
Towards Accountability in CRS Generation∗

Prabhanjan Ananth† Gilad Asharov‡ Hila Dahari§ Vipul Goyal ¶

August 24, 2021

Abstract

It is well known that several cryptographic primitives cannot be achieved without a common
reference string (CRS). Those include, for instance, non-interactive zero-knowledge for NP, or
maliciously secure computation in fewer than four rounds. The security of those primitives
heavily relies upon on the assumption that the trusted authority, who generates the CRS, does
not misuse the randomness used in the CRS generation. However, we argue that there is no such
thing as an unconditionally trusted authority and every authority must be held accountable for
any trust to be well-founded. Indeed, a malicious authority can, for instance, recover private
inputs of honest parties given transcripts of the protocols executed with respect to the CRS it
has generated.

While eliminating trust in the trusted authority may not be entirely feasible, can we at least
move towards achieving some notion of accountability? We propose a new notion in which,
if the CRS authority releases the private inputs of protocol executions to others, we can then
provide a publicly-verifiable proof that certifies that the authority misbehaved. We study the
feasibility of this notion in the context of non-interactive zero knowledge and two-round secure
two-party computation.

∗A preliminary version of this work appears in EUROCRYPT 2021.
†University of California, Santa Barbara, prabhanjan@cs.ucsb.edu.
‡Bar-Ilan University, Israel. Gilad.Asharov@biu.ac.il.
§Weizmann Institute, Israel. hila.dahari@weizmann.ac.il.
¶NTT Research and Carnegie Mellon University. vipul@cmu.edu.

1

Contents

1 Introduction 3
1.1 Our Results . 4

2 Technical Overview 7
2.1 Malicious Authority Security for NIZK . 8
2.2 Malicious Authority Security for Oblivious Transfer 9
2.3 Malicious Authority Security for Two Party Computation 12

3 Preliminaries 14
3.1 Rerandomizable Commitment Scheme . 14
3.2 Non-Interactive Zero Knowledge (NIZK) . 15
3.3 Non-Interactive Witness Indistinguishability (NIWI) 16
3.4 Secure Two-Party Computation . 16
3.5 Garbled Circuits . 17
3.6 Puncturable Pseudorandom Functions . 18
3.7 Indistinguishability Obfuscation (IO) . 18

4 Defining Malicious Authority Security 19
4.1 Malicious Authority Security for NIZK . 19
4.2 Malicious Authority for Secure Two-Party Computation 20
4.3 Strong Accountability . 21

5 Malicious Authority Security for NIZK 22

6 Malicious Authority Security for Oblivious Transfer 26
6.1 The OT Functionality . 26
6.2 Two-Round Rerandomizable OT Protocol . 27
6.3 Instantiation: The PVW OT Protocol . 28
6.4 Malicious Authority Security . 31
6.5 Oblivious Transfer with Strong Accountability . 36

7 Malicious Authority Security for Secure Two-Party Computation 42
7.1 Impossibility Result: Malicious Authority Security for General Two-Party Compu-

tation is Impossible . 42
7.2 The Basic Protocol . 43
7.3 Extending to Malicious Authority Security . 47

References 53

2

1 Introduction

Very broadly, cryptography can be seen as having two parallel lines of research: one where the
parties don’t trust anyone but themselves, and another where security relies on some kind of
trust assumption. Most notably, many works have relied on the common reference string (CRS)
model where a trusted party chooses and publishes a public string. The advantage of relying on
a CRS depends upon the setting. For example, for ZK it is known that while in the CRS model,
a non-interaction solution can be achieved [BFM88, FLS99] one needs at least 3 rounds in the
plain model [GO94]. For MPC, two rounds are sufficient in the CRS model [MW16, GS18, BL18]
while the best known constructions in the plain model require at least 4-rounds [KO04, ACJ17,
BHP17, BGJ+18, HHPV18, CCG+20]. Furthermore, UC security is known to be impossible to
achieve in the plain model [CF01, CKL03] while this impossibility can be bypassed in the CRS
model [CF01, CLOS02]. Thus, while one might prefer to obtain constructions in the plain model,
it seems unlikely that the CRS model will be abandoned anytime soon.

Do There Really Exist Trusted Parties? We argue that in real life, there is no such thing
as an unconditional trusted party. We argue that the only reason we trust a party is because the
cost of cheating (if caught) for that party would be much higher than the potential gains obtained
by cheating successfully. Indeed this applies everywhere in our society. We are more comfortable
trusting a large bank with our personal information compared to a small individual lender only
because a large bank will pay a much higher cost (loss of reputation and potential future business)
if it behaves maliciously. However if the cost to the large bank was zero, the reasons for placing this
trust would be unfounded. There are multiple examples where even large entities systematically
participated in an activity which would be generally unacceptable only because they thought the
activity would not become public knowledge (e.g., Facebook selling data to Cambridge Analytica,
or Wells Fargo opening accounts without customer knowledge).

Compared to real life, in cryptography, life is largely black and white: dishonest parties can be
arbitrarily bad and trusted parties are unconditionally trusted. For example, the party generating a
CRS (referred to as the CRS authority from hereon) in a NIZK system can potentially even recover
your witness entirely and sell it for profit. Similarly, in MPC, the CRS authority may recover your
input and pass it on to another party. Even if you detect that the authority is doing that, it’s not
clear how to prove it in a court of law and seek damages. You can publicly blame the authority for
doing that. But this is then indistinguishable from a malicious party blaming an honest authority.

These concerns have motivated the study of weaker notions such as ZAPs [DN00] and super-
polynomial simulation security [Pas03]. Groth and Ostrovsky studied the so called multi-string
model [GO07] where multiple authorities publish common reference strings such that a majority of
them are guaranteed to be honest. Goyal and Katz [GK08], and later Garg et. al [GGJS11] studied
UC security with an unreliable CRS if the CRS turns out to be malicious, some other setup or an
honest majority can come to the rescue. Bellare et. al [BFS16] studied NIZKs with an untrusted
CRS where even if the CRS is malicious, some weaker security properties still hold.

In this work, we focus on a single CRS while providing some notion of accountability towards
the CRS generation authority. Our direction is orthogonal to many of the works mentioned and,
to our knowledge, largely unexplored.

Towards Accountability in CRS Generation: While eliminating trust in the CRS authority
entirely may not be feasible, can we at least move towards achieving some notion of accountability?
As an example, suppose you find out that the CRS authority decrypted your input used in an
execution of MPC protocol and sold to another party for profit. Can you obtain a cryptographic
proof of this fact? Can you convince others that such an incident has happened? Indeed there are

3

limits on what can and cannot be achieved. For example, if the authority sells your input and you
never find out, it’s unclear if something can be done. But if the decrypted input indeed falls into
your hand (e.g., the person buying the input from the authority was your own agent), you know
for sure that the authority is dishonest (although you may not be able to prove it to others).

In this work, we study if there is any meaningful notion of accountability that can be achieved
with respect to a CRS authority. We focus specifically on the case of NIZK, and two-round MPC
which are both known to be impossible in the plain model and yet achievable with a CRS. Our
work runs into several novel technical challenges as we discuss later. We note that our study is far
from complete and leaves open various intriguing questions.

1.1 Our Results

In this work, we propose novel notions of accountability in the context of two party secure com-
putation protocols and NIZKs. We also accompany these definitions with constructions realizing
these notions.

Secure Two-Party Computation (2PC). Our definition of malicious authority security first
requires the same security guarantees as in regular secure computation, that is, if the CRS was
honestly generated, then the protocol achieves simulation security in the presence of a malicious
adversary. To capture the setting when the CRS authority is malicious, we require the following
two security properties:

• Accountability. Suppose the authority generated a CRS maliciously. At a later point in
time, it offers a service to recover the honest parties’ inputs from the transcripts of protocol
executions between these parties, using the trapdoors it embedded in the CRS. The account-
ability property guarantees that we can hold such a CRS authority accountable by producing
a piece of publicly verifiable evidence that incriminates this authority for its malpractice. This
evidence can then be presented in a court of law to penalize this authority. We formalize this
by defining an efficient extractor that can interact1 with this malicious authority and outputs
a piece of evidence (a string). We associate with the scheme an algorithm Judge, which then
determines whether this evidence is valid or not.
The authority should not distinguish whether it interacts with the extractor (who is trying to
incriminate the authority) or with a real party (who is trying to learn the inputs of the honest
parties). Note that if the authority has some auxiliary information about the honest party’s
input, it can possibly produce the input without using the CRS trapdoor at all. In that case,
it seems impossible to obtain incriminating evidence from the response of the authority. To
avoid this issue, we specify a distribution D such that the inputs of the honest parties are
sampled from this distribution in the security experiment. We stress that this requirement is
only for the accountability security experiment. Our construction satisfies the usual definition
of 2PC (without requiring any distribution on the inputs) in case the CRS is honest.

• Defamation-free. Of course, accountability cannot stand by itself. This notion opens up the
possibility of falsely accusing even an honest CRS authority (who never partakes in running
the input recovery service mentioned above) of malpractice. We complement the definition
of accountability by defining another property called defamation-free. Roughly speaking, this
definition states that just given an honestly generated CRS, it should be computationally
infeasible to come up with an evidence that would incriminate an honest authority.

1We stress that this extractor interacts with the malicious authority online without being able to rewind the
authority. This is because, if we want to implicate the authority in the real world then we would not have the ability
to rewind such an authority.

4

We study two variants of accountability. First, we study the scenario mentioned above in which
two parties engage in a secure protocol. Then, one of them comes to the authority after the fact
and asks to open the honest party’s input. That party has to provide to the authority its view,
which includes its own input and randomness. In the second (stronger) definition, we imagine the
authority will be more cautious and refuse to answer such queries. Instead, the authority will insist
on being involved from the beginning. In this model, the authority completely controls one of the
parties, actively participates in the protocol execution on behalf of this party, and finally recovers
and provides to this party the honest party’s input. We refer to these notions as weak and strong
accountability.

Impossibility Result. The first question is whether this new notion can be realized at all.
Unfortunately, we show that even the weak definition cannot be realized for all functions. We show
the following.

Theorem 1.1 (Informal). There exists a two-party functionality F such that there does not exist
any secure two-party computation protocol for F in the CRS model satisfying both (weak) account-
ability and defamation-free properties.

Specifically, the class of functionalities for which the above impossibility result hold are functional-
ities where given the output, we can efficiently recover the inputs. Indeed, an impossibility result is
easy to see in this case since the authority can recover the input without even using any trapdoor
related to the CRS (and in fact, anyone can recover the input of any party). Since this class of
functionalities is somewhat trivial, and such functions are usually considered as functions where
secure computation is not necessary (a trivial protocol where a party just gives its input suffices),
this gives us hope that we can come up with positive results for large class of interesting function-
alities. We focus on the setting of maliciously secure two-round two-party since that is known to
be impossible to achieve in the plain model.

Construction. We then study the following class of (asymmetric) two-party functionalities F :
the two-party functionality takes as input (x, y) and outputs g({xi}yi=1) to the second party (with
input y) for some function g. That is, it outputs g on only those bits of x that are indexed by the
bits of y set to 1. This class of functions includes for instance, oblivious transfer, private information
retrieval, subset sum, and more. We show the following:

Theorem 1.2 (Informal). Assuming SXDH (Symmetric External Diffie-Hellman) on bilinear maps,
there exists a two-round maliciously secure two-party computation protocol for F satisfying both
weak accountability (with respect to the uniform distribution over the inputs) and defamation-free.

Indeed, obtaining such a construction turns out to be surprisingly non-trivial and requires one
to overcome novel technical challenges. We refer the reader to Section 2 (Technical Overview) for
a summary of techniques.

Strong accountability for Oblivious Transfer. As mentioned, we study weak and strong
accountability, depending on whether the malicious authority actively participates in the protocol
execution or not. We focus on the oblivious transfer functionality and demonstrate that strong
accountability is possible to achieve, based on a (seemingly) stronger assumption.

Theorem 1.3 (Informal). Assuming indistinguishability obfuscation for P/poly [BGI+01,GGH+16]
and SXDH in bilinear groups, there exists a two-round maliciously secure oblivious transfer protocol
in the CRS model satisfying both strong accountability and defamation-free properties, with respect
to the uniform distribution over the inputs.

5

The techniques developed in the above construction can potentially be extended also for the class of
functions in F for which Theorem 1.2 holds, although we focused on oblivious transfer for simplicity.

Non-Interactive Zero-Knowledge (NIZK). Another basic cryptographic primitive which relies
on a CRS is NIZK. Indeed, CRS shows up in several cryptographic constructions primarily because
they use NIZK as a building block. Similar to the 2PC case, we require the same guarantees as
a regular NIZK when the CRS is honestly generated, namely, completeness, soundness and zero-
knowledge. We associate with the proof system a Judge algorithm and require accountability and
defamation free properties:

• Accountability. For any CRS∗ that might be maliciously produced by the CRS authority, if
there exists an adversary that upon receiving pairs (x, π) can recover the witness w, (where x
is an instance, π is a proof that x is in the associated language, and w is the secret witness),
then there exists an extractor that can create a piece of evidence τ that is accepted by Judge.
As before, our accountability property is parameterized by a distribution D defined on the
instance-witness pairs. Indeed this is necessary since if the authority can guess the witness
without using the CRS trapdoor, the security guarantees we have in mind are impossible to
achieve.

• Defamation-free. This states that no non-uniform probabilistic polynomial-time adversary
A upon receiving a CRS that was honestly generated can come up with a piece of evidence τ
that makes Judge accept.

We consider an NP language L consisting of instances of the form (C, c1, . . . , cn, b) such that C :
{0, 1}n → {0, 1} is a boolean circuit, each ci is a commitment of xi and moreover, C(x1, . . . , xn) = b.
We note that we can reduce any NP-complete language to this language based on the existence of
rerandomizable commitments. We show the following.

Theorem 1.4 (Informal). Assuming SXDH on bilinear maps, there exists a NIZK for L in the
CRS model satisfying both the accountability and the defamation-free properties.

We can handle a class of distributions D with the only requirement being that a distribution in
this class computes the commitments using uniform randomness while the circuit C and inputs
(x1, . . . , xn) can be arbitrarily chosen.

Open Problems. We believe that a systematic study of the notions of accountability in the CRS
model is an exciting line of research. Our work leaves open several natural questions. Can we
broaden and characterize the class of functionalities for which accountable 2PC can be achieved?
Can we extend our construction to more than two parties? While we focus on two rounds, obtaining
even three round constructions would be valuable since the best known constructions in the plain
model require at least four rounds.

One could also consider stronger notions where the authority only supplies some information
about the input (e.g. the first bit of the input) rather than the entire input. In this setting, it seems
the extractor would need to obtain multiple responses from the authority and somehow combine
them into a single proof. Furthermore, while we focus on privacy (of the input in case of secure
computation, or the witness in case of NIZK) in this work, what if the authority instead attacks
correctness or soundness?

Another interesting direction is to consider other settings where CRS is used such as obtaining
UC security.

Related Works. Our notion is inspired, in part, by broadcast encryption with traitor tracing
[CFN94] where, given a decryption box, there is a trace algorithm (similar to our Judge algorithm)

6

which identifies the cheating party. However there are crucial differences. Our Judge algorithm does
not have direct access to the CRS authority and only gets to see a string produced by the extractor.
Furthermore, our extractor only gets to interact with the CRS authority online and, in particular,
does not get to rewind the CRS authority. In another related line of research, Goyal [Goy07]
introduced what is known as accountable authority (AA) identity-based encryption (IBE) where if
the authority generating the IBE public parameters is dishonest and releases a “decryption box”, the
authority can be implicated in a court. Our definition is also inspired by public verifiability in covert
security, introduced by Asharov and Orlandi [AO12]. This definition shows how one can extract,
given a transcript of the protocol, a piece of evidence showing that there was a misbehavior in the
execution. The definition also requires defamation free, so that innocents cannot be implicated.

Another related notion of our work is subversion security, suggested by Bellare, Fuchsbauer,
and Scafuro [BFS16] (see also [Fuc18]). The work studies the security of NIZKs in the presence
of a maliciously chosen common reference string. It shows that several security properties can
still be preserved when the CRS is maliciously generated. Nevertheless, it is shown that zero-
knowledge cannot be preserved simultaneously with soundness when the common reference string
is maliciously generated. Our work takes a different approach and seeks accountability when such
misbehavior is detected. It will be intriguing to see how these two notions can intertwine.

2 Technical Overview

We start by explaining the main idea that underpins the constructions of NIZK, oblivious transfer
and secure two-party computation with malicious authority security. Realizing this insight will lead
us to different challenges in the context of designing each of the different primitives; we discuss the
challenges for each of these primitives separately.

Main Idea. Our main idea is to force the CRS authority to include a transcript of execution of the
protocol as part of the CRS, where the transcript has a secret s embedded inside. In the context
of NIZKs, we force the authority to include a NIZK proof in the CRS where the witness contains
the secret s. In the case of oblivious transfer and secure two-party computation, the sender and
the receiver’s input in the transcript are generated as a function of s.

In the honest execution, the transcript in the CRS is ignored. However, to argue accountability,
the extractor will cleverly maul this transcript in the CRS to generate another transcript in such
a way that the mauled transcript now has the embedded secret s⊕∆, where ∆ is sampled by the
extractor. The extractor then sends this mauled transcript to the malicious CRS authority. Since
this authority offers a service to recover the inputs of the honest parties (or witness in the context of
NIZKs), it recovers s⊕∆ and outputs this. Note that the authority was tricked into recovering an
input that was in reality related to the secret that it hardwired inside the CRS. Now, the extractor
has s ⊕∆, and it can easily recover s and presents it as evidence to implicate the authority. The
extractor could never recover s by itself without the “help” of the malicious authority, which also
implies defamation free.

While this initial idea sounds promising, its realization involves technical challenges. We high-
light some of them below.

• The first and foremost challenge is malleability. We hinged on the fact that the extractor
can maul the transcript in the CRS. It turns out that malleability is a challenging problem.
Malleability of transcripts has not been studied in the context of interactive protocols before
and moreover, even in the setting of NIZKs, this has only been studied in the context of
restricted relations.

7

• Another challenge is to ensure that the malicious authority cannot distinguish whether it
is interacting with an extractor, who is trying to incriminate it, or is it interacting with a
malicious party who only intends to learn the inputs of the honest parties. In other words,
we need an extractor who can produce transcripts that are computationally indistinguishable
from the transcripts produced by real protocol executions (not the ones obtained by mauling
the CRS).

• We mentioned above that we force the authority to include a transcript in the CRS. How do
we ensure that the authority did indeed include a valid transcript in the CRS? The standard
solution to employ a NIZK proof cannot work because the authority can violate soundness
since it is the one who generates the CRS.

• Finally, to prove the defamation-free property, we need to argue that any probabilistic poly-
nomial time adversary, (no matter how hard it tries) cannot come up with an evidence to
implicate an honest authority. In other words, given the transcript in the CRS, it should be
computationally infeasible to recover the secret s.

We now show how to implement our main idea, to construct NIZKs, oblivious transfer and secure
2PC with malicious authority security, and in the process we also discuss how to address the above
challenges.

2.1 Malicious Authority Security for NIZK

We start by describing the NP relation associated with the proof system.

