
Mt. Random: Multi-Tiered Randomness Beacons

Ignacio Cascudo1⋆, Bernardo David2⋆⋆, Omer Shlomovits3, and Denis
Varlakov4

1 IMDEA Software Institute, Madrid, Spain. ignacio.cascudo@imdea.org
2 IT University of Copenhagen, Copenhagen, Denmark. bernardo@bmdavid.com

3 No affiliation, Israel. omer.shlomovits@gmail.com
4 No affiliation, Israel. denis@varlakov.me

Abstract. Many decentralized applications require a common source
of randomness that cannot be biased or predicted by any single party.
Randomness beacons provide such a functionality, allowing parties to pe-
riodically obtain fresh random outputs and verify that they are computed
correctly. In this work, we propose Mt. Random, a multi-tiered random-
ness beacon that combines Publicly Verifiable Secret Sharing (PVSS)
and (Threshold) Verifiable Random Function (VRF) techniques in order
to provide efficiency/randomness quality trade-offs with security under
the standard DDH assumption (in the random oracle model) using only a
bulletin board as setup (a requirement for the vast majority of beacons).
Each tier provides a constant stream of random outputs offering progres-
sive efficiency vs. quality trade-offs: true uniform randomness is refreshed
less frequently than pseudorandomness, which in turn is refreshed less
frequently than (bounded) biased randomness. This wide span of effi-
ciency/quality allows for applications to consume random outputs from
an optimal point in this trade-off spectrum. In order to achieve these
results, we construct two new building blocks of independent interest:
GULL, a PVSS-based beacon that preprocesses a large batch of random
outputs but allows for gradual release of smaller “sub-batches”, which
is a first in the literature of randomness beacons; and a publicly veri-
fiable and unbiasable protocol for Distributed Key Generation protocol
(DKG), which is significantly more efficient than most of previous DKGs
secure under standard assumptions and closely matches the efficiency of
the currently most efficient biasable DKG protocol. We showcase the ef-
ficiency of our novel building blocks and of the Mt. Random beacon via
benchmarks made with a prototype implementation.

⋆ Ignacio Cascudo was supported by the Spanish Government under the project Se-
cuRing (ref. PID2019-110873RJ-I00/MCIN/AEI/10.13039/501100011033), by the
Madrid Government as part of the program S2018/TCS-4339 (BLOQUES-CM) co-
funded by EIE Funds of the European Union, and by a research grant from Nomadic
Labs and the Tezos Foundation.

⋆⋆ Bernardo David was supported by the Concordium Foundation and by the Inde-
pendent Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C),
9131-00075B (PUMA) and 0165-00079B.

1 Introduction

Randomness is essential for constructing provably secure cryptographic prim-
itives and protocols. For several applications, it does not suffice that parties
simply have a local source of randomness, but we require instead a randomness
beacon that can periodically provide the same fresh unbiased and unpredictable
random values to all parties. This is particularly important in decentralized ap-
plications such as Proof-of-stake blockchains (e.g. [25, 15, 11]), sharding protocols
[36] and smart contracts that need randomness. In such settings, it is desirable to
implement a random beacon as a protocol among the mutually distrustful partic-
ipants of the corresponding system without trusting any single party. Moreover,
such protocols must have guaranteed output delivery, publicly verifiable outputs.

Notice that a simple coin tossing protocol where parties commit to local ran-
domness and then output the sum of the opened values is not sufficient, as parties
can bias the output with a selective abort strategy, where they open or not their
commitments depending on their view so far. Hence, several alternatives for con-
structing randomness beacons have been proposed based on publicly verifiable
secret sharing (PVSS) [25, 8, 9, 34, 32, 4], verifiable random functions (VRF) [11,
15, 14, 22, 19, 35], verifiable delay functions (VDF) [5, 37, 3, 2, 31] and homomor-
phic encryption [12]. Moreover, achieving fairness against rational adversaries
via financial punishments has been proposed by the RANDAO project [29].

Constructions using plain VRFs require very little computation and commu-
nication, but are open to the aforementioned selective abort bias. Since they rely
on the computation of a VRF by a party who has a certain secret key, an adver-
sarial party can always bias the final output by choosing whether to reveal or
not their own VRF output under its secret key (see [15]). Threshold (also called
distributed) VRFs, or TVRFs, solve this by always allowing a large enough set
of parties (e.g. a majority of parties) to compute the verifiable random function,
after a setup that consists on a distributed key generation protocol. However,
current TVRF-based random beacons protocols simply apply the TVRF to the
previous output of the beacon, defining the new beacon output as some fixed
function of the new TVRF output. This approach requires a fixed initial seed to
which the TVRF is applied in the first round, and since the entropy of such seed
is of course finite, the unpredictability guarantees of the process will on the long
run necessarily deteriorate. To the best of our knowledge there is no analysis of
how exactly this plays out.

Finally, PVSS-based beacons such as SCRAPE [8] and ALBATROSS [9] en-
hance the commit-and-open strategy mentioned above by having parties commit
to their inputs via PVSS. This renders the selective abort strategy useless, since
unopened secrets can always be reconstructed by an honest majority of parties.
On the downside, such protocols require more communication and computation.
Although ALBATROSS [9] allows parties to generate a large batch of outputs
with little overhead, these outputs are all revealed at once, instead of gradually
providing fresh random values, as in TVRF-based protocols.

There are a number of recent works on constructing randomness beacons
from time based primitives, such as Time Lock Puzzles (TLP) [30, 6, 24, 18] and

2

Verifiable Delay Functions (VDF) [5, 28, 37, 16]. Such protocols [5, 3, 2] require a
structured common reference string as setup and achieve communication com-
plexity linear in the number of parties but are based on sequential computation
assumptions, e.g. [30] and [16]. These assumptions are arguably less understood
than classical assumptions such as the Decisional Diffie-Hellman (DDH) assump-
tion, upon which PVSS and (T)VRF-based beacons can be constructed. Hence,
we focus on the latter, basing all our constructions on DDH. However, time-based
primitives can potentially be used to instantiate Tier 2 of our beacon.

1.1 Our Contributions

In this work, we aim to combine the PVSS and (threshold) VRF approaches
to obtain a best-of-both-worlds “multi-tiered” randomness beacon construction.
Moreover, as a key part of Mt. Random’s construction, we design a novel protocol
for publicly verifiable and unbiasable distributed key generation. Finally we also
present GULL (Gradually UnLeashed aLbatross), a new PVSS-based beacon
that generates a large batch of random outputs like ALBATROSS but allows for
gradually releasing of smaller “sub-batches” of outputs. All of our constructions
are publicly verifiable and proven secure against malicious adversaries under a
single standard assumption, i.e. Decisional Diffie Hellman (DDH).

Mt. Random: A multi-tiered randomness beacon More precisely, Mt.
Random is a protocol where VRF, TVRF and PVSS-based random beacons are
run as independent tiers executed in parallel. Each tier offers a different trade-
off between complexity and randomness quality. By using the outputs of each
tier as seeds for the next one, we aim at constructing a flexible architecture for
randomness beacons that achieves good concrete efficiency without sacrificing
security guarantees. Moreover, our approach allows for higher level protocols
to choose what tier to use when obtaining randomness, according to the best
complexity vs. randomnness quality trade-off for each application. At a glance,
Mt. Random is constructed as follows:

– Setup - Distributed Key Generation (DKG): All Tiers use a Public
Ledger for communication in order to achieve public verifiability and Tiers
1 and 2 use our novel DKG protocol to obtain threshold key pairs.

– Tier 1 - Uniform Randomness via PVSS with GULL: This tier gives
O(n) individual batches of O(n) uniformly random outputs with communi-
cation and computational complexities of O(n2) for n parties.

– Tier 2 - Uniform Pseudorandomness via TVRFs: This tier uses a
fresh output from Tier 1 as a seed when a new one is needed, providing
1 uniformly pseudorandom output per execution with communication and
computational complexities linear in the number of parties running the tier.

– Tier 3 - Bounded-Biased Pseudorandomness via VRFs: This tier
uses a fresh output from Tier 2 as a nonce when a new one is needed.
Communication and computational complexities depend on output bias, i.e.
the lower the complexity the higher the adversarial bias on the output.

3

Publicly Verifiable Distributed Key Generation We introduce a new pub-
licly verifiable distributed key generation (DKG) protocol that can provide both
the keys needed for the threshold encryption used in GULL (Tier 1) and for the
TVRF (Tier 2). The security of our DKG scheme is based solely on DDH (in the
random oracle model) and it guarantees that the public key cannot be biased by
a rushing adversary (unlike in some other alternatives). In terms of communi-
cation and computation, our protocol is more efficient than previous unbiasable
DKG schemes and essentially as efficient as the best biasable schemes.

GULL (Gradually UnLeashed aLbatross) We introduce GULL, a PVSS-
based random beacon that generates O(n) individual sub-batches of O(n) ran-
dom outputs each, where n is the number of parties in the protocol. Differently
from the previous work ALBATROSS, all sub-batches remain initially hidden
and can be opened at different points of time. Opening one sub-batch gives no
information about the yet unopened ones. While GULL is marginally slower
than ALBATROSS if a full batch of random outputs is required, it is signifi-
cantly more efficient when a sequence of fresh unpredictable outputs are required:
GULL allows for preprocessing a large amount of sub-batches of uniformly ran-
dom outputs that can be gradually revealed at a low cost.

1.2 Technical Overview

Besides the Mt. Random architecture described above, our main technical con-
tributions are novel protocols for PVSS-based randomness generation (GULL,
used for implementing Tier 1) and for distributed key generation (used by both
Tiers 1 and 2). We describe our main novel techniques.

Distributed Key Generation Departing from SCRAPE and ALBATROSS,
we construct a DKG secure under the DDH-assumption and compatible with
threshold El Gamal and TVRFs. Our goal is to establish a common public key
tpk = gtsk and partial public keys of the form tpki = gtski , where each party
Pi receives secret keys tski that are Shamir shares for tsk. The aforementioned
PVSS-based beacons output a group element gr, that can be set as tpk. This
is essentially constructed by having each party deal a secret gs by constructing
Shamir shares σi of s and encrypting gσi under Pi’s public key. Then gr is defined

by aggregating the gs that were shared correctly (i.e. gr =
∏

gs
(a)

where s(a) is
correctly shared by Pa). In the process of reconstructing gr, parties obtain partial
public keys tpki by decrypting the shares they have received and aggregating

them (i.e. tpki =
∏

gσ
(a)
i), while proving the validity of the process.

However, parties do not obtain the corresponding partial secret keys ski from
the PVSSs, as parties only obtain values gσi but not σi. In our DKG, we modify
the secret sharing phase described above, by having dealers also send a cipher-
text containing the Shamir share σi which can only be decrypted by learning the
corresponding “group share” gσi . This guarantees that only party Pi can recon-
struct σi. However, we then need to deal with the case where Pi detects that the

4

group share and Shamir share are inconsistent with each other. In comparison
to Fouque-Stern DKG, where the use of Paillier encryption allows the dealer to
construct an elegant, but expensive, proof of the fact that the two values are the
same, here this is not possible. Instead, we resort to a dispute resolution where
the complaining party Pi reveals the received Shamir share and either Pi or the
dealer of that share is disqualified. Revealing this share does not harm privacy
since one of the two parties will be disqualified and that share will never be used.

One technical novelty we introduce with respect to ALBATROSS, which we
will also exploit later in GULL, lies in the order of operations: in ALBATROSS
parties first decrypt and reveal each gσi , jointly reconstruct the secrets gs of
each dealer, and these opened secrets are aggregated to create the final output
gr; here, instead, parties aggregate their encrypted shares first and only reveal
(and prove correctness of) the aggregated shares, which become the partial keys
public tpki; then tpk is reconstructed from the tpki. This change of order can be
done because the operations involved are linearly homomorphic.

