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Abstract

Constant function market makers (CFMMs) are the most popular mechanism for
facilitating decentralized trading. While these mechanisms have facilitated hundreds
of billions of dollars of trades, they provide users with little to no privacy. Recent work
illustrates that privacy cannot be achieved in CFMMs without forcing worse pricing
and/or latency on end users. This paper more precisely quantifies the trade-off between
pricing and privacy in CFMMs. We analyze a simple privacy-enhancing mechanism
called Uniform Random Execution and prove that it provides (ε, δ)-differential privacy.
The privacy parameter ε depends on the curvature of the CFMM trading function and
the number of trades executed. This mechanism can be implemented in any blockchain
system that allows smart contracts to access a verifiable random function. We also
investigate the worst case complexity over all private CFMM mechanisms using recent
results from private PAC learning. These results suggest that one cannot do much
better than Uniform Random Execution in CFMMs with non-zero curvature. Our
results provide an optimistic outlook on providing partial privacy in CFMMs.

1 Introduction

Constant function market makers (CFMMs) have become the most widely used decentralized
crypto product. In 2021, these market makers were facilitating over a billion dollars of
daily volume, almost as much as centralized exchanges such as Binance, Coinbase, or FTX.
These market makers allow those looking for passive yield on a portfolio of assets to be
automatically matched with traders looking to execute a swap against their assets. CFMMs
work by ensuring that an invariant known as the trading function is kept constant before
and after a trade is executed. The trading function, which is a function of the liquidity
provided by those seeking passive yield, controls the price displayed by the CFMM that
traders can execute a trade at. In order to ensure that liquidity providers (LPs) do not
always lose money, as they are effectively buying the currency whose value is going down in
exchange for one that is going up, a trading fee is applied to each transaction. Prior work
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[AC20, AAE+21, AEC20] has investigated necessary and sufficient conditions for the trading
function and choice of fee to lead to profitable outcomes for LPs.

One major problem with CFMMs is their lack of privacy. At a high-level, privacy in
CFMMs boils down to preventing an adversary from discerning trade sizes as a function of
public prices. The simplest CFMM, the constant sum market maker [AAE+21, §2.4], is the
prototypical example of a private CFMM. Constant sum market makers only quote a single
price at all times, meaning that an adversary cannot determine if there was a single trade
of size 100 or 100 trades of size 1. On the other hand, constant sum market makers have
adverse selection for liquidity providers, as they effectively purchase large quantities of an
asset whose price is decreasing elsewhere [AEC20, §3]. Quantifying this trade-off between
the idealized ‘perfect’ privacy of a constant sum market maker and the adverse selection
faced by LPs is crucial to designing better CFMMs. Furthermore, the dramatic increase
in miner extractable value and front-running on Ethereum makes transaction-level privacy
increasingly important [QZLG20, QZG21, ZQT+20, AEC21a].

Prior work [AEC21b] has shown that given an initial amount of liquidity, public access
to an oracle that furnishes price as a function of trade size, and prices of executed trades,
one can uniquely identify the sizes of executed trades. This is a natural (although somewhat
indirect) consequence of the concavity of the trading function [AC20, AAE+21]. This work
implies that even with modern cryptography such as zero-knowledge proofs (ZKPs), one will
need to modify the CFMM mechanism to blind user’s trade sizes. For instance, this implies
that hiding balances via ZKPs of reserves (which has been proposed and implemented in
multiple protocols [CXZ20, Pow21]) is not sufficient for transaction-level privacy.

The two main options presented in [AEC21b] for recovering privacy involve either mod-
ifying prices (e.g. adding noise to quoted prices) or batching transactions.1 Both of these
changes will worsen user experience in CFMMs — both options force traders to bear worse
price impact while the latter option also means that users face higher latencies for trade
confirmation. Assuming that these are the only options available, a natural question to ask
is how well can we control the trade-off between worsened price and latency and improved
transaction privacy. More specifically, we want to answer two questions:

• What is the minimum number of samples n(δ) such that an adversary is unable to
infer the true trade sizes beyond a precision δ?

• How much worse is the worst price offered to a user via such a mechanism?

The answer the former question is an analogue of sample complexity from learning theory
whereas the latter question is measures ‘the cost of privacy’.

One framework for answering questions of this form is differential privacy [DR+14]. Dif-
ferentially private algorithms aim to hide individual user data (e.g. trades) while simulta-
neously preserving aggregate statistics (e.g. prices or averages). Many differentially private
mechanisms work by adding targeted randomness to each individual users’ data. As a sim-
ple illustration, suppose that we have a sequence of values x1, . . . , xn and we want to report

1There are two live batching CFMMs in production, CowSwap on Ethereum [Mar21] and ZSwap which
relies on a specialized ZKP chain [dV21].
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the mean µ(S) of any sufficiently large subset S ⊂ [n] without revealing each xi. One can
preserve the mean µ by adding i.i.d., mean zero noise to each value and then then allow users
to query for means of subsets. Differentially private algorithms induce a natural trade-off
between the privacy and accuracy of a query, much like the trade-off between price impact
and privacy in CFMMs. Differentially private algorithms have been used at large-scale and
in production at the US Census [Dwo19], Google [ACG+16], and Apple [CJK+18].

We show that this comparison between differential privacy and CFMMs is more than
superficial. We construct a black-box algorithm called Uniform Random Execution (URE)
for making CFMM trade execution differentially private. This algorithm can be viewed as
the inverse of batching as it breaks up and splits large trades before subsequently randomly
permuting the trade ordering. Randomness is used for both splitting up large trades and
for permuting the split up trades. Blockchains with smart contract capabilities that include
CFMM ordering as part of consensus rules (e.g. Celo [KOR19], Terra [MSS20], Penumbra
[dV21], Osmosis [AO21]) can execute the URE. In particular, any blockchain with a verifiable
random function (VRF) [MRV99] that provides public randomness and consensus rules for
executing trades in a particular order suffices for URE.

Our analysis of the differential privacy of URE utilizes a novel representation of a sequence
of trades as a binary tree. The tree is constructed such that the height of the tree provides a
lower bound on the worst case price impact. On the other hand, number of leaves of the tree
controls how easy it is for one to invert the precise trades executed. Representing continuous
objects (sequences of real-valued trades) as a random discrete data structure allows us to
utilize traditional tools from differential privacy. We show that the trade tree controls the
maximum price impact of a sequence of trades by utilizing curvature of a CFMM [AEC20,
§2]. Curvature represents bounds on market impact cost and liquidity and is crucial for
relating the trade tree to worst-case price impact. Subsequently, we analyze the impact of
splitting up and randomly permuting trades on the trade tree and then compute bounds on
the price impact associated to these actions.

In order to achieve differential privacy, we first prove that splitting up trades can be
executed in a differentially private manner (Claim 2). The proof utilizes a recent result
for differentially private sampling of Dirichlet distributions [GWH+21]. To split a trade,
we sample a random distribution π and the split up a single trade according to π. After
splitting up the trades, we then show that randomly permuting the trades leads to an (ε, δ)-
differentially private algorithm. We use composition laws [DR+14, KOV15] to combine these
two results and show that the URE is differentially private. We note that ε and δ depend
on the CFMM’s curvature and logarithmically on the number of trades executed.

One other natural framework for analyzing the privacy vs. price impact trade-off is that
of (differentially) private probably approximately correct (PAC) learning [KLN+11]. This
framework allows for worst case bounds on adversarial learning. Broadly speaking, PAC
learning aims answer when an algorithm can learn a hypothesis (e.g. binary classification)
with error less than ε with high probability given at least n samples. Private PAC learning
asks the same question but with the constraint that the learning algorithm is differentially
private. This means that the learning algorithm can still learn the correct classification
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without being able to identify (with probability) if a small number of the input data points
were changed.

Recent results have begun to classify the types of algorithms that can be made differ-
entially private. One particular line of work has shown that private PAC learnable and
online learnable function classes can be related via a combinatorial quantity known as the
Littlestone dimension [ALMM19, BLM20, Bun20, JKT20]. The Littlestone dimension of a
function class F is an analogue of VC dimension that measures how well F shatters ordered
sequences of data points. It is defined by constructing a tree of possible sequences of data
points and then defining an appropriate analogue of shattering for trees.