NP relation. Every instance in this relation is of the form (C, c1, . . . , cn, b), consisting of three
components: (1) A boolean circuit C : {0, 1}n → {0, 1}; (2) Committed input c = (c1, . . . , cn)
hiding some bits x = (x1, . . . , xn) using decommitments r = (r1, . . . , rn); (3) A bit b satisfying b =
C(x1, . . . , xn). The witness is therefore the bits (x, r). In particular, embedding the commitments
in the language guarantees average case hardness, as opposed to regular circuit satisfiability that
might have only worst case hardness.

Base proof system. We start with a NIZK proof system and then modify this system to satisfy
the desired properties. The proof system is obtained by employing the standard FLS trick [FLS99].

To prove an instance (C, c1, . . . , cn, b) using a witness x = (x1, . . . , xn) and de-commitments
r = (r1, . . . , rn), we simply use a NIWI proof system in which the prover can show that either it
knows the witness (x, r), or that it knows a seed sin for some string y that appears in the CRS,
i.e., y = PRG(sin). When the CRS is honestly generated, with overwhelming probability, such a
pre-image does not exist, and thus the proof system is sound. Moreover, the simulator can generate
an indistinguishable CRS in which y = PRG(sin) for some trapdoor sin, enabling it to provide proofs
without knowing the witnesses.

Accountability. To achieve accountability, we need to provide more information in the CRS. As
a warmup, we will include the commitments cm0 = Com(0; ch0) and cm1 = Com(1; ch1) for random
ch0, ch1. To prove accountability, we define an extractor who first samples a circuit C and a string
x = (x1, . . . , xn) according to the distribution of the honest prover, chooses the commitments from
the CRS according to x: (cmx1 , . . . , cmxn). Then, the extractor computes a proof π on the instance
(C, (cmx1 , . . . , cmxn), C(x)). The authority, given the instance and the proof, will output the witness
(x, chx1 , . . . , chxn). This witness itself serves as an evidence that can be used to incriminate the
authority; this is because it can be publicly verified that (xi, chxi) is a valid opening for cmxi that
appears in the CRS. Moreover, just given the CRS, it is computationally infeasible to produce an
opening; thus, defamation-free is guaranteed as well.

8

There are three major issues with this approach. The first issue is the following: the authority
upon recovering the witness (x, chx1 , . . . , chxn), or even by just viewing the instance (C, (cmx1 , . . . , cmxn),
C(x)) to be opened, will realize that it corresponds to the randomness associated with the commit-
ments in the CRS. So, it will be able to figure out that it is the extractor who submitted the proof.
The second issue is that it is unclear how the extractor will be able to produce a valid proof on the
instance (C, cmx1 , . . . , cmxn , C(x)). Indeed, the binding property of the commitment scheme and
the soundness of the NIWI proof tell us that this should not be possible. Finally, the third issue is
that we need to verify that the malicious authority included commitments of 0 and 1 only.

• To get around the first issue, we use a rerandomizable commitment scheme. Given commit-
ment to a message m, we can rerandomize this commitment in such a way that randomness
of the new commitment information-theoretically hides the randomness used in the old com-
mitment. To see why this is useful, note that the extractor can rerandomize the commitments
(cmx1 , . . . , cmxn) to come new commitments (c1, . . . , cn). Now, the randomness recovered by
the authority is identically distributed to fresh commitments of (x1, ..., xn).

• To get around the second issue, we add to the language of our NIWI a third branch: given a
statement (C, c1, . . . , cn, b), the commitments (c1, . . . , cn) were obtained as re-randomizations
of the two commitments cm0 and cm1 in the CRS, and the extractor has to provide the re-
randomization information. Thus, to generate an implicating transcript, the extractor chooses
any circuit C and input x = (x1, . . . , xn) according to the distribution of the honest prover.
Moreover, it evaluates C(x1, . . . , xn) = b, re-randomizes the commitments (cmx1 , . . . , cmxn) to
obtain (c1, . . . , cn). The extractor then gets an instance (C, c1, . . . , cn, C(x)) with a proof πNIWI.

• Finally, to overcome the third issue, the authority will provide four commitments as part of
the CRS,

(
(cm0

0, cm
0
1), (cm1

0, cm
1
1)
)
, and prove using a NIWI proof (which does not require

CRS) that one of the branches (cm0
0, cm

0
1) or (cm1

0, cm
1
1) consists of commitments to both bits

(0, 1). Before participating in proving any statement with respect to this CRS, one has to
check using the proof provided in the CRS that the CRS is correctly computed, i.e., that
there is a method to implicate the authority if corrupted.

To argue accountability with the modified CRS, the extractor needs to pick the correct branch
to rerandomize. However, it does not know which is the right branch. Instead it samples one
of the branches uniformly at random and proceeds. If we had the guarantee that the authority
recovered the witness with non-negligible probability then we have the guarantee that the extractor
still succeeds in coming up with an incriminating evidence with non-negligible probability.

We can argue defamation-free using the witness-indistinguishability property of the proof in the
CRS in conjunction with the hiding property of the commitment scheme.

2.2 Malicious Authority Security for Oblivious Transfer

We now focus our attention on secure two party computation protocols. To gain better intuition
and to understand the difficulties we cope with, we start with studying a specific functionality —
oblivious transfer. The solutions and techniques developed in addressing this functionality will also
be useful in understanding the general case.

As opposed to NIZK which consists of one message and only the prover has some private
input (the witness), in oblivious transfer both parties have private inputs. We consider a parallel
repetition of 1-out-of-2 bit oblivious transfer, in which the receiver holds a string σ = (σ1, . . . , σn) ∈
{0, 1}n, and the sender holds two messages m0 = (m0

1, . . . ,m
0
n), m1 = (m1

1, . . . ,m
1
n) ∈ {0, 1}n.

Only the receiver receives the output which is (mσ1
1 , . . . ,mσn

n). A two-round protocol of oblivious

9

transfer in the CRS model consists of a CRS generation algorithm GenCRS (run by the authority)
that outputs CRSOT, and two algorithms OT1,OT2 for generating the transcript. The receiver runs
msgR = OT1(CRSOT,σ) to obtain the message msgR from the receiver to the sender, followed by
a message msgS = OT2(CRSOT,m0,m1,msgR) from the sender to the receiver. The receiver then
makes some local computation to output (mσ1

1 , . . . ,mσn
n).

As the functionality hides information for both the receiver (m1−σ1
1 , . . . ,m1−σn

n) and the sender
(σ), both parties might come to the malicious authority and ask to open the same transcript, while
extracting different information from it. We, therefore, have to discuss two different scenarios and
show that in either case, if the authority offers help to either of the two parties, it can be implicated.
In the first scenario, which we call malicious sender, the sender submits its view to the authority
and tries to learn the input of the receiver. We define malicious receiver analogously. We follow
the same oblivious transfer protocol that is secure against malicious adversaries. As mentioned
earlier in our discussion, to achieve the protocol’s security, we cannot hope to prevent the malicious
authority from making any trapdoors in CRSOT. Those trapdoors are essential ingredients when
proving the simulation security of the protocol. All we can do is to prevent it from using that
trapdoor, and specifically from divulging secrets to others.

Dealing with a malicious sender. Following our general template, the authority generates
CRSOT. Moreover, it randomly samples a challenge σ = (σ1, . . . , σn), for some sufficiently long
n, and appends f(σ) to the CRS, where f is a one-way function. Then, we want to embed σ in
transcript of OT, i.e., add msgσR = OT1(σ). Without knowing the receiver’s randomness, no one
can learn σ just from seeing the message OT1(σ), as guaranteed from the receiver’s security in the
protocol against the malicious sender. This guarantees defamation free. Yet, our goal is give the
extractor the ability to maul those transcripts such that if ever opened, we will have a piece of
evidence to implicate the authority.

A natural idea is to just complete the transcript with any m0,m1 to obtain msgS = OT2(CRSOT,
msgσR,m0,m1). Then, to come up with the pair (msgS ,msgR) to the authority. But, the authority
will refuse to open such a transcript – it can clearly identify that the receiver’s secret input is σ, i.e.,
the secret challenge it generated! Moreover, it can identify that the message msgR in the transcript
is identical to the message it published in the CRS. We need a stronger method that enables us to
complete transcripts to any input of the sender and to maul the receiver’s input and re-randomizes
it.

To achieve that, we again successfully avoid the issue of malleability using rerandomization
and by adding more information in the CRS. Recall that the protocol is a parallel repetition of
bit OT, i.e., OT1(σ) = OTbit1 (σ1), . . . ,OTbit1 (σn), where (OTbit1 ,OTbit2) is the underlying bit OT
protocol. The authority will have to generate for every bit two transcripts, αi,0 = OTbit1 (σi⊕0) and
αi,1 = OTbit1 (σi ⊕ 1). This enables the extractor to obtain a transcript for σ ⊕∆ for the receiver
for every ∆ = (∆1, . . . ,∆n) of its choice, and any input (m0,m1) of the sender of its choice. That
is, to generate OT1(σ ⊕∆), do the following:

OT1(σ ⊕∆) = (α1,∆1 , . . . , αn,∆n) =
(
OTbit1 (σ1 ⊕∆1), . . . ,OTbit1 (σn ⊕∆n)

)
.

It re-randomizes each one of these messages, and completes it to full transcript with any mes-
sages m0,m1 of its choice. The authority receiving such a transcript has no way to tell that this
transcript was generated using the transcripts it published in the CRS. By extracting the input of
the receiver it discloses itself.

Dealing with a malicious receiver. Following a similar approach, recall that on input
(m0,m1) for the sender and r for the receiver, the oblivious transfer functionality hides only

10

(m1−r1
1 , . . . ,m1−rn

n) but reveals (mr1
1 , . . . ,m

rn
n) to the receiver. Therefore, it seems natural to em-

bed the challenge in the hidden part of the message.
The authority chooses a new challenge ch = (ch1, . . . , chn) and publishes f(ch) in the CRS. More-

over, it creates transcripts that correspond to ch and enables the extractor to produce transcript for
every input r = (r1, . . . , rn) of the receiver and a “shift” ∆ = (∆1, . . . ,∆n), while embedding chi in
position 1− ri (which is not revealed), to obtain ((ch1⊕∆1)1−r1 , . . . , (chn⊕∆n)1−rn). If the mali-
cious authority ever opens the transcript, that is, it recovers ((ch1 ⊕∆1)1−r1 , . . . , (chn ⊕∆n)1−rn),
then the extractor can extract ch from this (since it knows the “shift”, ∆) and implicate the
authority.

To do that, first observe that there are 8 possible transcripts for each bit OT: the input
of the receiver is a bit ri ∈ {0, 1} and the input of the sender is one out of four possibilities
((0, 0), (0, 1), (1, 0), (1, 1)). To enable the extractor to generate any transcript it wishes, for every
bit-OT i ∈ {1, . . . , n}, the CRS authority is expected to produce (as part of the CRS generation)
four values as follows: For every m,∆ ∈ {0, 1}:

βi0,m,∆ = OT(0, (m, chi ⊕∆)) and βi1,m,∆ = OT(1, (chi ⊕∆,m)) ,

while OT(r, (a, b)) denotes a full transcript of a bit OT where the input of the receiver is r ∈ {0, 1}
and the sender is (a, b), and we omit CRSOT for brevity. Observe that for each i ∈ {1, . . . , n} of the
bit-OTs provided in the CRS, the bit chi is not revealed in the transcript, as it corresponds to the
input of the sender that is not revealed. On the other hand, the randomness and the input of the
receiver is given in the clear.

The extractor can now choose any message m = (m1, . . . ,mn) of its choice and any ∆ =
(∆1, . . . ,∆n), and for every input r = (r1, . . . , rn) of the receiver, it can generate a transcript
(β1
r1,m1,∆1

, . . . , βnrn,mn,∆n
), which embeds a masking of ch that appears in the CRS. Specifically, for

every i, the input of the sender corresponding to ri is mi, and the input of the sender corresponding
to 1 − ri (the one which is not revealed in the protocol) corresponds to chi ⊕ ∆i. The extractor
rerandomizes this transcript and, if opened by the authority, the extractor reconstruct the challenge
message ch.

Finally, as the authority has to produce many transcripts that are correlated with the challenge,
it has to prove that it generated all of them as specified. Just as in malicious authority security for
NIZK, we double all the new information in the CRS and ask it to prove using a NIWI that one of
the branches was generated as specified.

Re-randomizable oblivious transfer. As mentioned above, to allow this to work, we must
ensure that the oblivious transfer transcript is rerandomizable. Informally, we say that an OT
transcript is rerandomizable if given a transcript of execution of OT, we should be able to transform
into another transcript on the same inputs. The rerandomization guarantee is that even given
the secret randomness and the input of both parties in the original transcript, a distinguisher
receiving a view of one of the parties should not be able to figure out whether the view comes
from a new transcript (with the same inputs), or the view was rerandomized. We show that the
oblivious transfer protocol of Peikert, Vaikuntanathan, and Waters [PVW08] is a perfect fit for our
needs: it is a two-round oblivious transfer in the CRS model, and we augment the protocol with
rerandomization procedures.

Strong accountability. The protocol described above works when the malicious authority does
not participate actively in the protocol execution. To understand why, we first remark that for
a malicious receiver, the authority provides transcripts where the input and randomness of the
receiver are in the clear (i.e., provides the complete view of the receiver).

11

However, in strong accountability, the extractor now talks directly to the adversary. It receives
the first message in the protocol from the adversary, and it cannot know the randomness and the
private input of the adversary. Matching the correct transcript from the CRS to the one just
received by the adversary is impossible, due to the receiver’s privacy. Specifically, to embed a shift
∆i in position 1− ri, we have to know ri.

On the other hand, this problem does not occur for the malicious sender’s case, as it sends
the second message in the protocol. In fact, the above-described method already achieves strong
accountability against malicious sender.

Achieving strong accountability via indistinguishability obfuscation. We first start with
the following idea. As now the transcripts are given “on the fly” to the extractor, we do not even
try to embed the secret challenge into the transcript. Instead, we generate an honestly generated
transcript using random messages m0 = (m0

1, . . . ,m
0
n), m1 = (m1

1, . . . ,m
1
n) that the extractor itself

does not even know, and give it also m0 ⊕ m1 ⊕ ch, where ch is the challenge. Now the bits
(m1−r1

1 , . . . ,m1−rn
n) are not known to the sender and the receiver, and thus ch is protected using

one-time pad.
To implement this idea, we use indistinguishability obfuscation.2 The authority obfuscates a

circuit C that on input msgR generates msgS on random inputs m0,m1 and gives also m0⊕m1⊕ch.
Crucially, the evaluator of the circuit (the extractor) does not know m0,m1. The messages m0,m1

are generated using a pseudorandom key chosen by the CRS authority and was hardwired in the
circuit. Moreover, the proof of defamation free is now rather involved as it requires showing that
the hardwired challenge ch is not revealed even though it is also hardwired in the circuit.

This description is too simplified and is not sound. If the extraction just sends the message msgR
as received from the obfuscated circuit, the authority can clearly identify it as it had generated the
obfuscated circuit. The extractor therefore has to rerandomize the message it receives as output
from the circuit. But this still does not suffice, as the authority can also identify that two messages
m0,m1 were generated by the circuit, as those are pseudorandom and it knows the key used to
generate them. Therefore, we modify the circuit such that given a message msgR it generates four
different transcripts, i.e.,

βτ0,τ1 = OT2(msgR, m0 ⊕ τ0, m1 ⊕ τ1)

for every τ0, τ1 ∈ {0, 1}, where τ = (τ, . . . , τ). This enables the extractor to pick any masking it
wishes to m0,m1, similarly to the case of weak accountability. Whenever the authority opens such
a transcript, the extractor recovers both m0,m1 and thus also the challenge ch (as it also received
m0 ⊕m1 ⊕ ch from the obfuscated circuit).

2.3 Malicious Authority Security for Two Party Computation

We now focus on general purpose secure two party computation protocols. We first start with an
overview that shows that it is not possible to achieve general purpose secure computation protocols
for all functions. We then complement our negative result by identifying a class of functionalities
(which subsumes oblivious transfer functionalities) for which we can achieve our general positive
result.

Impossibility result. When it comes to tackling the problem of designing secure computation
for general functionalities, we realize that we cannot simultaneously achieve accountability and
defamation-free properties. Since the authority recovers the inputs of the honest parties, it has to

2An indistinguishability obfuscator [BGI+01,GGH+16] is a compiler that on input circuit C outputs a functionally

equivalent circuit Ĉ. Moreover, it gurantees that the obfuscations of two functionally equivalent circuits (of the same
size) are computationally indistinguishable.

12

be the case that the output of the functionality does not trivially leak the inputs, i.e., each party
really needs the help of the authority to recover the inputs of the honest parties. When considering
functions that do not provide such secrecy, we show that there does not exists a protocol that can
address malicious authority security. Luckily, those functions, at least intuitively, are the functions
for which secure computation is not necessary to begin with. We formalize this intuition and show
that it is impossible to achieve secure two party computation for any functionality, as there exists
functions for which achieving malicious authority security is impossible.

Observe also that so far, both in the NIZK example and in oblivious transfer, the functionality
hides sufficient information (in NIZK this is the witness w; in oblivious transfer these are the
choice bits of the receiver and for the sender, or the bits in the input that were not selected by the
receiver). This is very intuitive: If the function is not hiding, then there is no need for help from
the authority to recover the private inputs.

Positive result. We therefore restrict our attention to a specific class of functions F that is
guaranteed to have some form of secrecy. We also focus on the asymmetric case where only one of
the parties (designated as the receiver) gets an output. Specifically we look at functions in which:

1. The inputs of both parties is sufficiently long; and

2. For every input of the receiver, there exists at least λ bits in the inputs of the sender that
are not meaningful and do not affect the output, where λ denotes the security parameter.

Interesting functions that are captured in this class are oblivious transfer, private information re-
trieval, subset sum, and more. We describe a two-round secure computation protocol for computing
all the functions in the family in the CRS model, and then show how to enhance its security to
achieve malicious authority security.

The base protocol is a standard two-round two-party secure computation protocol that combines
two-round oblivious transfer with garbled circuits. Denoting the sender’s input as x = (x1, . . . , x`)
and the receiver’s input as y = (y1, . . . , y`), the receiver’s first message is simply msgR = OT1(y).
The second message of the sender is a bit more involved, and this complication comes to accom-
modate malicious authority security at a later stage. Given a circuit C for computing the function

F ∈ F , the sender generates a garbled circuit GC together with the labels K
(x)
i,0 ,K

(x)
i,1 for each input

of the sender, and labels K
(y)
i,0 ,K

(y)
i,1 for each input of the receiver. To receive the output on x,y, the

receiver has to obtain the labels K
(x)
i,xi
,K

(y)
i,yi

and output Eval(GC,K
(x)
i,xi
,K

(y)
i,yi

), i.e., the evaluation of

the garbled circuit on the labels K
(x)
i,xi
,K

(y)
i,yi

. To do that, the “classic” approach is to instruct the
sender to send the following message:

{K(x)
i,xi
}i∈[`], OT2

(
msgR, (K

(y)
i,0)i∈[`], (K

(y)
i,1)i∈`

)
, (1)

i.e., sending the labels that correspond to the sender’s input, and the labels correspond to the
receiver’s input are obtained using the oblivious transfer. For the generation of the transcript by
the extractor, it would be easier to send the labels of the sender also in an OT message. We instead
send the following message:

OT2

(
msgR, (K

(x)
i,0 ‖ K

(y)
i,0)i∈[`], (K

(x)
i,xi
‖K(y)

i,1)i∈`

)
. (2)

That is, the receiver always receives labels that corresponds to its input, as before. As for the labels

that correspond to the input of the sender, in case yi = 1, then the receiver obtains K
(x)
i,xi

, i.e., the

“correct” label. On the other hand, in case yi = 0 then the receiver obtains K
(x)
i,0 , regardless of what

13

the input of the sender is, i.e., it receives a label that corresponds to xi = 0, unlike Eq. (1). This
still guarantees correctness as in the case where yi = 0, the input xi does not affect the output, and
the evaluation of the circuit when xi = 0 and xi = 1 gives the same result (recall requirement 2 in
the class of functions for which our possibility result holds). Together with this OT2 message, the
sender also sends a NIWI proof that it either generated the message correctly as instructed, or it
knows some trapdoor in the CRS.