GULL While the ALBATROSS construction provides a large uniformly random
output, one problem is that the whole output is reconstructed by the participants
at once. In Mt. Random and other applications, it is instead desirable that
parts of this output are released gradually, while the rest of the output is kept
hidden. We depart from ALBATROSS to construct GULL, a random beacon that
accomplishes this. In ALBATROSS, the output consists of ℓ · ℓ′ group elements,
that we can group as ℓ′ blocks of ℓ elements each; all these blocks are released at
once. In GULL, parties execute the beginning of the protocol as in ALBATROSS
(until the whole output is fixed), but then can release every block of ℓ outputs
independently. Every block release needs little communication and computation
and blocks not yet released are unpredictable given the opened ones.

In order to do this, after parties publish their encrypted shares and correct-
ness proofs, and the set Q of dealers who have shared their secret correctly has
been set, every party aggregates their shares received from the different dealers
as a first step, then decrypts their aggregated shares, but rather than com-
municating them, they re-encrypt them under threshold El Gamal encryption,
proving this encryption is correct and consistent with the rest of the protocol.
We introduce and analyse a protocol πEG for this proof. At this point, there are
ℓ′ blocks of ℓ secrets shared, where for each block the vector of ℓ secrets is shared
via packed Shamir secret sharing, and at least t+ℓ receivers have encrypted their
share with threshold El Gamal. Due to linearity of both the El Gamal scheme
and the secret sharing reconstruction, the encryptions of the secrets in a block
can be computed from any set of t + ℓ encrypted shares. Now a large enough
subset of parties can decrypt each coordinate of the secret. Unfortunately, de-
crypting one of these coordinates may give information about the other secret
coordinates in the same block, so we release all of the block of ℓ coordinates at
once. However, the remaining unopened blocks of ℓ coordinates are still secret
and uniformly distributed in the view of any subset of t parties.

5

1.3 Related Works

Scheme Comp. (Exp/Enc/Dec) Comm. (bits) Rounds Bias Assump.
Resist.

Pedersen [27] nt+ 5n+ t+ 1 (2n2 + tn+ n)kq 1 + 2 No DDH

Gennaro et al. [20] 2nt+ 11n+ 3t+ 3 (4n2 + 2tn+ 2n)kq 2 + 3 Yes DDH

Fouque-Stern [17] (nt+ 5n+ t+ 1) Exp. (2n2 + tn+ n)kq 1 No DDH
+4n Enc+n Dec +2n2kh + 3n2kN +DCR

F-S [17] in terms nt+ 18005n+ t+ 1 (28n2 + tn+ n)kq 1 No DDH
of Exp. and kq +DCR

Our Result 9n+ t+ 2 (2n2 + tn+ 5n)kq 2 + 2 Yes DDH

Table 1: Comparison of DKG schemes where n is the total number of parties, t is
the number of corrupted parties, kq is the number of bits of an element of Gq or Zq,
kN is the number of bits of the Paillier cryptosystem modulus N and kh is the output
length of a hash function. Exp, Enc, Dec stand for operation of G (i.e. exponentiation),
Paillier encryption and Paillier decryption, respectively. We consider that Pedersen and
Gennaro et al. have private messages encryted under El Gamal. For typical parameters
kq = 256, kN = 2048, we have kN = 8kq, Enc=3600 Exp and Dec=4880 Exp.

Distributed Key Generation While most distributed key generation (DKG)
protocols employ secret sharing similarly to the one we introduce, the key differ-
ences lie on how parties prove the correctness of their shares and their consistency
with the public information they post. Possibly the best known is Pedersen’s pro-
tocol [27], where parties use a Feldman’s VSS to do this, resulting in a protocol
with at least 1 round of interaction, and 2 additional rounds if there are dis-
putes. Gennaro et al. [20] observed that malicious parties can bias the public
key generated by Pedersen’s DKG and fixed this problem by introducing a new
round of interaction and a new round of dispute resolution. Fouque and Stern
[17] proposed a publicly verifiable one-round DKG based on the Paillier cryp-
tosystem that still allows the adversary to bias public keys. A recent work by
Gurkan et al. [21] introduces a publicly verifiable DKG with communication
complexity of O(n) based on the notion of aggregation via gossip. However, this
protocol is based on pairing assumptions, stronger than our DDH assumption,
and also outputs group elements as secret keys (rather than elements in Zq), i.e.
the output is incompatible with threshold El Gamal encryption. It would be very
interesting to achieve the type of output keys we need with gossip techniques.

In Table 1, we compare DKG protocols in terms of computation, communica-
tion, number of rounds (fixed rounds+dispute resolution rounds), assumptions
and biasability of the global public key. Since Pedersen’s and Gennaro et al.’s
protocols need private communication between parties, we assume that this is
done through the public ledger using El Gamal encryption. For comparing to
Fouque-Stern, we estimated that Paillier encryption and decryption are equiva-
lent to 3600 and 4880 group operations over a DDH-hard group, respectively, at
the 128-bit security level, on a Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz

6

using the RELIC library [1]. Our protocol requires almost the same communica-
tion as Pedersen’s, differing only in lower order terms, and less communication
than Gennaro et al. and Fouque-Stern, especially when compared with the lat-
ter, since kN is larger than kq (we can currently assume kq = 256, kN = 2048).
On the other hand, Pedersen and of course Fouque-Stern have better round
complexity, at the cost of allowing bias on the public key.

Computation
Comm.
Ledger

Output
Size

Bias
Resist.

Comp.
Assumption

Setup
Assumption

GRandPiper [4] O(n) O(n2) 1 Yes q-SDH SCRS

HydRand [32] O(n) O(n2) 1 Yes DDH PKI, RO

ALBATROSS [9] O(n2 logn) O(n2) O(n2) Yes DDH PKI, RO

GULL (generation) O(n2) O(n2) O(n2) Yes DDH PKI, RO

GULL (opening) O(n2) O(n2) O(n) Yes DDH PKI, RO

DRAND [35] O(n) O(n) 1 Yes Gap-DH
DKG, RO,
Many URS

Ouroboros Praos [15] O(n) O(n) 1 No CDH
PKI, RO,

URS

Original VDF [5] VDF O(n) 1 Yes VDF SCRS

RandRunner [31] VDF O(n) 1 Yes VDF URS, RO

Mt. Random-Tier 1 O(n2) O(n2) O(n) Yes DDH PKI, RO

Mt. Random-Tier 2 O(n) O(n) 1 Yes DDH
PKI, RO,
Tier 1

Mt. Random-Tier 3 O(n) O(n) 1 No DDH
PKI, RO,
Tier 2

Table 2: Comparison of random beacon protocols according to computation in terms
of modular exponentiations, communication in terms of bits posted on public ledger,
bias resistance, computational assumption and setup assumption. n=number of par-
ties, PKI=Public Key Infrastructure, RO=Random Oracle, SCRS=Structured Com-
mon Reference String, URS=Uniform Random String, VDF=computational cost of
VDF evaluation. In GULL (generation), “Output size” means that a batch of O(n2)
encrypted random elements are prepared but not opened until the Opening phase.

Randomness Beacons Mt. Random is the first random beacon of its kind, i.e.
combining different sub-protocols generating fresh random outputs each with a
different randomness quality vs. efficiency trade-off. Previous works have focused
on improving one specific approach to randomness generation instead of combin-
ing multiple approaches. On the other hand, in introducing the novel multi-tiered
architecture of Mt. Random the main hurdle was supporting protocols compat-
ible with all Tiers and based on a single assumption (DDH): the new DKG
protocol used for Tiers 1 and 2 and the new Tier 1 beacon GULL that allows
for efficiently gradually releasing large batches of random outputs. Hence, when
comparing with previous works, we focus on comparing each previous work with a

7

specific tier of Mt. Random. Besides communication/computational/round com-
plexity, we also take into consideration the supporting protocols required as setup
by previous works and the security assumptions they are based in, since provid-
ing a cohesive suite of protocols based on a single assumption is a key feature of
Mt. Random. A comparison is presented in Table 2.

In comparing Mt. Random with previous works it is useful to observe the
following correspondences between its Tiers and each previous protocol: Tier 1
consists of executing GULL’s generation phase and then successively opening
individual sub-batches of outputs; Tier 2 consists of running a DDH-based ver-
sion of DRAND using seeds from Tier 1; Tier 3 consists of running Ouroboros
Praos using nonces from Tier 2. Tier 1 is has a little overhead with respect to the
state-of-the-art beacon ALBATROSS in case O(n2) outputs are needed at once,
but has an advantage within Mt. Random’s architecture where sub-batches of
fresh O(n) outputs are frequently required. In this case, ALBATROSS would
have to be executed n times to obtain the same amount of fresh randomness
batches, resulting in complexity much hire than that of Tier 1 using GULL.
Tiers 2 and 3 naturally have the same complexity as DRAND and Ouroboros
Praos. However, instead of relying on stronger assumptions, an external DKG
phase and an external source of fresh seeds as is the case of DRAND, Tier 2 is
fully based on DDH and receives keys and fresh seeds from our DKG protocol
and Tier 1, which are also based on DDH. Hence, the main advantage of Mt.
Random is providing a self-contained infrastructure for executing its upper Tiers
based on a single well studied assumption without sacrificing efficiency, which is
made possible by our novel DKG and GULL protocols respectively executed for
generating threshold keys and running Tier 1.

2 Preliminaries

For integers m ≤ n, [m,n] denotes the set {m,m+1, . . . , n}. We let [n] = [1, n].
Our protocols take place in a cyclic group G of prime order q. We denote by Zq

the finite field of q elements (for the same prime q), consisting of the integers
modulo q, and note that we can speak of ga for g ∈ G, a ∈ Zq and this respects
the rule ga · gb = ga+b where the sum is in Zq. Finally Zq[X]≤d denotes the set
of polynomials in Zq[X] with degree at most d.

2.1 Adversarial and Communication Models

We consider security against a malicious static adversary, which may arbitrarily
deviate from the protocol but chooses what parties to corrupt before the exe-
cution starts5. The adversary will corrupt at most (n − ℓ)/2 parties, for some
integer ℓ > 0, which we think of as a small fraction of n. For simplicity, we
assume access to an authenticated bulletin board. Once a party posts a message

5 This is the model assumed by most random beacon constructions with the only
exception (to the best of our knowledge) of [15], and proving security against adaptive
adversary would require expensive techniques such as non-committing encryption.

8

to the bulletin board, it becomes immutable and immediately available to all
other parties, who can also verify the authenticity of the message (i.e. that it
was indeed posted by a given party). Such a bulletin board could be substituted
by a blockchain based public ledger, a public key infrastructure and digital sig-
natures; however, modeling the corner cases that arise in this scenario introduces
a number of technicalities that are not the main focus of this work. We assume
synchronous communication: messages sent (or posted to the bulletin board) in
a round are guaranteed to be received by all honest parties by the next round.
Our protocols can be extended to the partially synchronous setting (i.e. with ad-
versarially controlled but finite communication delays) via standard techniques
(e.g. waiting for a majority of valid shares to be received [9, 3, 2]).

2.2 Packed Shamir Secret Sharing

Secret sharing allows to distribute a secret among n parties P1, . . . , Pn by de-
livering a share to each party, so that only certain subsets of these parties can
later reconstruct it by pooling together their received shares.

