Individual Verifiability and Revoting in the
Estonian Internet Voting System

Olivier Pereira

August 30, 2021

Abstract

Individual verifiability remains one of the main practical challenges
in e-voting systems and, despite the central importance of this property,
countries that sought to implement it faced repeated security problems.

In this note, we revisit this property in the context of the IVXV version
of the Estonian voting system, which has been in used for the Estonian
municipal elections of 2017 and for the Estonian and European parlia-
mentary elections of 2019.

We show that a compromised voter device can defeat the individual
verifiability mechanism of the current Estonian voting system. Our attack
takes advantage of the revoting option that is available in the Estonian
voting system, and only requires compromise of the voting client applica-
tion: it does not require compromising the mobile device verification app,
or any server side component.

1 Introduction

Estonia remains the only country in the world where Internet voting is used by
a large proportion of voters, all along since an initial deployment in 2005.

This unique status brought numerous questions regarding the security of
the system. In particular, during the 2011 parliamentary election, in which
around 24% of the voters submitted their ballot on the Internet [12], Paavo
Pihelgas developed and tested malware that would compromise a voting client
and modify a vote in a way that would be undetectable by the voter. Pihelgas
filed a complaint to the Estonian Supreme Court, asking that they nullify the
votes submitted by Internet, but the complaint was dismissed [9].

Nevertheless, in the 2013 elections, an extension of the Estonian voting sys-
tem was introduced by Heiberg and Willemson [4], in order to offer individual
verifiability, that is, a mechanism by which a voter can verify independently
that the ballot submitted by her voting device accurately reflects her voting
intent, even if that voting device is compromised.

The security of the 2013 Estonian voting system, including the individual
verifiability mechanism, was challenged in a detailed analysis by Springall et

al. in 2014, who explained how the individual verifiability could be circum-
vented [11]. The individual verifiability mechanism was also questioned in 2016
by Mus et al. [8], with a focus on its privacy implications, and a variant of that
mechanism was proposed. That variant was in turn demonstrated to be flawed
by Kubjas et al. in 2017 [7].

In the meantime, an almost complete redesign of the Estonian voting pro-
tocol was proposed in 2016 by Heiberg et al. [6]: the new IVXV protocol aims
at making the server side operations verifiable by designated auditors, on top
of offering a (revised) individual verifiability mechanism that focuses on the
verification of the client-side operations.

Contribution The present note demonstrates that the IVXV protocol, used
for the Estonian municipal elections of 2017 and for the Estonian and European
parliamentary election of 2019, does not offer individual verifiability.

The attack that we propose only requires the voting client to be compro-
mised, which is precisely what individual verifiability is supposed to detect. The
attack succeeds even if all the server side components and the vote verification
app are perfectly honest. It is also independent of any weakness in the voter
identification mechanism, and would then still work even if a stronger voter
identification mechanism were implemented (e.g., real two-factor). Finally, it
can be performed within a short time frame.

These last two features differ from the Ghost Click attack on individual
verifiability that was proposed by Springall et al. [11] on the 2013 version of the
Estonian system: that attack required the adversary to be able to intercept the
voter eID PIN code, and the voter to leave his eID card on his computer for a
long period of time, or to use the eID card on a regular basis. These differences
come thanks to changes introduced in the IVXV protocol.

2 IVXYV Individual Verifiability Protocol

The IVXV voting system relies on the following components — we largely use the
terminology and notations from the original description [6], and only mention
the components that are relevant for our purpose:

Certification Authority A national certification authority issues, for each
voter, a signature key pair (sk;‘ib, skz;f,{w) that is stored in the smartcard
of each citizen’s elD card, and can be used to sign documents, provided
that the user provides a PIN code. A separate authentication key pair
is also provided on the elD, and is used to identify a voter connecting to
the vote collection server. Obviously, the reliance on such a public key
infrastructure introduces challenges on its own [10] but, for our analysis,

we will trust that it is correctly implemented.

Election Organizer The FO approves the election configuration, and pro-
duces an encryption key pair (ekpyp, ekprip) that will be used to encrypt
the votes.

Voting Application The VoteApp is a standalone application, available for
Windows, macOS and Linux, that the voter can download from the elec-
tion authority website, and that is signed. It is used by the voters to
express their vote intent, prepare the ballot, have it signed by the elD,
submit the ballot, and interact with the Vote Verification application. The
purpose of individual verifiability is to be able to detect if a corrupted
VoteApp tries to modify the vote intent expressed by the voter and cast
a ballot supporting a different candidate.