Enhancing to malicious authority security. Since the first message in the protocol of the
receiver is just OT1(y) where y is the input of the receiver, this case reduces to the case of obtaining
malicious authority security in the case of a malicious receiver in oblivious transfer.

For the case of malicious sender, we again follow our general template and the CRS authority
chooses a random challenge ch = (ch1, . . . , chλ) ∈ {0, 1}λ, and gives out f(ch). The goal now is
to find what transcripts to provide such that the extractor will be able to embed ch to the input
of the sender. If we would have sent the keys as described in Eq. (1), then the authority has to

provide information on ch in both K
(y)
i,0 ,K

(y)
i,1 . However, such transcripts reveal information on the

choice bit of the receiver (in our case, we look at the case where yi = 0), and this would break
defamation free. Embedding the changes inside the OT2 message as in Eq. (2) enables us to maul
that message without giving away any information about ch. Specifically, we always maul the part
that the receiver did not ask for, similarly to the way it is done for oblivious transfer.

3 Preliminaries

Notation and conventions. We let λ denote the security parameter. We let [n] denote the set
{1, . . . , n}. We use PPT as shorthand for probabilistic polynomial time. A function µ is negligible
if for every positive polynomial p(·) and all sufficiently large λ’s, it holds that µ(λ) < 1/p(λ).

A probability ensemble X = {X(a, λ)}a∈{0,1}∗;λ∈N is an infinite sequence of random variables
indexed by a ∈ {0, 1}∗ and λ. In the context of zero knowledge, the value a will represent the
parties’ inputs and λ will represent the security parameter. All parties are assumed to run in time
that is polynomial in the security parameter. Two probability ensembles X = {X(a, λ)}a∈{0,1}∗;λ∈N,
Y = {Y (a, λ)}a∈{0,1}∗;λ∈N are are said to be computationally indistinguishable, denoted by X≈cY , if
for every non-uniform polynomial-time algorithm D there exists a negligible function µ such that
for every a ∈ {0, 1}∗ and every λ ∈ N,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ)

We denote by x← D a sampling of an instance x according to the distribution D.
We denote vectors using a bold font, e.g., α ∈ {0, 1}n, when it is usually clear from context

what is the vector size. We let α[i] denote the ith coordinate of the vector.

3.1 Rerandomizable Commitment Scheme

We require commitment scheme that is perfectly binding, computationally hiding, and rerandom-
izable. The commitment scheme C = (Setup,Com, ,Rerand, fcom) has the following syntax and
properties:

• p ← Setup(1λ): outputs some public parameters p. Let the message space be M and the
commitment space be C.

• c← Com(p,m; r): The algorithm gets m ∈M and opening r ∈ {0, 1}poly(λ)(λ), and outputs a
commitment c ∈ C. The opening of the commitment is simply r.

14

• c′ ← Rerand(p, c; s): On input parameters p, commitment c and randomness s, Rerand outputs
a randomized commitment c′ to the same value. Moreover, we require the existence of an
efficient function fcom such that for any randomness m, r, s the following holds:

– Rerand(p,Com(p,m; r); s) = Com(p,m, s′) where s′ = fcom(r, s).

Moreover, it is required that for every fixed s, the function fcom(·, s) is bijection, and for every
r, the function fcom(r, ·) is a bijection as well. In particular, this means that given s′, s one
can find r for which s′ = fcom(r, s).

We require the following from the commitment scheme:
Perfectly binding: For all (m0,m1) ∈M such that m0 6= m1 and for all r0, r1 ∈ {0, 1}poly(λ)(λ) it
holds that:

Pr
[
p← Setup(1λ) : Com(p,m0; r0) = Com(p,m1; r1)

]
= 0 .

Computational Hiding: Let p← Setup(1λ). For all (m0,m1) ∈M:

{Com(p,m0)}≈c {Com(p,m1)} .

Such a scheme can be constructed from the DLIN assumption, as showed in [GOS06]. Its reran-
domization properties were discussed in [ADKL19].

3.2 Non-Interactive Zero Knowledge (NIZK)

Let L be an NP language and let RL be its associated relation. For (x,w) ∈ RL we sometimes
denote x the statement and w its associated witness.

Definition 3.1. Let L ∈ NP and let RL be the corresponding NP relation. A triple of algorithms
Π = (GenCRS,Prove,Verify) is called non interactive zero knowledge (NIZK) argument for L if it
satisfies:

• Perfect completeness: For all security parameters λ ∈ N and for all (x,w) ∈ RL,

Pr
[
CRS← GenCRS(1λ); π ← Prove(CRS, x, w) : Verify(CRS, x, π) = 1

]
= 1

• Adaptive Computational Soundness: For any all ppt prover P ∗, there exists a negligible
function µ such that for all λ:

Pr
[
CRS← GenCRS(1λ); (x, π)← P ∗(CRS) : Verify(CRS, x, π) ∧ x 6∈ L

]
≤ µ(λ)

When this probability is 0, we say that Π is perfectly sound.

• Adaptive Zero Knowledge: There exists a PPT simulator S = (S1,S2) where S1(1λ) out-
puts (CRSS , τ) and S2(CRSS , τ, x) outputs πS such that for all non-uniform PPT adversaries
A, {

CRS← GenCRS(1λ) : AO1(CRS,·,·)(CRS)
}

≈c
{

(CRSS , τ)← S1(1λ) : AO2(CRS,τ,·,·)(CRSS)
}

where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥. Otherwise, O1

outputs Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

15

3.3 Non-Interactive Witness Indistinguishability (NIWI)

One building block that we often use in our construction is non-interactive witness indistinguisha-
bility. It is useful for our purposes as it does not require a common-reference string. NIWI in the
plain model can be constructed based on the DLIN assumption [GOS06] and can be constructed
assuming either trapdoor permutations and derandomization assumptions [BOV03].

Definition 3.2. A pair of PPT algorithms (Prove,Verify) is a NIWI for an NP relation RL if it
satisfies:

1. Completeness: For every (x,w) ∈ RL,

Pr [Verify(x,w) = 1 : π ← Prove(x,w)] = 1 .

2. Soundness: There exists a negligible function µ such that for every x 6∈ L and π ∈ {0, 1}∗:

Pr [Verify(x, π) = 1] ≤ µ(|x|) .

3. Witness indistinguishability: For any sequence {(x,w1, w2) : w1, w2 ∈ RL(x)} ∈ I:

{π1 : π1 ← Prove(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← Prove(x,w2)}(x,w1,w2)∈I .

3.4 Secure Two-Party Computation

We recall the definition of secure two-party computation. In this work, we focus on security
computation in the CRS model.

Let P1, P2 denote the two parties. Each party Pi has a private input xi and the goal of the
parties is to interact with each other to compute F (x1, x2), for some functionality F (·, ·). The
standard simulation-based security guarantee states that even if one of the parties is corrupted by
a ppt adversary, then the privacy of the inputs of the honest party is maintained.

To recall the standard notion of simulation security, we first recall the descriptions of the real
and the ideal worlds.

Real World. Each party Pi receives has input xi. A malicious PPT adversary A is allowed to
corrupt some i ∈ {1, 2}. Each party computes the next message in the protocol as a function of
its private input and randomness, and the messages it received so far. At the end of the protocol,
the adversary outputs its view. The output of the this experiment consists of the output of the
adversary and the output of the honest party. Denote this output by RealΠ,A.

Ideal World. In this world, the ideal adversary (the simulator) corrupts some party i ∈ {1, 2} and
let j be the honest party. The trusted party receives xi form the simulator and Pj sends xj to the
trusted party. The trusted party computes (y1, y2) = F (x1, x2; r) for a uniform string r and hands
the simulator with yi and Pj with yj . The output of this world is the output of the simulator and
the output of the honest party. Denote this by IdealΠ,Sim.

Definition 3.3 (Simulation Security). Let π and F be as above. We say that π computes the
functionality F with simulation security if the following holds: for every PPT (malicious) adversary
A corrupting any strict subset of the parties, there exists a PPT simulator Sim such that the
following holds:

{Idealπ,Sim} ≈c {Realπ,A}

16

Hybrid model. An execution of the protocol π in the g-hybrid model, for some functionality g,
involves the parties sending normal messages to each other (as in the real model) and, in addition,
having access to a trusted party computing g. The composition theorem of [Can00] imply that if π
security computes some function f in the g hybrid model, and a protocol ρ computes g, then the
protocol πg (where every ideal call of g is replaced with an execution of ρ) security computes f in
the real model.

The common reference string functionality. The common reference string functionality FCRS

is parameterized with some distribution C that can be sampled by a PPT algorithm. The func-
tionality is described next.

Functionality 3.4: The FCCRS Functionality

1. Sample CRS← C.
2. Upon receiving a query (P1, crs) from P1, send it the value CRS.

3. Upon receiving a query (P2, crs) from P2, send it the value CRS.

Looking ahead, the protocols we discuss are in the CRS hybrid model (we call it “in the CRS
model” for short). The implementation of this functionality is done using a trusted authority, and
the paper addresses the case where this authority is compromised and how it can be implicated in
that case.

3.5 Garbled Circuits

We consider a garbled circuit Garble = (Gen,Eval,Sim) scheme with the following syntax. Given
a circuit C : {0, 1}` × {0, 1}` → {0, 1}` (as the circuit comes to model a two party function, we
explicitly associate input wires with the input of each party, S and R), we define:

• (GC, (K
(S)
i,0 ,K

(S)
i,1 ,K

(R)
i,0 ,K

(R)
i,1)`i=1) ← Gen(1λ, C): takes as input a circuit C : {0, 1}` ×

{0, 1}` → {0, 1}`, and outputs a garbled circuit GC and set of input wire labels

(K
(S)
i,0 ,K

(S)
i,1 ,K

(R)
i,0 ,K

(R)
i,1)`i=1. For simplicity, the size of all labels is λ.

• z ← Eval(GC, {K(S)
i,xi
}i∈[`], {K

(R)
i,yi
}i∈`) The evaluation algorithm takes as input the garbled

circuit and the set of labels {K(S)
i,xi
}i∈[`], {K

(R)
i,yi
}i∈` corresponding to inputs x = (x1, . . . , x`)

and y = (y1, . . . , y`).

• (G̃C, {K(S)
i }i∈[`], {K

(R)
i }i∈`) ← Sim(1λ, C, C(x,y)): takes as input the circuit C and output

C(x,y) and produces a simulated garbled circuit G̃C and labels {K(S)
i }i∈[`], {K

(R)
i }i∈`. Note

that the simulator does not know the inputs x,y, and it generates the input labels according
to the output.

We require the following properties from the scheme:

Correctness: We require that for every x,y it holds that

C(x,y) = Eval(GC, {K(S)
i,xi
}i∈[`], {K

(R)
i,yi
}i∈`) ,

where (GC, (K
(S)
i,0 ,K

(S)
i,1 ,K

(R)
i,0 ,K

(R)
i,1)`i=1)← Gen(1λ, C) and x = (x1, . . . , x`) and y = (y1, . . . , y`).

Simulation security: We require the following distributions to be computationally close:

17

{
GC, {K(S)

i,xi
}i∈[`], {K

(R)
i,yi
}i∈`

}
≈c

{
G̃C, {K̃(S)

i }i∈[`], {K̃
(R)
i }i∈`

}
,

where GC is generated using Gen for some circuit C and the labels are selected according to inputs

x,y, and (G̃C, {K̃(S)
i }i∈[`], {K̃

(r)
i }) are generated using Sim

3.6 Puncturable Pseudorandom Functions

A pseudorandom function family consisting of functions of the form PRFK(·), that is defined over
input space {0, 1}∗, output space {0, 1}χ(λ) and key K ∈ {0, 1}λ, is said to be a puncturable PRF
family if there exists a PPT algorithm Puncture that satisfies the following properties:

• Functionality preserved under puncturing: Puncture takes as input a PRF key K ∈
{0, 1}λ, input x ∈ {0, 1}∗ and outputs Kx such that for all x′ 6= x it holds that PRFKx(x′) =
PRFKx(x)

• Pseudorandom at punctured points: For every PPT adversary (A1,A2) such thatA1(1λ)
outputs an input x ∈ {0, 1}∗, consider an experiment where K ←R {0, 1}λ and Kx ←
PRF(K,x). Then for all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]

∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

3.7 Indistinguishability Obfuscation (IO)

An obfuscation scheme associated to a class of circuit C = {Cλ}λ∈N consists of two ppt algorithms
iO = (Obf,Eval) defined below.

• Obfuscate, C ′ ← Obf(1λ, C): takes as input security parameter λ, a circuit C ∈ Cλ and
outputs an obfuscation of C, C ′.

• Evaluation, y ← Eval(C ′, x): a deterministic algorithm that takes as input an obfuscated
circuit C ′, an input x ∈ {0, 1}λ and outputs y.

Definition 3.5. An obfuscation scheme iO = (Obf,Eval) is indistinguishable obfuscator for a class
of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies the following properties:

• Perfect correctness: For every C : {0, 1}λ → {0, 1} ∈ Cλ, x ∈ {0, 1}λ it holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

]
= 1 .

• Polynomial Slowdown: For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the running time of
Obf on input (1λ, C) to be poly(|C|, λ). Similarly, we have the running time of Eval on input
(C ′, x) is poly(|C ′|, λ)

• Security: For every PPT adversary A, there exists a negligible function µ(·), such that for
every sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ {0, 1}λ
and |C0| = |C1|, we have:∣∣∣Pr

[
A
(
Obf(1λ, C0), C0, C1

)
= 1
]
− Pr

[
A
(
Obf(1λ, C1), C0, C1

)
= 1
]∣∣∣ ≤ µ(λ) .

A recent breakthrough work [JLS21] bases iO on well-founded assumptions (see also [BDGM20,
WW21,GP21]).

18

4 Defining Malicious Authority Security

In this section, we define the notion of malicious authority security for cryptographic protocols
defined in the CRS model. There are two aspects to our definition, depending on whether CRS
is honestly generated or if its generated by a malicious authority. In the first case, if the CRS is
honestly generated, we require that the protocol satisfies the same traditional security requirements
described in the literature. In the second case, suppose that the CRS is generated by a malicious
authority and specifically, if the malicious authority runs a service that let the adversarial entities,
participating in the protocol, to recover the inputs of the honest parties. In this setting, we should
be able to implicate the malicious authority of its wrongdoing. Formally speaking, we define an
extractor that interacts with the malicious authority and comes up with an evidence τ that can
presented to a Judge, defined by a Judge algorithm, who verifies whether the presented evidence
is valid. At the same time, we require the property that no efficiency adversary can present an
evidence that can falsely accuse the honest authority of running a service.

We first discuss the definition of malicious authority security for NIZK (Section 4.1), and then
extend the ideas to general secure two party computation (Section 4.2).

4.1 Malicious Authority Security for NIZK

We start by defining malicious authority security in the context of non-interactive zero-knowledge
systems.

A NIZK system consists of a triplet of algorithms Π = (GenCRS,Prove,Verify). In addition, we
define a PPT algorithm Judge, which will be necessary for malicious authority security.

• b ← Judge(CRS, τ) where b ∈ {honest, corrupted}: The algorithm receives as input the (pos-
sibly corrupted) CRS and some transcript τ , and outputs a bit b, indicating whether the τ
proves that the CRS CRS is corrupted or not.

Definition 4.1. Let L ∈ NP and let RL be the corresponding NP relation. We say that a NIZK sys-
tem Π = (GenCRS,Prove,Verify, Judge) has malicious authority security with respect to distribution
D if:

1. The system Π′ = (GenCRS,Prove,Verify) is a NIZK proof system for L.

2. (Accountability:) We say that the NIZK scheme Π achieves accountability with respect to
the distribution D if for all sufficiently large security parameter λ ∈ N, any ppt adversary A,
if there exists a non-negligible function ε1(·) such that

Pr[Acc.RealΠ,A,q(λ) = 1] ≥ ε1(λ)

then there exists a probabilistic polynomial time oracle-aided algorithm Ext making at most q
queries, and a non-negligible function ε2(·) such that:

Pr[Acc.ExtΠ,A,E,q(λ) = 1] ≥ ε2(λ)

where the random variables Acc.RealΠ,A,E,q(λ) and Acc.ExtΠ,A,E,q(λ) are defined below.

Acc.RealΠ,A,q(λ):

The adversary A(1λ) outputs some CRS∗, and repeat the following for q iterations:

• (xi, wi)← D and then πi ← Prove(CRS∗, (xi, wi)).

• If Verify(CRS∗, xi, πi) 6= 1 then abort and the output of the experiment is 0.

• A is given (xi, πi).

19

A outputs some (i, x′i, w
′
i) for i ∈ [q]. The output of the experiment is 1 if xi = x′i and

RL(xi, w
′
i) = 1.

Acc.ExtΠ,A,E,q(λ):

The adversary A(1λ) outputs some CRS∗, and we invoke the extractor E on input (CRS∗).
We run q iterations in which in each iteration E outputs some (xi, πi) that is forwarded to A.
After all iterations, A outputs some (i, x′i, w

′
i) for some i ∈ [q]. The extractor E then outputs

τ , and the output of the experiment is 1 if Judge(CRS∗, τ) = corrupted.

3. (Defamation-free:) For every ppt adversary A, there exists a negligible function µ(·), such
that for all λ:

Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ) ,

where CRS← GenCRS(1λ).

Discussion. We would like to highlight the following aspects of the above definition:

• Maliciously generated CRS∗: In the above definition, the adversary is the one who is
choosing the CRS∗ which might be maliciously generated. Naturally, our aim is to capture
the case where the maliciously generated CRS∗ is indistinguishable from an honestly gener-
ated one, but the malicious authority has some trapdoors that enable it to extract sensitive
information. However, the definition also has to capture the case where CRS∗ might be far
from an honestly generated CRS, to the extent where the scheme does not even provide cor-
rectness with respect to that CRS∗. In that case, the output of the real experiment is 0, and
it is easy to implicate the adversary.

• Oracle access to the adversary: We remark that the extractor only has an oracle access to
the authority and does not get the code of the authority. Giving the code of the authority to
the extractor is unrealistic - in real life, the authority is an actual entity, and so the extractor
will not have access to its code. Moreover, we want to explicitly prevent the extractor from
“rewinding” the authority, as this is not realistic in the real world.

• The distribution of the queries of the extractor: The malicious authority A is the
same in both experiments, and as such its view, as generated by the extractor, should be
indistinguishable from the view in the real execution. In particular, this means that the
malicious authority should receive from E in each iteration a pair (xi, πi) where the marginal
distribution on xi is computationally indistinguishable from the marginal distribution on xi
sampled according to the distribution (xi, wi)← D and then setting πi = Prove(CRS∗, xi, wi).