In (t, ℓ)-packed Shamir secret sharing over Zq (with q prime), the secret is
a vector (s0, . . . , sℓ−1) ∈ Zℓ

q, and order to share this secret, the dealer chooses
f ∈ Zq[X]≤t+ℓ−1 with f(−j) = sj for j ∈ [0, ℓ − 1], and sends the evaluation
σi := f(i) as share to party Pi. Here we are assuming that q ≥ n+ ℓ, so that the
evaluation points −j for the secrets and i for the shares are disjoint. The more
classical Shamir secret sharing scheme is the case ℓ = 1. The (t, ℓ)-packed Shamir
secret sharing satisfies t-privacy, meaning that the secret vector is distributed
independently from any set of t shares, and t+ ℓ-reconstruction, i.e., the secret
vector can be recovered from any set A of t+ ℓ shares. For the latter, Lagrange
interpolation can be used: each secret coordinate can be reconstructed as a linear
combination of the shares in the set. Namely, sj =

∑
i∈A Li,A(−j) · σi for the

Lagrange polynomials Li,A(X) =
∏

k∈A,k ̸=i
X−k
i−k .

2.3 Non-interactive zero knowledge proofs

In a zero knowledge proof of knowledge a prover wants to convince a verifier
that she knows a piece of information (witness) that makes certain statement
true without revealing anything about this witness. Non-interactive proofs carry
out this with a single message from the prover. We consider proofs for public
verifiers, meaning anyone can verify the proof. We need non-interactive zero-
knowledge proofs of knowledge for two types of statements in a cyclic group of
prime order q: discrete logarithm equality (DLEQ) proofs [10] and low-degree
exponent interpolation (LDEI) [9]. In fact, DLEQ proofs can be seen as a special
case of LDEI proofs. Both can realized from Sigma-protocol techniques.

In a LDEI proof, the statement is given by a vector of elements of the group,
and the prover claims that their discrete logarithms with respect to a given
vector of public generators are evaluations of a polynomial of degree lower than
certain bound. If we set this bound to be 0 (i.e. the only accepted polynomials

9

are constants) then we have a DLEQ proof: we are proving that the discrete
logarithm of the given elements with respect to the generators are all equal. A
non-interactive LDEI proof of knowledge (in the random oracle model) of the
interpolating polynomial was presented in [9] and is given in Figure 1.

Low-degree exponent interpolation (LDEI) ZKPoK
πLDEI((gi)

m
i=1, (xi)

m
i=1, d).

Setup: Finite group G of prime order q, fixed pairwise distinct elements α1, . . . , αm

in Zq, a random oracle H : G3m → Zq.
Public inputs: g1, . . . , gm, x1, . . . , xm ∈ G, d ∈ Z, d ≥ 0.
Statement: The prover knows w(X) ∈ Zq[X]≤d with xi = g

w(αi)
i ∀i ∈ [m].

Protocol:
– The prover samples u(X)← Zq[X]≤d and computes ai = g

u(αi)
i for all i ∈ [m],

e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am), and z(X) = u(X) − e · w(X). The
proof is (e, z).

– The verifier computes ai = g
z(αi)
i xe

i ∀i ∈ [m] and accepts iff deg z ≤ d and
e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am).

Fig. 1: LDEI zero knowledge proof of knowledge πLDEI from [9].
πDLEQ((gi)

m
i=1, (xi)

m
i=1) will denote the case d = 0.

2.4 Publicly Verifiable Secret Sharing (PVSS)

A publicly verifiable secret sharing scheme allows any external party to verify the
correct sharing and reconstruction of a secret, with the help of zero knowledge
proofs posted respectively by the dealer and the reconstructing parties. We will
base our constructions upon techniques from SCRAPE [8] and the subsequent
modifications in ALBATROSS [9]. These schemes in turn follow the blueprint
of Schoenmakers’ PVSS [33]. The PVSS in ALBATROSS can be seen as a gen-
eralization of SCRAPE that allows for a flexible trade-off where the dealer can
share a vector of ℓ group elements, while at most t ≤ (n − ℓ)/2 parties can be
corrupted if we want both t-privacy and (n − t)-reconstruction, which will be
necessary later. In contrast, the parameters in SCRAPE (and in Schoenmakers’
PVSS) would correspond to the case ℓ = 1. The amortized computation and
communication per secret shared in ALBATROSS becomes much better as ℓ
grows.

If a party correctly PVSSs a secret, meaning that the (publicly verifiable)
proof of correct sharing is valid, then this party is committed to the secret in
a way that the commitment can be opened by a large enough set of honest
share-receivers, regardless of whether the dealer wants to open it. This allows to
construct a commit-and-open random beacon that does not present the prob-
lem that parties may decide on opening their commitments depending on other

10

opened commitments they have seen. More precisely, in a PVSS-based random
beacon each party PVSSs a random secret and everyone can compute the set Q
of parties that have correctly shared; all the secrets dealt by parties in Q are then
opened and the final output is obtained by applying a randomness extractor to
these opened secrets, which guarantees that the result is uniformly random and
independent from the inputs of any set of t parties. The randomness extractor
in ALBATROSS is built from a t-resilient matrix, which we define next.

Definition 1. A matrix M ∈ Zr×m
q is t-resilient if for any A = {i1, ..., it} ⊆ [m]

of size t, Mv is independent from the coordinates of v indexed by A, i.e. for any
(y1, . . . , yt) ∈ Zt

q, the distribution of Mv when conditioned to vi1 = y1, . . . , vit =
yt and (vj)j /∈A being uniform in Zm−t

q , is uniform in Zr
q.

A t-resilient matrix with the parameters above needs to satisfy r ≤ m − t.
An optimal choice (i.e. r = m− t) is to let M be a transpose of a Vandermonde
matrix (we are assuming q ≥ m). For computation efficiency reasons, [9] chooses
M with entries Mij = αi·j for some α ∈ Zq of order larger than r ·m.

In our case, m = n− t (as we can only guarantee n− t parties have correctly
shared their inputs) and thus ℓ′ = n − 2t is the maximum size of the output
of the t-resilient function. In [9], parameters were set such that ℓ′ = ℓ. In this
paper, we keep ℓ and ℓ′ = n− 2t as two separate parameters.

For reference, we include a description of ALBATROSS using our notation
in Appendix A.

2.5 Verifiable Random Functions (VRFs)

A verifiable random function (VRF) [26] is a pseudorandom function that can
be evaluated by the owner of a secret key, who at the same time gets a proof
or correct evaluation that can be verified with the corresponding public key. A
VRF scheme consists of three algorithms (λ is a security parameter):

– KeyGen(1λ): outputs a public and secret key pair (pk, sk).
– Eval(sk, x) is a deterministic algorithm which outputs a pair (y, π) where y is

the output of the function and π is a proof.
– Verify(pk, x, y, π) is a probabilistic algorithm that outputs 0 or 1 (respectively

meaning ”reject” or ”accept” the proof).

It has been observed in [15] that the standard VRF security definition is
not sufficient in the randomness beacon setting. Pseudorandomness only holds
if the key pair has been honestly generated (i.e. by KeyGen) but when it is gen-
erated maliciously the adversary can bias VRF outputs. In VRF-based beacons
(e.g. Figure 3), the adversary can generate its own key pairs maliciously, and
hence we require the VRF to be unpredictable under malicious key generation as
defined in [15]. A VRF scheme (KeyGen(1λ),Eval(sk, x),Verify(pk, x, y, π)) with
unpredictability under malicious key generation is secure if it holds that:

– (complete provability): for every (pk, sk) generated by KeyGen, and every x,
if (y, π) = Eval(sk, x) then Verify(pk, x, y, π) = 1 with overwhelming proba-
bility;

11

VRF from Ouroboros Praos

Setup: Let G be a cyclic group of prime order q, with generator g. LetH : {0, 1}∗ →
{0, 1}ℓV RF and H ′ : {0, 1}∗ → G be random oracles. In addition we implicitely need
a random oracle H∗ : {0, 1}∗ → Zq for the DLEQ proof.
Commands:
– KeyGen(1λ) chooses a uniformly random sk ∈ Zq, sets pk = gsk and outputs

(pk, sk)
– Eval(sk, x) sets y = H(x, u) where u = H ′(x)sk. It moreover defines π =

(u, πDLEQ((g,H
′(x)), (pk, u))), the latter being the proof that gk = pk and

H ′(x)k = u for a common k, in this case k = sk. It outputs (y, π).
– Verify(pk, x, y, π) parses π = (u, π′), checks that π′ is a correct DLEQ proof for

(g,H ′(x)), (pk, u)) and checks y = H(x, u). It accepts if all these checks pass.

Fig. 2: VRF with unpredictability under malicious key generation [15].

– (unique provability): for every x, any y1 ̸= y2, and any proofs π1, π2, then
at least one of Verify(pk, x, y1, π1) or Verify(pk, x, y2, π2) output 0 with over-
whelming probability.

– (pseudorandomness): no PPT adversary can distinguish between Eval(sk, x)
and a uniformly random string, even when having chosen x, after seeing pk.

– (unpredictability under malicious key generation) no PPT adversary who
generated (pk, sk) arbitrarily can distinguish between Eval(sk, x) and a uni-
formly random string for an unknown uniformly random x.

VRF-based beacon

Setup: An initial seed σ0, and a random oracle H : {0, 1}ℓV RF → {0, 1}m.
Beacon:
1. Each Pi executes KeyGen(1

λ) of the VRF obtaining (pki, ski) and publishes pki.
2. At round r = 1, 2, . . . : Let mr = r||σr−1.

(a) Every party Pi computes and publishes (σi
r, π

i) = Eval(ski,mr).
(b) Each party defines I to be the set of i for which Verify(pki,mr, σ

i
r, π

i) passes
and computes σr =

⊕
i∈I σ

i
r. The output of this round is wr = H(σr).

Fig. 3: VRF-based beacon from [15].

We describe in Figure 2 the VRF with unpredictability under malicious key
generation from [15]. A randomness beacon based on this VRF was presented
in [15], and is described in Figure 3. The beacon uses an initial seed σ0 which
may come from a CRS or, as will happen in our multi-tiered beacon, as an output
from some protocol. The beacon proceeds iteratively as follows: At each round
r each party has a key-pair for a VRF and evaluates the VRF on the seed σr−1

12

obtaining σi
r. The parties compute σr as the XOR of the correctly computed σi

r

(which the can check using the verification procedure and the public keys). The
output of that round is the hash H(σr), while σr is used as seed for the next
round. Note that malicious parties may bias the result by waiting until honest
parties publish their evaluations of the VRF and then deciding whether they
publish theirs.

2.6 Threshold Verifiable Random Functions (TVRFs)

Analogously to the case of signatures, one can define a distributed notion of
verifiable random functions, where each party can compute a partial evaluation,
and any t+1 valid partial evaluations can be combined to obtain the global eval-
uation of the VRF. Following [19] we define a TVRF as the tuple of algorithms
below, where as usual t denotes the corruption threshold:

– DistKeyGen(1λ): outputs secret keys tski, i ∈ [n], corresponding public partial
keys tpki and global public key tpk.

– PartialEval(x, tski, tpki) is a deterministic algorithm which outputs a pairmi =
(yi, πi) where yi is a partial evaluation and πi is a proof.

– Combine(tpk, {tpki}, x, A, (mi)i∈A), where A ⊆ [n] with |A| ≥ t + 1, outputs
either (y, π) consisting of global evaluation y and a global proof π, or ⊥.

– Verify(tpk, x, y, π) is a probabilistic algorithm that outputs 0 or 1 (respectively
meaning “reject” or “accept” the proof).

A TVRF has the following properties:

– Consistency: Given any x, when we apply Combine to any ≥ t + 1 correct
partial evaluations (mi)i∈A, we obtain the same y.

– Robustness: If Combine outputs a pair (y, π), then Verify(tpk, x, y, π) = 1
– Uniqueness: for every x, for any y1 ̸= y2, and any proofs π1, π2, then at least

one of Verify(tpk, x, y1, π1) or Verify(tpk, x, y2, π2) output 0 with overwhelm-
ing probability.

– Pseudorandomness: roughly, the adversary correcting t parties cannot dis-
tinguish the output of the function from a uniformly random value, even
when chosing the input.