Vote Verification Application The VerApp is a mobile application available
for Android and i0S, that the voter can obtain from the respective App
Stores of these environments. It is trusted that the adversary cannot
compromise both the VerApp and the VoteApp. For our purpose, we will
assume that the VerApp is honest.

Vote Collector The V' interacts with the VoteApp and the VerApp: it col-
lects the encrypted and signed ballot submitted by the VoteApp, and
interacts with the VerApp when a voter wants to verify that her ballot
captures her vote intent, and was correctly recorded.

Registration Service The RS interacts with the VC: every ballot received
by the V'C must also be signed by the RS. This signature will be verified
by the VerApp.

In terms of security model, it is assumed that that V'C and RS are not jointly
compromised, and that VoteApp and VerApp are not jointly compromised ei-
ther.

The IVXV voting process is then as follows (we simplify several internal
server side message flows, in order to focus on the relevant aspects of the pro-
tocol):

Ballot submission A voter who would like to submit a vote v installs the
VoteApp, creates a TLS channel with the V' C, identify himself with the
elD authentication key and PIN code, picks randomness r from the ap-
propriate group, and produces an ElGamal encryption of his vote as
c = Encey,,, (v;7). The voter then uses his PIN code and eID to produce
a signature o = Signsk;ﬁw (¢), and submits the resulting ballot b = (¢, o)
to VC.

Ballot registration VC creates an identifier vid for the ballot, verifies the el-
igibility of the voter and validity of the signature, obtains a time stamp on
H (c), and sends a registration request on a signature oy ¢ = Signsk;/gﬂ (H (b))
to RS, who returns a signed confirmation reg = Signskfgv(H(ch)) to
V C. This confirmation reg is sent back to the VoteApp together with vid.

Vote verification When the VoteApp displays the pair (vid,r) to the voter,
as a QR code, the voter uses VerApp to capture the (vid,r) pair. The

3

verification app now queries VC in order to obtain the (b, reg) pair asso-
ciated to vid. The VerApp verifies the validity of b = (¢, o) and reg, and
displays the identity obtained through o to the voter. Finally, it performs
an exhaustive search on all the candidates until it finds a vote v such that
¢ = Encey,,, (v;r). The matching v is displayed to the voter, who has to
decide whether it is correct.

There are several remarks to be made about this process:

An important feature of the Estonian Internet voting protocol is that vot-
ers have the possibility to submit as many ballots as desired. The last
registered ballot will be included in the tally. This offers some level of
protection against coercion: if a voter is forced to vote for a given can-
didate, it may remain possible to submit another ballot that will replace
the first one in the tally.

The Vote verification feature is obviously very sensitive from a privacy
point of view: anyone in possession of the verification QR code has the
possibility to obtain, in clear, the author and the content of a ballot. For
that reason, the individual verifiability process is only authorized during a
limited time frame, usually 30 minutes, after ballot submission. Besides,
verification can only be performed a limited number of times (usually 3).

The ballot verification process will not tell the Ver App whether a ballot
has been overwritten or not. In this way, a voter who was coerced into
submitting his QR code to a third party can still submit a new ballot
immediately, and the QR code will not inform the coercer of this revote.
Furthermore, there is no feedback channel to the voter, that would inform
him that a ballot was submitted on his behave.

Revoting and Individual Verifiability in IVXV

The revoting feature of the IVXV Internet voting protocol raises particular
difficulties for individual verifiability.

In particular, since there is no way for a voter to know whether a vote that
is verified will be tallied, there are a variety of attack scenarios in which a com-
promised VoteApp could fool the verification process. Assuming a compromised
V C opens for even more attack scenarios, which we do not detail here.

Let us consider a voter who uses a compromised VoteApp and intends to
express vote v. A compromised VoteApp could cast of vote v’ on behave of the
voter as follows:

1. When the voter expresses his vote intent v, VoteApp runs the ballot sub-

mission process honestly, and lets the server-side components run the bal-
lot registration phase. However, as soon as Vote App collects vid from VC,
and before displaying it to the voter, it crashes. At this point, the voter
has no idea whether his vote was actually registered or not.

2. As aresult, the voter may be expected to retry voting. But, this time, the
VoteApp will instead prepare a ballot encrypting the vote intent v’, which
will be signed with the voter’s eID since the voter intends to sign a ballot
and has no way of verifying the content of the ballot that he signs. That
second ballot is again submitted to V'C and registered, returning vid’ to
the VoteApp. From the point of view of the server, this is a normal revote,
and that second ballot is the one that will be included in the tally.

