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Abstract—Side-channel attacks represent a realistic and serious
threat to the security of embedded devices for almost three
decades. The variety of attacks and targets they can be applied
to have been introduced, and while the area of side-channel
attacks and mitigations is very well-researched, it is yet to be
consolidated.

Deep learning-based side-channel attacks entered the field in
recent years with the promise of more competitive performance
and enlarged attackers’ capabilities compared to other tech-
niques. At the same time, the new attacks bring new challenges
and complexities to the domain, making a systematization of the
existing knowledge ever more necessary.

In this SoK, we do exactly that, and by bringing new
insights, we systematically structure the current knowledge of
deep learning in side-channel analysis. We first dissect deep
learning-assisted attacks into different phases and map those
phases to the efforts conducted so far in the domain. For each
of the phases, we identify the weaknesses and challenges that
triggered the known open problems. We connect the attacks to
the existing threat models and evaluate their advantages and
drawbacks. We finish by discussing other threat models that
should be investigated and propose directions for future works.

Index Terms—Side-channel attacks, Deep learning, Profiling
attacks, Supervised learning

I. INTRODUCTION

The market of embedded devices constantly grows. Already
in the 2020 world of connected devices, there were more IoT
connections than non-IoT connections. The current number
of active connected devices is estimated to be more than
20 billion and is expected to reach more than 30 billion
by 2025 [1]. This escalation in the number of devices is
followed by increased security concerns and vulnerabilities,
resulting in the ever-growing demand for certified products.
As a consequence, millions of products are undergoing strict
security assessments in evaluation labs around the world on a
daily basis [2]. As a part of those evaluations, side-channel
analysis (SCA) represents a well-known threat since the
90s [3] and is widely studied by researchers in the community
of information security and cryptography from both industry
and academia [4], [5], [6].

Various physical leakages such as timing delay [7], power
consumption [8], electromagnetic emanation (EM) [9] become
available during the device’s computation with the (secret)
data. Those phenomena have led to a whole new research area.
There, by combining the physical observation of a specific
internal state within computation and a hypothesis on the data
being manipulated, it is possible to recover the intermediate
state processed by the device. Thus, it is possible to “break”
the device, i.e., learn its secrets.

SCAs and corresponding mitigation evolved in the past
three decades, and more recently, deep learning-assisted side-
channel analysis became widely used for this kind of research.
Naturally, the security industry has started using such tech-
niques as standard ones in the design and certification process.
A recent example is the machine learning approach (unsuper-
vised clustering) to break Google Titan Security Key [10].
The main goal is to consider the worst-case adversaries and
make such techniques well understood and used as efficiently
as possible. For example, Common Criteria security evaluation
of a device evaluates the time required to perform a successful
attack and the attack effort, i.e., the difficulty of it, which
both have an impact on the chip’s final security rating [11].
In short, confidence in security evaluation implies considering
worst-case adversaries, and then one needs to go for the best
techniques known, including deep learning-based SCA [12].

The appeal of using deep learning in side-channel analysis
in the last few years is evident, as demonstrated in Figure 1.
Clearly, from 2016 when the first paper appeared that uses
deep learning to conduct side-channel analysis [13], the do-
main became very active1. By analyzing those works, we
can notice two main advantages being commonly brought up:
1) deep learning-based SCA is very powerful and can break
targets protected with countermeasures, and 2) deep learning-
based SCA requires less (or no) effort to pre-process the side-

1To be more precise, this is the first application of convolutional neural
networks. There are earlier papers that use multilayer perceptrons, but since
they do not report the number of hidden layers or this number is set to one,
we do not consider those works as deep learning-based SCA.



Fig. 1: Distribution of papers and datasets per year that use
deep learning in side-channel analysis. Note that the informa-
tion for 2021 only contains papers and datasets released in
the first seven months (until August 1). For multiple versions
of the same papers, we consider the peer-reviewed version.
We consider papers published in English only. Observe how
datasets appear more consistently (and in larger numbers) in
the last few years, which we connect with a considerable
interest in the SCA community for deep learning-based SCA.

channel measurements and prepare the measurements for the
attack.

At the same time, the main disadvantage (and an inspiration
for many research works) is the need to conduct hyperparam-
eter tuning, which is considered an important and challenging
task. With all the diverse strategies and techniques in deep
learning-based side-channel analysis, it is not obvious how
effective and efficient are the different approaches and how
they compare to each other. In addition, it is hard to identify
the primary challenges as they are typically device- or threat
model-specific. Our motivation for this work is to systematize
and critically evaluate previously proposed approaches. We
also aim to identify the main challenges and offer actionable
steps to solve those challenges. As such, we consider our work
a crucial stepping stone in understanding state-of-the-art deep
learning attacks in SCA.

Some related works already itemized various machine
learning-based side-channel attacks [14] and research chal-
lenges [15]. This systematization of knowledge paper goes
far beyond those works by providing a detailed list of up-to-
date challenges with the latest development in the domain and
recommendations on how to address them. This paper does
not aim to cover every proposed approach but systematically
identify and analyze the main approaches in getting deep
learning to work for side-channel adversaries. Our focus is
on attacks exploiting the power and EM radiation

With this systematization of knowledge paper, we make the
following contributions:

1) Discuss existing threat models and identify the differ-
ences among them and the impact of those to practice.

2) Enlist relevant stages in deep learning-based SCA and
the impact of neglecting those stages.

3) Evaluate and compare approaches proposed in terms of

performance.
4) Pinpoint why many proposed solutions are not adopted in

practice and what the necessary criteria for new solutions
are.

Our analysis recognized three threat models and the need
to add one more threat model. Next, we divided the deep
learning process into six phases and provided 18 challenges.
We discussed 13 recommendations to address the challenges
and improve state-of-the-art. Finally, we recognized seven
works that are novel and have a significant impact on the
deep learning-based SCA.

The rest of this paper is organized as follows. In Section II,
we provide necessary background information about side-
channel attacks, where we emphasize deep learning-based
attacks. Next, in Section III, we provide an overview of
different threat models commonly used. Section IV discusses
various phases of supervised learning and connects them with
important results in the SCA research. Section V provides
an overview of previous work in AI explainability for SCA,
and in Section VII, we conclude the paper. Finally, in the
Appendix, we provide additional information about the side-
channel analysis, deep learning, and additional applications of
deep learning in SCA.

II. BACKGROUND

We use calligraphic letters like X to denote sets. The
corresponding upper-case letters denote random variables (X)
and random vectors (X) over X . The corresponding lower-case
letters (x, x) represent realizations of X and X, respectively.

A dataset D represents a collection of side-channel measure-
ments (traces). Each trace di from D is a time sequence and
is associated with an input value (plaintext or ciphertext) 2

ai and a key ki, where ki denotes a generic key candidate
and the correct key is k∗. The keys take their values from the
keyspace K. Each trace di consists of a total of F features
(samples, points of interest).

A. Side-channel Analysis

Side-channel analysis (SCA) considers attacks that do not
aim at the weaknesses of the algorithms but their imple-
mentations [16]. The central idea of side-channel analysis
is to compare some secret data-dependent predictions of the
physical leakages and the actual (measured) leakage to identify
what data is most likely to have been processed. In practice,
this requires the ability to model the leakages (to come up with
the predictions for data) and to have a good comparison tool
(distinguisher), to extract the secret information efficiently. A
detailed description of this process is given in Appendix A.

A leakage model represents a function mapping the hy-
pothetical data value toward the (approximation of) physical
leakage of the device. Common (well-studied and confirmed)

2As commonly done, we assume known plaintext and attack from the
encryption side or known ciphertext and attack from the decryption side. The
attack principle remains the same.
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leakage models take either the Hamming weight of the hy-
pothetical data (assuming that the physical leakage is propor-
tional to the number of ones in the intermediate value) or the
Hamming distance between the registers that store the data
values at two different moments.

Typical for side-channel analysis is the divide-and-conquer
approach, which aims at recovering the sensitive variables
in parts (e.g., sub-key bytes in the case of AES), making
the approach computationally feasible. This means that the
approach described above is repeated for each sub-key until
the (full) key k∗ is recovered. In general, if one sub-key can
be recovered, it is enough to argue on the implementation’s
weakness.

a) SCA Taxonomy: Attacks performed in the SCA field
can be divided into direct attacks and two-stage attacks.
In direct (also called non-profiling) attacks, the adversary
obtains some (large) number of measurements from the de-
vice under attack and uses statistical techniques to infer
secret information. Common examples of such attacks are
simple power analysis (SPA) and differential power analysis
(DPA) [8] 3 While direct attacks assume less powerful attack-
ers, they might require millions of measurements to obtain
secret information.

