates the be-
haviour of the uncorrupted parties faithfully and the last of which fulfills the
secrecy requirements. This series is inspired by the simulators, that [2] gave for
the secrecy proof of their key generation algorithm, yet differs in some significant
aspects. The outputs of the respective simulators will be proven indistinguish-
able, hence resulting in the indistinguishability of the first and last one. As a
slight misuse of the notation, we denote the set of corrupted shareholders by A,
where A is the adversary corrupting an unauthorised set of shareholders. This
means Pi is corrupted iff Pi ∈ A.

The input for each simulator is a ciphertext c, a derived key K and the
adversary’s knowledge after KeyGen was successfully executed, that is{

si, fi,{fj(i)}Pj∈S∗\A

}
Pi∈A

.

1. The adversary corrupted an unauthorised set A, hence each share of the
secret key is uniformly distributed from his view. Sim1 samples a polynomial
f ′
i ∈ Zp [X]k−1 with

∀Pj ∈ A : f ′
i(j) = fi(j)

uniformly at random for each Pi ∈ S∗ \A. Since A is unauthorised, f ′
i exists.

Sim1 then proceeds by honestly producing the output of each Pi ∈ S∗ \ A
according to the decapsulation protocol, i.e., it samples Rk←$ E , computes
R′

k ← [Li,S∗f ′
i(0)]Rk and outputs

PVP.P
(
i, f ′

i , S
∗,
(
(Rk, R

′
k) , (f

′
i(j))Pj∈S∗

))
,

Ek ← [Li,S∗f ′
i(0)]E

k−1

and
ZK.P

(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗f ′

i(0)
)
,

where k is the index of Pi’s output in the transcript. Since, for all Pi ∈
S∗ \ A, the real share si = fi(0) of Pi is information theoretically hidden
to the adversary, the resulting transcript is identically distributed to a real
transcript.
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2. Let i′ denote the index of the last honest party in the execution of the
decapsulation protocol and k′ the index of its output. Sim2 behaves exactly
as Sim1 with the exception, that it does not compute the PVP itself but calls
the simulator SimPVP for the PVP to generate the proof

(
πk′

,
{
πk′

j

})
for

the statement
(
(Rk′ , R′

k′) , (fi′(j))Pj∈S∗

)
. Since the PVP is zero-knowledge,

Sim2’s output is indistinguishable from that of Sim1.

3. Sim3 behaves identical to Sim2 apart from not generating the zero-knowledge
proof for Pi′ itself, but outsourcing it to the simulator for the zero-knowledge
proof. That is Sim3 hands tuples (Rk′ , R′

k′) and
(
Ek′−1, Ek′

)
to SimZK

and publishes its answer as the zero-knowledge proof. With ZK being zero-
knowledge, the output of Sim3 is indistinguishable from that of Sim2.

4. The final simulator Sim4 enforces the correct decapsulation output, that is
E#S∗

= K. Since, for Pj ∈ A, sj was provided as input and Pi′ is the last
honest shareholder in the order of decapsulation execution, Sim4 computes∑

Pj∈S′

Lj,S∗sj ,

where S′ contains the shareholders, whose turn is after Pi′ ’s. To achieve the
correct output of the decapsulation E, Sim4 thus sets

Ek′
←

− ∑
Pj∈S′

Lj,S∗sj

E

instead of Ek′ ← [Li′,S∗s′i′ ]E
k′−1. Assuming the soundness of the PVP as

well as of the zero-knowledge proof, this guarantees the result to be E#S∗
=

E, since

E#S∗
=

 ∑
Pj∈S′

Lj,S∗sj

Ek′
= E

holds. It remains to show, that the output of Sim4 cannot be distinguished
from that of Sim3. The following reasoning is similar to that of [2], yet
for completeness we give a reduction B′, that uses a distinguisher A′, that
distinguishes Sim3 from Sim4, to break the decisional parallelisation problem.
We highlight the necessary modifications.