3. Now, instead of displaying a QR code with the vid’ reference, the Vote App
displays the QR code corresponding to the first ballot, that is, vid and
the randomness used to encode the first ciphertext.

4. When the voter scans this QR code, the first vote will be downloaded,
and the vote intent v will be displayed to the voter, who will accept the
verification steps, even though it is a vote for v’ that will be tallied on his
behave.

Of course, a VoteApp that crashes may raise suspicions. However, we must
remember that the VoteApp is an application that is unique to each election. So,
the crash would just happen on the first attempt at using this application, and
would not repeat after that, making it harder to reproduce and report. And,
even in case of reporting, a compromised voter platform could report running
the honest VoteApp. The benign aspect of the crash would be further confirmed
by a successful vote verification process. Eventually, the application crash may
also happen with a limited probability only.

Random crashes may also be replaced by the compromised VoteApp inter-
cepting the eID PIN code, and revoting silently on the voter behave, as in the
Ghost Click attack [11] on the 2013 version of the voting system. We further
discuss this variation and the changes between the 2013 protocol and IVXV
protocol in Section 5.

4 Mitigations

There many directions that can be explored in order to mitigate the attack de-
scribed above, including those that are discussed by Heiberg et al. [5]. However,
those that may be effective appear to come with relatively important changes in
the system and to have a noticeable impact on other properties of the system.

Feedback channel The addition of an independent vote confirmation channel
could possibly help: the voter could be warned every time that a ballot is
registered on her behave, and the vid could be included in the notification. The
addition of vid, or of something to the same effect, is crucial in order to give
the voter an opportunity to check whether he is verifying his first or second
ballot. This feature is absent from previous discussions [5], which focused on
a malicious app stealing voter credentials, in which case it is enough to inform
the voter than a vote was submitted.

In the security model considered for the IVXV voting system, such a mech-
anism may however be non trivial to design in a secure way: if the voter uses
a compromised voting device, we must be sure that the malware present on the
device is unable to delete and/or alter vote confirmations. Besides, since server
side compromises are in-scope, we must be sure that the notifications that would
alert a voter are actually sent and delivered in the right order. For instance, if
the VC' is in charge of notifying the voter using a second communication chan-
nel, then a corrupted V' C could simply choose to delay the notification for the
first ballot of our scenario, and to send it when the second ballot arrives.

Verifying the last ballot only Another approach would be for the server to
only answer verification queries for ballots that have not been replaced through
a revote: in the scenario described above, a honest VC would refuse the verifi-
cation of the first ballot after submission of the second.

This protection could however be defeated in several variations of our attack.
For instance:

e If the VC is corrupted, then it can decide to participate in the verification
of the first ballot only, which would make the voter wrongly believe that
no second ballot was submitted. The corrupted VC could also receive the
second ballot from the corrupted VoteApp and wait for 30 minutes until
it timestamps it and registers it with RS, so that this ballot would only
start to “officially exist” after the end of the verification period of the first
ballot.

e If the corrupted VoteApp is able to capture the eID PIN code, and if
the eID remains or becomes available on the voter computer more than
30 minutes after the submission of the initial ballot, then VoteApp can
silently submit a second ballot at that time, without the voter’s knowledge.
This is essentially the Ghost Click attack.

Accepting a single ballot In another approach, the voting protocol could
be modified so that VC and RS only accept one single ballot per voter. A new
mechanism would then be needed in order to support the verifiability of the
submitted ballot even if the VoteApp or the network crashes after the ballot
submission but before the confirmation message could be sent to the voter.

This would prevent the attack scenarios described above, but would also
decrease the coercion resistance of the voting system. Given that the level of
coercion resistance offered by an Internet voting system is low anyway, and that
voters still have the option to vote in person and cancel their Internet ballot,
this may not be too damaging.

An alternate option that would limit the privacy/coercion risk would be to
switch to the so-called Benaloh challenge approach [1], in which voters can either
verify a ballot produced by the voting client, or cast it as their vote, but not
both. Extra care would then be needed in order to make sure that the expected
ballot is considered as cast, and not a challenged one for instance.

Creating a public bulletin board One more option would be to create
a public bulletin board, on which a hash of each registered ballot would be
displayed, and the last ballot of each voter clearly marked. This would make it
possible for a voter to check at any time whether his ballot has been replaced
with another one. However, this would also offer the possibility for a coercer to
observe whether a voter revoted online. The implementation of a secure public
bulletin board may also be a challenge.