In the two-stage (also called profiling) attacks, a powerful
attacker has a clone device identical (or at least similar) to the
device to be attacked. The attacker uses the clone device to
build the model of a device and ultimately attack the target
device. This attack happens in two phases, commonly denoted
as the profiling and the attack phases.

b) Profiling Attacks: The foundation behind profiling
techniques is that side-channel measurements follow an un-
known distribution that can only be approximated by an
assumed statistical distribution for the leakage. The first and
best-known method for profiling attacks is the template at-
tack where an adversary assumes that the leakage follows a
multi-variate Gaussian distribution [17], [18]. The profiling
phase consists then of computing statistical parameters for a
Gaussian mixture model. Thus, the model is built for each
possible hypothetical leakage class (e.g., all possible Hamming
weight values of a byte). In the attack phase, the adversary
computes the probability that a new side-channel measurement
(under attack) belongs to a certain class by using the computed
probability density function from the approximate statistics.
While the profiling attack assumes a more powerful attacker
than a non-profiling one, it requires significantly fewer traces
than direct attacks to break the target: sometimes, only one
trace is sufficient in a profiling attack.

Machine learning techniques were later adopted for profil-
ing attacks, and here the statistics of the unknown leakage
distribution are automatically learned from the profiling set.
Thus, one advantage of machine learning over template attacks

3Besides power, it is common to use other side channels like EM, which
would, strictly speaking, change the technique names to SEMA and DEMA.
Still, as the differentiation among those side channels is not important in
our discussion, we use SPA/DPA for all such attacks, regardless of the side
channel.

is that the profiling model is learned without any assumption
about the statistical distribution of the leakage.

Machine learning models can be further divided into clas-
sical machine learning, where a common step before con-
ducting the attack is to run feature engineering, and deep
learning, where one uses raw features or an optimized trace
time interval thereof. Although the first category of machine
learning models is out of scope in this work, we list several
references for interested readers such as [19], [20], [21].
Additionally, we point to a survey of machine learning-based
side-channel analysis [14]. The main differences between our
work and [14] are: 1) we investigate only deep learning-
based SCA while [14] also considered other machine learning
techniques, as well as different-than-SCA attacks, 2) [14] is
written in the early days of deep learning-based SCA (early
2018), so it is covering only a few deep learning works, and
3) [14] is a survey work that gives detailed information about
related works but not a systematization of knowledge.

c) Countermeasures: It is common to protect the imple-
mentations with countermeasures against SCA. Countermea-
sures aim to break the statistical link between intermediate
values and traces (e.g., power consumption or EM emanation).
There are two main categories of countermeasures for SCA:
masking and hiding [16].
In masking, a random value (mask) is generated to conceal
every intermediate value. More precisely, random masks are
used to remove the correlation between the measurements and
the secret data. Two commonly used types of masking are
Boolean masking and arithmetic masking [16].

On the other hand, the goal of hiding is to make measure-
ments appearing random or constant. Hiding decreases the
signal-to-noise ratio (SNR) only. Hiding can happen in the
amplitude (e.g., adding noise) and time (e.g., desynchroniza-
tion, random delay interrupts, jitter) domains.

Countermeasures are selected based on the adversary’s capa-
bility. Hiding countermeasures could be theoretically defeated
by an adversary unbounded in terms of side-channel mea-
surements 4. Similarly, masking countermeasure considering
a first-order masking scheme (first-order masking means that
each sensitive variable is combined with a single mask) can be
(in the worst-case) defeated by an adversary that can access
mask shares during a profiling phase. Consequently, highly
protected targets consider using high-order masking schemes
or a combination of masking and hiding countermeasures.

d) SCA Adversary: There are two types of adversaries in
SCA, namely the security evaluator and the attacker. The main
difference is that the security evaluator knows some secret
information about the device under attack beforehand, as they
work closely with manufacturers. Also, when considering the
security evaluator perspective, it is more common to speak
about side-channel analysis, while for attackers, we usually
refer to side-channel attacks.

4In reality, there are no attackers unbounded in terms of power, but it is
common to assume the attacker to be arbitrarily powerful.
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B. Deep Neural Networks

A neural network is a mapping fθ such that X → Y . It
operates as a sequence of layers transforming an input x to an
output y, i.e., f = f1 ◦ f2 ◦ . . . ◦ fl, where f1 = x, fl+1 = y,
and l is the number of layers.

The raw output of f(x) is referred as logits, and the softmax
σ(x) is applied to convert logits into a probability distribution.
The inferred label of an input x by a network is then defined
as argmaxi σ(f(x)) where i ∈ {1, 2, · · · , |c|}, and |c| is the
number of classes (labels). When converting a label c into
distribution, it is common to use one-hot encoding yc = 1i(c),
i.e., a vector with one at position c all zero at the others.

In a neural network, each layer fi contains neurons that
apply a linear and nonlinear transformation to their inputs,
which are the outputs of the previous layers neurons. The
number of neurons in a layer is called its width, and the
total number of layers is its depth. The i-th layer computes
fi(x) = φi(wi · x + bi). Here, φi represents a nonlinear
activation function, and wi and bi are the vectors of weights
and biases (the trainable parameters).

C. Deep Learning-based Side-channel Analysis

This SoK considers deep learning-based side-channel anal-
ysis that follows the supervised learning paradigm and classi-
fication task where the output y is a probability distribution
over |c| labels. In SCA, the label c is derived from the key
k∗ and input ai through a cryptographic function CF and a
leakage model LM .

Let us assume a data distribution X × Y where X (with
X ⊆ RF and F ∈ N) is the domain of input and Y (with
Y ⊆ R|c|) is the range of outputs. The objective of a learning
algorithm Alg is to learn a parameterized fθ ∈ H, where H
is the space of hypotheses. More precisely, H is a functional
space where each element f ∈ H is a mapping f : X → Y
between the input and the labels. Finally, fθ ∈ H is a specific
function with parameters θ ∈ Rn, where n denotes the number
of trainable parameters. In what follows, we will restrict the
hypothesis space H to neural network models.

To train the neural network representing fθ, the learning
algorithm Alg has access to the dataset D drawn from the
underlying distribution X × Y . As we assume the supervised
learning setting, D is partitioned into disjoint subsets com-
monly denoted as the training set Dtr, validation set Dvl, and
test set Dts. The size of the training dataset equals N , the size
of the validation set equals V , and the size of the test set equals
Q. In the context of SCA, the different datasets represent data
acquisitions from different targets or phases of the profiling
attack. Then, the classification process can be broken down
into the following steps:

1) Training: Let us assume a non-negative, real-valued loss
function L(fθ(x), y) quantifying how correct the prediction
of a neural network is for an input x ∈ X and label
y ∈ Y . For a loss function L, the output of the supervised
learning algorithm is a neural network fθ minimizing the risk
E(x,y)∼X×Y [L(f(x), y)], with f(x) being the predicted label
and y the true label.

Since the underlying data distribution X ×Y is not known,
supervised learning algorithm uses the training set Dtr of size
N to learn a hypothesis that minimizes the empirical risk5

1
N

∑N
i L(fθ(xi), yi), where (xi, yi) ∼ Dtr.

To minimize the loss, it is common to use the backpropaga-
tion algorithm to update the parameters θ with a multiplication
of the derivative of the empirical risk concerning the model
parameters θt at each iteration t.

During the training process 6, a neural network is tested
based on how well it generalizes on the unseen examples
from the validation set Dvl. Once it converges to an acceptable
error rate, training stops, and the neural network, along with
its parameters, is stored as fθ where fθ represents the SCA
profiling model.

2) Testing: In this phase 7, the goal is to predict labels y
based on previously unseen traces x ∈ Dts, and the trained
model fθ. The SCA metrics, such as guessing entropy and
success rate, are used to assess the testing outcomes as
discussed in the next section.

D. Evaluation of Side-channel Analysis

The outcome of predicting with a model fθ on the test
set Dts is a two-dimensional matrix P with dimensions Q×
|c|. The probability S(k) for any key byte candidate k is a
valid side-channel distinguisher (a tool to differentiate between
various key guesses), where it is common to use the maximum
log-likelihood principle S(k) =

∑Q
i=1 log(pi,c). The value

pi,c denotes the probability that for a key k and input ai, we
obtain the label c.

It is common to estimate the effort to obtain the secret
key k∗ from the predictions with metrics like key rank (KR),
success rate (SR), and guessing entropy (GE). With Q traces
in the attack phase, an attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability where
g1 denotes the most likely and g|K| the least likely key
candidate.

The key rank represents the correct key k∗ position in the
key guessing vector g.
The success rate of order o is the average empirical probability
that the secret key k∗ is located within the first o elements of
the key guessing vector g.
The guessing entropy is the average position of k∗ in g [22] 8.
Note that since all those metrics assume the knowledge of the
correct key k∗, they are appropriate for evaluation setting. On
the other hand, the attacker should test the best guesses until
reaching the one resulting in the correct plaintext.