We describe in Figure 4 a DDH-based threshold VRF inspired by a thresh-
old Boneh-Lynn-Shacham (BLS) signatures from in [19]. Notice that the origi-
nal DRAND/Dfinity TVRF uses actual pairing based threshold BLS signatures
in order to achieve compact proofs. Both this construction and the improved
GLOW TVRF construction are proven secure in [19] and could serve as a build-
ing block for the DRAND/Dfinity beacon. However, we present the DDH based
version for the sake of simplicity and for making it clear that all Mt. Random
building blocks can be instantiated from DDH in the ROM. Note that we do not
make the instantiation of DistKeyGen explicit, as we both introduced our own
scheme in Section 3 and discussed a number of alternatives in the Introduction.

The DRAND/Definity beacon we alluded to above is given in Figure 5. Notice
that, in the threshold scenario, the pseudorandomness property of the standard

13

DDH-based threshold VRF (DDH-DVRF in [19])

Setup: Let G be a cyclic group of prime order q, with generator g. LetH : {0, 1}∗ →
G a random oracle. In addition we implicitly need a random oracle H∗ : {0, 1}∗ →
Zq for the DLEQ proof.
Commands:
– DistKeyGen(1λ) The distributed key generation creates tski ∈ Zq such that

(tski)
n
i=1 is a valid Shamir sharing of some secret tsk ∈ Zq. It outputs public

tpki = gtski and tpk = gtsk, and privately tski only to party Pi, for i ∈ [n].
– PartialEval(x, tski, tpki): yi is computed by Pi as yi = H(x)tski . In addition

compute πi = πDLEQ((g,H(x)), (tpki, yi)).
– Combine(pk, {tpki}, x, A, (yi, πi)i∈A): A subset A′ ⊆ A is selected such that A′

has cardinality t + 1 and πi is accepted for i ∈ A′. Then y =
∏

i∈A′ y
Li,A′ (0)

i

and π = (yi, πi)i∈A′

– Verify(tpk, x, y, π): Parse π = (yi, πi)i∈A′ , verify all πi for i ∈ A′, and check

whether y =
∏

i∈A′ y
Li,A′ (0)

i . Output 1 if all checks pass, otherwise output 0.

Fig. 4: DDH-based threshold VRF (DDH-DVRF in [19]).

definition is sufficient to guarantee that VRF outputs are unbiased because dis-
tributed key generation guarantees that keys are correctly generated.

The DRAND/Dfinity beacon

We assume t ≤ (n−1)/2, so there are at least t+1 honest parties. We fix an initial
seed σ0 and H ′ : G→ {0, 1}∗ a hash function.
1. Parties invoke DistKeyGen from the TVRF to obtain the keys (tsk, tski, tpki).
2. At round r = 1, 2, . . . : Let mr = r||σr−1.

(a) Pi computes and broadcasts (yi, πi) = PartialEval(mr, tski, tpki).
(b) Each party applies locally Combine(pk, {tpki}i∈[n],mr, [n], ((yi, πi))i∈[n])

obtaining values (y, π).
(c) We define σr = y (for use in the next round). The output of round r is

z = H ′(σr).
Note that at each step, a public verifier can attest the correctness of the computation
by running Verify(tpk, x, y, π).

Fig. 5: The DRAND/Dfinity beacon.

2.7 Threshold Encryption

A threshold encryption scheme allows to encrypt a message towards a group of
receivers, such that the message can be decrypted by any t+1 of them, but not
less. A threshold encryption scheme is composed by the following algorithms:

14

– DistKeyGen(1λ): outputs secret keys tski, i ∈ [n], corresponding public partial
keys tpki and a global public key tpk.

– Enc(tpk,m) outputs a ciphertext E.
– LocalDec(tpki, tski, E) outputs a partial decrypted message xi.
– GlobalDec(tpk, I, {tpki}i∈I , {xi}i∈I , E), where I ⊆ [n] with |I| ≥ t + 1, out-

puts a decrypted message m′ or an error ⊥.

We describe informally below the properties we want from a threshold encryp-
tion scheme, following the work of [13], which we refer to for formal definitions.
These are attained by the threshold version of El Gamal encryption that we
show in Figure 6.

– Completeness: If the keys have been honestly generated with DistKeyGen, a
messagem honestly encrypted, and a set I of at least t+1 honest parties have
computed correct partial decryptions xi of the corresponding cyphertexts
with their keys, then GlobalDec, taking that cyphertext and the public keys
and partial decryptions of I, will output m

– Robustness: Given as inputs 2 subsets I and J of at least t+ 1 parties and
their corresponding partial decryptions of a same cyphertext, if GlobalDec
does not reject then it outputs the same message on both inputs with over-
whelming probability.

– IND-CPA against static corruption: We assume the adversary corrupts a
set A of at most t parties at the beginning of the protocol. The scheme is
IND-CPA secure if the adversary cannot guess (with success probability non-
negligibly larger than 1/2) the plaintext corresponding to a given cyphertext,
even if this a cyphertext encrypts a message from a set of 2 possible messages
that the adversary has chosen, and given of course that the adversary knows
all the public keys and the secret keys corresponding to A.

3 Distributed Key Generation via PVSS

We introduce a DKG protocol πDDH−DKG in Figure 7 that is publicly verifiable
and guarantees the adversary cannot bias the global public key. Moreover, the
πDDH−DKG can be easily extended to generate more than one threshold key
pair (Remark 2) and to refresh existing secret key shares (Remark 1). We for-
mally analyse the security of πDDH−DKG in the real/ideal simulation paradigm
with sequential composition. This paradigm is commonly used to analyse cryp-
tographic protocol security and provides strong security guarantees, namely that
several instances of the protocol can be executed in sequence while preserving
their security. More details about this model can be found in [7]. Concretely, we
will prove that πDDH−DKG securely implements the functionality FDDH−DKG

in Figure 8.

Theorem 1. Under the DDH assumption and assuming an authenticated bul-
letin board, πDDH−DKG securely realizes FDDH−DKG in the random oracle
model against a malicious static PPT adversary A corrupting t ≤ n−1

2 parties.

15

Threshold El Gamal encryption scheme.

Setup: Let G be a cyclic group of prime order q, with generator g.
Commands:
– DistKeyGen(1λ): The distributed key generation creates tski ∈ Zq such that

(tski)
n
i=1 is a valid Shamir sharing of some secret tsk ∈ Zq. It outputs public

tpki = gtski and tpk = gtsk, and privately tski only to party Pi, for i ∈ [n].
– Enc(tpk,m): To encrypt a message m ∈ G, sample r uniformly at random in

Zq, and output E = (gr, tpkr ·m) := (c, d) ∈ G2

– LocalDec(tpki, tski, E) outputs xi = (yi, πi) where yi = ctski and πi =
πDLEQ((g, c), (tpki, yi)).

– GlobalDec(tpk, I, {tpki}i∈I , {xi}i∈I , c) outputs⊥ if no more than t DLEQ proofs
πi, i ∈ I pass. Otherwise, it takes a subset I ′ ⊆ I of cardinality exactly t + 1
such that πi∈I′ are all correct, and computes

m′ = d · (
∏
i∈I′

y
−Li,I′ (0)

i)

Fig. 6: Threshold El Gamal encryption scheme

Proof. In order to prove this theorem, we construct a simulator S that interacts
with the adversary A and with functionality FDDH−DKG in such a way that
view of A in a real execution of πDDH−DKG is indistinguishable from its view
in an ideal execution with S and FDDH−DKG. Let P

A be the set of corrupted
parties. S simulates the bulletin board and the random oracle towards A and
proceeds as follows:

1. In round 1, S proceeds as follows:

– Upon receiving (Gen, sid, Pa) from FDDH−DKG for an honest party Pa,
S acts exactly as an honest party would, sampling a random s(a) ∈
Zq, dealing it with the SCRAPE PVSS and, for all i ∈ [n], posting

Ŝ
(a)
i , π(a), E

(a)
i on the bulletin board. Finally, add Pa to Q, i.e. the set

of parties who provide valid shares.

– When A posts Ŝ
(a)
i , π(a), E

(a)
i for i = 1, . . . , n on the bulletin board on

behalf of a corrupted party Pa ∈ PA, S checks whether to add Pa to Q
or not:

(a) Verify the proof π(a) is valid.
(b) Use the extractor from the zero knowledge proof πLDEI to obtain

σ
(a)
i from π(a) for all i ∈ [n].

(c) Verify that E
(a)
i = σ

(a)
i ⊕H(gσ

(a)
i) for all i ∈ [n].

(d) If and only if all these checks pass, add Pa to Q.

When Round 1 is finished, S has computed Q exactly as in πDDH−DKG,

since it checked that all messages Ŝ
(a)
i , π(a), E

(a)
i from corrupted partiers

pass the checks in Rounds 2 and 3 before adding these parties to Q.

16

Distributed key generation - πDDH−DKG

Parameters: Let n be the number of parties that receive shares, and let 1 ≤ t ≤
(n− 1)/2 be an integer, the corruption threshold.
Setup: A public bulletin board, field Zq, and DDH-hard group G with generator
g. Every party in the system has a private key ski ∈ Zq, and public key pki = gski .
A random oracle H : G → {0, 1}⌈log q⌉. We also assume some injective encoding
Zq → {0, 1}⌈log q⌉ which is easy to invert.
Protocol
1. Each party Pa proceeds as follows:

– Pa chooses s(a) ∈ Zq and deals it with the SCRAPE PVSS: Pa selects a
polynomial f (a) ∈ Zq[X]≤t with f (a)(0) = s(a) and, for all i ∈ [n], defines

σ
(a)
i = f (a)(i), Ŝ

(a)
i = pki

σ
(a)
i and π(a) = πLDEI((pki)

n
i=1, (Ŝ

(a)
i)ni=1, t).

– For i ∈ [n], Pa computes E
(a)
i = σ

(a)
i ⊕H(gσ

(a)
i) and posts Ŝ

(a)
i , π(a), E

(a)
i .

2. Each Pi verifies the proof π
(a) and posts a complaint on the bulletin board if this

proof is invalid. Moreover Pi computes σ
(a)
i from E

(a)
i as σ

(a)
i = H((Ŝ

(a)
i)

1
ski)⊕

E
(a)
i and checks whether Ŝ

(a)
i = pk

σ
(a)
i

i . If this does not hold then Pi posts a

complaint against Pa to the bulletin board. Otherwise, Pi sets S
(a)
i = gσ

(a)
i .

3. If no complaints were posted, ignore this round and go to round 4. Otherwise:
– If a proof π(a) receives more than t complaints, Pa is disqualified.
– If Pi complains against Pa about its received encrypted share, then Pa

reveals σ
(a)
i . If Ŝ

(a)
i ̸= pki

σ
(a)
i or E

(a)
i ̸= σ

(a)
i ⊕H(gσ

(a)
i), Pa is disqualified.

4. Let Q be the set of parties who posted encrypted shares and proofs without
being disqualified in step 3. For all i, party Pi proceeds as follows:
(a) Pi computes Ŝi =

∏
a∈Q Ŝ

(a)
i , Si =

∏
a∈Q S

(a)
i , and σi =

∑
a∈Q σ

(a)
i .

(b) Pi publishes Ŝi, Si and πDLEQ(g, Si, pki, Ŝi) in the bulletin board.
5. Finally, after round 4, all parties proceed as follows:

(a) For all Ŝi, Si, πDLEQ((g, Si), (pki, Ŝi)) posted to the bulletin board, verify

Ŝi =
∏

a∈Q Ŝ
(a)
i and the proof πDLEQ((g, Si), (pki, Ŝi)). Let I be the set of

all indices for which these checks pass.
(b) Let J ⊆ I be a set of cardinality t + 1 (e.g. the first t + 1 parties in I).