Heiberg et al. [5] also discuss various directions linked to the use of the eID
(e.g., require the signature of two independent devices, promote the use of card
readers that have their PIN-pad, increase the control of the use of the eID, .. .).
These approaches may help against an attacker who targets voter credentials,
but do not help in our case since, in our attack, the voter is willing to produce
two signed ballots.

Overall, it seems fairly non trivial to address the individual verifiability issue
described above without affecting the receipt freeness of the protocol at the same
time, or creating new usability challenges.

5 Comparison with the 2013 Internet voting pro-
tocol

The individual verification process that was introduced in the 2013 version of
the Internet voting protocol [4] differs in several significant ways from the IVXV
protocol that was deployed in 2017.

First, the trust model is different: the 2013 protocol assumes the honesty
of the server receiving the ballots and playing the ballot verification protocol,
while the IVXV protocol is expected to remain secure as long as only one of
VC and RS is honest.

The protocol is also different:

e The VerApp in the 2013 protocol would only receive the ciphertext ¢ from
the voting server, and not the voter signature o (or the RS signature reg),
while ¢, o (and reg) are sent and verified in IVXV. Keeping the signature
off would limit the risks of taking advantage of the verification process
in order to prove how a voter voted, since the verification data remain
anonymous. This of course introduced the risks of clash attacks: several
voters voting in the same way could be pointed to one single ciphertext,
while a different ciphertext would be signed by all but one voter. A limit
of 3 verifications for each ballot was introduced in order to limit the scale
of such an attack.

e The server of the 2013 protocol would only allow the verification of the
last vote cast by the voter, that is, the one that will be included in the
tally. In contrast, the IVXV protocol allows the verification of any ballot
as long as the verification takes places within 30 minutes after submission.
As a result, a voter who submits a first ballot under the watch of a coercer

does not need to wait for 30 minutes before submitting a new ballot: a
verification of the first ballot by the coercer would still succeed.

Those two differences only make sense because the voting server is trusted in the
2013 protocol. A corrupted server could indeed send any ciphertext encrypted
with the right randomness to the VerApp,! since it is not bound to send a
full ballot signed by the voter, and the voter would have no way to determine
whether the ciphertext that is verified is the one that will be included in the
tally. Similarly, a corrupted verification server would also have no reason to
restrict the verification process to the last submitted ballot.

It turns out that the changes introduced in the IVXV protocol seem to
weaken the individual verifiability of the protocol rather than to strengthen it.

The addition of the signature in IVXV does not change anything to our
attack, and it does not do anything to prevent the Ghost Click attack [11] either:
in both attacks, the ballots that are submitted have a legitimate signature.

The fact that the verification of any submitted ballot is possible for 30 min-
utes (and not just of the verification of the last ballot) simplifies the attack
process. We take advantage of this by having the voter submitting two ballots
within a short time window, and letting the voter verify a vote that has been
replaced by a more recent one.

It would be possible to adapt our attack to the 2013 version of the proto-
col if the voting server is corrupted: the malicious VoteApp could obtain two
voter signed ballots within a short time frame, and the voting server would just
keep the second ballot in memory for 30 minutes before registering it within
the system. (In the presence of a honest voting server, we could not have an
attack in which the VoteApp, or a third party, would keep the second ballot in
memory for 30 minutes and submit it then: the elD is also needed for the voter
authentication to the server in order to submit a ballot. Of course, if the elD
is left on the device and if the corrupted VoteApp has the PIN code and can
silently interact with the eID, then the problem is solved.)

Similarly, the Ghost Click attack would work more easily on the IVXV pro-
tocol than on the 2013 version of the protocol: if the eID PIN code can be
intercepted, then two signed ballots can be obtained in a matter of seconds, and
the corrupted VoteApp can first submit the ballot reflecting the voter intent,
then show the verification data to the voter, and immediately submit the second
signed ballot without letting the voter know that it happened.

Whether or not our attack is easier to deploy than the Ghost Click attack de-
pends on whether the eID PIN code of the voter can be intercepted or not. This
may not be particularly challenging when the client is a stand-alone application
that is corrupted, or when the voter device is completely under adversarial con-
trol. It could make a difference if the voting client were a web application, in
which case the introduction of the PIN code would be handled directly by a

IThis is slightly more challenging in the case of the 2013 protocol which uses RSA-OAEP
for encryption, compared to the ElGamal encryption used in the IVXV protocol. Indeed, the
server would need to obtain the randomness used for encryption in order to produce a different
ciphertext encrypted with the same randomness, while El1Gamal encryption is just malleable.

browser extension interacting with the eID card, and not visible by a corrupted
voting application. Besides, many of the mitigations explored by Heiberg et
al. [5] would protect against the ghost click attack, but they would be ineffec-
tive against the attack proposed here: they seek to inform a voter when ballots
are submitted without the voter’s knowledge, but this is not the case here.