III. THREAT MODELS IN PROFILING SCA

Several threat models are typically used in the deep
learning-based side-channel analysis. They all assume the

5In other words, the empirical risk is the expected value of the loss function
over all realizations of the joint distribution X × Y .

6We will use the terms training and profiling interchangeably.
7We will use the terms testing and attack interchangeably.
8J. Massey first defined guessing entropy as the expected number of

guesses using an optimal strategy to correctly guess the value of a random
variable [23].
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attacker with unlimited power and the capability of obtaining
an arbitrary number of profiling traces or evaluating any
number of profiling models. Naturally, the attacker’s power is
always bounded, but it is unclear how to do it. One recent
attempt tries to set up a framework where the attacker is
required to find the smallest number of profiling traces or
evaluate the smallest number of neural network architectures
to break the target [24]. By doing so, the authors aimed to
“force” efficient attacks. We depict different threat models in
Figure 2.

A. Classical Threat Model

In this threat model, we assume that the attacker conducts
profiling and attack on the same device (thus, this setup is
also denoted as “single-device-model” [25]). While this setting
is, of course, not realistic, we can notice it represents the
most-explored setting in academia, see, e.g., [26], [27], [28].
There are two fundamental reasons for it as it 1) allows easier
setup since it is not required to have two devices and conduct
data acquisition phase on different devices, 2) assumes the
best-case setting for the attacker where the measurements
come from the same distribution. Indeed, this attack can be
considered as an upper bound to estimate the attacker’s power.
Additionally, we can recognize two further types of this threat
model: 1) the secret key is the same for the profiling and attack
set, and 2) the secret key is different for profiling and attack
set.

The main advantages of this threat model are that it is
easier to run the setup (one device less), and it gives the
best-case estimate for the attacker. On the other hand, the
main disadvantage is that it is not realistic. This model can
be considered a white-box threat model since the attacker
knows (all) details about the device under attack. This model
corresponds to the role of the attacker as a security evaluator.

B. Portability Threat Model

In this threat model, we assume there are (at least) two
devices: one for profiling and the second one for the attack
(thus, this attack is also known as the cross-device attack [29]).
We refer to such a setting as portability, and it corresponds to
all scenarios where an attacker has no access to measurements
from the device under attack (to conduct a training) but only
to measurements from a similar device, with uncontrolled
variations, in process, measurement setup, or other stochastic
factors [25].

This threat model is less used in academia but is getting
more attention in the last two years [29], [30], [31], [32],
[33]. The main difficulty for this threat model stems from the
fact that the two devices (and corresponding datasets) do not
necessarily follow the same distribution, resulting in an effect
called over-specialization where a neural network (or a part of
it) learns to generalize only for a specific dataset and cannot
generalize for other datasets, as encountered in portability [34].
Bhasin et al. [25] recognize the validation phase as the main
problem for the portability threat model since validation on
the measurements from the profiling device indicates a too

optimistic performance of the profiling model. Consequently,
they recommended a multi-device model (MDM) with at least
three devices: one for training, one for validation, and one for
the attack.

Additionally, Zhang et al. proposed several categories of
cross-device attacks [35]:
• Same devices: the traces used in profiling and attacking

phases are collected from the same device. The only
difference is the key variation. Observe that this setting is
the same as described in the previous section, indicating
that there is also some disagreement on what is the
portability (cross-device) setting.

• Identical devices: the profiling and target device are two
physical copies of the same chip model. All the designs
and configurations are identical.

• Homogeneous devices: this case extends the dissimilarity
of crossed devices at the chip level. Both devices have
chips from the same manufacturer but with different
models and structures.

• Heterogeneous devices: the core chips of the two de-
vices to be compared come from different manufacturers,
differing in all aspects, such as models, instruction set
architectures, and power dissipation.

The main advantage of this threat model is that it is realistic,
while the disadvantage is that it requires more effort to conduct
data acquisition. This model can be considered from gray-box
to black-box, depending on the differences between devices.

C. Non-profiling Supervised Threat Model

B. Timon proposed a threat model that combines the traits
of non-profiling SCAs and supervised deep learning [36]. The
author called the attack differential deep learning analysis
(DDLA). This attack runs differential analysis (like in DPA)
and then deep learning to assess how well the differential part
worked. The attack requires that for each key hypothesis k,
the attacker computes hypothetical values and partition those
values based on the leakage model. Next, the attacker runs a
deep learning model with traces and partitions. For the correct
key k∗, the intermediate values will be correctly guessed, while
other key guesses will not be consistent with the traces.

The main advantage of this threat model is that it does not
require a copy of a device for training. Compared to other
non-profiling attacks like DPA, DDLA can perform better,
especially if the target is protected with countermeasures. On
the other hand, the main disadvantages of this attack are that
the performance of the profiling attack can be significantly
better (considering the number of measurements required from
the device under attack) and that we must train a neural
network for each key guess, commonly resulting in 256 neural
networks for the intermediate value leakage model (for the
AES cipher when modeling the output of an S-box). As we do
not require knowledge about the profiling device, this threat
model can be considered a black-box.

Achievement 1: The first application of the non-profiling
deep learning threat model in the profiling SCA [36].
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Fig. 2: Threat models in profiling SCA. The attacker uses N measurements from the profiling device to build a model. Next,
in the attack phase, the adversary uses Q measurements from the device under attack to infer the secret information.

Challenge 1: Design a functional approach for the unsuper-
vised deep learning-based SCA.

Recommendation 1: While developing an unsupervised
deep learning threat model is straightforward, it is more
difficult to make it functional. Indeed, there are no reported
successful results from a fully unsupervised model to the best
of our knowledge. At the same time, unsupervised (simple)
machine learning approaches based on, e.g., clustering, give
good results [37], [10]. Intuitively, this threat model requires
only a single device (device under attack) to obtain a number
of measurements with an unknown key. Afterward, it is
required to use those measurements and infer the key. We rec-
ommend first exploring various semi-supervised deep learning
approaches to understand the limitations in the training set size
before moving toward the unsupervised approaches.

IV. DEEP LEARNING PROCESS AND SCA
In Figure 3, we depict the common phases of the deep

learning-based SCA. We note that not all the investigated
works follow this flowchart. For each of the phases, we
discuss relevant works and challenges to be addressed. We also
provide recommendations on how to approach certain open
questions.

Our analysis shows that deep learning-based SCAs use
mostly multilayer perceptron (MLP) and convolutional neural
networks (CNNs). Besides those methods, there are several
applications of autoencoders (to denoise the traces, conduct
dimensionality reduction, or classify). Finally, there are a few
applications of recurrent neural networks (LSTMs), residual
neural networks (RNNs), and generative adversarial networks
(GANs).

A. Raw Data

The first task when running side-channel analysis is to
conduct data acquisition and obtain the measurements. While
this step is extremely important, it is commonly considered
as “only” engineering and not discussed in related works.

This task is also arduous, as it assumes (besides relevant
knowledge) that the researchers also have 1) good-enough
equipment to record high-quality traces and 2) state-of-the-art
implementations. Finally, as the researchers should share and
maintain the dataset with the community once those technical
details are fulfilled, this phase includes continuous effort.
Unfortunately, these conditions are seldom fulfilled, resulting
in only a limited number of publicly available datasets.

We can divide datasets into those that consider symmetric-
key implementations and public-key implementations. For
symmetric-key implementations, a standard target is AES.
For public-key implementations, standard targets are RSA and
ECC. Let us immediately note a significant practical difference
for SCA on symmetric-key or public-key implementations.
The goal of SCA on symmetric-key implementations is to
break the target with a single attack trace, but commonly, one
requires (significantly) more traces for this task. On the other
hand, breaking the target with a single trace is required for
public-key cryptography as one commonly uses key random-
ization countermeasures and ephemeral keys. Consequently,
there is only a single measurement with a specific key.

We present the most relevant information about publicly
available datasets in Table I 9. Additionally, we briefly dis-
cuss the advantages and drawbacks of those datasets in
Appendix A. We also note that it is relatively common
to simulate the effect of countermeasures by changing the
datasets. Common options include the addition of Gaussian
noise or simulating the effect of desynchronization, random
delay interrupts, jitter, or S-box shuffling [38].

Achievement 2: Release of the ASCAD dataset that became
a standard in the profiling SCA evaluation and proposing the
hd5 format [52].

9It seems that DPAcontest datasets are not available anymore from June
this year. We are checking if the datasets are made permanently unavailable
or is this just a current issue.
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Fig. 3: Deep learning-based SCA flowchart. We do not explicitly write data standardization/normalization as this step is always
done.