The output global public key is tpk = S =
∏

i∈J S
Li,J (0)

i (where Li,J =∏
k∈J

−k
i−k

). The i-th partial public key (for i ∈ I) is tpki = Si. The i-th
partial secret key (for i ∈ I) is tski = σi. Finally, note the global secret key
is implicitly defined as tsk = s =

∑
a∈Q s(a).

Fig. 7: Protocol πDDH−DKG for distributed key generation via SCRAPE.

2. For every corrupted party Pi ∈ PA ∩ Q, S computes the secret key shares

σi =
∑

a∈Q σ
(a)
i and sends (Gen, sid, Pi) and (SetShare, sid, Pi, σi) to

FDDH−DKG. S waits for message (Keys, sid, σi, {tpkj}j∈Q, tpk) for Pi ∈ PA

from FDDH−DKG. Notice that S can do that since it knows σ
(a)
i provided

by simulated honest parties and it has extracted the corresponding values
from corrupted parties.

17

Functionality FDDH−DKG

FDDH−DKG is parameterized by a DDH-hard cyclic group G of prime order q, with
generator g. Let n and 1 ≤ t ≤ (n − 1)/2 be integers. FDDH−DKG interacts with
parties P1, . . . , Pn and an adversary S that corrupts at most t parties. FDDH−DKG

works as follows:
– Upon receiving (Gen, sid, Pi) from a party Pi:

1. If Pi is honest, forward (Gen, sid, Pi) to S.
2. If Pi is corrupted, wait for S to send (SetShare, sid, Pi, σi) where σi ∈ Zq

and set tpki = gσi .
3. Let J be the set of all parties Pj who sent (Gen, sid, Pj). If all honest parties

are in J , proceed as follows:
(a) Sample a random polynomial f ∈ Zq[X]≤t with f(i) = σi for all σi

sent by S in step 2). a For every honest party Ph, set tpkh = gσh with
σh = f(h).

(b) Set tpk = gf(0).
(c) For corrupted parties Pc ∈ J , send (Keys, sid, σc, {tpkj}j∈J , tpk) to S.
(d) Wait for S to answer with (Abort, sid, C) where C is a set of corrupted

parties.
(e) For all j ∈ J \ C, send (Keys, sid, σj , {tpkk}k∈J\C , tpk) to Pj .

b

a This is possible since the adversary can only set at most t values σi.
b Notice that {tpkk}k∈J\C can always be used to obtain tpk = gf(0) by Lagrange
interpolation because |J \ C| ≥ n− t > t.

Fig. 8: Distributed Key Generation Functionality FDDH−DKG

3. In rounds 2 and 3, S executes exactly the same instructions as an honest
party. Notice that this will yield the same set Q computed in step 1.

4. In round 4, for every i such that Pi ∈ Q is honest, computes Ŝi =
∏

a∈Q Ŝ
(a)
i ,

uses the simulator from the ZK proof πDLEQ to generate an accepting proof

πDLEQ(g, tpki, pki, Ŝi) and posts Ŝi, tpki and πDLEQ(g, tpki, pki, Ŝi) on the
bulletin board.

5. After round 4, let C be the set of corrupted parties who post Ŝi, Si and
πDLEQ(g, Si, pki, Ŝi) with an invalid proof πDLEQ(g, Si, pki, Ŝi). S sends
(Abort, sid, C) to FDDH−DKG.

6. S executes the remainder of the protocol as an honest party would and, when
A terminates, outputs whatever A outputs.

We now show that the execution with S and FDDH−DKG is indistinguishable
from an execution of πDDH−DKG with A. First of all, notice that in rounds
1, 2 and 3 all messages sent from S to A (through the bulletin board) are
distributed exactly as in πDDH−DKG. Moreover, notice that after round 1 is
finished S computes the same set Q as parties would compute after round 3 of
πDDH−DKG. This is so because S is able to perform all the verification done

by individual parties in rounds 2 and 3 all at once after extracting σ
(a)
i from

18

π(a) for all corrupted parties Pa. Having determined Q, S is able to determine
the choices of secret key shares σa from all corrupted parties, which might be
made after the adversary has seen all honest party messages in round 1. Hence,
S provides consistent values σa to FDDH−DKG.

It remains to be shown that the messages exchanged by S and A in round
4 are indistinguishable from those exchanged by honest parties and A in an
execution of πDDH−DKG, which intuitively means that A cannot bias the global
public key even though it can choose secret key shares σa for corrupted parties.
In round 4, we take advantage of the fact that, for i and a such that parties

Pi ∈ Q and Pa ∈ Q are honest, Ŝ
(a)
i and E

(a)
i reveal no information about σ

(a)
i

to A. First, notice that it is proven in [8] that Ŝ
(a)
i is indistinguishable from a

random group element for A under the DDH assumption. Moreover, since A is

PPT, it can only guess σ
(a)
i such that E

(a)
i = σ

(a)
i ⊕H(σ

(a)
i) and thus learn σ

(a)
i

via E
(a)
i with negligible probability, since it can only make poly(k) queries to the

random oracle and σ
(a)
i is chosen uniformly at random from a exp(k) large space

where k is the security parameter. Hence, for all a where Pa ∈ Q is an honest

party, A learns only t values σ
(a)
i and S

(a)
i , which are not sufficient to recover the

degree t polynomials that defines honest parties’ S
(a)
i values and consequently

tpka. Since A learns nothing about tpki values of honest parties before round 4,
leveraging the zero knowledge property of πLDEI , S can generate an accepting

proof that honest parties have obtained tpki from Ŝ
(a)
i instead of the value they

should have obtained from S
(a)
i .

Remark 1 (Refreshing partial keys). The protocol can be modified to one that,
given a distributed key ensemble (tpk, {tpki}, {tski}) in the form above (not
necessarily created by our protocol) outputs fresh random partial secret and

public keys t̃ski, t̃pki corresponding to the same global keys tsk, tpk. This is
done by having each party Pa share the value s(a) = 0 in step 1) of Figure 7. It
is easy to modify the LDEI proof to additionally prove in zero knowledge that the
PVSS is indeed a sharing to 0 (in Figure 1, the prover just chooses u(X) with the
additional condition u(0) = 0 and the verifier checks that z(0) = 0). Modifying
the DKG protocol in this way will output the ensemble (tpk′, {tpk′i}, {tsk

′
i})

with tpk′ = 1G. Now parties can define t̃pki = tpki · tpk
′
i and each party Pi can

privately compute t̃ski = tski + tsk′i.

Remark 2 (Outputting ℓ′ key ensembles). Our DKG protocol would correspond
to the case ℓ = ℓ′ = 1 in the analogy with ALBATROSS, but of course we can also
easily adapt the protocol for ℓ = 1, ℓ′ ≥ 1, where assuming now t ≤ (n−ℓ′)/2, we

would obtain as output ℓ′ independent instances (tpk(k), {tpk(k)i }, {tsk(k)i }), k ∈
[ℓ′]. The protocol works in the same way until step 4. In step 5 parties Pi compute

Ŝi,k =
∏

a∈Q(Ŝ
(a)
i)Mk,a , σi,k =

∑
a∈Q Mk,aσ

(a)
i and Si,k =

∏
a∈Q(S

(a)
i)Mk,a for

k = 1, . . . , ℓ′. Then steps 6, 7, 8 are executed independently for each k, where in

step 7 parties verify Ŝi,k =
∏

a∈Q(Ŝ
(a)
i)Mk,a . Moreover, the refreshing technique

(Remark 1) can be easily extended to deal with refreshing ℓ′ ensembles.

19

4 GULL: Gradual Release of PVSS Outputs via
Threshold Encryption

Before presenting GULL, we describe a zero-knowledge proof for the EG relation
that we will need, which is similar to discrete logarithm equality, except that
one of the elements that would be public in the DLEQ relation now is encrypted
by El Gamal (threshold) encryption. The relation is as follows:

REG = {((g1, x1, x2, t, c, d), (s, r, g2)) ∈ G6 × (Z2
q ×G) :

gs1 = x1, gr1 = c, d = tr · g2, gs2 = x2}

The problem here is that g2 is part of the witness, and should not be revealed.
Our solution consists on reducing this to proving knowledge of exponents r, s, w
with gr1 = c, gs1 = x1, d

s · tw = x2, c
s · gw1 = 1, which can be done with a

standard Σ-protocol. The point is that if (s, r, g2) is a witness for REG, then
setting w = −rs will satisfy the equations, while on the other hand, knowledge of
(r, s, w) satisfying these equations implies knowledge of (r, s, g2) satisfying REG.
We present protocol πEG in Figure 9 and formally state and prove its security
in Proposition 1

NIZK proof of knowledge πEG for REG

Setup: Random oracle H. Common Input: (g1, x1, x2, t, c, d). Witness: (s, r, g2)
1. The prover chooses ur, us, uw ← Zq, constructs a1 = gur

1 , a2 = gus
1 , a3 = dus ·

tuw , a4 = cus · guw
1 , creates e = H(g1, x1, x2, t, c, d, a1, a2, a3, a4) and computes

zr = ur + e · r, zs = us + e · s, zw = uw − e · r · s. The proof is (e, zr, zs, zw).
2. The verifier computes a1 = gzr1 · c−e, a2 = gzs1 · x

−e
1 , a3 = dzs · tzw · x−e

2 ,
a4 = czs · gzw1 and accepts iff e = H(g1, x1, x2, t, c, d, a1, a2, a3, a4).

Fig. 9: NIZK πEG for REG

Proposition 1. Protocol πEG is a correct proof of knowledge of (s, r, g2) such
that ((g1, x1, x2, t, c, d), (s, r, g2)) ∈ REG, with special soundness (with soundness
error 1/q), and zero knowledge in the random oracle model, assuming the Fiat-
Shamir heuristic holds.

Proof. We prove that the interactive public-coin version of this protocol where e
is chosen uniformly at random by the verifier is correct, special-sound and zero
knowledge and the Fiat-Shamir heuristic implies the properties above for the
non-interactive version.

Correctness: The protocol is easily seen to be correct, as setting w = −rs
implies ds · tw = x2, c

s · gw1 = 1 if the relation is correct, as argued above, and
hence all of the checks will pass.

20

Special-soundness: Now suppose that a prover can answer two different
challenges e ̸= e′ with zr, zs, zw and respectively z′r, z

′
s, z

′
w. This means that the

4 checks by the verifier pass in both cases. From here it is easy to see that

ce−e′ = g
zr−z′

r
1 and xe−e′

1 = g
zs−z′

s
1 so one can extract r = (zr − z′r)/(e − e′),

s = (zs − z′s)/(e − e′) and g2 = d · t−r. Note that these values satisfy that
gs1 = x1, gr1 = c, d = tr · g2, so in order to show that the extracted (s, r, g2) is a
witness, we only need to additionally show that gs2 = x2 From the fact that the

fourth check passes in both cases, we get that 1 = czs−z′
s · gzw−z′

w
1 , which implies

1 = cs(e−e′)g
zw−z′

w
1 . Since we already knew c = gr1 for the extracted r, this means

g
rs(e−e′)+zw−z′

w
1 = 1. Since we are in a group of prime order, so g1 is a generator,
it must hold that rs(e− e′) + zw − z′w = 0. Finally from the fact that the third

check passes in both instances we have xe−e′

2 = dzs−z′
stzw−z′

w , which, using the
information deduced in the previous line and the expression for the extracted s,

means xe−e′

2 = (dst−rs)e−e′ . Now since e−e′ ̸= 0 and we are in a group of prime
order, this means x2 = dst−rs. But the right hand side is exactly gs2 so x2 = gs2
as we wanted to show.