4.2 Malicious Authority for Secure Two-Party Computation

We now extend the above definition to general two-party computation in the CRS model. We again
assume that the reader is familiar with the standard (standalone) definition of secure computation,
and refer to the full version for a formal definition. We require that the protocol Π simulates
some functionality F in the CRS model. Then, we add the malicious authority capability. We
first provide the definition and then discuss its changes from the NIZK definition. We define a
judgement algorithm similarly to the NIZK case:

• b ← Judge(CRS, τ): It takes as input a common reference string CRS, a certificate τ and
outputs a bit b, indicating whether the common reference string CRS is corrupted or not.

Definition 4.2. We say that a protocol Π = (π, Judge) has malicious authority security for the
functionality F with respect to the distribution D if the following conditions hold:

20

1. Simulation security: π satisfies simulation security for the functionality F .

2. Accountability: We say that Π satisfies security against malicious authority with respect to
the distribution D if the same conditions as in Definition 4.1 hold, where now the random
variables Acc.RealΠ,A,q(λ) and Acc.ExtΠ,A,E,q(λ) are defined as follows.

Acc.RealΠ,A,q(λ):

(a) A(1λ) is invoked and outputs a common reference string CRS∗.

(b) The protocol π is executed q number of times, where in the kth execution:

• The adversary A chooses some input x
(k)
i and randomness r

(k)
i for Pi.

• The input x
(k)
j of the honest party is sampled according to D.

• The protocol is run on these inputs; let transk be the resulting transcript.

• The adversary A receives transk.

(c) The adversary outputs (k, x
(k)
j) for some k ∈ [q].

(d) The output of the experiment is 1 if the input of Pj in the kth execution was x
(k)
j .

Acc.ExtΠ,A,E,q(λ):

(a) A(1λ) is invoked and output common reference string CRS∗.

(b) The following is run for q number of times:

• The adversary outputs some input x
(k)
i and randomness r

(k)
i for Pi.

• The extractor replies with transk.

(c) The A receives the q queries, it outputs
(
k, x

(k)
j

)
for some k ∈ [q]. The extractor E then

outputs τ .

(d) The experiment outputs 1 if Judge(CRS∗, τ) = corrupted.

3. Defamation free: Same as in Definition 4.1.

Comparison to the malicious authority security of NIZK. Malicious authority security of
NIZK is a special case of the above definition for two-party computation. In NIZK, the functionality
involves a prover and a verifier, where the prover sends the functionality some (x,w). If (x,w) ∈ RL
then the functionality sends (x, yes) to the verifier and otherwise it sends (x, no). The protocol in
the CRS model consists of a single message from the Prover to the Verifier. As we are interested
in the privacy of the witness, we focus on the case where the verifier is corrupted. As a result, the
input of the honest party (the prover) is chosen according to the distribution D and the input of the
corrupted party (the verifier) is chosen by the adversary, which is empty in the case of NIZK. The
adversary receives the transcript and at some point has to come up with the input of the honest
party, i.e., extract from (xi, πi) some (xi, wi).

4.3 Strong Accountability

So far, we considered adversaries that are passive - while they contribute the input and randomness
of the corrupted party in the protocol, the malicious authority expects to get back a full transcript
of the protocol, i.e., the adversary is semi-malicious. Here, we model the case where the malicious
authority is part of the protocol and colludes with one of the parties. Recall that simulation security
is guaranteed only if the CRS authority honestly generated the CRS. If it does not, then we just
have accountability as defined next. Defamation free is defined similarly to the previous definitions.

Definition 4.3. We say that Π satisfies strong security against malicious authority with respect
to the distribution D if the conditions as in Definition 4.1 hold, where now the random variables

21

StrongAcc.RealΠ,A,q(λ) and StrongAcc.ExtΠ,A,E,q(λ) are defined as follows.

StrongAcc.RealΠ,A,q(λ):

1. A(1λ) is invoked and outputs a common reference string CRS∗.

2. The protocol π is executed q number of times where in the kth execution:

• The adversary A participates in the protocol and corrupts party Pi.

• The input x
(k)
j of the honest party is sampled according to D.

3. The adversary outputs (k, x
(k)
j) for some k ∈ [q] and j 6= i.

4. The output of the experiment is 1 if the input of Pj in the kth execution was x
(k)
j .

StrongAcc.ExtΠ,A,E,q(λ):

1. A(1λ) is invoked and outputs a common reference string CRS∗.

2. A and E engage in q executions of a secure computation protocol, where the party Pi is
controlled by A.

3. After the q executions, A outputs (k, x
(k)
j) for some k ∈ [q] and j 6= i. The extractor E then

outputs τ .

4. The experiment outputs 1 if Judge(CRS∗, τ) = corrupted.

5 Malicious Authority Security for NIZK

In this section we construct a NIZK satisfying malicious authority security for the language of
circuit satisfiability on committed inputs. The instance is a circuit C : {0, 1}n → {0, 1}, some
committed values c = (c1, . . . , cn) and the output b. The claim is that c are commitments of bits
x = (x1, . . . , xn), and that C(x1, . . . , xn) = b. Formally:

Rp(L) =
{

(C, c1, . . . , cn, b) | ∃(x1, . . . , xn) ∈ {0, 1}m, (r1, . . . , rn) ∈ {0, 1}poly(λ)

s.t. C(x1, . . . , xn) = b

∧ ∀i ∈ [n] ci = Com(p, xi; ri)
}

The public parameters p associated with the commitment scheme are part of the CRS. We let C
be the set of all circuits that map n-bit input to 1 bit output.

Tools. The construction is based on the following components:

• A pseudorandom generator PRG : {0, 1}λ → {0, 1}poly(λ).

• A rerandomizable bit commitment scheme which is perfectly binding and computationally
hiding, denoted as C = (Setup,Com,Rerand), as in Section 3.1. The commitment is perfectly
binding and computationally hiding.

• Two non-interactive witness-indistinguishable proof systems (Prove,Verify), denoted as

Π
(1)
NIWI,Π

(2)
NIWI, associated with the languages L1 and L2, respectively, which are defined as

follows:

– The language L1:

Statement :
(
p, (cm0

0, cm
0
1), (cm1

0, cm
1
1)
)

Witness :
(
(rSetup, ch

0
0, ch

0
1), (rSetup, ch

1
0, ch

1
1)
)
,

such that one of the following conditions hold:

22

1. p = Setup(1λ; rSetup) and (cm0
0, cm

0
1) = (Com(p, 0, ch0

0),Com(p, 1, ch0
1)), or

2. p = Setup(1λ; rSetup) and (cm1
0, cm

1
1) = (Com(p, 0, ch1

0),Com(p, 1, ch1
1)).

– The language L2:

Statement : (CRS, C, c1, . . . , cn, b)

Witness :
(
sin, {xi}i∈[n], {ri}i∈[n], σ, {si}i∈[n]

)
such that one of the following conditions hold:

1. PRG(sin) = sout, or,

2. C(x1, . . . , xn) = b, and ∀i ∈ [n] it holds that ci = Com(p, xi; ri).

3. C(x1, . . . , xn) = b, and ∀i ∈ [n] it holds that ci = Rerand(p, cmσ
xi ; si).

where sout and (cm0
0, cm

0
1), (cm0

1, cm
1
1) are taken from the CRS as given in Step 5 of

GenCRS in Construction 5.1.

Construction 5.1: NIZK with Malicious Authority Security

GenCRS
(
1λ
)
:

1. Compute p← Setup(1λ; rSetup) for a random rSetup.

2. Sample sout ← {0, 1}poly(λ)

3. For σ = 0 and σ = 1, do the following:

• Compute (cmσ
0 , cm

σ
1) = (Com(p, 0, chσ0),Com(p, 1, chσ1)), for chσ0 , ch

σ
1 ← {0, 1}

poly(λ).

4. Compute π(1) ← Π
(1)
NIWI.Prove

((
p, (cm0

0, cm
0
1), (cm1

0, cm
1
1)
)
, ((rSetup, ch

0
0, ch

0
1), (⊥,⊥,⊥)

)
.

5. Output CRS =
(
p, sout, (cm0

0, cm
0
1), (cm1

0, cm
1
1), π(1)

)
.

Prove(CRS, (C, c1, . . . , cn, b),w): On input CRS, circuit C : {0, 1}m → {0, 1}, commitments
(c1, . . . , cn), output bit b ∈ {0, 1}, and witness w do the following:

1. Parse w = ((x1, . . . , xn), (r1, . . . , rn)) where xi ∈ {0, 1}, ri ∈ {0, 1}poly(λ) for all i ∈ [n], and
compute

π(2) ← Π
(2)
NIWI.Prove

(
(CRS, C, c1, . . . , cn, b), (⊥, {xi}i∈[n], {ri}i∈[n],⊥,⊥)

)
.

Output π = π(2).

Verify(CRS, (C, c1, . . . , cn, b), π): On input CRS, instance (C, c1, . . . , cn, b), proof π,

1. Output the decision of Π
(2)
NIWI.Verify((CRS, C, c1, . . . , cn, b), π).

Judge(CRS∗, τ): On input (possibly maliciously generated) CRS∗ and a transcript τ , do the
following:

1. Check that the CRS∗ is well formed. That is:

(a) Parse CRS∗ =
(
p, sout, (cm0

0, cm
0
1), (cm1

0, cm
1
1), π(1)

)
.

(b) Verify that Π
(1)
NIWI.Verify

((
p, (cm0

0, cm
0
1), (cm1

0, cm
1
1)
)
, π(1)

)
= 1.

If the verification fails then abort and output corrupted.

2. If τ = (open, σ, ρ, ch), where σ, ρ ∈ {0, 1} and ch ∈ {0, 1}poly(λ) then: If cσρ = Com(p, ρ; ch)
then output corrupted.

3. Otherwise, output honest.

23

The distribution D = (DC ,Dx). We define now the family of distributions D associated with
the accountability property. We only place a restriction on the generation of commitments; that is,
the commitments need to be honestly generated, i.e., the randomness ri is uniformly distributed in
{0, 1}poly(λ).

Formally, for any distribution DC over C (recall that C denotes the set of all circuits with m-
bit input and 1-bit output) and for any distribution Dx over {0, 1}m, the distribution D(DC ,Dx),
parameterized also by p, samples the input and witness as follows:

1. Sample a circuit C according to DC .
2. Sample the bits (x1, . . . , xn) according to Dx and evaluate b = C(x1, . . . , xn).

3. For every i ∈ [n] compute ci = C.Com(p, xi; ri) for a uniform ri.

4. Output (C, c1, . . . , cn, b) as the instance and (x1, . . . , xn), (r1, . . . , rn) as the witness.

Theorem 5.2. Assuming the security of PRG, Com, Π
(1)
NIWI and Π

(2)
NIWI, Construction 5.1 is a

NIZK proof system with malicious authority security for the language Rp(L) with respect to any
distribution D = (DC ,Dx), where p is sampled as part of GenCRS.

Proof. We show completeness, soundness, zero-knowledge, accountability and defamation-free prop-
erties.

Completeness. The completeness property follows from the completeness property of Π
(2)
NIWI.

Soundness. Let CRS ← GenCRS(1λ), and fix any ppt adversary (corrupted prover) A and any
(C, c1, . . . , cn, b) /∈ Rp(L). We show that the probability that the adversary outputs a proof π such
that Verify(CRS, (C, c1, . . . , cn, b), π) = 1 is negligible.

We claim that (CRS, C, c1, . . . , cn, b) /∈ L2 (recall that L2 is the associated language of Π
(2)
NIWI).

Once we prove this, it then follows from the perfect soundness of Π
(2)
NIWI that the probability that

the adversary outputs a valid proof is negligible.
To show this, it suffices to argue that there does not exist any witness

(sin, (x1, . . . , xn), (r1, . . . , rn), σ, {si}i∈[n]) for the instance (CRS, C, c1, . . . , cn, b).

1. Firstly, with overwhelming probability it holds that PRG(sin) 6= sout since sout is sampled
uniformly at random.

2. Since (C, c1, . . . , cn, b) 6∈ Rp(L), it holds that either C(x1, . . . , xn) 6= b, or there exists some
i ∈ [n] such that ci 6= Com(p, xi; ri).

3. Finally, we argue that there exists some i ∈ [n] such that Rerand(p, cmσ
xi ; si) 6= ci. Observe

that if ci was obtained as a rerandomization of some cmσ
xi , then still there exists a unique

opening to xi. This would then violate (C, c1, . . . , cn, b) 6∈ Rp(L).

Zero-Knowledge. We describe a PPT simulator Sim. The simulator Sim runs GenCRS, but
compute sout as an output of PRG where the seed sin is sampled uniformly at random from {0, 1}λ
and stores the trapdoor sin. Then, whenever it is given an instance (CRS, C, c1, . . . , cn, b) it uses
(sin,⊥,⊥,⊥,⊥) as a witness to compute the proof π(2).

The computational indistinguishability of the real world and the ideal world follows from the

witness-indistinguishability of Π
(2)
NIWI, and the pesudorandomness of PRG.

Accountability. We first describe the extractor E . On input (possibly maliciously generated)
CRS∗ generated by the malicious authority, it does the following:

24

1. It checks that CRS∗ is well formed, as described in Step 1 in Judge algorithm. If CRS∗ is not
well formed, then it halts and outputs τ = ⊥.

2. It chooses a branch σ ∈ {0, 1} uniformly at random and runs the following for q iterations.
For every j ∈ [q]:

(a) It samples a circuit C(j) = C according to the distribution DC .
(b) It samples an input x(j) = x = (x1, . . . , xn) according to the distribution Dx.

(c) It evaluates b(j) = b = C(x1, . . . , xn).

(d) For every i ∈ [n], it generates the commitment ĉi = C.Rerand(p, cmσ
xi , si) for a uniformly

random s
(j)
i = si ∈ {0, 1}poly(λ). Let (ĉ1, . . . , ĉn) be the sequence of all the re-randomized

commitments.

(e) It generates π = π(2) ← Π
(2)
NIWI.Prove

(
(CRS∗, C, ĉ1, . . . , ĉn, b), (⊥,⊥,⊥, σ, {si}i∈[n])

)
.

(f) It sends ((C, ĉ1, . . . , ĉn, b), π) to the malicious authority.

3. After q iterations, the malicious authority might reply with some input (j, (C, ĉ1, . . . , ĉn, b))
with witness {xi}i∈[n] and {ri}i∈[n] for which ĉi = Com(p, xi; ri) for all i ∈ [n] and
C(x1, . . . , xn) = b.

Let s
(j)
1 be the randomness used to re-randomize cmσ

x1 . Extract chσx1 using fcom (i.e., find

chσx1 for which r1 = fcom(chσx1 , s
(j)
1), see Section 3.1). If it holds that cmσ

x1 = Com(p, x1; chσxi)
then output τ = (open, σ, x1, ch

σ
xi).

We claim that if the extractor chooses σ to be the “correct branch”, i.e., the one for which π(1) from
CRS∗ is correct, then the view of the malicious authority is indistinguishable between Acc.Real and
Acc.Ext. We then claim that the extractor always outputs a transcript that is accepted by Judge
if the malicious authority outputs a valid witness for some (j, (C, ĉ1, . . . , ĉn, b)) in the jth iteration
(for j ∈ [q]). To show this, we need to argue that the view of the authority when interacting with
the real parties is computationally indistinguishable from the view of the authority when interacting
with the extractor.

Indistinguishability of views. Consider the following hybrids:

• H1: This is the experiment Acc.RealΠ,A,q(λ).

• H2: This hybrid is inefficient. The prover in the real experiment works as follows: It samples
C ← DC and x ← Dx. Then, instead of directly committing to the x = (x1, . . . , xn) it
takes cmσ

x1 , . . . , cm
σ
xn . It then re-randomizes all the commitments to obtain rerandomized

commitments ĉ1, . . . , ĉn. It then runs in exponential time and determines the randomness
{ri}i∈[n] such that ĉσi = Com(p, xi; ri). It uses (⊥,x, {ri}i∈[n],⊥,⊥) to compute the proof

π(2) for the instance (C, ĉ1, . . . , ĉn, b), where b = C(x). The rest of the hybrid is the same as
before.

• H3: This is Acc.ExtΠ,A,q(λ) with branch σ.

The view of the adversary in H1 and H2 is identical, which follows from the fact that the
rerandomization procedure of the commitment scheme generates commitments that are identically
distributed to fresh commitments.

The two hybrids H2 and H3 are computationally indistinguishable, follows from the witness-

indistinguishability of Π
(2)
NIWI. We consider a non-uniform reduction which gets as input the

CRS and the decommitments of the commitments in the CRS as non-uniform advice. Us-
ing this, the (efficient) reduction computes and sends the instance (C, ĉ1, . . . , ĉn, b), where
b = C(x1, . . . , xn), along with two witnesses to the challenger of the WI game. The challenger

25

then sends the proof π(2) to the reduction, who forwards it to the adversary. If the adver-
sary can distinguish the hybrids H3 and H4 with non-negligible probability then the reduction
can break the witness-indistinguishability property with non-negligible probability, a contradiction.

From the perfectly binding property of the commitment scheme, the only witness that the authority
can give is the same input (x1, . . . , xn) as the extractor used. Thus, when the authority gives
{xi}i∈[n] and {ri}i∈[n] for the jth execution, from inspection it is easy to see that the extractor
outputs a transcript that implicates the authority. Thus, if the authority succeeds in Acc.Real with
some non-negligible probability ε1(λ) then the extractor succeeds with probability negligibly close
to ε1(λ)/2, where the loss occurs from guessing σ and the indistinguishability of the proof π.

Defamation-Free. For every ppt adversary A there exists a negligible function µ(·) such that:
Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ), where CRS ← GenCRS(1λ). First, since CRS is hon-
estly generated, it always passes the verification of Step 1 in the Judge algorithm. We now show that
for every σ ∈ {0, 1}, no ppt adversary can output τ = (open, σ, ·) with non-negligible probability.
For that, fix σ ∈ {0, 1}, and consider the following sequence of hybrid experiments:

1. H1: In this hybrid, the adversary receives CRS← GenCRS(1λ) and the output of the hybrid
is 1 if it outputs τ = (open, σ, ·) that is accepted by Judge.

2. H2: We modify the way CRS is generated, such that for proving the instance

(p, (cm0
0, cm

0
1), (cm1

0, cm
1
1)) using Π

(1)
NIWI, we use the witness of 1− σ. That is,

(a) If σ = 0 we prove π(1) using the witness ((⊥,⊥,⊥), (rSetup, ch
1
0, ch

1
1)).

(b) If σ = 1 we prove π(1) using the witness ((rSetup, ch
0
0, ch

0
1), (⊥,⊥,⊥)).

Clearly, the views of the adversary in both the experiments are computationally indistinguishable

from the witness-indistinguishability property of Π
(1)
NIWI. Next, we claim that the probability that

the adversary outputs an accepted transcript in H2 is negligible. At this point, the proof π(1)

is independent of the randomness used to create the commitments cmσ
0 , cm

σ
1 . An adversary that

outputs τ = (open, σ, ρ, ch) can be used for violating the hiding property of the commitment
scheme.

6 Malicious Authority Security for Oblivious Transfer

In this section, we show how to achieve malicious authority security for oblivious transfer. We start
with formally defining the OT functionality (Section 6.1), and then the rerandomization properties
that we need from the basic construction. We show an instantiation of such rerandomizable OT
in Section 6.3, and proceed to our two constructions: We show weak accountability in Section 6.4,
and strong accountability in 6.5.

6.1 The OT Functionality

We define a n-out-of-2n OT functionality as follows:

Functionality 6.1: The Fn×OT functionality

The functionality interacts with a sender and a receiver.