Dataset Platform Traces (Features) Keys Implementation Countermeasures
AES RD [39] Atmel AVR (Software) 50 000 (3 500) 1 fixed key AES128 Hiding (Random Delay Interrupt)
DPAv2 [40] SASEBO GII (FPGA) 100 000 (3 253) 1 fixed key AES128 None
DPAv4 [41] Atmega (Software) 100 000 (435 000) 1 fixed key AES256 First-order masking (RSM)

DPAv4.2 [42] Atmega (Software) 80 000 (1 704 400) 16 different keys AES128 1st-order masking (RSM)
AES HD MM [43] SASEBO GII (FPGA) 5 600 000 (3 125) 1 fixed key AES128 BM + Affine Masking

ASCADf [44] Atmega (Software) 60 000 (100 000) 1 fixed key AES128 1st-order BM (XOR)
ASCADv1 [44] Atmega (Software) 300 000 (250 000) Random keys + 1 fixed key AES128 1st-order BM (XOR)
AES HD [45] SASEBO GII (FPGA) 50 000 (1 250) 1 fixed key AES128 None

CHES CTF 2018 [46] STM32 (Software) 42 000 (650 000) Random Keys + 3 fixed keys AES128 1st-order BM (XOR)
Ed25519 (WolfSSL) [47] STM32 (Software) 6 400 (1 000) Random Ephemeral keys EdDSA None
Curve25519 (µNaCl) [48] STM32 (Software) 5 997 (5,500) Random Ephemeral keys EdDSA CSWAP, Coord./Scalar Rand.

Portability [49] Atmega (Software) 50 000 (600) 4 fixed keys AES128 None
ASCADv2 [50] STM32 (Software) 810 000 (1 000 000) Random + 1 fixed key AES128 2nd-order BM + Hiding (Shuffling)

Curve25519 [51] STM32 (Software) 300 (8000) Random keys EdDSA CSWAP, Coord./Scalar Rand.
Curve25519 [51] STM32 (Software) 300 (1000) Random keys EdDSA CSPOINTER, Coord./Scalar Rand.

TABLE I: Publicly available datasets for side-channel analysis research. BM denotes Boolean masking. There are several
more available datasets, but due to simple target, or lack of support (or any third reason), those datasets are not commonly
used.

Recommendation 2: While most of the SCA community
uses a subset of the datasets listed above, it also happens
that some research works use proprietary datasets. We advise
against it unless the characteristics of that specific dataset are
significantly different from those of publicly available datasets.
We hope that the list in Table I will help researchers in
understanding the differences among available datasets. For
scenarios where new datasets are used, we consider it a must
that those datasets are also made publicly available. Using a
common evaluation base makes it possible to frame a proper
comparison among different deep learning techniques.

Recommendation 3: At the moment, various publicly avail-
able datasets are available from different sources. As hosting
them takes effort in the long run, we believe there is a need
for one central place where all datasets will be available. All
the datasets should follow the same format. We suggest using
the hd5 format as given for the ASCAD datasets.

Challenge 2: As seen from the list of publicly available
datasets, most of the targets are software implementations
offering limited countermeasures (e.g., first-order masking and
simulation of misalignment). Hence, deep learning attacks
commonly easily break such targets and require significantly
less than available traces. As a consequence, the gap between
academia and industry that is using more realistic targets
widens.

Challenge 3: Researchers reported many neural network
architectures that can successfully recover secret information
without assuming any knowledge of the secret mask shares
for the datasets mentioned above. The defined leakage models
are constructed based on an intermediate value s, ignoring
the fact that this value is masked with a secret share, r, by
implementing a Boolean masking countermeasure: sr = s⊕r.
The main conclusion is that neural networks inherently find
the points of interest related to r and sr and combine both of
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them in the unmasking process.
The only exception is the ASCADv2 dataset, where an addi-
tional affine multiplicative share m masks the target value with
the following operation: sr,m = m× (s⊕ r). For this specific
dataset (and at the moment of writing of this document), no
successful attacks were reported demonstrating the possibility
of key recovery without assuming the knowledge of at least
one of the two secret shares m or r. This represents a challenge
to be addressed in the future.

Recommendation 4: Based on the list of publicly available
datasets, it is clear that we need to consider protected hardware
implementations and corresponding datasets. Since hardware
implementations have better performance (than those in soft-
ware), this necessitates having datasets containing the whole
encryption or decryption function (compared with the current
setup where only one round is given). For settings where
multiple rounds execute in a single clock cycle, a potentially
only way to attack is to consider inner rounds, see, e.g., [53],
requiring appropriate datasets to evaluate the attacks. Available
“hardware” datasets, such as AES HD and AES HD MM,
contain a fixed key, and therefore they do not represent realistic
datasets for profiling SCA.

B. Data Pre-processing

Recall, we stated in Section I that one commonly mentioned
advantage of deep learning techniques in SCA is that they do
not require pre-processing. First, we notice that most of the
works use either data normalization or standardization [27],
[28], [26]. This is a common practice when working with
neural networks, so it is not surprising to see it in the SCA
domain, but we can already notice that the claim on no pre-
processing is (technically) not true.

On the other hand, when dealing with side-channel measure-
ments, it is common that traces will be misaligned due to the
environment setup or countermeasures [54]. Interestingly, deep
learning techniques (especially convolutional neural networks)
work well even in the presence of misalignment (due to the
spatial invariance property) [55], [54]. Thus, the alignment part
of pre-processing does not seem to be required. Nevertheless,
some researchers found the alignment step to be helpful even
when using deep learning techniques [56]. In this sense, the
model selection phase tends to be simplified if alignment is
feasible.

In many SCA settings, the training set will not be suffi-
ciently large due to the limitations of the data acquisition
setup or countermeasures. In such scenarios, it is common
to use data augmentation techniques. For instance, Cagli
et al. showed how data augmentation in the form of data
shifts (mimicking random delay countermeasure) and add-
remove (mimicking jitter countermeasure) could significantly
improve attack performance for datasets with hiding counter-
measures [57].

Achievement 3: Breaking protected datasets and showing
that CNNs are naturally adept at defeating the desynchroniza-
tion countermeasure [57].

Similar conclusions were also made by Pu et al., where
they showed how data augmentation with shifts improves the
attack performance [58]. Perin et al. utilized data shift data
augmentation for side-channel analysis on ECC to achieve
100% accuracy [51]. This example is relevant as, without data
augmentation, the authors reported that the attack would not
be successful.

The data augmentation techniques discussed up to now
significantly improved the SCA performance, and they were
designed to simulate the effect of various hiding countermea-
sures. Nevertheless, it is also possible to consider data aug-
mentation that is not SCA-specific. For example, researchers
proposed to use a mixup data augmentation where several
existing traces are combined (mixed up) to produce a new
trace [59]. Providing a different approach, Picek et al. showed
how noise addition to the data at the input of neural networks
could improve the SCA performance due to the regularization
effect [26]. Due to the binomial data distribution, the datasets
are highly imbalanced for certain leakage models like the
Hamming weight or Hamming distance. As such, this setting
can cause difficulties for deep learning approaches to learn all
possible classes equally. Picek et al. showed that a standard
data balancing technique called SMOTE could significantly
improve the attack performance [60]. Won et al. experimented
with numerous variants of SMOTE, showing different variants
to be more or less aligned with specific SCA datasets and
implemented countermeasures [61]. More recently, researchers
proposed to use generative adversarial networks (GANs) for
data augmentation [62]. While the results look interesting, the
main problems seem to be relatively poor performance when
dealing with many labels and the need for a relatively large
dataset to train GANs, making the whole procedure less useful
in practice.

Wu et al. used a denoising autoencoder with clean and
noisy data (where noise is the consequence of countermea-
sures) to pre-process the traces and improve the attack perfor-
mance [38]. The results showed not only that deep learning
attacks can improve the performance after this pre-processing
step but also simpler profiling techniques like the template at-
tack. Won et al. used multi-scale convolutional neural networks
that can apply independent transformation (e.g., phase-only
correlation, principal component analysis (PCA), alignment
methods) to input data in each branch to extract the relevant
features and allow a better generalization of the profiling
model [63].

Challenge 4: Data pre-processing can be useful and improve
the deep learning SCA performance. Still, we are missing a
clear set of guidelines on what pre-processing techniques to
use and in what settings. It would be especially important to
recognize if there are pre-processing techniques that should
always be used (besides standardization/normalization).

Challenge 5: Considering data augmentation techniques,
we can recognize two directions: either use standard machine
learning techniques or customize data augmentation for SCA.
We believe there is a need for a systematic comparison of
those approaches. Indeed, if custom approaches do not offer
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significant advantages, we question their need as they also
require more effort to develop. On the other hand, if custom
data augmentation is needed, there should be a clear set of
recommendations on how to build synthetic traces for various
settings.