Zero knowledge: The simulator samples zr, zs, zw, e independently and uni-
formly at random in Zq, and defines a1, a2, a3, a4 as the verifier would do in the
proof verification. This generates a transcript which is indistinguishable from
one of an actual protocol, as it is easy to see.

We now construct GULL, a random beacon that allows for generating O(n2)
outputs that can be opened in individual batches of O(n) outputs. We present
GULL in Figure 10 and formally state its security in Theorem 2.

Theorem 2. Assuming DDH holds in G, for any static adversary A corrupting
t parties, with probability at least 1 − t/q the following holds (in the random
oracle model) for protocol GULL in Figure 10:

– All honest parties obtain the same output (ok,j)k∈[ℓ′],j∈[0,ℓ−1] ∈ Gℓ·ℓ′ .
– (Unbiasability) Regardless of the actions of A, the distribution of the output

is computationally indistinguishable from uniform in Gℓ·ℓ′ .
– (Unpredictability after opening k′ batches 6). For every k′ ∈ ℓ′, consider the

following experiment played after the values ok,j , k ∈ [k′], j ∈ [0, ℓ − 1] have
been opened in step 4. A challenger chooses b ∈ {0, 1} at random; if b=0, it
sets wk,j = ok,j (the true unopened outputs) for k ∈ [k′+1, ℓ′], j ∈ [0, ℓ−1]; if
b = 1, it chooses all these wk,j independently and uniformly at random in G.
The challenger sends all wj,k to A who makes a guess b′. Then the probability
that b′ = b is at most 1/2 + negl(λ) where λ is the security parameter.

Proof. We first note that if a corrupted party cheats in one of the zero knowledge
proofs, that party will be caught with probability at least 1 − 1/q. Therefore

6 We remark that the definition of unpredictability is based on the definition of IND1-
security of a PVSS, where the same unpredictability guarantees are required for an
adversary that sees the sharing of a given secret (see e.g. [23, 9]).

21

GULL: PVSS beacon with gradual release.

Setup: A public bulletin board, a DDH-hard group G = ⟨g⟩ of prime order q, a

t-resilient matrix M ∈ Zℓ′×(n−t)
q , key-pairs (ski, pki = gski) ∈ Zq ×G for each Pi.

Setup from DKG: Parties have a global threshold public key tpk, partial threshold
keys tpki and partial threshold secret keys tski, where tpki = gtski and tski = h(i)
for some secret random h ∈ Zq[X]≤t+1, and tpk = gh(0).
Preparation:

1. (ALBATROSS Sharing) Each Pa PVSSs a secret (gs
(a)
0 , . . . , gs

(a)
ℓ−1) ∈R Gℓ by

choosing f (a) ∈R Zq[X]≤t+ℓ−1 setting s
(a)
j := f (a)(−j), σ

(a)
i := f (a)(i) and

publishing Ŝ
(a)
i = pk

σ
(a)
i

i for i ∈ [n], together with a proof of correct sharing

π(a) = πLDEI((pki)
n
i=1, (Ŝ

(a)
i)ni=1, t+ ℓ− 1).

2. (a) (Verification) Parties check the validity of π(a) for all a ∈ [n]. This fixes a
set Q of the first n− t parties Pa, a ∈ Q whose π(a) are correct.

(b) (Aggregation) Every party can compute, for every i ∈ [n] and k ∈ [1, ℓ′],

Rik =
∏
a∈Q

(Ŝ
(a)
i)Mk,a

Additionally each Pi computes Sik = R
sk−1

i
ik for every k ∈ [1, ℓ′]. Note

Sik = gfk(i) where fk(X) =
∑

a∈Q Mk,a · f (a)(X).
(c) (Encryption) For every k ∈ [ℓ′], Pi posts Eik = Enc(tpk, Sik) =

(grik , tpkrik · Sik) := (cik, dik) and a NIZK proof πEG,i,k (detailed in Fig-
ure 9) for the fact that ((g, pki, Rik, tpk, cik, dik), (ski, rik, Sik)) is in REG,
i.e. gski = pki, grik = cik, dik = tpkrik · Sik, Sski

ik = Rik.
Opening: Let I be the set of the first t + ℓ parties Pi who have posted correct
proofs πEG,i,k for every k ∈ [ℓ′]. At any point after round 2 is finished, the k′-th
batch (for an arbitrary k′ ∈ [ℓ′]) of ℓ outputs can be opened as follows:
3) (Lagrange computation) For every j ∈ [ℓ], parties compute: Ok′,j =

(
∏

i∈I(cik′)Li,I (−j),
∏

i∈I(dik′)Li,I (−j))
4) (Decryption) Parties threshold-decrypt Ok′j for every j ∈ [0, ℓ − 1] to obtain

output (ok′0, . . . , ok′(ℓ−1)). More concretely, call Ok′,j = (Ck′,j , Dk′,j). Then:

– Each party Pi posts the values uk′,j,i = Ctski
k′,j , for all j ∈ [0, ℓ − 1] and a

proof πk′,j,i = πDLEQ((g, Ck′,0, . . . , Ck′,ℓ−1), (tpki, uk′,0,i, . . . , uk′,ℓ−1,i)).
– Let J be a set of the first t+1 parties that have posted correct πk′,i. Then

the outputs ok′,j , j ∈ [0, ℓ− 1] are reconstructed by every party as

ok′,j = Dk′,j ·
∏
i∈J

u
−Li,J (0)

k′,j,i

Fig. 10: GULL: PVSS beacon with gradual release. Setup and Preparation

the probability that a corrupted party deviates from the protocol and yet is
included in Q, I or J is at most t/q. Hence, except with this probability, all
parties included inQ, I, J have behaved honestly in the respective steps (sharing,
threshold encryption, threshold decryption). We assume this from now on. Since

22

there are at least t+ ℓ honest parties, |I| ≥ t+ ℓ and |J | ≥ t+1, so the protocol
always finalizes. In fact, the outputs are already determined at the end of step
1: they are ok,j = gfk(−j), where fk =

∑
a∈Q Mk,af

(a) where Q is fixed at the
end of step 1. Since up to this point the protocol is exactly as in Albatross
the unbiasability under DDH follows from the results there. In a nutshell that
argument relies on the fact that the honest inputs are indistinguishable from
uniform for the adversary at that point (we will in fact prove a stronger claim
when we show unpredictability in our case), together with the t-resiliency of the
matrix guaranteeing that the result will be uniform in that case.

We now argue unpredictability. For the sake of notation, assume that the
adversary A corrupts Pn−t+1, . . . , Pn−t. Suppose that after the first k′ batches
(ok,j)k∈[k′],j∈[0,ℓ−1] have been opened, A is given a vector vb for uniformly ran-
dom b ∈ {0, 1} where v0 = (ok,j)k∈[k′+1,ℓ′],j∈[0,ℓ−1] and v1 is uniformly random

in Gℓ·(ℓ′−k′). We will prove that if A can guess b with probability non-negligibly
larger than 1/2, then we can construct D that solves the ((n− t) · ℓ)-DDH prob-
lem: namely (h, hα, hβ11 , · · · , hβ(n−t)ℓ , hγ11 , · · · , hγ(n−t)ℓ) is sampled as a chal-
lenge, where h is uniformly random in the group G and α, and all βij are chosen
independently and uniformly at random in Zq while the value of γij is dictated
by a bit b′ chosen uniformly at random: if b′ = 0, then γij = αβij for all i, j;
while if b′ = 1, γij are uniformly random in Zq if b′ = 1. This challenge is sent
to D, who has to guess b′. The ((n− t) · ℓ)-DDH problem is equivalent to DDH
as long as the number (n− t) · ℓ is polynomial in the security parameter.

We construct a distinguisher D which runs an internal copy of A. D will
simulate an execution of GULL where g = hα and the vector of secrets chosen
by each honest party Pa is gβaj (we will show how this can be done). These equal
hγaj if γaj = αβaj . At the end of the simulation, D sets as a challenge for A the
outputs that one would obtain if the honest parties had shared the values hγaj .
A now makes a guess of whether this are correct outputs or random values. In
the former case D guesses that γaj = αβaj and in the latter that γaj are random.

The simulation is as follows: D sets g = hα, samples ui in Zq for i ∈ [n − t]
and sets pki = hui , implicitely defining ski = ui/α (which D does not know). It
waits for A to choose pki and ski for malicious parties. Moreover, the distributed
key generation algorithm is run to establish the threshold keys tski, tpk, tpki.

D chooses τai, at random in Zq for a ∈ [n−t], i ∈ [n−t+1, n]. Let f (a) be the
polynomial in Zq[X]≤t+ℓ with f (a)(i) = τai for i ∈ [n−t+1, n] and f (a)(j) = βaj

for j ∈ [0, ℓ−1]. D does not know f (a) but it can compute hf(a)(i), for i ∈ [n− t],
from the values hβaj for j ∈ [0, ℓ− 1] and hτai for i ∈ [n− t+ 1, n] by Lagrange

interpolation. Note that hβaj are part of the challenge. D sets Ŝi = (hf(a)(i))ui for

i ∈ [n− t] and Ŝi = pkτai
i for i ∈ [n− t+1, n]. Now Ŝi = pk

f(a)(i)
i for all i, hence

it is a sharing for the vector (gf
(a)(−j))j∈[0,ℓ−1] = (gβaj)j∈[0,ℓ−1]. D simulates

the proof π(a) using the zero knowledge simulator. It waits for the adversary
to send the corresponding information from Round 1, which determines Q. Let
Q0 = Q∩ [1, n− t], Q1 = Q∩ [n− t+ 1, n].

23

Now D cannot reconstruct the “real” Sik, as it does not know the secret
keys of the honest participants. Instead it simply samples these at random (we
call them S′

ik so that we can make the distinction later). It then simulates the
proof πEG,i,k using the simulator for the zero knowledge protocol. The rest of
the protocol is carried out from these values as in Figure 10 with D playing
for the honest parties and A for the corrupted ones. After opening k′ batches,
A is given as a challenge the values xkj defined by xj =

∏
a∈Q0

(hγaj)Mk,a ·∏
a∈Q1

(gf
(a)(−j))Mk,a , where f (a) was extracted from π(a). These would be the

outputs obtained in the real protocol if γaj = αβaj , since the secrets of honest
parties Pa are implicitely defined as gβaj = hαβaj . While, if γaj are uniformly
random, xkj are also uniformly random due to the properties of the t-resilient
matrix.

A makes a guess about whether the vector of xkj are the secrets or random
values, and D outputs the same guess about whether γj = αβj . Note xkj are the
actual secrets if and only if γaj = αβaj . So if A’s view V iewA,k′ at this point is
as in a real protocol where honest parties have input gβaj , we would be done.

We argue this by induction. Consider first k′ = 0, i.e. no outputs have been
opened yet. Then apart from π(a), πEG,i, which have been simulated with the
zero knowledge simulator (so they are indistinguishable from the real view), the
other point where the simulation differs from the real protocol is in the fact
that S′

ik are chosen at random. But by IND-CPA property of El Gamal (in turn
based on DDH) their encryptions are indistinguishable from encryptions of the
“real” Sik. For k

′ > 0, the situation is more delicate because now also the opened
outputs in the simulated run depend on the simulated S′

ik. By induction, the
view V iewA,k′−1 of the adversary before the opening of the k′-th output batch
is indistinguishable from that in the real protocol. We have argued that, under
those conditions and the DDH assumption, our unpredictability claim is true
and hence the distribution of the remaining outputs, in particular of the next
batch (ok′,j)j∈[0,ℓ−1], conditioned to that view is indistinguishable from uniform
in both the real and simulated run. We conclude that the views V iewA,k′ in the
real and simulated protocol are also indistinguishable which finalizes the proof.