Our random binary tree construction allows us to place bounds on the Littlestone dimen-
sion of classes of threshold and decision tree learners [RST10]. These learners aim to learn
the optimal placement of a front-run or back-run transactions [QZLG20, QZG21] and our
bounds effectively show that with enough noise and curvature in the trading function, the
Littlestone dimension of this task is Ω(log n). The equivalence of differentially private algo-
rithms and online learning algorithms for binary classification [ALMM19, BLM20] therefore
implies lower bounds on how well online learning algorithms can deanonymize trade sizes.
Combined, these results suggest that if a CFMM has non-zero curvature one cannot do
substantially better than the proposed permute and split algorithm.

2 Preliminaries

We will cover preliminaries on CFMMs and differential privacy. For more details, please
refer to review articles on CFMMs [AAE+21] and differential privacy [DR+14].

2.1 Constant function market makers

In this section we describe how CFMMs work. We consider a decentralized exchange (DEX)
with n > 1 assets, labeled 1, . . . , n, that implements a CFMM. Asset n is our numeraire, the
asset we use to value and assign prices to the others.

2.1.1 CFMM state

Reserve or pool. The DEX has some reserves of available assets, given by the vector
R ∈ Rn

+, where Ri is the quantity of asset i in the reserves.

Proposed trade A proposed trade (or proposed exchange) is initiated by an agent or
trader, who proposes to trade or exchange one basket of assets for another. A proposed
trade specifies the tender basket, with quantities given by ∆ ∈ Rn

+, which is the basket of
assets the trader proposes to give (or tender) to the DEX, and the received basket, the basket
of assets the trader proposes to receive from the DEX in return, with quantities given by
Λ ∈ Rn

+. Here ∆i (Λi) denotes the amount of asset i that the trader proposes to tender to
the DEX (receive from the DEX).
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The proposed trade can either be rejected by the DEX, in which case its state does not
change, or accepted, in which case the basket ∆ is transfered from the trader to the DEX,
and the basket Λ is transfered from the DEX to the trader. The DEX reserves are updated
as

R+ = R + ∆− Λ, (1)

where R+ denotes the new reserves. A proposed trade is accepted or rejected based on a
simple condition which always ensures that R+ ≥ 0.

Trading function Trade acceptance depends on both the proposed trade and the current
reserves. A proposed trade (∆,Λ) is accepted only if

φ(R + γ∆− Λ) = φ(R), (2)

where φ : Rn
+ → R is the trading function associated with the CFMM, and the parameter

γ ∈ (0, 1] introduces a trading fee (when γ < 1). The ‘constant function’ in the name CFMM
refers to the acceptance condition (2).

We can interpret the trade acceptance condition as follows. If γ = 1, a proposed trade is
accepted only if the quantity φ(R) does not change, i.e., φ(R+) = φ(R). When γ < 1 (with
typical values being very close to one), the proposed trade is accepted based on the devalued
tendered basket γ∆. The reserves, however, are updated based on the full tendered basket
∆ as in (1).

Assumptions. We will, in general, assume that the trading function ψ is a strictly concave,
increasing function, which holds for essentially all CFMMs barring some special cases such
as constant sum market makers. This is true for any CFMM whose reachable set [AC20,
§2.3] is a strictly convex set, for all reserves R. For example, in the case of Uniswap, or
constant product markets, ψ(R) = R1R2, which is neither concave nor convex, but it can
be equivalently written as ψ(R) =

√
R1R2, which is strictly concave, increasing whenever

R > 0. (The notion of equivalence used here is that of [AC20, §2.1], which we will not discuss
further in this paper.)

Curvature. We briefly summarize the main definitions and results of [AEC20] here; please
refer to that paper for further details. Suppose that we have a two-asset CFMM with reserves
R,R′ and that the trading function ψ is differentiable. The marginal price for a trade of size
∆ is

g(∆) = −∂1ψ(R,R′,∆,∆′)

∂2ψ(R,R′,∆,∆′)

where the trade size ∆′ is specified by the implicit condition ψ(R,R′,∆,∆′) = ψ(R,R′).
This is known as the price impact function as it represents the output price for a positive
sized trade. When there are fees, one can show that gfee(∆) = γg(γ∆). We say that a
CFMM is µ-stable if it satisfies

g(0)− g(−∆) ≤ µ∆
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for all ∆ ∈ [0,M ] for a positive M . This is a linear upper bound on the maximum price
impact that a bounded trade (bounded by M) can have. Similarly, we say that a CFMM is
κ-liquid if it satisfies

g(0)− g(−∆) ≥ κ∆

for all ∆ ∈ [0, K] for a positive K. We can define similar upper and lower bounds for
g(∆)− g(0), µ′, κ′ which hold when trades ∆ are in intervals [−M ′, 0], [−K ′, 0], respectively
For the remainder of this paper, we will refer to µ-stability as the upper bound for both
g(0)− g(−∆) and g(∆)− g(0) (and likely for κ-liquidity). More specificially, given µ, µ′, we
say that a CFMM is symmetrically µ′′-stable if µ′′ = min(µ, µ′) and symmetrically κ′′-liquid
if κ′′ = max(κ, κ′).

Angeris, et. al [AEC20] show that the curvature ratio µ
κ

controls no-arbitrage pricing
when a CFMM is the primary market (e.g. other markets tend to be arbitraged against the
CFMM). They also demonstrate that classical economics results, such as the requirement of
noise traders for LP profitability, occur and are controlled by curvature parameters µ and κ.
CFMM curvature parameters can be considered analogous to Kyle’s λ liquidity parameter
[Kyl85] for order books. This analogy is also used to estimate optimal (under no-arbitrage)
subsidies needed to compensate LPs for so-called impermanent loss. The higher the CFMM
liquidity parameter κ, the higher the price impact observed. Intuitively, this should control
how easy it is to invert whether a trade of size > ∆∗ occurred. In the remainder of this paper,
we will focus on using CFMM curvature parameters to bound the impact cost realized, which
in turn controls how easily an adversary can invert a trade size from prices.

2.2 Differential Privacy

Differential privacy is a framework for classifying how well a randomized algorithm A
anonymizing individual data points.

Definition 1. A randomized algorithm A is (ε, δ)-differentially private if for all S, S ′ ∈
DomA with d(S, S ′) ≤ 1 we have for all measurable B ⊂ RangeA

Prob[A(S) ∈ B] ≤ eε Prob[A(S ′) ∈ B] + δ

In this definition, ε can be thought of as a uniform upper bound on the Kullback-Leibler
divergence over the distribution induced by any pair of neighboring data sets. Traditionally,
S, S ′ are thought of as discrete and the metric d corresponded to the Hamming metric. In
this paper, we will assume d is the L1 norm, which can still provide differential privacy
[DR+14, NRS07]. We provide further details on differential privacy in Appendix A.

3 Problem Construction

Angeris, et. al [AEC21b, §3] provide two mitigations for the loss of privacy in CFMMs:

1. Randomizing price: One can randomly affect the price quoted by the CFMM in manner
resistant to adversaries (while also not destroying liquidity provider returns)
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2. Batching orders : Picking a size n ∈ N of orders to batch prior to execution

Neither of these solutions are perfect however and in [AEC21b], there is no adversarial
model for assessing these solutions. The goal of this section is to do this by first formulating
a simple adversarial threat model for these solutions and then introducing SURE and URE.
We prove that the URE achieves differential privacy with parameters dependent on the
number of trades and the curvature. Our results also codify the intuition that the constant
sum market maker (which is excluded from the results of [AEC21b]) has “perfect” privacy
unlike curved market makers. For the remainder of the paper, we will assume that there are
two assets (in order to utilize curvature bounds) and n will refer to a number of trades.

3.1 Threat Model

Adversary definition and attack. We assume a simple model of an adversary that
matches that of [AEC21b]. The adversary, who we will call Eve, attempts to discover the
quantities traded by a set of agents referred to as Traders. Eve is unable to see the exact
quantities the Traders use to trade with the CFMM, but knows when the Traders transactions
∆1, . . . ,∆n are executed as a block. In particular, Eve does not know the order in which the
trades are executed and her goal is to estimate the order and sizes of the trades. Eve’s only
ability is to interact with the CFMM in a state before Alice’s transactions and after their
transactions are executed.