Recommendation 5: Data pre-processing is not a required
step for SCA (besides data normalization/standardization), but
such techniques could improve the SCA performance. We rec-
ommend always to use data standardization/normalization and
report results with and without data augmentation. Still, the
freedom not to use pre-processing is a significant advantage
of deep learning over other types of profiling SCA.

C. Feature Engineering

Feature engineering represents (probably) the most impor-
tant phase of classical profiling SCA. Since techniques like
the template attack do not have any hyperparameters to tune,
the key aspect of a successful attack is to use the most
informative features. Commonly, to this end, one either uses
feature selection (e.g., Pearson correlation or signal-to-noise
ratio) or dimensionality reduction (e.g., PCA). Thus, this opens
two potential issues: 1) what feature engineering technique
to use (not necessarily a problem as there are only a few
techniques commonly used) and 2) how many features to
use? While recent work showed that many feature selection
techniques behave similarly [64], making the selection of
a feature engineering technique less crucial, there are no
definitive pointers on the number of features to use. Most
related works use 50 features, but there is no deeper reason for
that choice (besides being relatively computationally efficient).

On the other hand, deep learning techniques are significantly
more efficient and can work with more features. Techniques
like neural networks also make implicit feature selection by
assigning small weights to features that are not important.
As such, the SCA community commonly claims to use raw
data. Nevertheless, several commonly used (publicly available)
datasets propose using a pre-selected feature window contain-
ing the relevant information. Thus, it would be fair to conclude
that some feature engineering is used but not considered a part
of the deep learning-based SCA.

More recently, feature engineering techniques based on
deep learning showed potential. Ramezanpour et al. showed
that an LSTM autoencoder could extract features from side-
channel traces and obtain the secret information with ten times
fewer traces than required for a direct attack like DPA [65].
The autoencoder-based approach for feature engineering also
showed good results on other ciphers like ASCON [66].
Mukhtar et al. experimented with the PCA dimensionality
reduction technique and showed that deep learning attacks on
public-key implementations could result in a highly successful
attack [67]. Wu et al. followed a different direction and
proposed a triplet model to find highly efficient embeddings of
input data [68]. Interestingly, the authors combined the deep
learning-based feature engineering with a classical profiling
attack (template attack) and showed that such combinations
could rival the performance of state-of-the-art deep learning-

based attacks. Finally, recent work showed significantly im-
proved SCA performance if using raw data (thus, no pre-
selected windows) [69]. With this work, the authors challenged
the common practices in the deep learning-based SCA and
demonstrated that using more features can bring advantages.

While the SCA community commonly considers that no fea-
ture engineering is required and all is left for implicit feature
selection, they still use pre-selected windows of relevant data.
A direct consequence of working on pre-selected and smaller
windows is a trend of working with small neural network
models. This, in the end, reduces the benefits of automation
steps in SCA, where an appropriate model would automatically
find relevant features inside raw traces. Also, the selection of
hyperparameters of successful models becomes easier, which
might slow down the advances in the hyperparameter tuning
process.

Challenge 6: Feature engineering is not needed for deep
learning-based SCA, or we need only very basic techniques.
Still, as it is common to use side-channel traces with thou-
sands (or tens of thousands) features, we must investigate the
possible drawbacks of using such extremely lengthy traces.
Indeed, limited results indicate that more features help but
also require using significantly larger neural networks, so a
proper trade-off should be found.

Challenge 7: If feature engineering is required, we must
understand what techniques to use. Up to now, feature selec-
tion, dimensionality reduction with PCA, and autoencoders re-
ported good results. Nevertheless, we are missing a systematic
comparison of those techniques.

Recommendation 6: Deep learning brings a significant
advantage as it does not require feature engineering. We
recommend using raw data (no feature engineering) in the
deep learning-based SCA.

D. Algorithm Selection

The design of an efficient deep learning model is, for any
application domain, the most difficult and laborious analytical
step in the deep learning process [70]. Maghrebi et al. pro-
posed the first comparison of deep learning models in the
context of profiling SCA, showing that MLPs, CNNs, and
stacked autoencoders exhibit similar or superior performance
when compared to template attacks and machine learning
methods [13].

Achievement 4: The first application of convolutional neural
networks for profiling SCA and demonstrating the potential of
deep learning [13].

In, e.g., [13] and [54], the authors did not provide details
about the reasoning for CNN hyperparameters selection 10.
The works presented in [26] and [52] selected CNN models
based on the VGG structure, commonly applied to image and
audio classification domains [71], [72]. This way, the results
indicated that model selection based on a VGG-like structure
could be efficient across several domains and datasets.

10[13] mentioned they used genetic algorithms for hyperparameter tuning,
but give no details.
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Achievement 5: Showing that VGG-like architectures per-
form very well in the SCA context and that one architecture
can break different implementations [26].

Datasets evaluated in these first deep learning-based SCA
publications [13], [54], [26], [52] are low-noise AES imple-
mentations, and the attacked trace intervals were optimized
based on the access to the mask shares from the first-order
Boolean masking. It is not surprising that various trained
neural network models can efficiently recover the key within a
few hundred attack traces. Moreover, even if evaluated datasets
vary in the number of features and traces, nothing informative
was provided as strong guidelines to select hyperparameters
and define the appropriate model size (i.e., number of layers,
neurons, and convolution filters).

To partially fill-up this gap, authors of [27] proposed a
research direction focused on optimizing CNN models that
are dataset-specific. One of the main goals from [27] was to
demonstrate that CNN models could break previously evalu-
ated public datasets with very small architectures and showing
remarkable key recovery performance. What is more, the
authors provided the first attempt of building a methodology
for constructing CNNs for SCA.

Achievement 6: Proposing a methodology to design small
and well-performing CNNs for SCA [27].

Later, Wouters et al. [28] improved the previous architec-
tures from [27] with a pooling-based dimensionality reduction
layer as the input layer. This time, the required number of
attack traces to recover the traces was reduced (slightly) further
with the improved CNN models containing less than half of
trainable parameters compared to original architectures pro-
posed by [27]. An important takeaway from these two works
is that model selection following a methodology to identify
the smallest possible CNN architectures is an alternative to
using (explicit) regularization in SCA 11.

Following the same concept of finding small and efficient
neural network models for profiling SCA, in [73], the authors
proposed, for the first time in the SCA domain, the application
of reinforcement learning to select model hyperparameters.
Their search system is rewarded based on attack performance
(guessing entropy of correct key), and the decision process
is based on defining the smallest possible CNN models. This
work improved upon previous best results and showed that the
considered datasets could be broken with even fewer traces, a
task that sounded impossible only two years before.

Optimizing a neural network model to be as small as pos-
sible could face performance limitations if evaluated datasets
become more complex (protected and noisy). As for other deep
learning application domains, this would be a situation where
the alternative solution is to explore larger architectures [74].
Along these lines, several works started to adopt methods
for hyperparameter search on the same previously analyzed
datasets (i.e., ASCAD, DPAv4, CHES CTF). A random search
was adopted in [75] to define a set of CNN and MLP models

11Regularization is a well-known technique that can prevent overfitting and,
most of the time, improve generalization.

to be later combined into ensemble models. In this case, the
authors demonstrated that a random search usually results in
both good and bad models and that combining them into a
final ensemble provides better results than simply selecting
the best model from the conducted search. Additionally, the
authors showed that even randomly selected neural network
architectures perform well, indicating that the commonly con-
sidered datasets are not very difficult to break. Wu et al.
proposed the usage of Bayesian optimization search to define
efficient MLP and CNN models [76]. Bayesian optimization
is beneficial for large search space scenarios, and the training
process is expensive, which is the case of hyperparameter
search for profiling SCA. The authors showed that Bayesian
optimization is more efficient than classical random search
when the number of searches is limited and that it can give
better results than even the reinforcement learning approach.

Although the search space in all the works described in
the last paragraph is quite large, the authors always selected
optimized ranges for each hyperparameter. This selection, of
course, resulted from intuitive decisions related to the dataset
and its countermeasures. In most cases, we rarely see deep
learning models where the number of hidden layers goes
beyond ten hidden layers. Exceptional cases that consider
deeper models are [56], [69]. For deep learning standards (and
for the evaluated datasets), a model can be considered small
to medium size with such a number of layers. Even then,
the search space is already quite large, and more efficient
methods (e.g., Bayesian optimization, ensembles, reinforce-
ment learning) are used to improve model selection. The main
drawback of what was reported for hyperparameter search on
a larger search space is that many models end up showing
good attack performance, limiting the understanding of what
are good hyperparameter options even for specific datasets or
based on what criteria to compare the results.