1. Upon receiving a message (sender,m0,m1) from the sender, where m0 = (m0
1, . . . ,m

0
n) ∈

{0, 1}n and m1 = (m1
1, . . . ,m

1
n) ∈ {0, 1}n, store m0,m1.

26

2. Upon receiving a message (receiver,σ) with σ = (σ1, . . . , σn) ∈ {0, 1}n, check if a message
(sender, ·, ·) was perviously sent. If yes, then send (mσ1

1 , . . . ,mσn
n). If not, send ⊥ to the

receiver.

In the case when n = 1, i.e., 1-out-of-2 oblivious transfer, we denote the functionality to be FOT.

6.2 Two-Round Rerandomizable OT Protocol

We define a notion of rerandomizable OT protocol in the FCRS-hybrid model.

Syntax. A two-round, oblivious transfer protocol in the CRS model (see Functionality 3.4) consists
of algorithms (GenCRS,OT1,OT2,Output) and has the following syntax:

1. CRSOT ← GenCRS(1λ): The algorithm generates the common reference string CRSOT.

2. msgR ← OT1(CRSOT,σ;ρR): The algorithm OT1 receives as input the input σ and random-
ness ρR. It generates some message msgR to be sent to the sender.

3. msgS ← OT2(CRSOT,m0,m1,msgR;ρS): the algorithm OT2 is invoked with inputs m0,m1

and the message msgR sent by the receiver to the sender. It generates the next message msgS
to be sent to the receiver, using randomness ρS .

4. Output(CRSOT,msgS ;ρR): Given msgS received by the sender, and the randomness ρR (that
encodes the secret state), the receiver computes its output.

Notation. We denote by trans = OT(CRSOT, (σ;ρR), (m0,m1;ρS)) an honest execution of the
protocol with respect to a fixed CRS, where the receiver uses input σ and randomness ρR and the
sender uses input (m0,m1) and randomness ρS . We sometimes omit the specification of the random
tapes and simply write trans ← OT(CRS,σ, (m0,m1)). We also sometimes omit the specification
of the CRS, if the string CRS being used is clear from the context.

Rerandomization Algorithms. Associated with a rerandomizable OT protocol ΠOT are three
rerandomization algorithms. Roughly speaking, the first algorithm shows how to rerandomize the
first message from the receiver to the sender. The second shows how to rerandomize the second
message, and the third essentially rerandomizes the entire transcript. The syntax is as follows:

• msg′R ← Rerand1(CRSOT,msgR;R) Given a first message msgR ← OT1(CRSOT,σ) for some
CRSOT,σ, and random tape R, the algorithm outputs some message msg′R.

• msg′S ← Rerand2(CRSOT,msgR,msgS ;S) Given a message msgR from the receiver to the
sender, and then a message msgS from the sender to the receiver and a random tape S, the
algorithm outputs some new messages msg′S .

• trans′ ← RerandOT(trans;R,S): Given a transcript trans that was generated as trans =
OT(CRS, (σ;ρR), ((m0,m1);ρS), and two random tapes R,S, output a transcript trans′ =
OT(CRS, (σ;ρ′R), (m0,m1;ρ′S)) corresponding to some randomness ρ′S ,ρ

′
R.

We now present the definition of a two-round rerandomizable OT protocol below. In addition to
requiring simulation-basesd security, we additionally require that the OT protocol satisfies reran-
domizability property.

Definition 6.2. Let ΠOT be a two-round oblivious transfer protocol, and let Rerand1,Rerand2 be
rerandomization algorithms as defined above. We say that the protocol ΠOT is two-round reran-
domizable OT protocol if:

27

1. Simulation Security. ΠOT securely implements the Fn×OT functionality in the FCRS-hybrid
model (see Functionality 3.4).

2. Rerandomizability. For every CRSOT ← GenCRS(1λ), for every m0,m1,σ:

(a) Let msgR = OT1(CRSOT,σ;ρR) for some fixed ρR. Then, for every ρR there exists a
bijection gρR(·), such that for every R:

Rerand1 (CRSOT,msgR;R) = OT1(CRSOT,σ; gρR(R)) .

(b) Let msgS = OT2(CRSOT,m0,m1,msgR;ρS). Then, for every ρS there exists a bijection
gρS (·) such that for every S:

Rerand2(CRSOT,msgR,msgS ;S) = OT2(CRSOT,m0,m1,msgR; gρS (S)) .

(c) Let trans = OT(CRSOT, (σ;ρR), (m0,m1;ρS)). Then, for every ρR,ρS there exists a
bijection gρR(·), gρS (·), and:

RerandOT(CRSOT, trans;R,S) = OT(CRSOT, (σ; gρR(R)), (m0,m1; gρS (S))) .

6.3 Instantiation: The PVW OT Protocol

We now show that the two-round OT protocol of Peikert, Vaikuntanathan and Waters [PVW08],
based on the DDH assumption, is rerandomizable and satisfies Definition 6.2. We first review the
protocol. For simplicity, we consider 1×OT, i.e., 1-out-of-2 oblivious transfer where the sender
holds two bits m0,m1, the receiver holds σ and is supposed to learn mσ. Generalizing to n×OT is
done via a standard parallel repetition.

In a nutshell, the protocol is as follows: From the CRS and the choice bit σ, the receiver derives
some public key pk and a corresponding secret key sk. It sends the public key to the sender. The
sender derives two public keys pk0, pk1 from pk, and encrypts m0 using pk0 and m1 using pk1. The
security guarantee is that the receiver can only decrypt messages that are encrypted under pkσ,
and that the public key pk1−σ is “messy”, namely, for every two messages m0,m1 in the message
space it holds that the two distributions {Encpk1−σ(m0)} and {Encpk1−σ(m1)} are statistically-close.

The Cryptosystem. We provide the underlying DDH-based encryption scheme from [PVW08],
which is a variant of the ElGammal encryption scheme:

• KeyGen(1λ): Choose G = (G, p, q)← G(1λ). The message space of the system is G.
Choose another generator h ← G and exponent x ← Zq. Let pk = (g, h, gx, hx) and sk = x.
Output (pk, sk).

• Enc(pk,m). Parse pk = (g, h, g′, h′). Choose random s, t ← Zq. Let u = gsht, and v =
(g′)s(h′)t. Output (u, v · (g′)m).

• Dec(sk, c): Parse c as (c0, c1). Output m ∈ {0, 1} for which (g′)m = c1/c
sk
0 .

The distribution over the CRS, C. We describe the distribution of sampling CRS for the obliv-
ious transfer. Peikert et al. [PVW08] shows the following: There exist two different distributions
Cmes and Cdec that are computationally-indistinguishable assuming DDH. Moreover, if the CRS is
sampled according to Cmes then the protocol achieves statistical security for the sender and compu-
tational security for the receiver, whereas if Cdec then the protocol achieves computational security
for the sender and statistical security for the receiver. We describe the two distributions:

1. Cmes: Choose G = (G, p, q) ← G(1λ). Choose random generators g0, g1 ∈ G, and choose
distinct non-zero exponents x0, x1 ← Zp \ {0}. Let hb = gxbb for b ∈ {0, 1}. Output CRS =
(G, g0, h0, g1, h1).

28

2. Cdec: Choose G = (G, p, q)← G(1λ). Choose a random generator g0 ∈ G, a random non-zero
y ← Zp \ {0} and let g1 = gy0 . Choose a random non-zero x ← Zp \ {0}. Let hb = gxb for
b ∈ {0, 1}, and output CRS = (G, g0, h0, g1, h1).

The construction works with both distributions, while if Cmes is used then the protocol achieves
statistical security for the sender and computational security for the receiver, and if Cdec is used
then the security guarantee is reversed. The existence of these two distribution is important for
proving the security of the protocol.

In [PVW08], it is shown that CRS can be sampled from Cmes along with a trapdoor that enables
extracting the input of the receiver efficiently, and this is used to prove the case of a corrupted
receiver. Similarly, CRS can be sampled from Cdec along with a trapdoor that enables extracting
the input of the sender efficiently, and this is sued to prove the case of a corrupted sender. We
describe the protocol using distribution C for the CRS, where each one of the Cdec and Cmes can be
used.

The protocol. We are now ready to describe the 2-round OT protocol of [PVW08]:

Protocol 6.3: The PVW Protocol in the FCRS-hybrid model

• Input: The sender holds bits m0,m1 ∈ {0, 1} and the receiver holds σ ∈ {0, 1}.
• The protocol:

1. GenCRS(1λ): Sample CRS = (G, g0, h0, g1, h1)← C.
2. The receiver (OT1(CRS, σ)): Choose a random r ← Zp \ {0}. Let g = grσ, h = hrσ,

and send pk = (g, h) to the sender and store the secret state sk = r.

3. The sender (OT2(m0,m1, pk)): Define pk0 = (g0, h0, g, h) and pk1 = (g1, h1, g, h).
Send c0 = Enc(pk0,m0) and c1 = Enc(pk1,m1) to the receiver.

4. The receiver (Output(c0, c1, sk)): Note that pkσ = (gσ, hσ, g
r
σ, h

r
σ), and thus cσ

corresponds to encryption with sk = r. Output Dec(sk, cσ).

String OT. We also consider a variant of string OT, in which the inputs of the sender are not
bits but rather `-bit strings. Let m0 = (m0[1], . . . ,m0[`]),m1 = (m1[1], . . . ,m1[`]) be the input
of the sender, and let σ ∈ {0, 1} be the choice bit of the receiver. To implement string OT,
the sender simply sends many encryptions c0 = Enc(pk0,m0[1]), . . . ,Enc(pk0,m0[`]), and c1 =
Enc(pk1,m1[1]), . . . ,Enc(pk1,m1[`]). The receiver can only decrypt mσ.

6.3.1 Rerandomizability of PVW OT Protocol

We claim that the PVW protocol is rerandomizable. To argue this, we first set up some notation.
For a protocol in which the sender is run with input (m0,m1) and randomness (s0, t0, s1, t1), and

the receiver is run with input σ and randomness r, we let OT (CRS, (σ; r), ((m0,m1); (s0, t0, s1, t1)))
denote the transcript of that execution. The transcript can be described as follows:

OT (CRS, (σ; r), ((m0,m1); (s0, t0, s1, t1)))

=


CRS = (G, g0, h0, g1, h1)
pk = (grσ, h

r
σ)

(c0
0, c1

0) = (gs00 · h
t0
0 , (grσ)m0+s0 · (hrσ)t0)

(c0
1, c1

1) = (gs11 · h
t1
1 , (grσ)m1+s1 · (hrσ)t1)

29

We first describe a helper rerandomization procedure that will make it easier to describe the reran-
domizability algorithms associated with the PVW OT protocol.

Rerand1(CRSOT,msgR;R): Given message (g, h) = OT1(CRSOT, (σ; r)), we can rerandomize by
simply choosing R uniformly at random in Zp and output (gR, hR). Clearly, this is equivalent to
the output of OT1(CRSOT, (σ; rR)). Therefore, for every r there exists a bijection gR(r) = rR.

Rerand2(CRSOT,msgR,msgS;S0, T0, S1, T1): Given a message

msgS = ((c0
0, c

1
0), (c0

1, c
1
1)) = OT2(CRSOT,m0,m1,msgR) ,

corresponding to some message msgR = pk = (g, h), we rerandomize msgS by simply choosing
S0, T0, S1, T1 uniformly at random from Zp and define:(

C0
0 , C

1
0

)
:=

(
c0

0 · g
S0
0 hT00 , (c1

0)R · gS0hT0
)
,(

C0
1 , C

1
1

)
:=

(
c0

1 · g
S1
1 hT11 , (c1

1)R · gS1hT1
)
.

Output ((C0
0 , C

1
0), (C0

1 , C
1
1)).

It is easy to see that for every msgR (where CRSOT is omitted for clarity):

Rerand2 (msgR,OT2 (m0,m1,msgR; s) ;S) = OT2 (m0,m1,msgR; s+ S) .

where s = (s0, t0, s1, t1) and S = (S0, T0, S1, T1). Thus, we define the bijection gS(s) = s+ S.

RerandOT(CRSOT,msgR,msgS;R,S0, T0, S1, T1): Given a message

msgS = ((c0
0, c

1
0), (c0

1, c
1
1)) = OT2(CRSOT,m0,m1,msgR) ,

corresponding to some message msgR = pk = (g, h), we first rerandomize msgR by choosing a
random R ← Zp and setting: msg′R = Rerand1(CRSOT,msgR;R). Then, we rerandomize msgS by
simply choosing S0, T0, S1, T1 uniformly at random from Zp and define:(

C0
0 , C

1
0

)
:=

(
c0

0 · g
S0
0 hT00 , (c1

0)R · gS0hT0
)
,(

C0
1 , C

1
1

)
:=

(
c0

1 · g
S1
1 hT11 , (c1

1)R · gS1hT1
)
.

Output ((C0
0 , C

1
0), (C0

1 , C
1
1)).

It is easy to see that for every msgR (where CRSOT is omitted for clarity):

Rerand2 (msgR,OT2 (m0,m1,msgR; s) ;R,S)

= OT2 (m0,m1,Rerand1(msgR;R); s+ S) .

where s = (s0, t0, s1, t1) and S = (S0, T0, S1, T1). Letting msgR = OT1(σ, r) and thus trans =
OT((σ; r), (m0,m1; s)),

RerandOT (trans;R,S) = OT ((σ; rR) , (m0,m1; s+ S)) .

Thus, we define the bijection gS(s) = s+ S and gR(r) = rR.

30

6.4 Malicious Authority Security

While rerandomizable OT protocol will be used to construct secure two-party computation with
malicious authority, as a warmup, we first construct an OT protocol with malicious authority. The
ideas developed here will be useful in the secure two-party computation setting.

Tools. In the construction of two-round OT with malicious authority security, we use the following
building blocks:

• A maliciously secure, two-round, rerandomizable n×OT protocol in the CRS model, as in
Definition 6.2. Denote the construction as OT.

• A one-way function f .

• A non-interactive witness indistinguishability proof (Definition 3.2), denoted as Π
(R)
NIWI and

Π
(S)
NIWI. The languages are described as part of the GenCRS algorithm of the construction.

Construction 6.4: Malicious Authority Security for Oblivious Transfer

GenCRS(1λ):

1. Sample CRSOT ← OT.GenCRS(1λ)

2. Information for corrupted sender:

(a) For both b = 0 and b = 1:
i. Choose random σb ∈ {0, 1}n, and compute Σb = f(σb).

ii. Computeαb,0 = OT1(σb⊕0;Rb,0) andαb,1 = OT1(σb⊕1;Rb,1) for randomRb,0, Rb,1.
Let αb = (αb,0,αb,1) and Rb = (Rb,0, Rb,1).

(b) Prove that either the transcript for b = 0 was generated correctly, or b = 1. That is, we

use Π
(S)
NIWI for the following relation:

• Instance: (CRSOT, (Σ0,α0), (Σ1,α1)) and witness: (σ0,R0,σ1,R1).

• Such that: one of the following conditions hold:
i. Σ0 = f(σ0), α0,0 = OT1(σ0 ⊕ 0;R0,0), and α0,1 = OT1(σ0 ⊕ 1;R0,1), or,

ii. Σ1 = f(σ1), α1,0 = OT1(σ1 ⊕ 0;R1,0), and α1,1 = OT1(σ1 ⊕ 1;R1,1).

Compute π(S) ← Π
(S)
NIWI.Prove(CRSOT, (Σ0,α0), (Σ1,α1), (σ0,R0,⊥,⊥)).

3. Information for corrupted receiver:

(a) For both b = 0 and b = 1:
i. Choose random chb ∈ {0, 1}n and compute CHRb = f(chb).

ii. Compute:

βb,0,0,0 = OT(0, (0, chb ⊕ 0)), βb,1,0,0 = OT(1, (chb ⊕ 0, 0)),

βb,0,0,1 = OT(0, (0, chb ⊕ 1)), βb,1,0,1 = OT(1, (chb ⊕ 0, 1)),

βb,0,1,0 = OT(0, (1, chb ⊕ 0)), βb,1,1,0 = OT(1, (chb ⊕ 1, 0)),

βb,0,1,1 = OT(0, (1, chb ⊕ 1)), βb,1,1,1 = OT(1, (chb ⊕ 1, 1)) . (3)

while using CRSOT in all executions, where we use randomness R′b,s,m0,m1
for the

receiver and S′b,s,m0,m1
for the sender when generating the transcript βb,s,m0,m1 , for

every b, s,m0,m1 ∈ {0, 1}. We let βb := {βb,s,m0,m1}s,m0,m1∈{0,1} and define S′b and
R′b in a similar manner.

31

(b) Using Π
(R)
NIWI for showing that either the transcript for b = 0 was generated correctly, or

b = 1. That is, we use Π
(R)
NIWI for the following language:

• Instance: (CRSOT, (CHR0,β0,R
′
0) , (CHR1,β1,R

′
1)).

• Witness: (ch0,S0, ch1,S1).

• Such that: either for b = 0 or b = 1 it holds that CHRb = f(chb) and βb was
generated as in Eq. (3) with randomness R′b and Sb.

Let π(R) ← Π
(R)
NIWI.Prove ((CRSOT, (CHR0,β0,R

′
0) , (CHR1,β1,R

′
1)) , (ch0,S0,⊥,⊥)).

4. Output:

CRS =
(
CRSOT, (Σ0,α0,S0), (Σ1,α1,S1), (CHR0,β0,R

′
0), (CHR1,β1,R

′
1), π

(R), π(S)
)
. (4)

The implementation of the OT protocol is the same as the base one, where upon receiving CRS
we just take the first coordinate CRSOT.

OT: The OT protocol is the same as the underlying OT, where upon receiving CRS = (CRSOT, . . .)
the algorithm only takes CRSOT.

Judge(CRS, τ).

1. Parse: CRS as in Eq. (4). Run Π
(R)
NIWI.Verify to verify π(R) on the CRS was generated correctly,

and run Π
(S)
NIWI.Verify to verify that π(S) was generated correctly. If the verification did not

pass, then output corrupted.

2. Otherwise, there are two options:

(a) If τ = (b, sender,σb), then verify that Σb = f(σb). If so, output corrupted.

(b) If τ = (b, receiver, chb), then verify that CHRb = f(chb). If so, output corrupted.

Theorem 6.5. Construction 6.4 has malicious authority security for to the functionality n×OT
with respect to the uniform distribution over the inputs.

Proof. According to the definition of malicious authority security (Definition 4.2) we have to show
simulatability of the OT protocol, accountability and defamation free.

Simulation. The construction is identical to that of [PVW08], where we just change the CRS and
add some additional information to it.

Accountability: sender. Fix an adversary A, and assume that the adversary corrupts the sender.
We show that if there exists a non-negligible function ε1(·) for which

Pr[Acc.RealΠ,A,E,q(λ) = 1] ≥ ε1(λ) ,

then there exists a non-negligible function ε2(·) such that

Pr[Acc.ExtΠ,A,E,q(λ) = 1] ≥ ε2(λ) .

Recall that the adversary A outputs a common reference string CRS∗ and then the protocol is
executed for q number of times, where the adversary chooses the input for the sender, the input of
the receiver is chosen according to the uniform distribution and the adversary receives the resulting
transcript. The adversary A then wins if it succeeds to output the input of the sender in one of
the q executions.