Action space. We assume that Eve has access to two queries:

• marginalPrice(): Computes the marginal (spot) price of the CFMM at its current re-
serves

• isValid(∆): Takes a trade ∆ ∈ R and returns True if the trade is valid and False
otherwise

We will denote the set of valid trades at reserves R ∈ Rn
+ as Aϕ(R) and note that it can

effectively be thought of as the epigraph of the trading function ϕ [AC20].

3.2 Simple Uniform Random Execution

One of the simplest ways to introduce entropy into a CFMM is to randomly permute the
set of trades to be executed. We will first describe the simple uniform random execution
(SURE) mechanism that simply permutes observed trades. In practice, this can be executed
on-chain provided access to a verifiable random function [MRV99], which exists on chains
such as Polkadot [BCC+20] and Cosmos [Buc16].

Formally, suppose that we are given a vector of valid trades

∆1 ∈ Aϕ(R),∆i ∈ Aϕ

(
R +

i−1∑
j=1

∆i

)
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For brevity, we will refer to above condition as Aϕ(∆) for a trade vector ∆. The SURE
mechanism draws a random permutation π ∼Unif Sn and constructs a sequence of trades
∆π
i = ∆π(i), which arise from permuting the order in which the trades are executed. Consider

the marginal prices of the original trades p1, . . . , pn and and the permuted prices pπ1 , . . . , p
π
n.

Note pn = pπ(n) if and only if the CFMM is path-independent (e.g. feeless). Our goal is
two-fold: first, we aim to bound the maximum deviation between the true price p and the
permuted prices pπ. That is, we want to compute

ESURE = E
π∼Sn

[
max
i∈[n]
|pπ(i)− p(i)|

]
This deviation effectively corresponds to a bound on the worst quoted price that a trader
can receive (relative to their original order price). Secondly, we want to capture a notion of
how difficult it is for an adversary to learn the values of π chosen given only the prices pπn.

Before analyzing the SURE mechanism for some classes of trades, let’s look at some
simple examples. If all of the trades ∆i are unique — e.g. @i, j ∈ [n] such that ∆i = ∆j

— then computing ∆i given pπ in some sense be difficult to invert to a precision higher
than κmini,j |∆i −∆j|. This is because if π is a single adjacent transposition (i i+ 1), then
g(
∑i

j=1 ∆i)−g(
∑i−1

j=1 ∆j) ≥ κmin(∆i,∆i−1) ≥ κmini,j |∆i−∆j|. Moreover, we should expect
that SURE should work better when

∑n
i=1 sgn(∆i) ≈ 0. This is because the probability

of having a long run of trades in the same direction is very low. For instance, if ∆i is
a Rademacher random variable (e.g. uniformly drawn from {−1, 1}) then the expected
maximum length of a run is Θ(log n) [ER75, Theorem 1].

On the other hand, if there is a set S ⊂ [n] with |S| = Ω(n) such that for all i, j ∈ S,∆i =
∆j, then it will be much easier to invert the set of trades. There is a loss of entropy in the
output trade sequences as there will be many permutations π, π′, π 6= π′ such that ∆π = ∆π′ .
Let’s consider an explicit numerical example. Let ∆1 = 100 and ∆i = 1 for all i ∈ {2, . . . , n}.
Even though we are sampling from n! permutations, there are only n output sequences that
SURE output: ∆π

j = ∆π(1) = 100 in the jth position for j ∈ [n]. Suppose we consider a
permutation π with π(1) = j. For any trade in position i with π(i) < j, the trade gets
significantly better execution than they did initially. This is because their trade is executed
before the trade of size 100 is executed, giving them significantly less impact. Therefore,
SURE requires the trade distribution to have sufficient entropy and the distribution of trade
sizes to not be too concentrated in order to work.

We will first analyze SURE on a subset of the total set of allowable input trades. This
subset will be defined via simple constraints on mini,j |∆i − ∆j|. We will later relax these
by splitting up large trades in a manner that ensure that the trade size distribution satisfies
these constraints with high probability. To analyze SURE, we will start by obtaining upper
and lower bounds on the worst case expected price discrepancy, E[maxi |pπ(i)− p(i)|]. This
analysis will provide insight into what subset of admissible trades provide provable bounds
on price discrepancy and identifiability.

Maximum of the Price Process and Random Binary Trees. Suppose the price
impact function g is κ-liquid and µ-stable on an interval [−M,M ]. By definition this implies
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Figure 1: Depiction of the tree T (R(∆, π)) where Ri = Ri(∆, π) and R11 < R10 < R3 < R12 <
R4 < R1 < R8 < R5 < R9 < R2 < R7 < R6

that for all i ∈ [n]

i∑
j=1

κ∆π(j) − µ∆j ≤ pπ(i)− p(i) ≤
i∑

j=1

µ∆π(j) − κ∆j

This means that we have

κE

[
max
i

∣∣∣∣∣
i∑

j=1

∆π(j) −
µ

κ
∆j

∣∣∣∣∣
]
≤ E[max

i
|pπ(i)− p(i)|] ≤ µE

[
max
i

∣∣∣∣∣
i∑

j=1

∆π(j) −
κ

µ
∆j

∣∣∣∣∣
]

(3)

Therefore, bounds on partial sums of permuted trades will allow us to bound the worst case
price impact of SURE. Define the partial sum Ri(∆, π) =

∑i
j=1 ∆π(j) − µ

κ
∆j. Now consider

the binary search tree T (R(∆, π)) whose root is R1(∆, π). Each element Rj(∆, π) is inserted
sequentially to construct the tree (see Figure 1 for an example).

This representation of the partial sums as a tree provides a natural geometric description
of the maximum price deviation. In particular, maxiRi(∆, π) is necessarily a leaf node in
this tree. This provides the following bounds using (3)

max
i
|pπ(i)− p(i)| ≤ µ

(
|R1(∆, π)|+ max

j

∣∣∣∣∆π(j) −
κ

µ
∆j

∣∣∣∣ · height(T (R(∆, π)))

)
(4)

max
i
|pπ(i)− p(i)| ≥ κ

∣∣∣∣R1(∆, π) + min
j

(
∆π(j) −

µ

κ
∆j

)
· height(T (R(∆, π)))

∣∣∣∣+O(1) (5)

Note that the second bound comes from bounded support of curvature (§2.1.1):

max
j
|Rj(∆, π)| ≥ |Rj(∆, π)| =

∣∣∣∣∣R1(∆, π) +

j∑
i=1

(
∆π(j) −

µ

κ
∆j

)∣∣∣∣∣
≥
∣∣∣∣R1(∆, π) + min

j

(
∆π(j) −

µ

κ
∆j

)
· height(T (R(∆, π)))

∣∣∣∣+O(1)
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Moreover, the number of leaves in the tree represent the number of left-to-right local
maxima of Rj. Note, furthermore, that by using curvature and the tree structure, we have
reduced the maximum price deviation problem (a continuous problem) into a combinatorial
one regarding a random tree. If the tree is roughly balanced (e.g. height is O(log n)) and
there are Ω(n) leave nodes then it is unlikely that a small change to the permutation π
by a transposition will change the maximum value. We will formalize this by studying the
behavior of the random variable T (∆), which draws a permutation π randomly and sets
T (∆) = T (R(∆, π)).