Challenge 8: As research papers consider relatively small
datasets, there are no efficient guidelines to determine the
hyperparameters on more realistic settings containing millions
of noisy and protected side-channel traces. In this case, it is
expected that the search space will increase, and the number
of well-performing models will decrease significantly.

In the context of public-key implementations, Carbone et
al. were the first to consider deep learning-based profiling
SCA [77]. More precisely, the authors attacked a protected
RSA algorithm (three countermeasures) and showed that
CNNs have significant potential. Soon afterward, Weissbart
et al. ran a deep learning attack against EcDSA in WolfSSL
and showed it is possible to break the target with a single
attack trace [78]. Interestingly, the authors used the same CNN
as used in attacking AES [26]. Finally, Perin et al. used a
fundamentally different approach to attack protected EcDSA
implementation [51]. After running a horizontal attack, they
use deep learning to iteratively correct errors stemming from
the horizontal attack. With this approach, the authors managed
to get 100% accuracy even if starting with only 52% accuracy.

Interestingly, despite attacking protected implementations
and the need to succeed in a single attack trace, the results
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indicate this is relatively easily possible, while such attack
performance for symmetric-key cryptography implementations
is rarely seen. We believe this happens due to fewer classes
for public-key implementations (commonly, only two).

Challenge 9: At the moment of writing this paper, no
publication demonstrated how to bypass high-order masking
schemes in cryptographic algorithms. It is unclear what are
the capabilities of various neural network architectures against
different SCA countermeasures. Therefore, a study defining
the limitations of such techniques against stronger counter-
measures is missing.

Recommendation 7: To allow more meaningful comparison,
we first must define an optimized architecture:

Definition 1: A model that is optimized to recover a key
with a minimum number of attack traces and at the same time
can generalize in different conditions such as portability.

Recommendation 8: We believe there should be an empha-
sis on reproducible research. Every phase in profiling SCA
needs to be clearly defined. First, the pre-processing, feature
engineering, and experimental setup must be discussed. Next,
the researchers must clearly define the selected hyperparame-
ters (as well as how those are found).
Evaluate attack performance with a different number of pro-
filing and attack traces. Evaluate the performance of different
profiling models. Publish the trained models.

E. Model Training

Model selection is accompanied by model training to infer
if the chosen architecture delivers satisfactory performance for
the given attack scenario. However, it is possible to improve
the selection of the model if some training aspects are carefully
defined based on common knowledge and user experience.

Among all tunable hyperparameters in a neural network,
some are directly related to training performance. In SCA,
learning rate, optimizer, batch size, number of epochs, or reg-
ularizers are usually less searched than other hyperparameters
related to model structure (e.g., number of layers, neurons,
and activation functions) but directly affect how the model
learns. For instance, different optimizers work better for a
different number of epochs, as reported in [79]. In this case,
authors demonstrated that Adam or RMSprop require fewer
epochs than Adagrad, SGD, or Adadelta to achieve good
attack performance (although the last options tend to overfit
less even for much longer trainings). More importantly, the
authors observed that this behavior is common for any model
hyperparameters when the number of trainable parameters is
restricted to some bounds.

Training performance is also directly affected by the chosen
loss function. In side-channel analysis, researchers predomi-
nantly consider categorical cross-entropy (while some works
use MSE). Recently, custom loss functions were proposed in
the context of profiling SCA. The authors of [80] proposed
Cross-Entropy Ratio loss function to remove negative effects
from imbalanced labels in the Hamming weight leakage
model. Ranking Loss was proposed in [81] as a method to
minimize the ranking error of the correct key concerning

other key hypotheses. Later, Zaid et at proposed Ensembling
Loss [82] as a custom loss function to maximize diversity in an
ensemble-based approach. The implementation of custom loss
functions directly impacts training time as it requires different
computation aspects.

Recommendation 9: Defining a loss function that provides
general behavior for multiple datasets and attack models is
hard. As such, the usage of categorical cross-entropy is still
a safe choice, although it could present inferior performance
compared to the loss function customized and validated to
specific training data.

Fighting overfitting during training is usually done with
regularization techniques. Most of the publications we ana-
lyzed are not affected by overfitting for three main reasons: 1)
datasets are easy to attack, 2) selected models are often very
small (i.e., a small fitting capacity that inherently regularizes
the model), and 3) training epochs are usually set to small
values (normally less than 300).

Challenge 10: Recognize the most important hyperparame-
ters for deep learning-based SCA. Evaluate how custom neural
networks can enhance the attack performance and generalize
for different settings.

Recommendation 10: Setting efficient regularizers (e.g.,
dropout, l1, l2) is an alternative solution to determine the best
number of epochs. As regularizers prevent model overfitting,
the number of epochs can be set to a larger number without
risking evaluating the model after generalization is already
degraded. Moreover, overfitting should also be minimized by
setting a learning rate scheduler. This way, the learning rate
is adapted (manually or adaptively) during training.

F. Attack Evaluation

Attack evaluation considers different types of metrics de-
pending on the target cryptographic algorithm. For symmetric-
key algorithms, the key is fixed during multiple encryption
executions, and therefore metrics from the predictions of
multiple traces (class probabilities) are combined into a final
metric. On the other hand, if the key needs to be recovered
from a single measurement, which is the case of public-key
algorithms, the model needs to be validated from a final metric
that is not a combination of multiple trace predictions, such
as accuracy.

The discrepancy between SCA and machine learning met-
rics was investigated in [60] for the case of AES. Au-
thors demonstrated that imbalanced class problem leads to
inconsistency between, e.g., accuracy and the SCA attack
performance. This is more likely to be observed for side-
channel measurements collected from protected or highly
noisy implementations.

Achievement 7: Investigating the difference between the
machine learning and side-channel metrics and possible issues
stemming from those differences [60].

Perin et al. visually showed how output class probabilities
are ranked for both successful and unsuccessful attacks when
accuracy is not enough to make a distinction between both
situations [75]. The authors demonstrated that accuracy is
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low or close to a random guessing value because expected
classes are not always predicted as first, but usually among
the first ones, and the summation of these probabilities (based
on the label’s guessing for the correct key) is what explains
the success of certain attacks. Thus, this confirms that GE
is an appropriate metric for model validation. One of the
drawbacks of GE is its computational complexity. Computing
GE only once at the end of the training process is feasible.
However, if GE validates the model during training (e.g., for
early stopping), it might add excessive time overheads if the
number of validation/attack traces is too large. In [83], the
authors proposed the evaluation of the success rate of (small
portions of) training and validation sets to determine the best
training epoch. Still, it is not clear how to use the proposed
approach when there are random keys in the profiling set. The
work of [84] evaluated a mutual information-based metric to
identify the best epoch to stop training. After that training
moment, the authors observed that training performance tends
to degrade.

Since GE is the most common metric in deep learning-based
profiling SCA, one must ensure its computation is correct
and reliable. Ideally, to draw consistent conclusions about the
model’s learnability, it is recommended to compute GE from
the maximum possible number of attack traces. As GE is
the average resulting vector of multiple key rank calculations,
each key rank execution should be computed from a randomly
selected trace subset from all available attack traces. This
way, we ensure that GE is a measure of model generalization.
This type of GE computation is explored in [85] and defined
as generalized guessing entropy. Furthermore, computing GE
using the geometric mean over multiple key ranks instead of
the arithmetic mean (as commonly done) case seems to lead
to more stable results [86]. Zhang et al. proposed a guessing
entropy estimation algorithm based on theoretical distributions
of the ranking score vectors [87]. This approach allows for
better accuracy and efficiency than previous estimation tech-
niques. While the authors did not discuss the deep learning
perspective, it seems intuitive to use it in such context since the
evaluation is expensive and needs to be done multiple times.

Challenge 11: Little is understood about the relationship
between commonly used SCA metrics (GE, SR) and model-
learned parameters (i.e., the neural network weights). Metrics
in SCA are all derived from output class probabilities, and
everything “inside” the model is usually not considered. The
research for specific metrics that could measure how well deep
learning models understand and fool a countermeasure would
be a perfect fit for a bi-objective problem, i.e., a model would
be selected based on its ability to reach low guessing entropy
and be efficient against certain countermeasures.

Challenge 12: It is unlikely to find a universal profiling
model that could defeat all types of available countermeasures
and that could be used in a wide variety of targets. Therefore,
we should measure and understand how the selected hyperpa-
rameters make the model succeed (or fail) in fitting existing
leakages. For example, it would be beneficial to develop an
additional metric that measures the level of desynchronization

(or even noise) that the trained model can process.
Challenge 13: Efficient attack evaluation has an appeal

from the security perspective. A wrong attack evaluation based
on an unreliable metric would mean an unreliable security
assessment. In some cases, security can be overestimated not
because the target is actually secure but because the evaluated
metric is wrongly interpreted. Therefore, if such an evaluating
metric indicates unsuccessful attack performance, the evaluator
needs to cover at least two questions: 1) whether the model is
trained correctly and the selected hyperparameters come from
a reasonable process, and 2) whether the evaluation metrics
are correctly estimated and interpreted for the specific target.