5 Constructing Mt. Random

In Figure 11, we present Mt. Random, our multi-tiered beacon composed by the
building blocks presented so far. As discussed earlier, we have three tiers: Tier
1 - Uniform Randomness, Tier 2 - Pseudorandomness and Tier 3 - Bounded Bi-
ased Randomness. Starting from Tier 1, going up each tier represents a trade-off
between efficiency and randomness quality, where more efficiency is gained at
the cost of quality. In other words, higher tiers generate random outputs faster
than lower tiers albeit with losses in randomness quality, i.e. going from uni-
formly random values to values with a bounded adversarial bias. Moreover, each
higher tier uses outputs from the previous tier as seeds, ensuring that all tiers
operate within a desired level of bias while maintaining efficiency. We use the
DDH assumption (in the random oracle model) to prove security of all of Mt.

24

Mt. Random: Multi-tiered Randomness Beacon

Parameters:
– n participants Pi, i ∈ [n], corruption threshold 1 ≤ t ≤ (n− ℓ)/2.
– Integers ℓ ≥ 1 (number of secrets in GULL output block) and ℓ′ = n−2t (number

of blocks outputted by one round of GULL).
– Integers ℓTV RF and ℓV RF denoting the bitlength of outputs from Tiers 2 and 3.
– Integer TVRFmax ≥ 0 and VRFmax ≥ 0 denoting, respectively, the number of

times the TVRF-based beacon at Tier 2 and the VRF-based beacon at Tier 3 are
applied iteratively starting from a given seed.

Setup: An authenticated public bulletin board (BB), field Zq, and DDH-hard group
G with generator g. A key pair ski ∈ Zq, pki = gski registered in BB for each Pi. A

t-resilient matrix M ∈ Zℓ′×(n−t)
q . Random oracle H : {0, 1}⋆ → {0, 1}k.

Initialization: All parties Pi keep an initially empty table Batch that stores un-
opened GULL sub-batches encrypted under threshold-El Gamal. All parties first
execute the Distributed Key Generation phase and then execute Tier 1, Tier
2 and Tier 3 as soon as seed randomness from the previous tier is available. Tiers
are re-executed as more outputs are needed.
Distributed Key Generation: All parties execute the DKG protocol in Figure 7
twice to obtain keys for Tiers 1 and 2. The public outputs are global threshold
public keys tpk, tpk′ and partial threshold public keys tpki, tpk

′
i for i ∈ [n], while

each party Pi, i ∈ [n] obtains partial threshold secret keys tski and tsk′i.
Tier 1: Using keys tpk and tski obtained in the DKG phase, all parties execute the
Preparation phase of GULL in Figure 10. At this point all parties obtain ℓ′ blocks
Bk = (Ok1, Ok2, . . . , Okℓ), k ∈ [ℓ′] consisting of threshold El-Gamal encryptions of
okj under tpk, which are stored in Batch. When an output is requested:
1. If Batch is not empty, parties execute the Opening phase of GULL to decrypt the

next Bk ∈ Batch, obtaining ok1, ok2, . . . , okℓ. Output H(ok1), H(ok2), . . . , H(okℓ)
and remove Bk from Batch.

2. If Batch is empty, return ⊥ and run the Preparation phase of GULL to refill it
Tier 2: Initially, parties request an output okj from Tier 1 (repeating the request
until okj ̸=⊥) and set σ0 = okj , r = 1. When an output is requested, all parties
execute the DRAND/Dfinity beacon described in section 2.6 using tpk′, tpk′i, tsk

′
i

with seed σ0 = okj to obtain output zr, outputting H(zr). When r = TVRFmax,
get a new output okj from Tier 1 and set σ0 = okj , r = 1.
Tier 3: All parties request an output zr from Tier 2 (repeating the request until
zr ̸=⊥) and run the VRF-based beacon in Figure 3 using zr as initial seed. In each
round r′ ∈ {1, . . . ,VRFmax}, output H(w′

r) where w′
r ∈ {0, 1}ℓV RF is the output of

the beacon. When r′ = VRFmax, r is reset to 0 and Tier 3 is started again.

Fig. 11: Mt. Random: Multi-tiered Randomness Beacon.

Random’s building blocks, i.e. PVSS, DKG, TVRF and VRF, thus obtaining
a final construction whose security is based on a single standard assumption
while achieving competitive concrete efficiency. However, we remark that other
constructions of these building blocks can be used within our framework in or-

25

der to achieve better efficiency at the cost of having security underpinned by
multiple and possibly less standard assumptions. Moreover, each Tier could be
constructed from other primitives that yield random outputs with similar guar-
antees, e.g. Tier 2 could be instantiated using VDF based beacons [5]. We will
now discuss the building blocks used for tier and provide a security analysis.

Tier 1: Uniform Randomness via PVSS: The first tier of Mt. Random
outputs true uniform randomness. It is important to output uniformly random
values at this tier because these values will be used as seeds for Tier 2. We in-
stantiate Tier 1 with GULL using threshold encryption keys generated by our
DKG protocol (Figure 7). Tier 1 has the highest execution time and communi-
cation, outputting uniformly random values less frequently than higher tiers. On
the other hand, instead of outputting a single value, Tier 1 will output a batch of
uniformly random values that can be used to seed Tier 2 multiple times (instead
of requiring a full execution of Tier 1 every time Tier 2 needs a new seed).

In the original ALBATROSS [9] protocol, the full batch of outputs is revealed
as soon as the protocol terminates. This is not an issue when seeding Tier 2, since
Tier 2 outputs cannot be predicted without a threshold key. However, it might
be a problem in the case where fresh uniformly random outputs from Tier 1 are
required for applications other than seeding Tier 2. Hence, we instantiate Tier 1
with GULL, which allows for gradually revealing smaller “sub-batches” of out-
puts. Under this regime, whenever a fresh uniformly random output is required
for other applications, a fresh sub-batch can be revealed, which is significantly
more efficient than re-executing the full ALBATROSS protocol.

Tier 2: Pseudorandomness via Threshold VRFs: Tier 2 outputs pseu-
dorandom values instead of truly uniformly random values. While these values
are not suitable for some applications (e.g. seeding PRGs), they are sufficient
for a number of popular applications (e.g. selecting random committees). We
instantiate Tier 2 with a DDH based version of the DRAND/Dfinity TVRF pro-
posed in [19] coupled with our new DKG protocol (Figure 7).We choose to use
a DDH-based TVRF in order to instantiate all of our building blocks from a
single standard assumption. However, a more efficient TVRF (e.g. GLOW [19])
can be used for better performance at the cost of a stronger assumption.

There are two main hurdles in using TVRF-based beacons: 1. keys must be
generated in a distributed manner; 2. being essentially a distributed PRG, the
beacon must be re-seeded periodically. Mt. Random respectively solves these
issues by employing our new DDH-based DKG (Figure 7) and by periodically
re-seeding Tier 2 with uniformly random outputs from Tier 1. Using our DKG,
we maintain public verifiability of threshold key validity and consequently of Tier
2’s output without requiring extra assumptions. Moreover our DKG protocol can
be used to refresh secret key shares if parties are compromised (see Remark 1).

Tier 3: Bounded Biased Randomness via VRFs: The third tier of Mt.
Random outputs pseudorandom values that may be biased by the adversary
up to a certain upper bound. While this sort of biased randomness finds less
applications than unbiased pseudorandomness or uniform randomness, it is still
sufficient for important applications such as selecting block creators in Proof-of-

26

Stake based blockchains (e.g. Ouroboros Praos [15]). We instantiate Tier 3 with
the VRF and VRF-based beacon protocols from Ouroboros Praos, which are
secure under the CDH assumption (implied by DDH). However, differently from
the original Ouroboros Praos beacon, where each execution is seeded with the
output of the previous one, we seed this protocol with an output from Tier 2.
This crucial difference reduces the potential adversarial bias in Tier 3 outputs.

5.1 Security Analysis

Theorem 3. Under the DDH assumption in G, for any static adversary cor-
rupting t < n/2 parties, with probability at least 1− t/q, the following holds (in
the random oracle model) for Mt. Random in Figure 11:

– All Tiers have guaranteed output delivery, all honest parties obtain the same
outputs H(ok1), H(ok2), . . . ,H(okℓ), H(zr) and H(w′

r) from each output re-
quest from Tiers 1, 2 and 3, respectively.

– (Unbiasability for Tiers 1 and 2) Regardless of the actions of the adversary,
the distribution of H(ok1), H(ok2), . . . , H(okℓ) (resp. H(zr)) from Tier 1
(resp. Tier 2) is computationally indistinguishable from uniform.

– (Unpredictability for Tiers 1 and 2). Given all previous outputs from Tiers
1 and 2, the adversary cannot predict future outputs from Tiers 1 and 2.

– (Bounded Bias and Predictability for Tier 3) The adversary can predict and
bias at most t bits of the output of Tier 3. 7

Proof. (Sketch) Notice that in the initialization phase we execute our DKG
protocol (Figure 7) before initiating the execution of the tiers. Due to the security
of the DKG protocol (Theorem 1), the resulting global and partial public keys
tpk, tpki and tpk, tpk′i for i ∈ [n] are guaranteed to be unbiased and each party Pi

is guaranteed to have obtained its secret share tski, tsk
′
i as well as the same public

keys. Moreover, using the simulator constructed in the proof of Theorem 1, we
can extract adversarial secret keys.

In Tier 1, we execute GULL from Figure 10 using keys tpk, tpki, tski, which
gives us two main guarantees as shown in Theorem 2: 1. The Preparation phase
results in ℓ′ output blocks that are guaranteed to be recoverable by a majority of
the parties but remain secret until the Opening phase is executed; 2. All ℓ values
of each output block are guaranteed to be uniformly random. Hence, when Tier
1 is initiated, ℓ′ output blocks with ℓ uniformly random values become available.
When an output is requested, executing the procedures of Tier 1 clearly returns
either an uniformly random output (or ⊥, in which case more output blocks are
obtained executing step 2 of Tier 1’s output request procedure).

In Tier 2, we execute the TVRF-based beacon protocol from Figure 5, which
is proven to output pseudorandom values in [19]. Since we periodically re-seed
this protocol with uniformly random values from Tier 1, its outputs are guaran-
teed to be pseudorandom. Notice that we can re-seed Tier 2 with outputs from

7 A formal definition and proof is shown in [15], where Tier 3’s protocol was originally
described

27

Tier 1 that are already revealed but still not used as a Tier 2 seed. By the secu-
rity of the TVRF scheme (proven in [19]), an adversary controlling a minority of
the parties cannot predict the output of the TVRF on any given input. Hence,
the outputs of Tier 2 cannot be predicted by the adversary (who only corrupts a
minority of the parties) upon learning the seed. Notice that the TVRF security
properties hold since we use unbiased threshold keys tpk′, tpk′i, tsk

′
i.

In Tier 3, we execute the protocol in Figure 3, proven to output bounded
biased values in [15] even when it is seeded with outputs of a previous execution
of itself. Hence, seeding this protocol with the unbiased pseudorandom outputs
from Tier 2, not only preserves but improves on the proven bias bounds for its
outputs. Using outputs from Tier 2 that are already known but still not used as
a seed in Tier 3 preserves the security, since even by knowing the seed in advance
the adversary can introduce a bounded bias to the output as proven in [15].

6 Efficiency Analysis

Distributed Key Generation Our novel DKG protocol’s performance is fur-
ther showcased in Figures 12a and 12b, which show the DKG computation time
and communication size for changing number of parties n for Tiers 1 and 2.

(a) (b)

Fig. 12: a) DKG computation time for Tiers 1 and 2 for changing number of
parties n with fixed t = ⌊n

3 ⌋. b) DKG communication size for Tiers 1 and 2 for
changing number of parties n with fixed t = ⌊n

3 ⌋

Mt. Random We provide a reference implementation for each one of the
tiers here: https://github.com/ZenGo-X/random-beacon. Our main goal is to
demonstrate the trade-off in efficiency between the three tiers. We also highlight
the sensitivity to changing number of parties n, the threshold t and culprits c
when relevant. All our measurements were done on a t3.medium AWS instance
(2 vCPU of Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz, 4GB RAM).