To study the behavior of T (∆), we need to analyze the expected height of a random
binary tree. It is known that the height of a random binary tree with distinct elements (e.g.
such that every permutation is equiprobable) has height Θ(log n) with high probability:

Theorem 1 ([Ree03], Theorem 1). Let ∆ have unique elements. Then E[height(T (∆))] =
α log n− β log log n and Var[height(T (∆))] = O(1)

If we can guarantee that the elements of T (∆) are distinct (e.g. such that every permu-
tation of ∆ is equiprobable) then combining this result with (4) yields

E[max
i
|pπ(i)− p(i)|] ≤ µ

(
E[R1(∆, π)] + max

i,j

∣∣∣∣∆i −
κ

µ
∆j

∣∣∣∣E[height(T (∆))]

)
≤ µ

(
E[R1(∆, π)] + max

i,j

∣∣∣∣∆i −
κ

µ
∆j

∣∣∣∣ (α log n− β log log n)

)
≤ µ

(
max
i,j

∣∣∣∣∆i −
κ

µ
∆j

∣∣∣∣) (α log n− β log log n+ 1) (6)

where we used the upper bounds maxj

∣∣∣∆π(j) − κ
µ
∆j

∣∣∣ ≤ maxi,j

∣∣∣∆i − κ
µ
∆j

∣∣∣ and

E[R1(∆, π)] =
1

n

n∑
j=1

∣∣∣∣∆j −
κ

µ
∆1

∣∣∣∣ ≤ max
i,j

∣∣∣∣∆i −
κ

µ
∆j

∣∣∣∣
Similarly, note that E[R1(∆, π)] ≥ minj

(
∆π(j) − µ

κ
∆j

)
so we have

E[max
i
|pπ(i)− p(i)|] ≥ κ

∣∣∣∣min
j

∆π(j) −
µ

κ
∆j

∣∣∣∣ (E[height(T (∆)) +O(1)])

≥ κ

∣∣∣∣min
i,j

∆i −
µ

κ
∆j

∣∣∣∣ (α log n− β log log n+O(1))

Therefore, provided that the following two conditions hold

∆min =

∣∣∣∣min
i,j

∆i −
µ

κ
∆j

∣∣∣∣ = Ω(1) ∆max =

∣∣∣∣max
i,j

∆i −
κ

µ
∆j

∣∣∣∣ = O(1) (7)

we have ESURE = E[maxi |pπ(i) − p(i)|] = Θ(log n). Such a bound is ideal as it ensures
that there is always a minimum price discrepancy of Ω(κ log n) so that an adversary cannot
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determine a trade size with precision greater than Ω(κ). On the other hand, the upper bound
on price deviation means that the mechanism will not cause too great of a price impact for
users.

Note that the usage of Theorem 1 is prefaced on every permutation of the elements
of Rj(∆, π) being equiprobable. One simple example of when this isn’t true is from the
threshold trades, ∆ = (T, 1, . . . , 1) ∈ RT when µ ≥ 100κ. When this is true, neither of the
conditions (7) hold and moreover, the conditions of Theorem 1 do not hold. This means
that SURE only works when (a) all permutations of partial sums are unique and (b) when
µ ≤ (maxi ∆i)κ. In the next section, we will achieve (a) by adding noise dependent on
∆, µ, κ to the trades and (b) by splitting trades.

3.3 Uniform Random Execution

We have seen the SURE mechanism works well at providing privacy while minimizing price
discrepancy when (7) holds, when elements of ∆ are unique, and when µ

κ
is not too large.

However, we’re not guaranteed that both of these conditions hold in general as illustrated by
the example at the end of the last section. This section will focus on using randomization to
ensure that a) (7) holds with high probability and b) the elements of ∆ are unique. We will
do this by performing two actions: splitting large trades to ensure the maximum condition
holds and adding noise to trades to ensure that trades are not too close in size. Applying
these two actions to ∆ and subsequently executing SURE is termed the Uniform Random
Execution mechanism. There are three parameters that control the URE mechanism:

• cmin: Lower bound on ∆min

• s ∈ R+: Split threshold that controls the average chunk size for a big trade

• k ∈ N: Multiple of (1 + s)∆min that requires splitting

Lower bounding the minimum by adding Laplace noise. Our goal is to construct
random variables ξ1, . . . , ξn drawn i.i.d. from a distribution that can depend on a particular
∆ but guarantees that ∆̃ = ∆+ξ satisfies the left hand side of (7) with high probability. In

particular, we would like to control Prob
[∣∣∣mini,j ∆̃i − κ

µ
∆̃j

∣∣∣ > cmin

]
for a constant cmin > 0.

We desire the following condition to hold bounded above by δ ∈ (0, 1):

Prob

[∣∣∣∣min
i,j

∆̃i −
κ

µ
∆̃j

∣∣∣∣ ≤ cmin

]
= Prob

[∣∣∣∣min
i,j

∆i + ξi −
κ

µ
(∆j + ξj)

∣∣∣∣ ≤ cmin

]
≤ Prob

[
−
∣∣∣∣min
i,j

∆i −
κ

µ
∆j

∣∣∣∣+

∣∣∣∣min
i,j

ξi −
κ

µ
ξj

∣∣∣∣ ≤ cmin

]
= Prob

[∣∣∣∣min
i,j

ξi −
κ

µ
ξj

∣∣∣∣ ≤ cmin +

∣∣∣∣min
i,j

∆i −
κ

µ
∆j

∣∣∣∣] ≤ δ

(8)

In Appendix C, we prove the following claim:
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Claim 1. There exists a ∈ R dependent on ∆, µ, κ and ξi ∼ Lap(a, |a|) such that (8) holds

This mechanism can be naturally modified to inherit the ε-privacy guarantees of the
Laplace mechanism [DR+14, §3.2]. Note that the dependence of the noise parameter a on ∆
is similar to smoothed sensitivity in differential privacy [NRS07]. We note that this added
noise ensures both that the lower bound of (7) holds and ensures that the elements of ∆ + ξ
are unique so that Theorem 1 holds.

Upper bounding the maximum by splitting trades. One way to reduce the upper
bound on error in (6) is to split up a trade ∆i. This reduces ∆max and as explained in
Appendix G, also increases the privacy of SURE. More precisely, we split ∆i into ∆′i,∆

′′
i

with ∆i = ∆′i + ∆′′i and then consider the pricing error associated to p(∆′) where ∆′ =
(∆1, . . . ,∆i−1,∆

′
i,∆

′′
i ,∆i+1, . . . ,∆n). This process can be iterated until all trades meet a

particular criteria. Instead splitting trades in two, we instead split trades into m(∆i) pieces,
where m(∆i) is defined as

m(∆i) = max

(
1,

⌈
|∆i|

(1 + s)∆min

⌉)
That is, the mechanism splits the trade into m(∆i) pieces who sizes are roughly (1 + s)∆min.
Let 1m = (1, . . . , 1). For any trade ∆i with m(∆i) > 1, we draw π ∼ Dir(1m(∆i)) and split ∆i

into trades ∆i,j = ∆iπj. Since
∑n

j=1 πj = 1, this provides a natural mechanism for splitting
trades in a single step. As the Dirichlet distribution is sub-Gaussian when using uniform
weights [MA17] and as the expected order statistics of a Dirichlet process decay exponentially
[BJP12], Prob[∆i,j − (1 + s)∆min > k∆min] also decays exponentially in k. This ensures
that we have very few chunks that are significantly greater than (1 + s)∆min, which ensures
that with high probability maxi ∆i < (1 + s + k)∆min. As described in Appendices D and
G, this condition ensures that SURE is effective with high probability. We note that the
precise price impact of splitting trades (as a function of curvature) is analyzed in [AEC20].

3.4 Differential Privacy

We are now in a position to prove that the URE mechanism satisfies (ε, δ)-differential privacy,
where ε = O(µ log n + maxi ∆i). Our proof proceeds in two steps. First, we prove the
following claim in the Appendix E.

Claim 2 (Splitting is differentially private). Suppose that we have a sequence of admissible
trades ∆ ∈ Rn and after adding noise we have ∆̃ with ∆̃min > 0. For each k ∈ N define
Sk = {j : ∆̃j > k∆̃min}. If δ∗ = maxj

∆j

∆min
= O(n) and there exists k > 0 such that

|Sk| = O(1), then there exists an (ε, δ)-differentially private algorthm Split(∆) for splitting
trades in ∆̃ such that height(T (Split(∆̃))) = O(log n) where ε = O(δ∗)

This claim ensures that under mild conditions on the maximum trade size, we can gener-
ate a partial sum trade tree of height O(log n). Note that we can get the claim’s conditions
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to be satisfied by varying s, the scale parameter, which leads to a privacy-utility trade-off.
Second, we show that when a partial sum trade tree has height O(log n), permuting the
trades provides (O(µ log n), δ)-differential privacy for the maximum price impact (Claim 3).
We combine these two differentially private algorithms using standard composition theorems
(see Appendix), resulting in a differentially private CFMM.