Let (Ea, Eb, Ec) be an instance of the decisional parallelisation problem with
base element c. B′ computes

Ek′
←

 ∑
Pj∈S∗\(S′∪{Pi′ })

Lj,S∗sj

Ea.
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With si′ looking uniformly distributed from A’s view, this choice of Ek′

is indistinguishable from Ek′
= [Li′,S∗s′i′ ]E

k′−1. B′ furthermore does not
sample Rk′ ←$ E but puts Rk′ ← Eb and R′

k′ ← Ec. The resulting transcript
is handed to A′ and B′ outputs whatever A′ outputs.
Comparing the distributions, we see that

Ek′
= [a]Ek′−1 = [a]

 ∑
Pj∈S∗\(S′∪{Pi′ })

Lj,S∗sj

 c


if and only if Ea = [a]c, where sj := s′j for Pj 6∈ A. Furthermore, R′

k′ = [a]Rk′

is equivalent to Ec = [a]Eb. In the case of Ea = [a]c and Ec = [a]Eb, the
transcript handed to A′ is identically distributed to Sim3’s output. If, on the
other hand, (Ea, Eb, Ec) is a random triple, then the transcript follows the
same distribution as Sim4’s output. B′ thus breaks the DPP with the same
advantage as A′ distinguishes Sim3 from Sim4.

Sim4 outputs a transcript of the decapsulation protocol with input c and
output K that cannot be distinguished from the output of Sim1, which is indis-
tinguishable from a real execution protocol.

3.7 Efficiency

Each shareholder engaged in an execution of the decapsulation protocol has
one round of messages to send. The messages of the k-th shareholder consist
of the tuple (Rk, R

′
k), a PVP proof

(
πk,

{
πk
j

}
Pj∈S∗

)
, the output Ek and the

zero-knowledge proof zk. Thus, the total size of a shareholder’s messages is

2x+ 2c+ λk log p+ 2λ(#S∗) + x+ λk log p+ λ

=3x+ 2c+ λ (1 + 2(#S∗) + 2k log p)

where x is the size of the bit representation of an element of E and c is the
size of a commitment produced in PVP.P . Assuming x, c and the secret sharing
parameters k and p to be constant, the message size is thus linear in the security
parameter λ with moderate cofactor.

4 Actively Secure Secret Shared Signature Protocols

We convert the key exchange mechanism in Algorithm 1, Algorithm 2 and Al-
gorithm 3 into an actively secure signature scheme with secret shared signing
key.

A signature scheme consists of three protocols: key generation, signing and
verifying. We transfer the unmodified key generation protocol from the key ex-
change mechnism in Section 3 to our signature scheme. The signing protocol
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is derived from the decapsulation protocol (Algorithm 3) by applying the Fiat-
Shamir-transformation, the verifying protocol follows straightforward. The pro-
tocols are given in Algorithm 4 and Algorithm 11.

We concede, that applying active security measures to a signature scheme to
ensure the correctness of the resulting signature is counter-intuitive, since the
correctness of a signature can easily be checked through the verifying proto-
col. Yet verification returning false only shows that the signature is incorrect, a
misbehaving shareholder cannot be identified this way. An actively secure sig-
nature scheme achieves just that. An identified cheating shareholder can hence
be excluded from future runs of the signing protocol.

Similar to [3], the results from [10] on Fiat-Shamir in the QROM can be ap-
plied to our setting as follows. First, in the case without hashing, since the sigma
protocol has special soundness [3] and in our case perfect unique reponses, [10]
shows that the protocol is a quantum proof of knowledge. Further, in the case
with hashing, the collapsingness property implies that the protocol has unique
responses in a quantum scenario.

4.1 Instantiations

As a practical instantiation, we propose the available parameter set for CSIDH-
512 HHS from [3]. Currently no other instantiation of the presented schemes
seems feasible in a practical sense. Furthermore, according to recent works [14,5]
CSIDH-512 may not reach the initially estimated security level.