The extractor Ext works as follows:

32

1. Invoke the adversary A and obtain CRS∗.

2. Check that CRS∗ is well formed. I.e., run Step 1 in the Judge algorithm. If the CRS∗ is
corrupted, then output τ = CRS∗ and halt.

3. Choose a random b← {0, 1}, and run the following for q iterations where in the kth execution:

(a) Sample a masking shift ∆(k) = (∆1, . . . ,∆n) uniformly at random for the input of the
receiver. The procedure will generate a transcript where the input of the receiver is
σb ⊕∆(k) (with some fresh uniform random tape).

(b) Receive from the adversary A the input (m0,m1) and randomness ρ.

(c) For every i ∈ [n] set msgR[i] as follows:
i. The goal is to obtain a bit-OT for input σb[i]⊕∆i for the receiver and (m0[i],m1[i])

for the sender, with randomness ρ[i] for the sender.

ii. α = αb,∆i
[i] corresponds to 1-out-of-2 bit OT with receiver using input σb[i] ⊕∆i.

Set msgR[i]← OT.Rerand1(α) for a uniform random tape.

(d) Run msgS = OT2(CRSOT,msgR,m0,m1,ρ), and set transk = (m0,m1,ρ,msgR,msgS).
Send transk to the adversary A.

4. Let (k,y(k)) be the output of the adversary A, where the input yk represents the input of the
receiver in the kth execution. Set σ′b = ∆(k) ⊕ y(k).

5. If f(σ′b) = Σb then set τ = (b, sender,σ′b) and output it. Otherwise, output fail.

If the malicious authority outputs CRS∗ that does not pass the verification, then the output of
Acc.Ext is 1. We therefore assume that this happens with negligible probability.

We now prove that the view of the adversary is identical in both executions, condition that the
extractor choose the correct branch b. Since the verification of the CRS∗ is succeeded, then it must
be that the malicious authority used a correct witness in computing π(R) (either (σ0,R0,⊥,⊥) or
(⊥,⊥,σ1,R1)), and we condition on b accordingly. To show that, we just take a closer look at the
real and ideal executions:

1. Acc.Real: In the real execution, in each iteration the malicious authority gives some (m0,m1)
and randomness ρ. The honest reciever chooses its input r according to the uniform distri-
bution, and the malicious authority receives OT(r, (m0,m1;ρ)).

2. Acc.Ext: In the ideal execution, in each iteration the malicious authority gives some (m0,m1)
and randomness ρ. The extractor chooses random shift ∆ according to the uniform distribu-
tion, and the malicious authority uses the CRS to create a transcript that correspond to the
execution OT(∆⊕ σb, (m0,m1;ρ)).

In both cases, the malicious authority receives a transcript that correspond to a uniform random
input of the receiver. The transcript includes the input and randomness of the sender, but from
the security of the OT, this gives no information about the input of the receiver. As such, its view
is identical in both executions.

From inspection, it is clear that once the extractor receives from the malicious authority the
input for which it had created the transcript, it can easily recover σb. This implies that if the ma-
licious authority succeeds in the real with some non-negligible probability ε1(λ), then the extractor
succeeds with probability ε2(λ) := 1/2ε1(λ), where 1/2 comes from the guessing of b.

Accountability: receiver. Fix an adversary A and assume that the adversary corrupts the
receiver. We describe the extractor Ext:

1. Invoke the adversary A and obtain CRS∗.

33

2. Check that CRS∗ is well formed. That is, run Step 1 in the Judge algorithm. If the CRS∗ is
corrupted, then output τ = CRS∗ and halt.

3. Choose a random b← {0, 1} and run the following for q iterations where in the kth execution:

(a) Sample an input m(k) = m ∈ {0, 1}n and a shift ∆(k) = ∆ = (∆1, . . . ,∆n) ∈ {0, 1}n.

(b) Receive from the adversary the input s(k) = (s1, . . . , sn) and randomness ρR.

(c) Generate transcript transk. For every i ∈ [n] set transk[i] as follows:
i. The goal is to obtain a transcript for bit-OT for input si for the receiver with

randomness ρR[i], and the input of the sender is:
A. (m[i], chb[i]⊕∆i) if si = 0, and

B. (chb[i]⊕∆i,m[i]) if si = 1.

To ease notation, let s := s[i], ρ = ρR[i], m = m[i], ∆ = ∆i.

ii. Let trans[i]′ = βb,s,m,∆[i] and Rb := Rb,s,m,∆.

iii. Run transk[i] = RerandOT(trans[i]′; ρ′, S) using a uniform randomness S for the
sender, and for some ρ′ for which gρ′(Rb) = ρ.

Send transk to the adversary.

4. Let (k, x(k)) be the output of the adversary A, where x(k) is some pair y0 = (y0[1], . . . , y0[n])
and y1 = (y1[1], . . . , yn[1]). Let m = m(k), ∆ := ∆(k) and s = s(k), as in Steps 3a and 3b in
the kth execution. Set ch′ where for every i ∈ [n]:

ch′[i] =

{
y1[i]⊕∆i If si = 0
y0[i]⊕∆i otherwise

5. If f(ch′) = CHRb, then set τ = (b, receiver, ch′) and output it. Otherwise, output fail.

As in the case of the sender, the view of the adversary is distributed identically between the
real and ideal, conditioned on the event that the extractor guessed b correctly. In both execution
the input and randomness of the receiver are s,ρR, respectively. In the real execution the input of
the sender corresponds to uniformly random messages m0,m1. In the extraction, the input of the
sender is also uniform.

It is easy to see that once the malicious authority outputs an input used in one of the transcripts,
then the extractor learns the secret x in the CRS∗. Therefore, if the malicious authority succeeds
with some probability ε1(λ) in the real execution then the extractor succeeds with probability
ε2(λ) := 1/2 · ε1(λ).

Defamation free. We show that for every non-uniform adversary A there exists a negligible
function µ(·) such that for all λ:

Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ) ,

where CRS← Setup(1λ).
Fix an adversary A. Since CRS is honestly generated, the check in Step 1 always passes. We

thus can write:

Pr [Judge(CRS,A(CRS)) = corrupted] = Pr [A(CRS) = (b, sender,σ) s.t. Σb = f(σ)]

+ Pr [A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)]

The following two claims (Claim 6.6 and 6.7) show show that the probability of each one of these
terms is negligible, concluding the proof.

34

Claim 6.6. For every b ∈ {0, 1} there exists a negligible function µb(·) such that:

Pr [A(CRS) = (b, sender,σ) s.t. Σb = f(σ)] ≤ µb(λ) .

Proof. Fix b ∈ {0, 1}. We prove the claim via a sequence of hybrid experiments. Specifically:

1. H1: in this experiment, the adversary receives CRS as generated by GenCRS, and the output
of the experiment is 1 if it outputs (b, sender,σ) such that Σb = f(σ).

2. H2: in this experiment, we change the CRS that the adversary receives. In π(R) we use
the witness (⊥,⊥,σ1,R1) if b = 0, and use the witness (σ0,R0,⊥,⊥) if b = 1 (i.e., we use
the other branch). Again, the adversary receives the generated CRS and the output of the
experiment is 1 if it outputs (b, sender,σ) such that Σb = f(σb).

3. H3: This is the same as the previous experiment, but for which we change αb,0 = OT1(0;Rb,0)
instead of OT1(σb ⊕ 0).

4. H4: This is the same as the previous experiment, but for which we change αb,1 = OT1(1;Rb,1)
instead of OT1(σb ⊕ 1).

We now claim that the view of the adversary is computationally-indistinguishable between any two
consecutive hybrids, which implies that the probability that the adversary outputs σ such that
Σb = f(σ) is negligibly-close between two consecutive hybrids.

• The view of the adversary in H1 and H2 is computationally-indistinguishable based on the
security of the NIWI.

• The view of the adversary between H2 and H3 is computationally indistinguishability from
the security of the OT protocol: The CRS is different in only the way αb,0 is generated: In
H2 it is generated as OT1(σb ⊕ 0) whereas in H3 it is generated as OT1(0). In both cases,
the randomness of the receiver is not known to the adversary. From the security of OT, the
view of the sender is indistinguishable in both executions. Moreover, recall that the NIWI is
proven using the witness (1 − b,σ1−b,Rb) so this change does not affect the validity of the
π(R).

• We repeat the same argument as before for H4.

Finally, we claim that the probability that the adversary outputs (b, sender,σb) in H4 is negligible.
The only information that the adversary receives about σb is Σb, as all other parts in the CRS are
completely independent of σb. Since σb is chosen uniformly at random by GenCRS, this is reduced
to the security of the one-way function f .

Claim 6.7. For every b ∈ {0, 1} there exists a negligible function µb(·) such that:

Pr [A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)] ≤ µb(λ) .

Proof. Fix b ∈ {0, 1}. We prove the claim via hybrid argument.

1. H1: in this experiment, the adversary receives CRS as generated by GenCRS and the output
of the experiment is 1 if it outputs (b, receiver, ch) such that CHRb = f(ch).

2. H2: in this experiment, we change the CRS that the adversary receives. In π(R) we use the
witness (⊥,⊥, ch1,S1) if b = 0, and witness (ch0,S0,⊥,⊥) if b = 1. Again, the adversary
receives the generated CRS and the output of the experiment is 1 if it outputs (b, receiver, ch)
such that CHRb = f(ch).

35

3. H3: this is like the previous experiment, but for which for which we remove ch from βb,0,·,·.
That is, set:

βb,0,0,0 = OT(0, (0,0)), βb,0,0,1 = OT(0, (0,1))

βb,0,1,0 = OT(0, (1,0)), βb,0,1,1 = OT(0, (1,1))

4. H4: as the previous experiment, but we also remove ch from βb,1,·,·. That is, set:

βb,1,0,0 = OT(0, (0,0)), βb,1,0,1 = OT(0, (0,1))

βb,1,1,0 = OT(0, (1,0)), βb,1,1,1 = OT(0, (1,1))

Similar to the pervious proof,

• The view of the adversary in H1 and H2 is computationally indistinguishable directly from
the security of the NIWI.

• The view of the adversary in H2 and H3 is computationally indistinguishable from the security
of the OT protocol. Specifically, the transcript correspond to the view of the receiver in
this execution, and includes the input and randomness of the receiver, and the messages it
receivers from the sender. From the security of OT, when the input of the receiver is 0 it
gets no information about the other input of the sender, i.e., it cannot distinguish whether
the sender is using chb ⊕m or m.

• The view of the adversary in H3 and H4 is computationally indistinguishable based again on
the security of OT in a similar manner.

Finally, we claim that the probability that the adversary outputs (b, receiver,σb) in H4 is negligible.
The only information that the adversary receives about chb is f(chb), as all other parts in the CRS
are completely independent of chb. Since chb is chosen uniformly at random by GenCRS, this
is reduced to the security of the one-way function f . Since the view of the adversary in H1 is
computationally indistinguishable from its view in H4, we conclude that the probability that the
adversary wins in H1 is negligible as well.

6.5 Oblivious Transfer with Strong Accountability

The protocol described in the previous section satisfies Definition 4.2, but it does not satisfy strong
accountability (Definition 4.3).

In fact, Construction 6.4 already satisfies the stronger notion for the case of a corrupted sender,
but not for the corrupted receiver. We show now that using indistinguishability obfuscation, we can
achieve better and achieve the stronger notion of accountability in which the malicious authority
is active during the protocol execution.

The idea is that given message msgR sent by the malicious receiver, the extractor can generate
msgS that corresponds to an execution while using messages m0,m1 in which the challenge chb is
embedded in position that do not effect the output. This is done using an obfuscated circuit that
is given in the CRS.

Construction 6.8: Strong Accountability for Oblivious Transfer

GenCRS(1λ):

1. Sample CRSOT ← OT.GenCRS(1λ).

36

2. Information for corrupted sender: Identical to Construction 6.4. Let (Σ0,α0,S0),
(Σ1,α1,S1), π(S) be the output of this part.

3. Information for the corrupted receiver:

(a) For both b = 0 and b = 1:
i. Choose random chb ∈ {0, 1}n and compute CHRb = f(chb).

ii. Choose a random PRF key Kb ← {0, 1}λ, randomness rb and obfuscate Circuit 6.9:

Gb = iO.Obf (Gb,OT2 [CRSOT, chb,Kb]; rb) .

(b) Use Π
(R)
NIWI for showing that either the transcript for b = 0 was generated correctly, or

b = 1. That is, use Π
(R)
NIWI for the following language:

Instance : (CRSOT, (X0, G0), (X1G1)) Witness : ((ch0,K0, r0), (ch1,K1, r1)) ,

such that for either b = 0 or b = 1 it holds that:

CHRb = f(chb) and Gb = iO.Obf (Gb,OT2 [CRSOT, chb,Kb]; rb)

Let π(R) = Π
(R)
NIWI.Prove

(
CRSOT, (X0, G0), (X1, G1), ((ch0,K0, r0), (⊥,⊥,⊥)

)
.

4. Output:
(
CRSOT, (Σ0,α0,S0), (Σ1,α1,S1), (X0, G0), (X1G1), π(S), π(R)

)
.

The protocol is identical to that of Construction 6.4.

The Judge algorithm are identical to Construction 6.4, where the only difference is the underlying

language of Π
(R)
NIWI.

Circuit 6.9: Gb,OT2 [CRSOT, chb,K](msgR):

• Input: msgR.

• Hardwired value: CRSOT, chb, a pseudorandom key K.

• The circuit:

1. Let
(
m0,m1, {rτ0,τ1OT2

}τ0,τ1∈{0,1}
)
← PRFK (msgR).

2. For every τ1, τ2 ∈ {0, 1}, compute msgτ0,τ1S = OT2(CRSOT,m0⊕τn0 ,m1⊕τn1 ,msgR; rτ0,τ1OT2
).

3. Output: (m0 ⊕m1 ⊕ chb, {msgS}τ0,τ1).

Theorem 6.10. Assuming the security of one-way function, indistinguishability obfuscator, non-
interactive witness-indistinguishability proof system, and the existence of a rerandomizable oblivious
transfer, Construction 6.4 has malicious authority security for to the functionality n×OT with
respect to the uniform distribution over the inputs.

Proof. Simulation follows since the protocol is identical to that of [PVW08] where we just add more
information to the CRS.

Strong accountability: Sender. The extractor is identical to that in Theorem 6.5, except that
it does not receive from A the input (m0,m1) and randomness ρ from A in Step 3b. Moreover,
after generating msgR, it does not compute msgS as described in Step 3d and instead just sends it
to the malicious authority A. The view of the adversary is identically distributed to the one in the
real execution, and the extractability is also obtained from similar reasoning.

Strong accountability: Receiver. We define the extractor Ext:

37

1. Receive from the malicious authority CRS∗.

2. Pick a branch b← {0, 1}.
3. For each iteration k ∈ [q]:

(a) Receive from the adversary msg
(k)
R .

(b) Compute iO.Eval(Gb,msg
(k)
R) to obtain (y(k), {msgτ0,τ1S }τ0,τ1) where y(k) = m

(k)
0 ⊕m

(k)
1 ⊕

chb).

(c) Select messages m̂
(k)
0 = (m̂0

1, . . . , m̂
0
n) and m̂

(k)
1 = (m̂1

1, . . . , m̂
1
n) uniformly at random.

The extractor will generate a transcript that correspond to using the input (m
(k)
0 ⊕

m̂
(k)
0 , m

(k)
1 ⊕ m̂

(k)
1).

(d) For every i ∈ [n], msgS [i]′ = msg
m̂0
i ,m̂

1
i

S .

(e) Run msg′S ← Rerand2(msgR,msg′S ;S), for a uniform S.

4. If the malicious authority gives back some (k,m0,m1), then output (receiver, b,y(k) ⊕m0 ⊕
m̂

(k)
0 ⊕m1 ⊕ m̂

(k)
1).

It is easy to see that conditioned on the correct branch b, the view of the malicious authority is
computationally indistinguishable as generated by the extractor from its view when interacting with
an honest sender in the real execution. This follows from the rerandomization of the message sent
by the extractor, the perfect correctness of the obfuscation, and the security of the pseudorandom
function (thus, the sampled message msg0,msg1 are indistinguishable from messages as sampled
by the real sender). Moreover, if the malicious authority gives correct input (m0,m1) for some
iteration k ∈ [q], then again from the perfect correctness of the obfuscator, the extractor can extract
chb as given by the output of the obfuscated circuit. Therefore, if the malicious authority succeeds
with some probability ε1(λ) in the real execution, then the extractor succeeds with probability
1/2 · ε(λ)− negl(λ), where 1/2 comes from guessing b, and negl(λ) is the security loss of the PRF.

Defamation free. We show that for every non-uniform adversary A there exists a negligible
function µ(·) such that for all λ:

Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ) ,

where CRS← Setup(1λ).
Fix an adversary A. Since CRS is honestly generated, the check in Step 1 always passes. We

thus can write:

Pr [Judge(CRS,A(CRS)) = corrupted] = Pr [A(CRS) = (b, sender,σ) s.t. Σb = f(σ)]

+ Pr [A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)]

We show that each even occurs with a negligible probability. The case of a corrupted sender is
identical to that of Theorem 6.5, and we derive it from Claim 6.6. We show the the second term is
also bounded by a negligible function, and the following claim concludes our proof.

Claim 6.11. For every b ∈ {0, 1} there exists a negligible function µb(·) such that:

Pr [A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)] ≤ µb(λ) .

Proof. Suppose not. Then there exists a PPT adversary A and a bit b such that
Pr[A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)] is δ, where δ is a non-negligible function.
Without loss of generality, we assume that b = 0. Consider the following hybrids.

38

Note: in the hybrids below, we abuse notation and interpret boolean strings as integers. For
instance, the all zeroes string is interpreted as integer 0.

H0: In this hybrid, generate the common reference string as CRS← GenCRS(1λ).
By definition, we have that Pr[A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)] is δ.

H1: In this hybrid, we modify the CRS generation and instead generate the NIWI proof π(R) using
the witness ((⊥,⊥,⊥), (ch1,K1, r1)). Moreover, we change the CRSOT to be as in the simulation of
the OT, define for corrupted receiver.

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch)
is δ1.

H2.i: We instead generate the common reference string CRS as follows. Puncture the key Kb at
the index i; call this Kb \ {i}. Generate the obfuscated circuit as follows:

Ĥ2.i.Gb = iO.Obf (H2.Gb,OT2 [i,CRSOT, chb,Kb \ {i},y]; rb) ,

where H2.Gb,OT2 is Circuit 6.12. Let s be the output of Gb,OT2 on i, where Gb,OT2 is defined in
Circuit 6.9.

Circuit 6.12: H2.Gb,OT2 [i,CRSOT, chb,K \ {i}, s](msgR):

• Input: msgR.

• Hardwired value: index i, CRSOT, chb, a punctured pseudorandom key K \ {i} and value
s.

• The circuit:

1. If msgR > i:

(a) Let
(
m0,m1, {rτ0,τ1OT2

}τ0,τ1∈{0,1}
)
← PRFK (msgR).

(b) For every τ1, τ2 ∈ {0, 1}, compute msgτ0,τ1S = OT2(CRSOT,m0 ⊕ τn0 ,m1 ⊕
τn1 ,msgR; rτ0,τ1OT2

).

(c) Output: (m0 ⊕m1 ⊕ chb, {msgS}τ0,τ1).

2. If msgR = i: output s.

3. If msgR < i:

(a) Let
(
m0,m1, {rτ0,τ1OT2

}τ0,τ1∈{0,1}
)
← PRFK (msgR).