Claim 3 (SURE is differentially private). Suppose that we have a sequence of admissible
trades ∆ ∈ Rn such that height(T (∆)) = O(log n) and all trade sizes are unique. Then ran-
domly permuting the trades ∆π can be made into a (µ log n, δ)-differential private algorithm
for the minimum and maximum price impact

While the full proof of the theorem is in the appendix, we sketch the steps of the proof
below. First, we show that if a set of trades satisfies (7), then we can achieve differential
privacy. We do this by first bounding the local sensitivity [DR+14] of the price impact vector
pj(π,∆) as a function of ∆. This is done by reducing the problem to analyzing two different
price trees (Appendix B). We make an analogue of smooth sensitivity [NRS07] that rounds
a vector of trades to an integer lattice whose length is ∆min. These steps ensure that the
maximum difference in price impact between neighboring sets of trades will be O(µ log n).
This immediately leads to achieving (ε, δ)-differential privacy, where ε = O(µ log n).

Using the composition property of differential privacy, we are able to compose these
two mechanisms to achieve (µ log n + maxi ∆i, δ)-differential privacy where δ = F−1(O

(
1
ε

)
)

and F−1 is the inverse Laplace CDF. While the constants can likely be improved, this
suggests that permuting and splitting up trades is a simple and viable mechanism for adding
differential privacy to CFMMs. Finally, note that in Appendix F we provide a convex
program that can split up trades more efficiently than the Dirichlet mechanism of Theorem
2. This is likely useful to practitioners where randomness is a constrained resource (e.g. on
a blockchain).

4 Worst-Case Bounds and Path Deficiency

In this section, we’ll explore if we can do better than the URE mechanism by analyzing the
curvature of the mechanism and generalizing the previous work using Generic Chaining. Our
goal will be to consider classes of mechanisms, F , that can provide (ε, δ)-differential privacy
for CFMMs and attempt to compute worst-case bounds. We’re first provide some necessary
conditions that elements of such a class have to satisfy. We will also show that extending
the results of §3.4 to the path-deficient (positive fee) case involves proving bounds over a
class of functions F . Finally, we’ll investigate connections to private PAC learning which
suggest that one cannot do significantly better than the URE unless curvature is dynamically
adjusted.

4.1 Mechanism Curvature

Instead of directly working with a mechanism, can we say something about the set of all
mechanisms that ensure that |pm(i)−pt(i)| > δ where pm(i) is the ith price of the mechanism
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and pt(i) is the non-private or true price? Using curvature definition analogous to those of
[AEC20], we can provide a simple bounds related to this question.

Note that bounds of the form |pmi − pti| > δ involve bounding changes between two
different price processes. Suppose that we define “curvatures” of the form

κt|∆i| < |pt(i)− pt(i− 1)| < µt|∆i|
κm|∆i| < |pm(i)− pm(i− 1)| < µm|∆i|
κmt|∆i| < |pm(i)− pt(i)| < µmt|∆i|

First, let’s look at the difference between the mechanism price at time i and the true price
at time i− 1:

|pm(i)− pt(i)| = |(pm(i)− pt(i))− (pt(i− 1)− pt(i))|
≥ |pm(i)− pt(i)| − |pt(i)− pt(i− 1)|
≥ (κm − µmt)|∆i|

This says that we can ensure that the predictive value of previous price information on a
trade cannot be resolved more than a multiplicative amount of κm−µmt times the trade size.
In particular, κm > α+ µmt ensures that an adversary never has more than a precision α of
information about the trade size. This provides a necessary condition in terms of mechanism
curvature for a class F of mechanisms to provide differential privacy bounds.

4.2 Path Deficiency

Any CFMM that has non-zero fees (e.g. γ = 1 − f < 1) is path-deficient and has strictly
negative expected value for round trip trades [AEC20]. Such CFMMs have price path pt(i)
that are explicitly dependent on the trade ordering. Note that almost all CFMMs that are
used in practice have non-zero fees to attract liquidity, so this is an importnt scenario to
study. Previous work on path-deficient CFMMs has focused on analyzing how a particular
price process (such as a geometric brownian motion) interacts with the exepcted returns from
fees [EAC21]. Moreover, [AEC20, §2] illustrated that when fees are present gf (∆) = γg(γ∆),
where gf is the price impact function with fees and g is the feeless price impact function. This
suggests that we can analyze the path-dependent case by uniformly bounding the geometric
parameters of §3.2 (e.g. height and number of leaves) as a function of the fee.

Suppose that given a trade vector ∆, we have a bound of the form

E
π∈Sn

[
max
i∈[n]
|pπf (∆)− pπ(∆)|

]
= O(γk) (9)

In Appendix I, we compute a lower bound that allows one to prove such a bound for Uniswap
(the most commonly used CFMM). Then we can bound the deviation in height between the
set of trade and price trees (see Appendix B) as a function of γ and transfer path-independent
returns to the path-deficient case with extra polylogarithmic terms in γ. Two ways of proving
bounds of the form (9) are using generic chaining [Tal21, Ch. 3] and smoothed analysis
[HRS20]. We discuss how this analysis can be applied to CFMMs in Appendix H.
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4.3 Private PAC Learning and Adversarial Bounds

A number of recent results have shown that differentially private PAC learning and online
learning are closely related. In particular, the finiteness of an integer-valued complexity
measure known as the Littlestone dimension controls whether a particular algorithm can
be learned in both an online and differentially private manner [ALMM19, BLM20]. The
Littlestone dimension of a class of functions F from X → Y LDim(F) is defined as the
maximum depth d ∈ N of a tree made up of sequences x1, . . . , xd ∈ X such that there
exists f ∈ F with f(xi) = yi for every possible yi ∈ Y . Consider the set Fπ(∆) which is
the set of all trees constructable from any permutation π ∈ Sn for a fixed ∆ ∈ Rn. The
results of 3.2 show that LDim(Fπ(∆)) = Ω(µ log n). State-of-the-art results for blackbox
constructions of online learners [GL21] show that the regret of a differentially private online
learning algorithm is O(22LDim(F)). This implies that the best online learners can do again
the URE, in a blackbox manner, is O(2n

µ
). This means that any algorithm that has non-

zero curvature is unlikely to do asymptotically better then the URE. If it were possible to
construct a polynomial time algorithm to privately PAC learn trades, then there would be
significantly degraded privacy guarantees for users. However, this would require a mechanism
for which LDim(Fπ) = O(log log n), which appears unlikely except for constant-sum market
makers that have µ = 0. One other piece of evidence that Littlestone dimension is the correct
complexity measure for CFMM privacy comes from the fact that the worst case instances
for Littlestone dimension and CFMMs are thresholds (c.f. §3.2 and [ALMM19]).

5 Conclusion

In this paper, we demonstrated that there exists a novel, practical mechanism for providing
differential privacy to users of constant function market makers. This mechanism, unlike
previous methods such as batching, has provable guarantees on the worst case price impact
and strong privacy guarantees. As a number of new blockchain protocols implement CFMMs
directly in their consensus mechanism, the randomness needed to execute this algorithm will
become more plentiful and easier to source. Our analysis used novel techniques combining
results from stochastic processes, concentration inequalities, and differential privacy. The
results in this paper can likely be improved by providing tighter bounds on the minimal
amount of noise needed to achieve (ε, δ)-differential privacy. Moreover, numerical studies
of the utility loss (e.g. worsened price impact) would justify practical usage of URE on
networks such as Osmosis [AO21] and Penumbra [dV21].
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A Differential Privacy Results

We implicitly use a number of differential privacy results on composition and provide them
here for convenience. First we note the serial composition theorem:

Theorem 2 ([DR+14], Theorem 3.16). Let A1, . . .An be a sequence of (εi, δi) algorithms
such that RangeAi ⊂ DomAi+1. Then the composition An ◦ · · · ◦ A1 is (

∑n
i=1 εi,

∑n
i=1 δi)-

differentially private

Secondly, we note the parallel composition theorem

Theorem 3. Let A1, . . . ,An be algorithms whose domains (databases) are independent and
each algorithm is (εi, δi)-differentially private. Then (A1, . . . ,An) is maxi εi differentially
private

19



Finally, we note that the serial composition rule can be improved from (
∑

i εi,
∑

i δi) to

(nε2 + ε
√
n log(1/δ̃), nδ+ δ̃) where δ̃ = O(nδ) if εi = ε, δi = δ for all i [KOV15]. We will not

need to use this result, only the generic composition rules. However, it is possible that one
can improve our constants using results such as this.