5 Generalising the Secret Sharing Schemes

We constructed the protocols above in the context of Shamir’s secret sharing
protocol [15]. The key exchange mechanism in Section 3 as well as the signature
scheme in Section 4 can be extended to more general secret sharing schemes. In
the following, we characterise the requirements that a secret sharing scheme has
to meet in order to successfully implement the key exchange mechanism and the
signature scheme.

5.1 Compatibility Requirements

Definition 9 (Independent Reconstruction). We say a secret sharing in-
stance S = (S, Γ,G) is independently reconstructible, if, for any shared secret
s ∈ G, any S′ ∈ Γ and any shareholder Pi ∈ S′, Pi’s input to reconstructing s
is independent of the share of each other engaged shareholder Pj ∈ S′.

A secret sharing scheme compatible with our key exchange mechanism and sig-
nature scheme has to be independently reconstructible, since each shareholder’s
input into the threshold group action is hidden from every other party by virtue
of the GAIP.
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Algorithm 4: Secret Shared Signing Algorithm
Input: m,S∗(
E0

1 , . . . , E
0
λ

)
← (E0, . . . , E0)

k ← 0
for Pi ∈ S∗ do

k ← k + 1
for l ∈ 1, . . . , λ do

Pi samples bil←$Zq [X]≤k−1

Pi publishes Rk
il←$ E

Pi publishes R′
il
k ← [bil(0)]R

k
il

Pi publishes
(
π,{πj }Pj∈S∗

)
←

PVP.P
(
i, bil, S

∗,
((

Rk
il, R

′
il
k
)
, (bil(l))Pj∈S∗

))
Pi outputs Ek

l ← [bil(0)]E
k−1
l

Pi publishes zk ← ZK.P
((

Rk
il, R

′
il
k
)
,
(
Ek−1

l , Ek
l

)
, bil(0)

)
if ZK.V

((
Rk

il, R
′
il
k
)
,
(
Ek−1

l , Ek
l

)
, zk

)
= false then

restart without Pi

(c1, . . . , cλ)← H
(
E#S∗

1 , . . . , E#S∗

λ ,m
)

for Pi ∈ S∗ do
for l ∈ 1, . . . , λ do

Pi outputs zil = bil − cl · Li,S∗ · si
for Pj ∈ S∗ do

Pj computes b′il(j)← zil(j) + clLi,S∗fi(j)
and verifies
PVP.V (i, j, S∗, b′il(j), π, πj) ∧
PVP.V

(
i, 0, S∗,

(
Rk

il, R
′
il
k
)
, π, π0

)
if Pi is convicted of cheating then

restart without Pi

for l ∈ 1, . . . , λ do
zj ←

∑
Pi∈S∗ zij

return ((c1, . . . , cλ) , (z1, . . . , zλ))
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Definition 10 (Self-contained reconstruction). An instance S = (S, Γ,G)
of a secret sharing scheme is called self-contained, if, for any authorised set S′,
the input of any shareholder Pi ∈ S′ in an execution of Rec is an element of G.

It is necessary, that G = Zp for some prime p holds to enable the mapping
· 7→ [·]. This requirement may be loosened by replacing · 7→ [·] appropriately.
To enable two-level sharing, it has to hold that for a share si ∈ S.Share(s) of a
secret s, si ∈ G holds. The secret sharing scheme also has to allow for a PVP
scheme, that is compatible with a zero-knowledge proof for the GAIP.

5.2 Examples of secret sharing schemes
– It is evident, that Shamir’s approach fulfills all aforementioned requirements.

In fact, the two-level sharing and the PVP have been tailored to Shamir’s
polynomial based secret sharing approach.