Recommendation 11: We recommend using guessing en-
tropy as the metric of choice to evaluate deep learning-based
SCA. Furthermore, we recommend to always sample the attack
traces from a large pool of available traces and averaging the
estimation by using the median.

V. AI EXPLAINABILITY AND SCA

In general, side-channel analysis is done to break a target
and assess its security, but also to propose stronger counter-
measures. However, using deep neural networks to break the
targets leaves many questions open. Indeed, if the attack is not
successful, we cannot understand why it was not successful.
More precisely, it is difficult to know if we were unsuccessful
due to a poor attack method or strong countermeasures (or
both). On the other hand, if the attack is successful, one could
(naively) think the goal is accomplished, but that is not the
case. Once we succeed with an attack, a natural step should
be to propose better countermeasures. Unfortunately, this kind
of information is difficult to obtain from neural networks, and
the security evaluator is left wondering how to strengthen the
security of a target. Consequently, without understanding the
security flaws of the target, expensive timing (i.e., random
delays) or noise (i.e., extra logic) countermeasures could be
added to the target, while a simpler solution directly mitigating
the leakage could be more cost-efficient.

The first works in the direction of SCA and AI explain-
ability aimed at interpreting neural network decisions by
using heatmapping techniques [88]. The authors concluded
that all tested techniques perform similarly and give relevant
information about the most important features (that caused
specific neural network decisions). Masure et al. used a
sensitivity analysis technique called gradient visualization to
pinpoint where information leakage happens [89]. Van der
Val and Picek extended upon bias-variance decomposition and
proposed GE bias-variance decomposition to understand the
performance of machine learning techniques and how a change
in a setting influences the SCA performance [90].

Van der Valk et al. made the first step toward explainability
of deep neural networks in SCA by using the Singular Vector
Canonical Correlation Analysis (SVCCA) tool to explain what
neural networks learn while training on different side-channel
datasets [34]. The obtained results were interesting as they
showed that even datasets from different domains could have
“more” similarity” than two side-channel datasets. Wu et al.
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discussed how guessing entropy can be a misleading metric,
and they proposed a new metric called profiling model fitting
metric to estimate how reliable the guessing entropy estimation
is [85]. Since the authors claimed that the newly proposed
metric could also provide additional information about the
generalization ability of the profiling model, we consider it
also relevant from the AI explainability perspective.

Perin et al. used pruning to design smaller neural networks
that exhibit good SCA behavior, and they showed that a
recently proposed hypothesis called The Lottery Ticket Hy-
pothesis also holds for the SCA domain [91]. While this
work does not deal directly with AI explainability, the authors
mentioned it as one of their main motivations since smaller
neural networks should hopefully also be easier to explain.
Finally, Wu et al. used ablation to explain how neural networks
process hiding countermeasures [92]. They concluded that
simpler countermeasures are getting processed in the shallow
layers, while more complex countermeasures are processed in
deeper layers. While the explainability part is limited to hiding
countermeasures, we consider this work to show potential in
explaining how neural networks deal with countermeasures.

Challenge 14: Understand how neural networks process
masking countermeasures.

Challenge 15: Propose efficient countermeasures based on
the AI explainability that are tuned to fight against deep
learning-based SCA.

Recommendation 12: Design neural networks that are as
small as possible to allow easier interpretation.
Connect the results for AI explainability with the develop-
ments in the various phases discussed before.

VI. THE FUTURE OF DEEP LEARNING-BASED SCA

The recent work of F. Chollet defines measures for intel-
ligence and generalization in artificial intelligence [93]. The
author provides an important discussion to point out what a
human-like intelligent system must provide to be considered
intelligent for the terms defined in the paper. He suggests that,
so far, deep learning has been restricted to specific tasks,
and, as a consequence, this does not necessarily result in
an intelligent system. In the SCA domain, the story is no
different. At the moment, it is more fair to assume that recent
achievements also showed task-specific results, and the level
of intelligence developed for SCA is still quite limited.

However, this does not necessarily mean that deep learning-
based SCA cannot go beyond this point. The state-of-the-art
deep learning-based SCA results are limited to the concept of
local generalization. According to [93], “this is the ability of
a system to handle new points from a known distribution for
a single task or a well-scoped set of known tasks”. It is also
defined as the “adaptation to known unknowns within a single
task or well-defined set of tasks”.

Once a deep neural network is trained from a profiling
set, the scope of target operation (e.g., a target intermediate
cipher state), leakage model selection, attacked trace interval
(number of features), trace pre-processing, nature of side-
channel leakage (e.g., power consumption, electromagnetic

emissions, or time) and possible countermeasures are all well
defined and taken into consideration to build the model. If
a single aspect changes, the model loses its generalization
ability unless the training data distribution shows statistical
similarities to other targets and the trained model can cover
them. In this case, the “known unknown” refers to a separate
trace set measured from an identical target.

As an example, if a deep neural network is trained on
a profiling set defined for exactly two classes (e.g., a byte
contains all zeros or a byte contains all ones) and a separate
test data is represented by a class that is different from
these two classes (e.g., a byte containing Hamming weight
equal to 3), the model cannot provide a generalization error
associated to this third type of class. It can only indicate
how likely this (unseen) data belongs to each of two well-
defined classes. Therefore, for the SCA domain to enter a
broad generalization case [93], the model should be able to
cover unknown unknowns. An example would be the ability to
generalize to leakage models not specifically covered during
the training phase. This way, the model would be able to adapt
to the new unknown leakage models. One option to (at least)
approach this could be to use transfer learning [94].

While local generalization aspects limit research in AI-
based side-channel analysis, every small improvement in the
offensive side will require a correspondent defensive im-
provement to mitigate the new potential attack. Hence, the
defensive side is also limited to threat models involving single
and well-scoped tasks or attacks. Countermeasures are not
developed to protect against adversaries dynamically, and they
do not “generalize” to any possible attack. As side-channel
analysis is a non-invasive attack, the target system is not
aware of the presence of an adversary. This means that the
protection cannot even adapt according to the attack’s invasive
effect. Therefore, a countermeasure needs to cover as many
as possible known unknowns attack scenarios, restricting the
dynamic and adaptation condition.

Challenge 16: Design countermeasures that achieve broad
generalization to cover unknown attack scenarios.

Challenge 17: There are many developments for deep
learning-based SCA. Consequently, it becomes difficult to
recognize what technique to use and when. We require an
automated system that will not only result in a strong attack but
also suggest the steps required for the attack to be successful.

VII. CONCLUSIONS

Both academia and industry have been investigating side-
channel analysis for several decades already. This process
resulted in tremendous progress, but it also left many questions
unanswered. The recent trend of using deep learning in SCA
makes the situation even less straightforward. While the pre-
vailing number of works report the new techniques resulting
in improved attack performance, most of the techniques are
not well justified and critically evaluated and thus remain
neglected. As a consequence, it is difficult to comprehend the
truly beneficial techniques and when to use them. We believe
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the researchers need to take a step back and observe the big
picture, and that this work might help with that goal.

This SoK paper advocates the need for new threat models
and signalizes many open challenges. Our analysis provides
several recommendations that might help in addressing some
of the challenges. Besides those recommendations, we recog-
nize the need in facilitating the results’ reproducibility: make
publicly available datasets, write all the required details to
reproduce the experiments, and publish the neural network
models used in the experiments. In short, we hope this SoK
will help other researchers and practitioners to pave new
research avenues and move forward in this important domain.
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APPENDIX

PUBLICLY AVAILABLE SCA DATASETS

DPAcontest v2 dataset (DPAv2) [40] is rarely used in both
machine learning and deep learning settings. We believe this
is because it is not a protected implementation.
DPAcontest v4 dataset (DPAv4) [41] represented a standard
target for simpler machine learning methods, see, e.g., [95],
[19]. However, it is not often used with deep learning methods
as it is a very easy dataset to break. Also, the dataset authors
reported a problem with the implemented countermeasure
and first-order leakages in the traces.
DPAcontest v4.2 dataset (DPAv4.2) [42] was released to fix
the problems found in DPAv4. Unfortunately, this dataset is
rarely used in the deep learning-based SCA 12.
AES HD dataset [45] is an unprotected but very noisy
dataset, so it represents a much more challenging target than,
e.g., DPAv4. Still, it is not widely used as it is unprotected
and uses the same key for profiling and attack sets.
There is an extended version of the dataset with 500 000
traces [96] [97].

The Random Delay dataset (AES RD) [39] is a protected
dataset but straightforward to break with deep learning
(especially convolutional neural networks due to their spatial
invariance property), so it is not used in the last few years.