B Price Tree Height is close to Trade Tree Height

Suppose that we have an admissible trade vector ∆ = (∆1, . . . ,∆n) ∈ Aϕ. Given π ∈ Sn,
we can write a sequence of prices in terms of the price impact function:

pj(π) = g

(
j∑
i=1

∆π(i)

)
We generate a random binary tree from the price vector by uniformly sampling j ∼ [n] and
making pj(π) the root before inserting the remaining prices sequentially as per π. Under
this framework, we have

E
π∼Sn

[
max
j
pj(π)

]
≤ E

j∼[n]
[pj(π)] + max

i
|pi(π)− pi−1(π)| E

π∼Sn
[height(T (pj(π)))]

≤ E
j∼[n]

[pj(π)] + µ(max
i

∆i) E
π∼Sn

[height(T (pj(π)))]

We can later remove this constraint by adding a small amount of noise to each entry, which
will make the entries unique a.s.. Note that the height of the tree generated by Pj represents
the number of trades in the longest sequential deviation from the mean price. Let’s consider
when the trade tree and price tree differ in branching. On average, this occurs when the jth
price pπ(j) is a left branch whereas the j+ 1st price pπ(j+1) is a right branch, but both trades
∆π(j),∆π(j+1) are left branches. When this happens, the price tree has an average height
that is 1 less than the trade tree.

We will first illustrate this when the first two elements of the permutation after the pivot
(which is random) differ from the expected pivot value. Explicitly, suppose that we have

pπ(2) −
1

n

n∑
i=1

pπ(i) < 0 pπ(3) −
1

n

n∑
i=1

pπ(i) > 0

Using curvature bounds, the first equation gives

0 ≥ pπ(2) −
1

n

n∑
i=1

pπ(i) ≥ κ∆π(2) −
µ

n

n∑
i=1

∆i

Similarly, the second equation gives

0 ≤ pπ(3) −
1

n

n∑
i=1

pπ(i) ≤ µ∆π(3) −
κ

n

n∑
i=1

∆i
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which when combined gives

∆π(2) ≤
µ

κ

(
1

n

n∑
i=1

∆i

)
= η+ (10)

∆π(3) ≥
κ

µ

(
1

n

n∑
i=1

∆i

)
= η− (11)

On the other hand, suppose that R2(π) − R(π), R3(π) − R(π) are both greater than zero
(e.g. they are both left nodes of their parent). This implies that ∆π(2)) + ∆π(3) ≥ 1

n

∑n
i=1 ∆i.

This means that we can only end up in a state where height(T (Rj(π))) > height(T (pj(π)))
if the trades are within the interval [η−, η+]. For instance, when the drift 1

n

∑n
i=1 ∆i = 0,

then interval has size zero (its a mean-reverting set of trades) and we never enter this error
condition. This matches intuition: if there’s a lot of drift in the trades, then we shouldn’t
expect our price and trade vectors to ‘sort’ the same way. In particular, the higher the
curvature of the CFMM, the less drift we can tolerate because large trades cause more
noticeable price impact. The length of the interval [η−, η+] is(

µ

κ
− κ

µ

)(
1

n

n∑
i=1

∆i

)

Note that we can recurse the above argument as we go down the tree and get a set
of intervals I1 = [η−(1), η+(1)], I2 = [η−(2), η+(2)], . . . , In = [η−(n), η+(n)]. Performing the
same calculation as above yields

η−(i) =
κ

µ

(
1

n− i

n∑
i=i

∆π(i)

)
η+(i) =

µ

κ

(
1

n− i

n∑
i=i

∆π(i)

)

Given that the maximum interval size is µM is the max trade size for which curvature is
valid), we can use this to bound the probability pj that vertex j has a height difference
between the trade and price trees. This probability is upper bounded by ratio of the length
of Ij and the interval length µM , e.g. pj ≤ |Ij |

µM
. We can upper bound the interval length by

the maximum mean-drift subsequence:

|Ij| ≤
(
µ

κ
− κ

µ

)(
max
J⊂[n]

1

|J |
∑
j∈J

∆j

)

Define R∗(∆) = maxJ⊂[n]
1
|J |
∑

j∈J ∆j. Finally, performing a union bound gives an upper
bound on the probability pdiff of the heights of the trade tree and price tree different

pdiff ≤
n∑
j=1

pj = n

(
1

Mκ
− κ

µ2M

)
R∗(∆) (12)
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If this quantity is sufficiently small (e.g. we have tight curvature bounds), then bounds on
the trade tree transfer to the price tree with high probability. For the rest of the paper,
we will assume that (12) is sufficiently small. We note that fee adjustments and curvature
adjustments are intricately related [AEC20, §3] and in practice, this can be enforced by
dynamic updates to a CFMM curve.

C Proof of Claim 1

Suppose that ξi ∼iid Lap(a, b). We need to analyze the distribution of ξi − µ
κ
ξj. Recall that

if X ∼ Lap(a, b) then kX ∼ Lap(ka, |k|b). Therefore we are trying to bound the distribution
of Z(a, b) = X + Y where X ∼ Lap(a, b), Y ∼ Lap

(
−µ
κ
a, µ

κ
b
)
. In particular, given δ < 0 we

want to choose a, b such that

FZ(k) ≤ Prob[X + Y ≤ k] ≤ δ

where k = cmin +
∣∣∣mini,j ∆i − κ

µ
∆j

∣∣∣. Nadarajah [Nad07, Theorem 1] explicitly computes the

CDF FZ(a,b)(k) and shows that it is monotone, continuous, and differentiable in a, b except
at one value of k for all a, b. Moreover, it is supported on the entire real line. Therefore, ∃a∗
such that FZ(a∗,|a∗|)(k) = δ.

D Proof of Claim 2

Our proof works by differentially privately sampling a probability distribution π ∼ Dir(~1)
multiple times using the mechanism of [GWH+21]. The Dirichlet mechanism on k nodes

M(k)
D (π) samples a Dirichlet distribution centered at π, where π ∈ Pk = {x ∈ Rk :

∑
i xi =

1, xi ≥ 0}. One can think of it as sampling a increment dπ, adding it to π and renormalizing.
First, we reproduce a theorem on differentially private Dirichlet sampling

Theorem 4 ([GWH+21], Theorem 1, Corollary 1). The Dirichlet mechanism M(k)
D (π)

achieves (ε, δ)-differential privacy where ε = O(k(1+log(o(k))) and δ = 1−minπ Prob[Mk
D(π)−

π > Ω(ε)]

Define the vector η(∆) as follows:

η(∆) =

(⌈
∆1

∆min

⌉
, . . . ,

⌈
∆n

∆min

⌉)
Each coordinate represents rounding each trade to an integer lattice with width ∆min. Define
Sk = {i : η(∆) > k} and Sck = [n]− Sk. For each j ∈ Sk, privately sample π ∼ Dir(~1) where
~1 = (1, . . . , 1) ∈ Rη(∆)j . Let ∆̂j,k = ∆jπk with

∑
k ∆̂j,k = ∆j. We can view each Dirichlet

sample π as providing a mechanism for splitting the trade ∆j. Our goal is to find k ∈ N
such that the following two conditions hold
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1. height(T (∆Sck
)) = Θ(log n)

2. height(T (∆̂j,k)) = Θ(log ηj) with high probability

We can show that the latter condition holds with high probability when the distribution
sampled is Dirichlet centered at the centroid ( 1

n
, . . . , 1

n
). Constructing a partial sum tree

from a Dirichlet sample is the same as drawing a sample from a Poisson-Dirichlet branching
random walk [ABF13]. These walks satisfy Prob[|height(T (∆̂j,k)) − c log η(∆)j| ≥ k] =
O(e−k) for a universal constant c [ABF13, Corollary 1.3]. Therefore, the probability that all
of the Dirichlet constructed trees T (∆̂j,k) have height greater than c log η(∆)j is

Prob
[
∃j ∈ Sk|height(T (∆̂j,k))− c log ηj| ≥ c′ log ηj

]
≤

(
|Sk|
ηc
′
j

)

which directly follows from the independent sampling from the private Dirichlet distribution
and inclusion-exclusion. Therefore, with probabilty p∗ = 1 − |Sk|

δc
′
j

, we have the maximum

height of a tree constructed from all |Sk| vectors ∆̂j,k is∑
j∈Sk

log ηj ≤ |Sk|max
j

log ηj

which under our assumptions is O(log n). Our claim about differential privacy then follows
immediately from Theorem 4.