– Tassa [17] extended Shamir’s approach of threshold secret sharing to a hier-
archical access structure. To share a secret s ∈ Zp with prime p, a polynomial
f with constant term s is sampled. Shareholders of the top level of the hi-
erarchy are assigned interpolation points of f as in Shamir’s scheme. The
k-th level of the hierarchy receives interpolation points of the k− 1st deriva-
tive of f . The shares in Tassa’s scheme are elements of Zp themselves. The
key generation (Algorithm 1) can easily be transferred to this setting, as
each shareholder receives a description of the polynomial utilised in sharing
his share. Hence all derivatives and their respective interpolation points can
easily be computed. Reconstructing a shared secret is achieved via Birkhoff
interpolation, the execution of which is independent and self-contained. The
zero-knowledge proof (Algorithm 6 and Algorithm 7) as well as the piece-
wise verifiable proof (Algorithm 8 and Algorithm 9) thus directly transfer to
Tassa’s approach utilising the appropriate derivatives in the verifying pro-
tocols. The decapsulation and the signing protocols hence can be executed
with adjustments only to the verifying steps.

– In 2006, Damgard and Thorbek proposed a linear integer secret sharing
scheme [9] with secret space Z. Given an access structure Γ , a matrix M is
generated in which each shareholder is assigned a column so that iff S′ ∈ Γ ,
the submatrix MS′ has full rank. A secret s is shared by multiplying a
random vector v with first entry s with M and sending the resulting vec-
tor entries to the respective shareholders. Reconstruction follows intuitively.
Their scheme hence further generalises Tassa’s with respect to secret space
and feasible access structures. With the secret space Z their approach is not
compatible with the mapping · 7→ [·] and our PVP scheme. Thus, neither our
key exchange mechanism nor our signature scheme can in its current form
be instantiated with Damgard’s and Thorbek’s scheme.

6 Conclusion

In this work, we presented an actively secure key exchange mechanism based on
Shamir’s secret sharing scheme and derived a signature scheme from it. The ac-



20 Fabio Campos and Philipp Muth

tive security measures consist of a piecewise verifiable proof and a zero-knowledge
proof for the GAIP, that in combination prove the knowledge of the correct share
of the secret key and ensure its use in the protocol. For that we reworked the
piecewise verifiable proof and zero-knowledge proof introduced in [2] to fit the
threshold setting of Shamir’s secret sharing and applied it to the threshold group
action of [11]. Active security and simulatability were proven under the assump-
tion of hardness of the decisional parallelisation problem.

Furthermore, we characterised the properties necessary for a secret sharing
scheme in order for our key exchange mechanism and signature scheme to be
based on it. We gave examples and counter-examples of secret sharing schemes
compatible with our approach to demonstrate its limits. We thereby demon-
strated that cryptographic schemes with secret shared private key in the HHS
setting are not limited to threshold schemes, but applicable to more general
access structures.
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Appendix A Algorithms

Algorithm 5: Threshold group action
Input: E,S′

E0 ← E
k ← 0
for Pi ∈ S′ do

if Ek 6∈ E then
Pi outputs ⊥ and aborts.

else
k ← k + 1

Pi outputs Ek ← [Li,S′si]E
k−1

return Ek

Algorithm 6: The ZK proving protocol for the GAIP
Input: s, (Ei, E

′
i)i=1,...,m

for j = 1, . . . , λ do
bj ←$Zp

for i = 1, . . . ,m do
Êij ← [bj ]Ei

(c1, . . . , cλ)← H
(
E1, E

′
1, . . . , Em, E′

m, Ê1,1, . . . , Êm,λ

)
for j = 1, . . . ,m do

rj ← bj − cjs

return π ← (c1, . . . , cλ, r1, . . . , rλ)
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Algorithm 7: The ZK verifying protocol for the GAIP
Input: π, (Ei, E