(b) For every τ1, τ2 ∈ {0, 1}, compute msgτ0,τ1S = OT2(CRSOT,m0 ⊕ τn0 ,m1 ⊕
τn1 ,msgR; rτ0,τ1OT2

).

(c) Output: (m0 ⊕m1, {msgS}τ0,τ1).

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch) is
δ2.i.

H3.i: We modify the CRS generation from the previous hybrid (H2.i) as follows. The
value s hardwired in the circuit H2.Gb,OT2 is generated as (m0 ⊕m1 ⊕ chb, {msgτ0,τ1S }τ0,τ1), where
each msgτ0,τ1S is generated as follows:

msgτ0,τ1S = OT2(CRSOT,m0 ⊕ τn0 ,m1 ⊕ τn1 , i; r
τ0,τ1
OT2

)

where rτ0,τ1OT2
is sampled uniformly at random (instead of an output of the PRF).

39

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch)
is δ3.i.

H4.i: We further modify the CRS generation from the previous hybrid (H3.i) as follows. The
hardwired value s is generated as (m0 ⊕m1 ⊕ s,msgS), where msgτ0,τ1S is now defined as follows:

msgτ0,τ1S =

{
OT2(CRSOT, 0, m1 ⊕ τn1 , i; rτ0,τ1OT2

) if b∗ = 1

OT2(CRSOT, m0 ⊕ τn0 , 0, i; rτ0,τ1OT2
) if b∗ = 0

,

where b∗ is the extracted bit of the simulator upon receiving the message msgR = i from the
corrupted receiver in the simulation process.

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch)
is δ4.i.

H5.i: We further modify the CRS generation from the previous hybrid (H4.i) as follows. We
generate the hardwired value s as follows: s = (m0 ⊕m1, {msgτ0,τ1S }τ0,τ1), where {msgτ0,τ1S }τ0,τ1 is
generated as in the previous hybrid.

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch)
is δ5.i.

H6.i: We further modify the CRS generation from the previous hybrid (H5.i) as follows. We
generate the hardwired value s as follows: s = (m0⊕m1, {msgτ0,τ1S }τ0,τ1), where msgτ0,τ1S is generated
as follows for every τ0, τ1 ∈ {0, 1}:

msgτ0,τ1S = OT2(CRSOT,m0 ⊕ τn0 , m1 ⊕ τn1 , i; rτ0,τ1OT2
),

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch)
is δ6.i.

H7.i: We further modify the CRS generation from the previous hybrid (H6.i) as follows. We
generate the hardwired value s as in the previous hybrid, where each rτ0,τ1OT2

is generated to be the
output of PRFK(i) (instead of a uniform one).

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch)
is δ7.i.

H8.i: We instead further modify the generation of the common reference string CRS as follows.
Puncture the key Kb at the index i; call this Kb \ {i}. Generate the obfuscated circuit as follows:

Ĥ8.i.Gb = iO.Obf (H8.Gb,OT2 [i,CRSOT, chb,Kb \ {i}]; rb) ,

where H8.Gb,OT2 is defined in Circuit 6.13.

Circuit 6.13: H8.Gb,OT2 [i,CRSOT, chb,K \ {i}](msgR):

• Input: msgR.

• Hardwired value: index i, CRSOT, chb, a punctured pseudorandom key K \ {i}.
• The circuit:

1. If msgR > i:

– Let
(
m0,m1, {rτ0,τ1OT2

}τ0,τ1∈{0,1}
)
← PRFK (msgR).

40

– For every τ1, τ2 ∈ {0, 1}, compute msgτ0,τ1S = OT2(CRSOT,m0 ⊕ τn0 ,m1 ⊕
τn1 ,msgR; rτ0,τ1OT2

).

– Output: (m0 ⊕m1 ⊕ chb, {msgS}τ0,τ1).

2. If msgR ≤ i:
– Let

(
m0,m1, {rτ0,τ1OT2

}τ0,τ1∈{0,1}
)
← PRFK (msgR).

– For every τ1, τ2 ∈ {0, 1}, compute msgτ0,τ1S = OT2(CRSOT,m0 ⊕ τn0 ,m1 ⊕
τn1 ,msgR; rτ0,τ1OT2

).

– Output: (m0 ⊕m1, {msgS}τ0,τ1).

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch) is
δ8.i.

H9: We instead further modify the generation of the common reference string CRS as follows.
Generate the obfuscated circuit as follows:

Ĥ9.Gb = iO.Obf (H9.Gb,OT2 [CRSOT,Kb; rb]) ,

where H9.Gb,OT2 is defined in Circuit 6.14.

Circuit 6.14: H8.Gb,OT2 [CRSOT,K](msgR):

• Input: msgR.

• Hardwired value: index i, CRSOT, a PRF key K.

• The circuit:

1. Let
(
m0,m1, {rτ0,τ1OT2

}τ0,τ1∈{0,1}
)
← PRFK (msgR).

2. For every τ1, τ2 ∈ {0, 1}, compute msgτ0,τ1S = OT2(CRSOT,m0⊕τn0 ,m1⊕τn1 ,msgR; rτ0,τ1OT2
).

3. Output: (m0 ⊕m1, {msgS}τ0,τ1).

Let the probability that A on input the modified CRS outputs (b, receiver, ch) s.t. CHRb = f(ch) is
δ8.i.

Indistinguishability of Hybrids. Let iO be εiO-secure. Let PRF be εPRF-secure. Let OT be
εOT-secure. Finally, let NIWI be εNIWI-secure. We prove the indistinguishability of hybrids as
follows.

• From the witness-indistinguishability property of π(R), and from the indistinguishability of
modes in the CRS of the underlying OT protocol, it follows that |δ − δ1| ≤ εNIWI + εOT.

• Note that the circuit Gb,OT2 is functionally equivalent to H2.0.Gb,OT2 . Thus, from the security
of iO, it follows that |δ1 − δ2.0| ≤ εiO.

• For every i ∈ {0, . . . , 2L − 1}, where L is the length of the message msgR it holds that:

– From the security of PRF, it follows that |δ2.i − δ3.i| ≤ εPRF.

– From the simulation security of OT against a malicious receiver, it follows that |δ3.i −
δ4.i| ≤ εOT.

– From the perfect security of one-time pad, it holds that δ4.i = δ5.i.

– From the sender security of OT, it follows that |δ5.i − δ6.i| ≤ εOT.

– From the security of PRF, it follows that |δ6.i − δ7.i| ≤ εPRF.

– Note that the circuit H8.Gb,OT2 is functionally equivalent to H2.Gb,OT2 . From the
security of iO, it follows that |δ7.i − δ8.i| ≤ εPRF.

41

– The circuit H.8.Gb,OT2 for i is functionally equivalent to H2.Gb,OT2 for i+ 1. From the
security of iO, it follows that |δ8.i − δ2.i+1| ≤ εiO.

• The circuit H.8.Gb,OT2 for i = 2L is functionally-equivalent to the circuit H.9.Gb,OT2 . From
the security of iO, it follows that |δ8.2L − δ9| ≤ εiO.

Thus, we have O(2L(εNIWI + εiO + εOT + εPRF)) ≥ |δ − δ9|, where L is the length of msgR.

From the security of one-way function to argue that δ9 is negligible, where L is the length of msgR.
Moreover, setting εiO, εOT, εPRF to be 1

2L+λ we have that δ is negligible.

7 Malicious Authority Security for Secure Two-Party Computa-
tion

In this section, we investigate malicious authority security for secure two party computation. We
first show that secure two party computation for all functions is impossible. We then restrict our
attention to specific class of functions in which malicious authority security can be achieved.

7.1 Impossibility Result: Malicious Authority Security for General Two-Party
Computation is Impossible

Lemma 7.1. There exists a two-party functionality F such that for any secure computation protocol
for F between parties P1 and P2, the following events cannot simultaneously hold:

• Pi, for some i ∈ {1, 2} receives the output of the protocol and,

• The following properties are satisfied: (i) defamation-free property and, (ii) accountability
holds when the malicious authority corrupts the party Pi.

Proof. Let F be an identity two-party functionality. Suppose there exists a secure two-party com-
putation protocol Π with malicious authority security for F .

Suppose only P1 receives the output; the other case is symmetrical. We now claim that one of
the two properties – accountability when the malicious authority corrupts P1 or defamation-free –
is violated.

Lets suppose that accountability property is satisfied. This means that there exists an extractor
E associated with the accountability property. We design an algorithm B as follows: for i = 1, . . . , q,

• It sends
(
x

(i)
1 , r

(i)
1

)
to E , where x

(i)
1 , r

(i)
1 is sampled uniformly at random.

• In return, E sends a transcript transi.

Recover the output y(1) = (x
(1)
1 , (x∗2)(1)) from the transcript trans1. Note that here we crucially

use the fact that the view of the first party contains the output of the function. Send (x∗2)(1) to E .
E outputs the evidence τ . Finally, B outputs τ .

We claim that B violates defamation-free property. Since E produces a τ such that Judge on input
CRS and τ outputs corrupted with non-negligible probability ε, we have that B violates defamation-
free property with the same non-negligible probability ε. This proves that the defamation-free and
accountability properties against P1 cannot simultaneously hold.

42

7.2 The Basic Protocol

In this section, we construct a two-message maliciously secure two-party computation protocol Π to
satisfy the accountability and defamation-free properties. We only consider the setting when only
one of the parties receives the output. We call the party who receives the output as the receiver and
the other party to be the sender. For simplicity we assume that the sender’s input has the same
length as the receiver’s input, and the length is denoted as ` = `(λ). Generalizing to arbitrarily
(sufficiently long) length is straightforward.

As shown, not all functions can be computed with malicious authority security. In the following,
we restrict our attention for the following class of functions.

The class of functions. For ` > λ, we let F be a family of all functions over F : {0, 1}` × Y →
{0, 1}` such that

F ((x1, . . . , x`), (y1, . . . , y`)) = g ({xi}yi=1) ,

for some function g. Namely, whenever yi = 0, then the xi does not affect the output. The set
Y ⊂ {0, 1}` contains all elements with hamming weight at most `− λ.

We first show how generic protocol for computing the function F in Section 7.2. In Section 7.3
we show how to enhance the security of this protocol and achieve malicious authority security.

Tools. We use the following tools in the construction:

• A rerandomizable maliciously secure n×OT protocol in the CRS model. Denote the protocol
as OTn = (GenCRS,OTn1 ,OT

n
2 ,Output). In case of a bit OT (n = 1), to avoid confusion with

the receiver’s first message OT1, we write OTbit.

• A rerandomizable garbled circuit Garble = (Gen,Eval,Sim,Rerand), as in Section 3.5. Hence-
forth, let λ be the length of the labels.

• A pseudorandom generator PRG : {0, 1}λ → {0, 1}poly(λ).

• A non-interactive witness indistinguishability proof system (Definition 3.2) denoted by

Π
(S)
NIWI = (Prove,Verify) for the following language:

1. Statement: (CRSOT,GC,msgR,msgS , sout) ,

2. Witness:
(
rGarble,x, r

x
OT2

, ryOT2
, sin

)
,

3. Such that one of the following conditions hold:
(a) All of the following hold:

i.

(
GC,

{
K

(x)
i,0 ,K

(x)
i,1 ,K

(y)
i,0 ,K

(y)
i,1

}
i[`]

)
← Garble

(
1λ, C; rGarble

)
, and

ii. msgS =
{
OT2λ+1

2

(
CRSOT,msg

(x)
R [i],

(
K

(x)
i,xi
‖sh0

i ‖K
(y)
i,0 , K

(x)
i,xi
‖sh1

i ‖K
(y)
i,1 ; rxOT2

[i]
))}

i∈[`]

(b) Or, sout = PRG(sin).

Looking ahead, when computing the function with malicious authority security, we will add one

more possible witness for the language Π
(S)
NIWI. This will correspond to obtaining the message msgS

as a rerandomization of the CRS.

Protocol 7.2: Secure Two-Party Computation in the CRS model

GenCRS(1λ):

1. Run OTCRS ← OT.GenCRS(1λ) to obtain CRSOT.

2. Compute sout ← {0, 1}poly(λ).

43

3. Output CRS = (CRSOT, sout).

The protocol:

• The receiver: On common reference string CRS = (CRSOT, sout) and input y = (y1, . . . , y`)
compute the following:

1. Compute msgR = OT
`·(2λ+1)
1 (CRSOT,y) = (OT2λ+1

1 (CRSOT, y1), . . . ,OT2λ+1
1 (CRSOT, y`)).

Send msgR to the sender.

• The sender: On common reference string CRS = (CRSOT, sout), input x = (x1, . . . , x`),
circuit C, and message msgR received from the receiver, compute the following:

1. Compute

(
GC,

{
K

(x)
i,0 ,K

(x)
i,1 ,K

(y)
i,0 ,K

(y)
i,1

}
i∈[`]

)
← Garble.Gen

(
1λ, C; rGarble

)
.

2. For every i ∈ [`], sample sh0
i , sh

1
i uniformly at random conditioned on sh0

i ⊕ sh1
i = xi.

3. Compute msgS =
{
OT2λ+1

2

(
CRSOT,msgR[i],

(
K

(x)
i,0 ‖sh0

i ‖K
(y)
i,0 , K

(x)
i,xi
‖sh1

i ‖K
(y)
i,1

))}
i∈[`]

.

Let rOT2 be the randomness used in computing these messages.

4. Compute Π
(S)
NIWI.Prove on instance (CRSOT,GC,msgR,msgS , sout) with the following wit-

ness: (rGarble,x, rOT2 ,⊥). Let the resulting proof be π(S).

The sender sends
(
GC,msgS , π

(S)
)

to the receiver.

• The receiver:

1. Verify that Π
(S)
NIWI.Verify

(
(CRSOT,GC,msgR,msgS , sout) , π

(S)
)

= 1. If it does not hold,
then abort.

2. From msgS , recover the labels sent in OT2 according to the choice bits y for every i ∈ [`]

and discard shyi . Let K
(x)
i ,K

(y)
i denote the received labels for every i ∈ [`].

3. Output the result of Garble.Eval(GC, ({K(x)
i ,K

(y)
i }i∈[`])).

Lemma 7.3. Assuming the security of maliciously secure oblivious transfer OT, pseudorandom
generator PRG, non-interactive witness-indistinguishable proof, Protocol 7.2 is a maliciously secure
two-party protocol in the CRS model for any function F ∈ F where only the receiver receives the
output.

We show simulation security separately against malicious receiver and malicious sender.

Simulation against malicious receiver. Suppose A be a PPT malicious receiver. We
construct a PPT simulator Sim that simulates the view of A. Before we describe Sim, we rely upon
the simulators of the OT protocol and garbling scheme. We denote SimOT to be the simulator of
the OT protocol defined for malicious receivers and Garble.Sim be the simulator of the garbling
scheme.

Description of Sim:

• CRS generation procedure:

1. Compute the CRS generation algorithm of SimOT to obtain CRS∗OT along with a trapdoor
tdOT, and sample sin ← {0, 1}λ and set sout = PRG(sin).

Output the following: CRS = (CRS∗OT, sout).

44

• Sim receives msgR from A. It also runs SimOT on every OT2λ+1
1 (·) message in msgR to extract

the receiver’s input y∗ = (y∗1, . . . , y
∗
`).

It then submits y∗ to the trusted functionality and it receives the output z = F (x,y∗), where
x is the input that the honest sender has sent to the trusted party.

• Sim then computes Garble.Sim(1λ, C, z) to obtain the simulated garbled circuit G̃C along with

simulated wire labels {K̃(x)
i }i∈[`], {K̃

(y)
i }i∈[`].

It then computes the following messages:

– Compute msgS =
{
OT2λ+1

2

(
CRSOT,msgR[i],

(
K̃

(x)
i ‖shi‖K̃

(y)
i , K̃

(x)
i ‖shi‖K̃

(y)
i

))}
i∈[`]

,

where shi ← {0, 1}.
Compute Π

(S)
NIWI.Prove on the instance (CRSOT,GC,msgR,msgS , sout) with the witness

(⊥, · · · ,⊥, sin) to obtain the proof π(S).
Sim sends

(
GC,msgS , π

(S)
)

to A.

Claim 7.4. The output of the ideal world is computationally indistinguishable from the output of
the real world.

Proof. We prove this by a hybrid argument.

1. H1 : The output of this hybrid is the output of the real world execution – the output of the
honest sender (which is empty) and the output of the adversary.

2. H2: Here we change GenCRS to set sout to be an output of PRG for a random seed sin instead
of a uniform value in {0, 1}poly(λ).

3. H3: In this hybrid, the proof π(S) is generated using the witness sin. That is, compute π(S) us-

ing Π
(S)
NIWI.Prove on input instance (CRSOT,GC,msgR,msgS , sout) with witness (⊥, · · · ,⊥, sin);

the notation is the same as in the description of the protocol. The rest of the hybrid is the
same as before.

4. H4: In this hybrid, OT protocol in the execution of Π. The experiment receives msgR from
A and runs SimOT. Also, the receiver’s input y∗ is extracted by SimOT, using tdOT, from the
message of the receiver. The message msgS is computed as in the protocol.

5. H5: In this hybrid, we no longer know x for interacting with the adversary, and we have an
interaction with a trusted party. We extract y∗ as in the previous hybrid and send it to the
trusted party to obtain z = F (x,y∗) where now x is the input that the honest sender has

sent to the trusted party. We use Garble.Sim to obtain the simulated garbled circuit G̃C along

with simulated wire labels {K̃(x)
i }i∈[`], {K̃

(y)
i }i∈[`] and we send to the adversary the message

msgS as in the simulated execution.

6. H6: The output of this hybrid is the output of the ideal world.

The computational indistinguishability of H1 and H2 follows from the security of the pseudo-
random generator. The computational indistinguishability of H2 and H3 follow form the witness-

indistinguishability property of Π
(S)
NIWI. The indistinguishability of H3 and H4 follows by a hybrid

argument on the simulation security of OT against malicious receivers. The indistinguishability of
H4 and H5 follows from the simulation security of the garbling scheme (Garble,Eval). H5 and H6

are identical.

Simulation Security against malicious senders. Suppose A is a PPT malicious sender. We
construct a PPT simulator Sim that simulates the view of A. Before we describe Sim, we rely upon
the simulators of the OT protocol and garbling scheme. We denote SimOT to be the simulator of

45

the OT protocol defined for malicious senders.

Description of Sim:

1. CRS generation procedure:

(a) Compute the CRS generation algorithm of SimOT to obtain CRS∗OT along with a trapdoor
tdOT.

(b) Sample sout uniformly at random from {0, 1}poly(λ).

Output the following: CRS = (CRS∗OT, sout) .

2. Sim executes SimOT to compute msgR.

3. Upon receiving the message
(
GC,msgS , π

(S)
)
, do the following:

• Compute Π
(S)
NIWI.Verify on input the instance (CRS,GC,msgS ,msgR, sout) and the proof

π(S). If Π
(S)
NIWI.Verify outputs reject, then abort the execution. Otherwise, continue.

• Compute SimOT on input msgS and trapdoor tdOT to extract the input{
(K

(x)
i,0 ‖sh

0
i ‖K

(y)
i,0 , K

(x)
i,xi
‖sh1

i ‖K
(y)
i,1)
}
.

Extract xi = sh0
i ⊕ sh1

i . If xi = 0 then if K
(x)
i,xi
6= K

(x)
i,0 then abort. If xi = 1 then if

K
(x)
i,xi

= K
(x)
i,0 then abort.