E Proof of Claim 3

We will prove differential privacy by using the smooth sensitivity framework of [NRS07].
First, we will recall definitions and introduce preliminaries on this framework before spe-
cializing it to SURE. Smooth sensitivity places an upper bound on the local sensitivity of a
function f , which is defined as

LSf (x) = max
d(x,y)≤1

|f(x)− f(y)|

Note that unlike the global sensitivity, which is used in the generic Laplace mechanism
[DR+14], the local sensitivity depends on the particular input x. Often times, it is too
difficult to get uniform bounds on local sensitivity and instead it is easier to use a smooth
proxy. A β-smooth upper bound S : Dom f → R for LSf (x) satisfies S(x) ≥ LSf (x) for
all x ∈ Dom f and S(x) ≤ eβS(y) for all x, y ∈ Dom f with d(x, y) = 1. We are now in a
position to recall two results of Nissim, et. al:

Theorem 5 ([NRS07], Lem. 2.6). Let h be an (α, β)-admissible noise probability density
function and let Z ∼ h. For a function f : Dn → Rd, let S be a β-smooth upper bound in
the local sensitivity of f , then A(x) = f(x) + S(x)

α
Z is (ε, δ)-differentially private.
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Theorem 6 ([NRS07], Lem. 2.9). For ε, δ ∈ (0, 1), the d-dimensional Lpalace distribution,
h(z) = 2−de−‖z‖1 is (α, β)-admissible with α = ε

2
, β = ε

2ρδ/2(‖Z‖1)
where ρδ(Y ) is the 1 − δ

quantile of Y

Combined, these results illustrate that if we can construct a β-smooth upper bound,
we can immediately construct a Laplace mechanism that achieves (ε, δ)-differential privacy.
Section 3 of [NRS07] provides a mechanism for computing a β-smooth upper bound by first
defining the sensitivity at distance k,

LSkf (x) = max
y∈Dom f
d(x,y)≤k

LSf (x)

A β-smooth upper bound on local sensitivity is deinfed as,

Sf,β(x) = max
k∈{0,1,...,n}

e−kβLSkf (x)

Therefore, we need to construct a function f that represents price impact and compute an
analogue of local sensitivity.

For a differentially private CFMM, we want to minimize the worst case price impact in
a neighborhood of a trade ∆. We define f(∆) as

f(∆) = max
j∈[n]

pj(∆)

Now we need to modify the definition of local sensitivity to account for trade admissibility and
discretization. Normally, local sensitivity is defined for discrete spaces where the distance d is
taken to be the Hamming metric. We can discretize our trade space in terms of ∆min. Recall
that we ensure that ∆min > 0 by adding Laplace noise to all trades (whose parameter will
be tuned in accordance with the above theorem). Note that moving to such a discretization
simply changes our choice of β. Using this definition, we can define the local trade sensitivity
as

TSkf (∆) = sup
∆′∈Dom f∩A(R)
d(∆,∆′)≤k∆min

|f(∆)− f(∆′)|

where A(R) is the set of admissible trades. From the results of §3.2, we know that TSkf (∆) =
O(kµ(maxi ∆) log n) since the depth of the tree quantifies the largest price impact. In
particular, each element ∆′i such that |∆i − ∆′i| > ∆min can cause price impact of at most
µ(maxi ∆) log n and we can add these independently over the at most k coordinates that
have prices changed by more than ∆min. We can define an analogous smooth sensitivity
bound,

S̃f,β(x) = max
`
e−`βTS`f (∆) = max

`
e−`β`µ(max

i
∆) log n

This is minimized when ` = 1
β
, giving

S̃f,β(x) =
µ

eβ
(max

i
∆) log n
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Therefore, provided that a) the partial sum tree has height O(log n) b) the noise added

ensures that ∆min > 0, and c) the noise is rescaled by
2S̃f,β(x)

ε
, we achieve differential privacy.

Note that in particular, our bound depends on maxi ∆ and the curvature upper bound.
By splitting trades using Claim 2, we reduce maxi ∆ and can ensure that the noise added is
reasonable. Moreover, as we saw, without splitting trades, we run into issues with trades of
the form (T, 1, . . . , 1). Note that algorithms that try to learn where the trade T occurs (after
applying a permutation π) is equivalent to privately learning threshold functions [BNSV15,
ALMM19].

F Convex Trade Splitting

When we are considering CFMM arbitrage, it can be shown that a necessary condition
for stability is path-deficiency. Path deficiency ensures that no rational trader (e.g. profit
optimizing) is incentivized to split a desired trade size ∆ into two trades ∆1 + ∆2 = ∆.
However, if a trader also desires privacy, splitting up trades can become necessary. To
see why, consider a trader who makes a trade of size T and a sequence of trades ∆ =
(T, 1, . . . , 1) ∈ RT+1. Using curvature, we know that the price impact is at least κT after a
trade of size T and of size κ after each trade of size 1. This means that an adversary can
easily discern where my trade is, even if ∆ is randomly permuted due to the T times larger
price impact. Therefore, splitting up the trade of size T into trades close to size 1 will make
it hard for an adversary to reconstruct the total trade size.

Our goal is to split up trades such that the probability of an adversary detecting the
position of a single trade is small relative to the curvature. Suppose that a trade ∆1 is
split into trades ∆′1, . . . ,∆

′
j and let ∆̃ = (∆′1, . . . ,∆

′
j,∆2, . . . ,∆n) A splitting adversary is a

binary classifier `(∆,∆) that returns 1 if ∆ ∈ {∆′1, . . . ,∆′j} and 0 otherwise. We say that a
splitting mechanism is (δ, ε) indistinguishable if

Prob

[∣∣∣∣∣ 1n
n∑
i=1

`(∆̃i, ∆̃
π)− j

n

∣∣∣∣∣ < ε

]
< δ

over some suitable set of splitting classifiers. The inequalities in Appendix G can directly be
used to prove that this holds for the L2 norm.

However, path-deficiency implies that splitting trades will cost a user an extra fee. This
trade-off between best execution price and privacy can be explored via a simple, convex
objective function that trades off price impact vs. improved privacy via splitting. Recall
that the L2 norm strictly decreases under splitting, e.g.

‖(∆1, . . . ,∆n)‖2
2 =

n∑
i=1

∆2
i = ∆2

1 +
n∑
i=2

∆2
i

= a∆2
1 + (1− a)∆2

1

n∑
i=2

∆2
i > a2∆2

1 + (1− a)2∆1 +
n∑
i=2

∆2
i

= ‖(a∆1, (1− a)∆1, . . . ,∆n)‖2
2
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where a ∈ (0, 1) represents the splitting fraction.
This property allows us to quantify the privacy benefit to splitting trades, as the more

minimal the L2 norm, the less noise that is needed to ensure that the random binary tree
has height Θ(log n) and Ω(n) leaves. In particular, the Cauchy and Gaussian mechanisms
for differential privacy utilize distributions whose variances are proportional to the L2 norm.

Given that we want to minimize price impact while maximizing the amount of trade
splitting necessary for indistinguishable, we construct a convex optimization problem. Define
the function f as:

f(∆1, . . . ,∆n) =
n∑
i=1

γg

(
γ

i∑
j=1

∆i

)
+ η

n∑
i=1

∆2
i

The first term in f represents an upper bound on the price impact and the second term
represents the L2 splitting term. Our goal is to minimize f over sequences of trades
(∆1, . . . ,∆k) ∈ t∞i=1R

i such that
∑k

i=1 ∆i = ∆∗, e.g.

minimize f(∆1, . . . ,∆n)

subject to ∆1 + · · ·+ ∆n = ∆∗
(13)

Using curvature bounds, we can construct a simple descent algorithm to solve this.
Firstly, note that the definition of curvature yields

κγ2

n∑
i=1

i∑
j=1

∆i ≤ f(∆1, . . . ,∆n)− η
n∑
i=1

∆2
i ≤ µγ2

n∑
i=1

i∑
j=1

∆i

Furthermore, note that we can rewrite the double sum as

n∑
i=1

i∑
j=1

∆i =
n∑
i=1

(n− i+ 1)∆i

Next, note that we can upper bound the split function, f(a∆1, (1− a)∆1, . . . ,∆n) as

f(a∆1, (1− a)∆1, . . . ,∆n) ≤ µγ2

(
(n+ 1)a∆1 + n(1− a)∆1 +

n∑
i=2

(n− i+ 2)∆i

)

+ η

(
a2∆2

1 + (1− a)2∆2
1 +

n∑
i=2

∆2
i

)

= µγ2

(
(n+ a)∆1 +

n∑
i=2

(n− i+ 1)∆i + ∆∗

)

+ η

(
a2∆2

1 + (1− a)2∆2
1 +

n∑
i=2

∆2
i

)
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Combining these gives the following

f(∆1, . . . ,∆n)− f(a∆1, (1− a)∆1, . . . ,∆n) ≥ γ2(κ− µ)
n∑
i=2

(n− i+ 1)∆i −∆∗

− µγ2(n+ a)∆1 + η∆2
1(1− a2 − (1− a)2)

(14)

Maximize the right-hand side in a provide a mechanism for deciding whether to split trade
∆1. Optimizing over a yields

a∗ = max

(
1

2
− µγ2

4η∆1

, 0

)
If we substitute a∗ into (3) and the right-hand side is position, we split the trade ∆1 into
two trades of size a∗∆1 and (1− a∗)∆1.