′
i)i=1,...,m

Parse (c1, . . . , cλ, r1, . . . , rλ)← π
for i = 1, . . . ,m and j = 1, . . . , λ do

if cj == 0 then
Ẽi,j ← [rj ]Ei

else
Ẽi,j ← [rj ]E

′
i

(c′1, . . . , c
′
λ)← H

(
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1, . . . , Ẽm,λ

)
return (c1, . . . , cλ) == (c′1, . . . , c

′
λ)

Algorithm 8: Proving protocol of the threshold PVP

Input: i, f, S∗,
(
(E0, E1), (fi(j))Pj∈S∗

)
for l ∈ 1, . . . , λ do

bl←$ZN [x]≤k−1

Êl ← [bl(0)]E0

y0, y
′
0←$ {0, 1}λ

C0 ← C
(
Ê1‖ . . . ‖Êλ, y0

)
C ′

0 ← C(E0‖E1, y
′
0)

for Pj ∈ S∗ do
yj , y

′
j ←$ {0, 1}λ

Cj ← C(b1(j)‖ . . . ‖bλ(j), yj)
C ′

j ← C
(
Li,S∗ · fi(j), y′j

)
C ← (Cj)Pj∈S∗

C ′ ←
(
C ′

j

)
Pj∈S∗

c1, . . . , cλ ← H(C,C ′)
for l ∈ 1, . . . , λ do

rl ← bl − cl · Li,S∗ · f
r← (r1, . . . , rλ)(
π,{πj }Pj∈S∗

)
←

(
(C,C ′, r) ,

{(
yj , y

′
j

)}
Pj∈S∗

)
return

(
π,{πj }Pj∈S∗

)
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Algorithm 9: Verifying protocol of the threshold PVP
Input: i, j, S∗, xj , (π, πj)
parse (C,C ′, r)← π

parse
(
yj , y

′
j

)
← πj

c1, . . . , cλ ← H(C,C ′)
if j == 0 then

if C ′
j 6= C

(
xj , y

′
j

)
then

return false
for l ∈ 1, . . . , λ do

Ẽl ← [rl(0)]Ecl

return C0 == C
(
Ẽ1‖ . . . ‖Ẽλ, y0

)
else

if C ′
j 6= C

(
Li,S∗xj , y

′
j

)
then

return false
return Cj == C(r1(j) + c1 · Li,S∗ · xj‖ . . . ‖rλ(j) + cλ · Li,S∗ · xj , yj)

Algorithm 10: The security game Expdist-transcript
A,Sim (S)

Input: S
b←$ {0, 1}
S∗←$Γ+

S′←$ 2S
∗ \ Γ(

{si, fi, fj(i)}Pi,Pj∈S , pk
)
← KeyGen(S)

(K, c)← Encaps(pk)

t0 ← Sim
(
K, c,{si, fi, fj(i)}Pi∈S′,Pj∈S

)
E0 ← E0, k ← 0
for Pi ∈ S∗ do

k ← k + 1

Ek ← [Li,S∗si]E
k−1

Rk←$ E
R′

k ← [Li,S∗si]Rk(
πk,

{
πk
j

}
Pj∈S∗

)
← PVP.P

(
i, fi, S

∗,
(
(Rk, R

′
k) , (Li,S∗fi(j))Pj∈S∗

))
zkk ← ZK.P

(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗si

)
t1 ←

(
Ek,

(
πk,

{
πk
j

}
Pj∈S∗

)
, zkk

)
k=1,...,#S∗

b′ ← A(tb)
return b == b′
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Algorithm 11: Signature verification protocol
Input: m, s, pk
parse (c1, . . . , cλ, z1, . . . , zλ)← s
for j = 1, . . . , λ do

if cj == 0 then
E′

j ← [zj ]E0 =
[∑

Pi∈S∗ bij
]
E0

else
E′

j ← [zj ] pk =
[∑

Pi∈S∗ bij − Li,S∗si + s
]
E0

(c′1, . . . , c
′
λ)← H(E′

1, . . . , E
′
λ,m)

return (c1, . . . , cλ) == (c′1, . . . , c
′
λ)
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