The ASCAD datasets [44] (two versions, one with fixed key
- ASCADf and one with random keys ASCADv1) represent
de-facto standards when evaluating deep learning-based SCA.
Still, considering the developments in the domain, there are
relatively easy to break, and the version with random keys
is not significantly more complex than the fixed key version.
Finally, these datasets also introduced novelties from the data
management perspective as they used the hd5 format.
The new version of the ASCAD dataset (ASCADv2) [50]
appeared only recently, so there are not many results with
it [98]. The available information indicates that the dataset
can be challenging to attack if assuming no knowledge of
secret shares or easy to attack if shares are known.

CHES CTF dataset [46] is an interesting dataset that is
more difficult to attack than ASCAD, but due to the lack of
support, the publicly available version has only 10 000 traces

12There are also other versions of the DPAcontest datasets (v1 and v3), but
to the best of our knowledge, they were never used in the context of deep
learning attacks

per profiling set, making it less used recently (due to the
reproducibility issues).
An extended version of this dataset, with some pre-processing,
is available at http://aisylabdatasets.ewi.tudelft.nl.

The Portability dataset [49] is a software implementation
without countermeasures. It is straightforward to attack it,
making it a less attractive target for deep learning. At the
same time, this is (as far as we are aware) the only publicly
available dataset to investigate portability effects for AES [25].

This is a masked hardware AES implementation
(AES HD MM) dataset [43] that is not widely used
with deep learning techniques. We postulate that a possible
reason for it is that the dataset is older, so many researchers
are not aware of its availability.

In the case of available datasets based on public-key
implementations, Ed25519 (WolfSSL) [47] is unprotected
(making it a non-realistic target) [78], but the lack of publicly
available datasets makes it one of the rarely available datasets
considering public-key implementations.

Curve25519 µNaCl dataset [48] is a protected
implementation, making it a (somewhat) realistic target,
but there are only a few available results. We believe this
is because most SCA community investigates deep learning
attacks on block ciphers (AES).

Curve25519 dataset [51] are protected implementations of
EdDSA, differing in the number of features and countermea-
sures. These datasets appeared very recently, so there is only
one paper using them.

SIDE-CHANNEL ANALYSIS FLOWCHART

A general workflow for SCA can be summarized as follows:
1) Consider a device performing a cryptographic computa-

tion CFk∗(a) on different inputs a drawn uniformly from
the input space, using some fixed key k∗ drawn uniformly
from the keyspace K.

2) During this computation, the device will handle some
intermediate values Tk∗,a utilizing the known input a and
the unknown key k∗.

3) When such a sensitive intermediate value is computed, the
device generates some physical leakage, denoted Wk∗,a.

4) To perform a key recovery, an adversary must select a
sensitive value depending on the secret key k∗. Then,
the adversary can evaluate its result for the input used to
generate Wk,a and all the key candidates k ∈ K. This
will result in different hypothetical values Zk,a.

5) The adversary uses a leakage model to map these values
from the original space T into a hypothetical leakage
space Z .

6) The adversary uses a statistical tool called a distinguisher
to compare the different models Zk,a with the actual leak-
ages Wk,a. If the attack is successful, the best comparison

17

https://tches.iacr.org/index.php/TCHES/article/view/8986
http://aisylabdatasets.ewi.tudelft.nl


result (i.e., the highest value of the distinguisher) should
be obtained for the correct key candidate.

COMMON NEURAL NETWORK TYPES IN SCA

Next, we briefly describe several types of neural networks
used in the deep learning-based SCA. The first two types
(CNNs and MLP) are commonly used, while autoencoders
are not widely used, despite being investigated in different
contexts. Finally, the last three neural network types are rarely
used (one paper for RNN, two for ResNet, and two for GANs).

a) Multilayer Perceptron: The multilayer perceptron is a
feed-forward neural network mapping input sets onto sets of
appropriate outputs. MLP consists of multiple layers of nodes
in a directed graph, where each layer is fully connected to
the next one, and training of the network is done with the
backpropagation algorithm [70].

b) Convolutional Neural Networks: Convolutional neural
networks commonly consist of three types of layers: convolu-
tional layers, pooling layers, and fully connected layers [70].
The convolution layer computes the output of neurons con-
nected to local regions in the input, each computing a dot
product between their weights and a small region they are
connected to in the input volume. Pooling decrease the number
of extracted features by performing a down-sampling operation
along the spatial dimensions. Finally, the fully connected layer
computes the hidden activations or the class scores.

c) Autoencoders: Autoencoders are neural network
structures composed essentially of two main blocks: encoder
and decoder. The output of the encoder usually contains a
reduced dimension in comparison to the dimension of input
data. The decoder block takes the encoder output as input
and outputs the same dimension of input data. Autoencoders
can be employed in supervised and unsupervised learning,
where the main purpose is to transform input data as part
of the (but not necessarily) pre-processing phase. There are
several types of autoencoders used in deep learning-based
SCA. One type is an autoencoder to remove noise from side-
channel traces [38], [99]. The second type is autoencoder
models for feature extraction, reducing the dimensionality of
the input data [63], [68]. Autoencoders were also used for
classification [13], where the authors placed a softmax layer
as the output layer.

d) Recurring Neural Networks: Recurrent Neural Net-
works (RNNs) are designed to recognize patterns in sequences
of data [70]. RNNs performs the same function on every
input data and stores the output for the following input. This
means that RNN stores the previous step input and merges
that information with the current step input. The output of
the neural network is thus dependent on past computation.
Because the RNN has a memory, it is especially useful in
training on sequential data (a stream of interdependent data).
RNNs are widely used in the natural language processing
domain (NLP) [100], and LSTM is a well-known example
of RNN-based architecture [101], also used in SCA ([13]).

e) Residual Neural Networks: Residual Neural Networks
(ResNet) consist of residual blocks with several layers and a
shortcut connection [74]. The shortcut connection connects the
input and output of each residual block. Each residual block
contains basic layers of any type (e.g., convolution, pooling,
dense). The main purpose of shortcuts in a residual network
is to avoid that deeper networks with several hidden layers
become so deep that they cannot propagate the information
anymore.

f) Generative Adversarial Networks: Generative adver-
sarial networks are specific neural network-based structures
that can generate artificial data based on an evaluated data
distribution [102]. Two types of models are trained: a generator
and a discriminator. The generator takes random data as input
and tries to create output data indistinguishable from the
original and available distribution. This generator model is
trained until the discriminator model cannot differentiate from
which distribution (original or fake) the input is coming.

PUBLICLY AVAILABLE FRAMEWORKS

To the best of our knowledge, there are not many publicly
available frameworks for deep learning-based side-channel
analysis. While having a publicly available framework is
not necessary for conducting deep learning-based SCA, we
consider it very helpful, especially from the reproducibility
perspective. The first published framework we are aware
of is developed by Brisfors and Forsmark and is called
DLCSA [103]13. The tool is meant to be modular, but the
current version supports only basic functionalities. It seems
there is no active development in the last two years.

The second publicly available framework is called the AISY
framework. This framework is recently developed by Perin et
al. [104], and it contains a significant number of functionalities
developed in the last few years in the deep learning-based SCA
domain 14. The main advantage of this framework seems to
be the relative ease of conducting reproducible research.

Recommendation 13: The SCA community would benefit
from a publicly available tool that is regularly updated and
containing up-to-date functionalities. Naturally, it is not easy
to know what functionalities to support, but we propose to
include those published in top conferences. As this would still
represent a significant effort for the authors of the framework,
we propose establishing a standard coding style so that it is
easy to import functionalities from various research works.

LEAKAGE ASSESSMENT AND DEEP LEARNING

A standard option to verify that the side-channel traces con-
tain exploitable information is to conduct leakage assessment,
e.g., TVLA [105]. This step only reveals if there is a leakage
and not how to exploit it. Leakage assessment is far from
perfect as it can have many false positives and false negatives.
While this step is not a part of deep learning-based SCA,
deep learning can be used to assess leakage. Differing from
deep learning-based SCA, there does not seem to be many

13 github.com/brisfors/DLSCA
14https://github.com/AISyLab/AISY Framework
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works considering deep learning and leakage assessment. A
recent effort used deep learning to distinguish between two
groups of data (fixed-vs-random or fixed-vs-fixed) [106]. [107]
used MINE (mutual information neural estimator) to compute
mutual information in high dimensional side-channel traces.
The obtained results showed that this technique could be used
as a simple tool to obtain an objective leakage evaluation.

Challenge 18: Due to very limited results, it is still not clear
what are (if any) the advantages of deep learning for leakage
assessment. What is more, the model selection phase is very
simple in the research published up to now, indicating that
more investigation is needed.
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