G Splitting Trades: Concentration

Chatterjee proved a concentration bound using Stein’s method that provides intuition as to
why spliting trades improves the effectiveness of SURE. Theorem 7 shows that the variance
of concentration around the mean for a randomly permuted sum is linear in the expected
value.

Theorem 7 ([Cha07], Prop. 1.1). Let {ai,j}1≤i,j≤n be a collection of numbers from [0, 1].
Let X =

∑n
i=1 ai,π(i) where π ∼ Sn uniformly. Then

Prob[|X − E[X]| ≥ t] ≤ 2 exp

(
− t2

4 E[X] + 2t

)
(15)

Note that unlike Bernstein-like inequalities there is no direct dependence on n. Moreover,
unlike Talagrand-like inequalities [Tal21], we do not have terms dependent on ε-nets. If we
let t = kE[X], we have

exp

(
− t2

4 E[X] + 2t

)
= exp

(
−k

2 E[X]

2k + 4

)
≤ exp(−kE[X])

For positive trade sizes, this implies that if we can split big trades into smaller trades (which
reduces in turn reduces E[X]) we can achieve the sufficient condition. More specifically,
suppose that ai,j = ∆j − κ

µ
∆i. Then X =

∑n
i=1 ai,π(i) is the upper bound from (7) and the

theorem claims that reducing the maximum will reduce the variance of SURE’s utility.
We also note that better asymptotic results results exist for non-negative sums:

Theorem 8 ([Alb19], Corollary 2.2). Let aij be a connection of any real numbers and π ∼ Sn
as uniform random permutation. Let Zn =

∑n
i=1 ai,π(i). Then for all x > 0

Prob(|Zn − E[Zn]| ≥ t) ≤ 16e1/16 exp

(
−t2

256(Var[Zn] + maxi,j |aij|t)

)
This bound explicitly includes a maximum term, directly justifying the improvement to

SURE provided by splitting trades.
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H Path Dependency and Generic Chaining

Suppose that we want to try to find the worst case price deviation given that we have fees,
γ < 1. If we define Xj = pπ(i) − p(i), then we want to study the extremal behavior of this
process, albeit without being able to directly bound price impact using methods from §3.2.
We will be most interested in the behavior of the random variable X∗ = maxj Xj, which
quantifies the worse execution price received by a user under this mechanism. To do this,
we will utilize the theory of empirical processes. Roughly speaking, one can show that for a
metric space (T, d), E supt∈T Xt = Θ(Diam(T )

√
log cardT ) by looking at simple bounds for

empirical processes [Tal14, Tal21]. Our goal is to define a metric space Tγ that depends on
fees and such that Sn acts faithfully on Tγ. We want the action to be faithful because that
will be equivalent to the condition of unique elements of the form

∣∣∆i − µ
κ
∆j

∣∣ We can then
attempt to bound, using chaining arguments, the worst case price deviation.

Chaining bounds rely on tail bounds on increments, e.g. showing that for some metric d
on our space Tγ, we have the following two conditions:

∀u > 0, Prob[|Xs −Xt| ≥ u] ≤ 2 exp

(
− u2

2d(s, t)2

)
(16)

∃u > 0,
∑
s∈T

Prob[Xs ≥ u] ≥ 1 (17)

In our case, we need to construct a metric space that takes advantage of our trading function
curvature and the randomness induced by the choice of permutation.

Our goal is to construct a metric on Sn that depends on both ϕ. We need to construct
metric dϕ,R0,∆ : Sn × Sn → R+ that we can use to find a formula like eq. (16). A natural
metric to construct is the raw price differences:

dϕ,R0,∆(π1, π2) =
n∑
i=1

|ptπ1(i) − ptπ2(i)|

Note that if we took an infimum over one of the two permutations, we arrive at the Wasser-
stein distance. Suppose we have dϕ,R0,∆(π1, π2) ≤ f(ϕ,R0,∆)d(π1, π2) for some natural
metric on the symmetric group (e.g. Mallows metric [Dia88]). Moreover, suppose there
exists κ > 0 such that Prob[Xs ≥

√
log n (κ+

∑
i ∆i)] ≥ 1. Then we have the lower bound

[Tal21, Eq. 2.15]

C

(
κ+

∑
i

∆i

)√
log n ≤ E sup

t∈T
Xt ≤ C ′

(
κ+

∑
i

∆i

)
Diamd(T )

√
log n

One simple idea for a metric upper bound is:

dub(π1, π2) = µ

n∑
i=1

|∆π1(i) −∆π2(i)|
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Under this metric, we need to show that

Prob[|Xπ −Xπ′| ≥ u] ≤ 2 exp

(
− u2

2d(π, π′)2

)
This is effectively direct from Azuma’s inequality since ∆i is in a bounded ball (in order for
us to use curvature). Next, we need to show Prob[Xs ≥

√
log n (κ+

∑
i ∆i)] ≥ 1. For each

permutation π ∈ Sn, we can construct a binary tree Tπ from the partial sums Si
∑

i ∆π(i),
where Si < Sj implies Si is in the left subtree of Sj (and vice versa). Assume, first, that
each Si is unique. Then, it can be shown that the expected height and the tail bounds for
the height of this subtree satisfies [ABC20, Ree03]

Prob[h(Tπ) ≥
√

log n] ≥ c

n

Our conjecture is that κh(Tπ) ≤ Xs ≤ µh(Tπ) which would immediately imply
∑

π∈Sn Prob[Xπ ≥
u] ≥ 1. Unfortunately to find bounds of this form with fees, one needs to find universal
bounds on g(∆)− γg(γ∆). We illustrate such bounds for Uniswap in Appendix I.

I Path Dependency in Uniswap

Getting bounds such as (16) relies on bounding how far away the path-dependent case
strays from the path independent case. For a fixed ∆, ppin only depends on

∑
i ∆i for path-

independent, whereas ppdn (π) does depend on the path ∆π(1), . . . ,∆π(n). However, if we can
uniformly bound maxπ∈Sn |ppdn (π)− ppin | as a function of fees and curvature.

For Uniswap, we have guni(∆) = k
(R−∆)2

. This gives a difference between the impact of

a single path independent trade and a single path dependent trade as (see [AEC20] for the
formulae):

g(∆)− γg(γ∆) = k

(
1

(R−∆)2
− γ

(R− γ∆)2

)
=

k

(R−∆)2

(
1− γ(R−∆)2

(R− γ∆)2

)
= g(∆)

(
1− γ(R−∆)2

R2

1

(1− γ∆
R

)2

)

≤ g(∆)

(
1− γ(R−∆)2

R2

(
1− cγ∆

R

))
= g(∆)

(
1− γ(R−∆)2

R2
− cγ∆(R−∆)

R3

)
= g(∆)

(
1− γ

(
R−∆

R

)2

(R−
(

1 +
c

R

)
∆)

)
where we assume that γ∆

R
< 1 and use the geometric series (so c < 1). When R � 1 and

R−∆ ≤ kR for some k < 1, this gives us the bound

g(∆)− γg(γ∆)

g(∆)
≤ 1− γ (R−∆)3

R2
≤ 1− γk3R
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