28

(a) (b)

(c) (d)

(e) (f)

Fig. 13: Execution time (a) and communication (b) of each Tier with fixed t = ⌊n
3
⌋,

ℓ = 1. (c) Amortized cost of generating a single element at Tier 1 with fixed n = 25,
t = 8, ℓ = 9. Average execution time of Tier 1 for a number c of corruptions with fixed
n = 25, t = 8 (d) and for large n with fixed t = ⌊n

3
⌋, ℓ = 1 (e). (f) Average execution

time of Tier 2 for threshold t with n = 25.

Our experiments do not include network latency or delay, as network latency is
larger than our computation times and would mask them. Since the number of
rounds of Tier 1 is larger than that in Tier 2 and Tier 3, and communication
size of Tier 2 is larger than communication size of Tier 3, if we include latency,
we trivially get our expected hierarchy. Network delay is of no interest: the com-
munication bandwidth is small enough for the network to not be a bottleneck.
Measurements were done using a benchmark tool and averaged over many runs.

Computation time and communication size: In Figure 13a we compare
the computation time for a single run of each tier as a function of the number of

29

parties n. Tier 1 is the slowest, Tier 3 is the fastest and Tier 2 is in the middle,
which is coherent with how we suggest to hierarchically use the different tiers
in the paper. Figure 13b shows the communication size of the three tiers, for
various n. Here again we see a clear hierarchy where Tier 1 requires the most
communication, Tier 3 the last and Tier 2 is in the middle. For completeness,
we provide in Section 6 the same measurements, but for running distributed key
generation for tiers 1 and 2. Key generation and setup is not our focus as we
consider it a one-time operation running at the beginning of the execution. On
the other hand, producing random values is done periodically throughout the
life time of the system.

Tier 1 and Tier 2 sensitivity: We measured Tier 1 without gradual re-
lease (ALBATROSS), i.e., all random values are released at once. In Figure 13c
we show how changing ℓ , a parameter proportional to the number of random
elements output by Tier 1, impacts the amortized cost of a single random ele-
ment. As expected, the more random elements we pack in a single run the more
efficient the amortized computation per a single random element is. This result
hints to the effectiveness of running GULL in settings were fresh unpredictable
output is needed by an application other than Tier 2.

In Figure 13d, we fix n and change the number of culprits c, which impacts
the total running time in a meaningful way, since less computation is done in
an optimistic case with less misbehaving parties. Figure 13e shows Tier 1 per-
formance for large n. The choice of the curve dramatically affects efficiency. In
this case, the Secp256k1 curve implementation outperforms BLS12-381 (we used
libraries https://github.com/rust-bitcoin/rust-secp256k1 for Secp256k1
and https://github.com/algorand/pairing-plus for BLS12-381). All other
Tier 1 benchmarks are based on BLS12-381 curve in order to make results com-
parable to Tier 2. Finally, Figure 13f, shows computation time of Tier 2 for fixed
n and various threshold t. As expected, the computation time is linear in n.

References

1. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC
is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/

relic.
2. Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. Craft: Composable randomness beacons and output-independent abort
mpc from time. Cryptology ePrint Archive, Report 2020/784, 2020. https://

eprint.iacr.org/2020/784.
3. Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. TARDIS: A foundation of time-lock puzzles in UC. LNCS, pages 429–
459. Springer, Heidelberg, 2021.

4. Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.
RandPiper - reconfiguration-friendly random beacons with quadratic communica-
tion. pages 3502–3524. ACM Press, 2021.

5. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

30

6. Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 236–254. Springer, Heidelberg, Au-
gust 2000.

7. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, January 2000.

8. Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by
public entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors,
ACNS 17, volume 10355 of LNCS, pages 537–556. Springer, Heidelberg, July 2017.

9. Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe
BATched Randomness based On Secret Sharing. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 311–
341. Springer, Heidelberg, December 2020.

10. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105.
Springer, Heidelberg, August 1993.

11. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theor. Comput. Sci., 777:155–183, 2019.

12. Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomorphic encryption
random beacon. Cryptology ePrint Archive, Report 2019/1320, 2019. https:

//eprint.iacr.org/2019/1320.
13. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Dis-

tributed elgamal à la pedersen: Application to helios. In Proceedings of the 12th
annual ACM Workshop on Privacy in the Electronic Society, WPES 2013, pages
131–142. ACM, 2013.

14. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake. In Ian Goldberg and
Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages 23–41. Springer,
Heidelberg, February 2019.

15. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

16. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay
functions from supersingular isogenies and pairings. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
248–277. Springer, Heidelberg, December 2019.

17. Pierre-Alain Fouque and Jacques Stern. One round threshold discrete-log key
generation without private channels. In Kwangjo Kim, editor, PKC 2001, volume
1992 of LNCS, pages 300–316. Springer, Heidelberg, February 2001.

18. Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable
time-lock puzzles and applications. LNCS, pages 447–479. Springer, Heidelberg,
2021.

19. David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully distributed
verifiable random functions and their application to decentralised random beacons.
In IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna,
Austria, September 6-10, 2021, pages 88–102. IEEE, 2021.

20. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. In Jacques Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 295–310. Springer, Heidel-
berg, May 1999.

31

21. Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and
Alin Tomescu. Aggregatable distributed key generation. LNCS, pages 147–176.
Springer, Heidelberg, 2021.

22. Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology
overview series, consensus system, 2018.

23. Somayeh Heidarvand and Jorge L. Villar. Public verifiability from pairings in secret
sharing schemes. In Selected Areas in Cryptography, 15th International Workshop,
SAC 2008, volume 5381 of Lecture Notes in Computer Science, pages 294–308.
Springer, 2008.

24. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part III, volume 12552 of LNCS, pages 390–413. Springer, Heidelberg, November
2020.

25. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

26. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In 40th FOCS, pages 120–130. IEEE Computer Society Press, October 1999.

27. Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 522–526. Springer, Heidelberg, April 1991.

28. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

29. randao.org. RANDAO: Verifiable random number generation, 2017. https://www.
randao.org/whitepaper/Randao_v0.85_en.pdf accessed on 20/02/2020.

30. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto, 1996.

31. Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and
Edgar R. Weippl. RandRunner: Distributed randomness from trapdoor VDFs
with strong uniqueness. The Internet Society, 2021.

32. Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. Hy-
dRand: Efficient continuous distributed randomness. In 2020 IEEE Symposium on
Security and Privacy, pages 73–89. IEEE Computer Society Press, May 2020.

33. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic. In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 148–164. Springer, Heidelberg, August 1999.

34. Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant
distributed randomness. In 2017 IEEE Symposium on Security and Privacy, pages
444–460. IEEE Computer Society Press, May 2017.

35. DRAND team. DRAND project website, 2020. https://drand.love accessed on
21/03/2021.

36. Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on
blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019, pages 41–61.
ACM, 2019.

37. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 379–407. Springer, Heidelberg, May 2019.

32

A The ALBATROSS random beacon

In this section, we describe the ALBATROSS [9] random beacon in the notation
of this paper. To avoid too much complications we omit certain details of [9]
addressed to distribute the computational complexity of the protocol among the
parties. The precise steps are collected in Figure 14. ALBATROSS works as
follows:

Each party Pa shares a secret vector of group elements by applying packed

Shamir in the exponent: the secret of Pa is (gf
(a)(0), . . . , gf

(a)(−(ℓ−1))) ∈ Gℓ where

s
(a)
j = f (a)(−j) for a random polynomial f (a) of degree at most t+ℓ−1. Then Pa

sends posts encrypted shares pk
f(a)(i)
i , i ∈ [n]. In addition Pa posts a proof that

the encrypted shares indeed have as exponents σ
(a)
i = f (a)(i) for a polynomial

of the right degree.
At this point, because proofs are publicly verifiable, parties can pinpoint a

set of size Q of n− t parties that have correctly shared secret vectors.
These secrets can be opened 8 as follows: when reconstructing the secret from

dealer Pa, each party Pi decrypts the i-th share to gf
(a)(i) using its secret key

and proves the correctness of the decryption using a discrete logarithm equality
proof. In fact, Pi can prove decryption correctness for all a ∈ Q with a single
DLEQ proof. Once at least t+ ℓ parties have done that, we can reconstruct the

secret (gf
(a)(0), . . . , gf

(a)(−(ℓ−1))) by Lagrange interpolation in the exponent.
Finally the actual output is obtained by applying a t-resilient matrix to the

vectors (S
(a)
0 , . . . , S

(a)
ℓ−1) = (gf

(a)(0), . . . , gf
(a)(−(ℓ−1))), a ∈ Q. More precisely, the

matrix is applied, for each j ∈ [0, ℓ − 1] to the vector of (S
(a)
j)a∈Q. This makes

the result uniformly random independently from the choices of any subset of at
most t colluding parties in Q. Each application of the matrix gives as output
a vector of ℓ′ group elements (okj)k∈[ℓ′]. Since we have applied this for every
j ∈ [0, ℓ − 1], the overall output is a matrix of ℓ · ℓ′ independent random group
elements.

8 An alternative is that the dealer opens the secret by simply announcing f (a), upon
which everyone can check this opening is correct. We omit this from Figure 14 to
focus on how to open the secrets even if dealers do not cooperate at this point

33

ALBATROSS PVSS-based randomness beacon

Setup: A public bulletin board, a DDH-hard group G = ⟨g⟩ of prime order q, a t-

resilient matrix M ∈ Zℓ′×(n−t)
q , e.g., setting Mij = αi·j for some α ∈ Z∗

q of order at
least max{n− t, ℓ′}. Every party has a key-pair (ski, pki) ∈ Zq×G where pki = gski .
Preparation:

1. (Sharing) Each party Pa PVSSs a random secret (gs
(a)
0 , . . . , gs

(a)
ℓ−1) ∈ Gℓ by

choosing f (a) ∈ Zq[X]≤t+ℓ−1 with f (a)(−j) = s
(a)
j , setting σ

(a)
i = f (a)(i) and

publishing Ŝ
(a)
i = pk

σ
(a)
i

i , i ∈ [n], and a proof

π(a) = πLDEI((pki)
n
i=1, (Ŝ

(a)
i)ni=1, t+ ℓ− 1)

of correct sharing.
2. (Verification) Parties check the validity of π(a) for all a ∈ [n]. This fixes a set
Q of the first n− t parties Pa, a ∈ Q whose π(a) are correct.

3. (Opening)
– Each party Pi, i ∈ [n] computes, for all a ∈ Q, the decrypted group share

S
(a)
i := gσ

(a)
i = (Ŝ

(a)
i)1/ski , and a correctness decryption proof

πi = πDLEQ((g, (S
(a)
i)a∈Q), (pki, ((Ŝ

(a)
i)a∈Q)).

Note this proof asserts knowledge of w = ski that simultaneously satisfies
gw = pki and (S

(a))
i)w = Ŝ

(a)
i for all a ∈ Q.

Pi posts S
(a)
i for all a ∈ Q and πi

– Every party verifies proofs πi for each i ∈ [n]. Let I be the set of the first
t+ ℓ parties Pi who have posted correct proofs.

– For a ∈ Q, j ∈ [0, ℓ− 1], parties reconstruct S
(a)
j =

∏
i∈I(S

(a)
i)Li,I (−j)

4. (Output) The output is a (ℓ′ × ℓ)-matrix O of group elements where for k ∈
[ℓ′], j ∈ [0, ℓ− 1] the (k, j)-th entry is defined as

ok,j = (
∏
a∈Q

S
(a)
j)Mk,a

Fig. 14: ALBATROSS

34