6 Conclusions

Individual verifiability is a central property that many recent Internet voting
systems deployed for government elections tried to offer, and it is no surprise
given the high risks of the presence of a malware on the voter’s device.

It however showed to be particularly challenging to obtain an effective veri-
fication process: the first mechanism proposed for the Estonian voting system,
used in the 2013 elections, was shown to be broken by Springall et al. [11].
In 2015, Halderman and Teague [3] showed how to circumvent the verification
mechanisms of the iVote system used in New South Wales. In 2019, Haines et
al. [2] demonstrated weaknesses in the individual (and universal) verifiability
mechanisms of the Swiss Post/Scytl Internet voting system used in Switzerland
(for individual verifiability only). The current paper shows that the latest IVXV
protocol used in Estonia still fails to offer individual verifiability.

The situation definitely prompts for more caution regarding the security
properties that are announced for voting systems, in particular when they are
proposed for use in public elections. Proper security definitions, proofs, and
careful reviews seem to remain the best strategy we have.

Acknowledgement

We would like to thank Sven Heiberg for confirming that the attack scenario
described in this note would work on the current implementation of the IVXV
protocol and for his helpful and constructive comments. We also would like
to thank Vanessa Teague for so many interesting discussions on the security of
voting systems and for her review of a previous version of this document. Any
error would of course be the responsibility of the author.

References

[1] Josh Benaloh. Simple verifiable elections. In Dan S. Wallach and Ronald L.
Rivest, editors, 2006 USENIX/ACCURATE Electronic Voting Technology
Workshop, EVT’06. USENIX Association, 2006.

[2] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague.
How not to prove your election outcome. In 2020 IEEE Symposium on
Security and Privacy, SP 2020, pages 644-660. IEEE, 2020.

[3]

[12]

J. Alex Halderman and Vanessa Teague. The new south wales ivote system:
Security failures and verification flaws in a live online election. In E-Voting
and Identity - 5th International Conference, VotelD 2015, volume 9269 of
Lecture Notes in Computer Science, pages 35-53. Springer, 2015.

S. Heiberg and J. Willemson. Verifiable internet voting in estonia. 6th In-
ternational Conference on Electronic Voting: Verifying the Vote (EVOTE),
pages 1-8, 2014.

Sven Heiberg, Kristjan Krips, and Jan Willemson. Planning the next steps
for Estonian Internet voting. In Proceedings E-Vote-ID 2020, pages 82-97,
2020.

Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan Willemson. Improving
the verifiability of the estonian internet voting scheme. In Robert Krim-
mer, Melanie Volkamer, Jordi Barrat, Josh Benaloh, Nicole J. Goodman,
Peter Y. A. Ryan, and Vanessa Teague, editors, Electronic Voting - First
International Joint Conference, E-Vote-ID 2016, volume 10141 of Lecture
Notes in Computer Science, pages 92—107. Springer, 2016.

Ivo Kubjas, Tiit Pikma, and Jan Willemson. Estonian voting verification
mechanism revisited again. In FElectronic Voting - Second International
Joint Conference, E-Vote-ID 2017, volume 10615 of Lecture Notes in Com-
puter Science, pages 306-317. Springer, 2017.

Koksal Mus, Mehmet Sabir Kiraz, Murat Cenk, and Isa Sertkaya. Estonian
voting verification mechanism revisited. CoRR, abs/1612.00668, 2016.

OSCE/ODIHR. Estonia parliamentary elections — 6 march 2011 —
osce/odihr election assessment mission report. https://www.osce.org/
files/f/documents/a/9/77557.pdf, May 2011.

Arnis Parsovs. Estonian electronic identity card: Security flaws in key man-
agement. In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX
Security Symposium, USENIX Security 2020, pages 1785-1802. USENIX
Association, 2020.

Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri
Hursti, Margaret MacAlpine, and J. Alex Halderman. Security analysis of
the estonian internet voting system. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 703-715. ACM, 2014.

Valimised. Statistics ~ about internet voting in es-
tonia. https://www.valimised.ee/en/archive/
statistics—-about-internet-voting-estonia.

10