Let x = (x1, . . . , x`).

Finally, Sim sends x to the trusted party.

Claim 7.5. The output of the ideal world is computationally indistinguishable from the output of
the real world.

Proof. We prove this by a hybrid argument.

1. H1: The output of this hybrid is the output of the real world, consisting of the view of the
corrupted sender and the output of the honest receiver.

2. H2: In this hybrid, we simulate the OT protocol in the execution of Π. The rest of the
hybrid is the same as before. That is, CRSOT, along with trapdoor tdOT, is generated using
SimOT. All the OT1(·) messages are simulated by SimOT. That is, execute SimOT to compute
msgR. Finally, upon receiving the second round message from the corrupted sender, compute

SimOT to extract the input (K
(x)
i,0 ‖sh0

i ‖K
(y)
i,0 , K

(x)
i,xi
‖sh1

i ‖K
(y)
i,1) using the trapdoor tdOT. Let

xi = sh0
i ⊕ sh1

i . If xi = 0 then if K
(x)
i,xi
6= K

(x)
i,0 then abort. If xi = 1 then if K

(x)
i,xi

= K
(x)
i,0

then abort. Let x = (x1, . . . , x`) and send it to the trusted party. The output of the honest
receiver is then C(x,y) where y is its input (i.e., the receiver does not compute the garbled
circuit but instead evaluate the circuit directly).

3. H3: The output of this hybrid is the output of the ideal world.

To argue the computational indistinguishability of H1 and H2, we need to argue the following: (a)
the output distribution of the hybrid receiver in H1 is identical to the output distribution of the
hybrid receiver in H2 and, (b) the view of A in H1 is computationally indistinguishable from the

view of A in H2. We note that (a) follows from the perfect soundness of Π
(R)
NIWI, and the fact that

for every yi = 0 the input xi does not affect the output. Furthermore, (b) follows from a hybrid
argument on the simulation security of OT against malicious senders.

46

The only difference between H3 and H2 is in the computation of the output of the receiver. In
H2, the hybrid receiver extracts x and computes C(x,y) with its input y. In H3, the simulator
extractors x and sends it to the trusted functionality and the receiver receives F (x,y) from the
trusted functionality. Since C computes F , the output distributions of H2 and H3 are identical.

7.3 Extending to Malicious Authority Security

To achieve malicious authority security, we change the protocol and incorporate more information
in the CRS. Specifically, since the only message that the receiver sends in the protocol is OT1, the
case of a corrupted sender is easy and is identical to Construction 6.4. The case of a corrupted
receiver is more involved, and we add some OT transcripts that embeds some challenge, and allows
the extractor to create the message that the sender sends to the receiver in the protocol. Moreover,
we allow the sender to submit also a message that was generated by the extractor as the extractor
generates its message as a re-randomization of elements in the CRS and not according to the
underlying protocol. The way the extractor generated the transcript is described in Procedure 7.9,
and we just refer in the description of the language to that the generated message is an output of
that extractor. Procedure 7.9 is specified in the proof of Theorem 7.7.

Corrupted receievr. For handling the corrupted receiver, let ch be be the challenge embedded
in the CRS (of λ bits). The extractor has to generate a transcript that embeds ch in λ positions

of the OT2 messages. We embed this information in the keys K
(x)
i,xi

that the sender sends in its OT
message (recall Step 3 in the base protocol 7.2):

K
(x)
i,0 ‖ sh

0
i ‖ K

(y)
i,0 , K

(x)
i,xi
‖ sh1

i ‖ K
(y)
i,1 (5)

Recall that according to the class of functions we support, sending K
(x)
i,xi

instead of K
(x)
i,1 does

no affect correctness, as whenever yi = 0 the value of the bit xi does not affect the output. Thus,

whenever yi = 1, the label K
(x)
i,xi

is important for the computation and is revealed to the receiver,
and we cannot embed ch in it. For this OTs correspond to yi = 1, the extractor just generates the
OT2 message as in a regular execution.

However, for exactly λ positions for which yi = 0, the extractor has to learn the jth bit (for

j ∈ [λ]) of the challenge ch. This is done by replacing the K
(x)
i,xi

label with K
(x)
i,ch[j]+∆i

for some shift

∆i of its choice in the OT message. I.e., the extractor generates a transcript for input xi = ch[j]+∆i

that it does not know. Recall that the label K
(x)
i,xi

is not revealed in an honest execution (as yi = 0),
however, if the authority ever opens the transcript it would have to open it with respect to input
where xi = ch[j] + ∆i, and so the extractor would be able to recover the jth bit of the challenge.

To generate such a transcript, we add to the CRS:

βj,m,`0,`1 := OTbit(0, (`0, 1− (ch[j]⊕m) · `0 + (ch[j]⊕m) · `1)) .

(As previously, we will actually have to generate two challenges ch0, ch1 and use NIWI to prove that
one of the branches was honestly generated. We omit the branch b ∈ {0, 1} in the above description
for brevity). This enables the extractor to generate, for every two label keys of its choice, K0,K1,
and for a shift ∆i ∈ {0, 1}, a message that corresponds to OT where the input of the receiver is 0
and the input of the sender is: {

K0 if ch[j]⊕∆i = 0
K1 if ch[j]⊕∆i = 1

,

47

or in other words, the label is Kch[j]⊕∆i
. We therefore can generate the first λ part of the message

(bit-by-bit), i.e., the first λ bits of the OT message (recall Eq. 5):

K
(x)
i,0 ‖ sh

0
i ‖ K

(y)
i,0 , K

(x)
i,xi
‖ sh1

i ‖ K
(y)
i,1

Next, we need to generate the OT message corresponds to sh0
i , sh

1
i , and recall that sh0

i ⊕ sh1
i =

xi, however, the extractor does not known xi (= ch[j] + ∆i). We therefore also add to the CRS the
following information:

γj,m0,m1 := OT(0, (m0, ch[j]⊕m1) .

Thus, by choosing a random sh0
i ← {0, 1} and taking γj,sh0i ,∆i

, the extractor essentially obtains

OTbit message that corresponds to message:

OTbit(0, (sh0
i , sh

0
i ⊕ (∆i ⊕ ch[j]))) = OTbit(0, (sh0

i , sh
1
i)) ,

for sh0
i ⊕ sh1

i = ∆i ⊕ ch[j]. Finally, for generating the last part of the message (recall Eq. 5):

K
(x)
i,0 ‖ sh

0
i ‖ K

(y)
i,0 , K

(x)
i,xi
‖ sh1

i ‖ K
(y)
i,1

the extractor does not need any information from the CRS, since this is independent of the challenge
ch. Procedure 7.9 shows how the extractor generates its message as a function of the CRS, the
message it receives from the receiver, and inputs y (for the receiver) and ∆ (a “shift” for the
sender).

Modifying the Π
(S)
NIWI. The extractor can then obtain all this information from the CRS and re-

randomize all the OT messages such that they look fresh and honestly generated. However, recall
that in the protocol, the receiver checks that the OT was honestly generated, and the extractor
cannot prove the NIWI statement without knowing the input its OT message corresponds to.
Therefore, we add another branch to the NIWI language:

We define a non-interactive witness indistinguishability proof system (Definition 3.2) denoted

by Π
(S)
NIWI = (Prove,Verify) for the following language:

1. Statement: (CRS,GC,msgR,msgS , sout) ,

2. Witness:
(
rGarble,x, r

x
OT2

, ryOT2
, sin, b,y, r,∆, R

)
,

3. Such that one of the following conditions hold:

(a) All of the following hold:

i.

(
GC,

{
K

(x)
i,0 ,K

(x)
i,1 ,K

(y)
i,0 ,K

(y)
i,1

}
i[`]

)
← Garble

(
1λ, C; rGarble

)
, and

ii. msgS =
{
OT2

(
CRSOT,msg

(x)
R [i],

(
K

(x)
i,xi
‖sh0

i ‖K
(y)
i,0 , K

(x)
i,xi
‖sh1

i ‖K
(y)
i,1 ; rxOT2

[i]
))}

i∈[`]
.

(b) Or, sout = PRG(sin).

(c) Or (GC,msgR,msgS) is an output of Procedure 7.9 on input (CRS, b,y, r,∆) with ran-
domness R.

We are now ready for a formal description of the construction.

Construction 7.6: Secure Two-Party Computation with Malicious Authority Security

GenCRS(1λ):

1. Run GenCRS(1λ) of Protocol 7.2 to obtain (CRSOT, sout).

48

2. Information for corrupted sender: Identical to Construction 6.4.
Let (CRSOT, (Σ0,α0), (Σ1,α1), π(S−CRS)) be the result of that step. We let |σ0| = |σ1| = λ.

3. Information for corrupted receiver:

(a) For both b = 0 and b = 1:
i. Choose random chb ∈ {0, 1}λ and compute CHRb = f(chb).

ii. Choose randomness Rb for the receiver.

iii. For every j ∈ [λ], masking m ∈ {0, 1}, labels `0, `1 ∈ {0, 1}, set:

βb,j,m,`0,`1 := OTbit (0, (`0, (1− (chb[j]⊕m)) · `0 + (chb[j]⊕m) · `1)) ,

with respect to CRSOT, using randomness Sb,j,m,`0,`1 for the sender and the same
randomness Rb for the receiver. We let βb := {βb,j,m,`0,`1}j∈[λ],m,`0,`1∈{0,1}, Sb :=
{Sb,j,m,`0,`1}j∈[λ],m,`0,`1∈{0,1}.

iv. For every j ∈ [λ], masking m0,m1 ∈ {0, 1} set:

γb,j,m0,m1
:= OTbit (0, (m0, chb[j]⊕m1)) ,

with respect to CRSOT, using randomness Sb,j,m0,m1 for the sender and the same
randomness Rb for the receiver.
Let γb := {γb,j,m0,m1}j∈[λ],m0,m1∈{0,1}, S′b = {Sb,j,m0,m1}j∈[λ],m0,m1∈{0,1}.

(b) Using Π
(R−CRS)
NIWI for showing that either the transcript for b = 0 was generated correctly,

or b = 1. That is, we use Π
(R−CRS)
NIWI for the following language:

• Instance: ((CHR0,β0,γ0,R0) , (CHR1,β1,γ1,R1)).

• Witness: ((ch0,S0,S
′
0) , (ch1,S1,S

′
1)).

• Such that: Either for b = 0 or for b = 1 it holds that:
i. CHRb = f(chb).

ii. For every j ∈ [λ], m ∈ {0, 1} and `0, `1 ∈ {0, 1}, it holds that βb,j,m,`0,`1 was
generated as described using randomness Sb,j,m,`0,`1 for the sender and Rb for
the receiver.

iii. For every j ∈ [λ], m0,m1 ∈ {0, 1} it holds that γb,j,m0,m1 was generated as
described using randomness Sb,j,m for the sender and Rb for the receiver.

Use Π
(R−CRS)
NIWI to prove the statement (CHR0,β0,γ0,R0) , (CHR1,β1,γ1,R1) using the

witness ((ch0,S0,S
′
0), (⊥,⊥,⊥)), and let π(R−CRS) be the resulting proof.

4. Output:

CRS =
(
CRSOT , ((Σ0,α0,S0,Σ1,α1,S1), π(S−CRS)) (6)

((CHR0,β0,R0,CHR1,β1,R1), π
(R−CRS))

)
.

The protocol. The implementation of the protocol is the same as Protocol 7.2, where the NIWI

proof system Π
(S)
NIWI has also a third branch as described above.

Judge(CRS, τ).

1. Parse: CRS as in Eq. (6). Run Π
(R−CRS)
NIWI .Verify to verify π(R−CRS) on the CRS was generated

correctly, and run Π
(S−CRS)
NIWI .Verify to verify that π(S−CRS) was generated correctly. If the

verification did not pass, then output corrupted.

49

2. Otherwise, there are two options:

(a) If τ = (b, sender,σ′b), then verify that Σb = f(σ′b). If so, output corrupted.

(b) If τ = (b, receiver, ch′b), then verify that CHRb = f(ch′b). If so, output corrupted.

3. Otherwise, output honest.

Theorem 7.7. For every function F ∈ F , Construction 7.6 has malicious security for the Con-
struction 6.4 has malicious authority security with respect to the uniform distribution over the
inputs.

Proof. According to the definition of malicious authority security (Definition 4.2) we have to show
simulatability of the OT protocol, accountability and defamation free.

Simulation. The construction is identical to Protocol 7.9, where we only change the language used

in Π
(R)
NIWI. We claim, however, that the adversary cannot use the third branch. In particular, the

corrupted sender receives msgR from the honest receiver. To use the third branch of Π
(R)
NIWI, it has

to find y, r for which msgR = OT1(CRSOT,y; r), which can occur with only negligible probability,
from the receiver’s security of oblivious transfer.

Accountability: sender. Fix a malicious authority A, which chooses the inputs of the sender.
We show that if there exists a non-negligible function ε1(·) for which

Pr[Acc.RealΠ,A,E,q(λ) = 1] ≥ ε1(λ) ,

then there exists a non-negligible function ε2(·) such that

Pr[Acc.ExtΠ,A,E,q(λ) = 1] ≥ ε2(λ) .

The extractor Ext works as follows:

1. Obtain CRS∗ from A.

2. Check that CRS∗ is well formed. I.e., run Step 1 in the Judge algorithm. If the CRS∗ is
corrupted, then output τ = CRS∗ and halt.

3. Choose a random b← {0, 1}, and run the following for q iterations where in the kth execution:

(a) Sample a masking shift ∆(k) = (∆1, . . . ,∆`).

(b) Receive from the malicious authority A the input x = (x1, . . . , x`) and randomness r.

(c) Generate m̂sgR as follows. For every i ∈ [`]:

i. For every i ≤ λ: Set msgR[i] = αb,∆i
[i] and set msg

(y)
R [i]← OT.Rerand1(m̂sgR[i]).

ii. For every i > λ: Set msgR[i] = OT1(CRSOT,∆i).

(d) Run the honest sender with input x and randomness r on message msgR as generated by
the extractor. Let msgS be the message of the sender. Combine transk = (msgR,msgS)
and send it to the malicious authority.

4. Let (k,y(k)) be the output of the adversary A, where the input y(k) represents the input of
the receiver in the kth execution. Extract σ′ from the first λ coordinates of y(k) using ∆. If
f(σ′) = Σb then output τ = (b, sender,σ′). Otherwise, output fail.

Assuming that the adversary succeeds in Acc.Real with probability ε1(λ), then the extractor
succeeds with probability close to ε1(λ)/2. To show that, we claim that the view of the adversary in

50

Acc.Real is identically distributed to its view in Acc.Ext, conditioned on the event that the extractor

guess the correct branch, i.e., b∗ for which the malicious authority used its witness in Π
(S−CRS)
NIWI .

Specifically, the view that the extractor produces correspond to the case where the receiver
uses input (∆1 ⊕ σb[1], . . . ,∆λ ⊕ σb[λ],∆λ+1, . . . ,∆`). Since (∆1, . . . ,∆`), this is distributed as
a uniform random input for the receiver. In the real execution, the same occurs. Moreover,
when the malicious authority extracts the input of the receiver, clearly the extractor produces the
correct output. Therefore, the extractor succeeds with probability ε1(λ)/2, which is non-negligible
assuming that ε1(λ) is non-negligible.

Accountability: receiver. Fix a malicious authority A which chooses the inputs of the receiver.
We show that if there exists a non-negligible function ε1(·) for which

Pr[Acc.RealΠ,A,E,q(λ) = 1] ≥ ε1(λ) ,

then there exists a non-negligible function ε2(·) such that

Pr[Acc.ExtΠ,A,E,q(λ) = 1] ≥ ε2(λ) .

The extractor Ext works as follows:

1. Receive CRS∗ from A.

2. Check that CRS∗ is well formed. I.e., run Step 1 in the Judge algorithm. If the CRS∗ is
corrupted, then output τ = CRS∗ and halt.

3. Choose a random b← {0, 1}, and run the following for q iterations where in the kth iteration:

(a) Sample a masking shift ∆ = ∆(k) = (∆1, . . . ,∆`) uniformly at random for the input of
the sender.

(b) Receive from the malicious authorityA the input y(k) = y = (y1, . . . , y`) and randomness
r = (r[1], . . . , r[`]) for the receiver.

(c) Run Procedure 7.9 on input (CRS∗, b,y, r,∆) with some randomness R. Let
(GC,msgR,msgS) be the output.

(d) Compute Π
(S)
NIWI.Prove on instance (CRS,GC,msgR,msgS , sout) with witness:

(⊥, . . . , b,y, r,∆, R). Let the resulting proof be π(S).

(e) Send A the resulted transcript transk = (msgR,GC,msgS , π
(S)).

4. If A replies with some input (k,x), then let y = y(k) = (y1, . . . , y`). Extract ch′ from the first
λ positions in which yi = 0 and using ∆. If f(ch′) = CHRb then output τ = (b, receiver, ch′).

Similarly to the previous case, we claim that the view of the adversary is indistinguishable
assuming that the extractor chose the correct branch. This follows from the correctness of the

rerandomization process, and the witness-indistinguishablity of Π
(S)
NIWI. Therefore, if the adver-

sary succeeds in Acc.Real with probability ε1(λ), then it will succeeds in Acc.Ext with probability
ε1(λ)/2−µ(λ) for some negligible function µ(λ), which comes form the witness-indistinguishability
security loss.

Defamation free. We show that for every non-uniform adversary A there exists a negligible
function µ(·) such that for all λ:

Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ) ,

where CRS← Setup(1λ).

51

Fix an adversary A. Since CRS is honestly generated, the check in Step 1 always passes. We
thus can write:

Pr [Judge(CRS,A(CRS)) = corrupted] = Pr [A(CRS) = (b, sender,σ) s.t. Σb = f(σ)]

+ Pr [A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)]

Since the case of corrupted receiver is identical to the one in Construction 6.4, then we derive that
the first term is negligible by Claim 6.6. The following claim concludes the proof:

Claim 7.8. For every b ∈ {0, 1} there exists a negligible function µb(·) such that:

Pr [A(CRS) = (b, receiver, ch) s.t. CHRb = f(ch)] ≤ µb(λ) .

Proof. Assume without loss of contradiction that b = 0. We prove the claim via hybrid argument.

H1: In this experiment, the adversary receives CRS as generated by GenCRS and the output of
the experiment is 1 if it outputs (b, receiver, ch) for which CHRb = f(ch).

H2: In this experiment, we change the CRS that the adversary receives. In π(R) we use the witness
((⊥,⊥,⊥), (ch1,S1,S

′
1)). The output of the experiment is defined to be the same as in H1.

H3: Like the previous experiment but for which we change each βb,j,m,`0,`1 to be βb,j,m,`0,`1 =
OTbit(0, (`0, `1)).

H4: Like the previous experiment, but for which we change each γb,j,m0,m1 to be OTbit(0,m0,m1)).

Indistinguishability of hybrids: We claim that the view of the adversary between the different
hybrids is indistinguishable. H1 and H2 is computationally-indistinguishable from the security of
the witness-indistinguishability proof system. H2 and H3 are indistinguishable from the security
of the sender in OT, i.e., since the input of the receiver is always 0 in all those transcript, the
adversary cannot see the information in the second message. The same argument also applies to
claim the indistinguishability of H3 and H4.

Finally, in H4, the adversary receives CRS that contains no information about chb, except for
giving f(chb). Therefore, the probability that A outputs chb in H4 is negligible, as guaranteed from
the security of the one-way function.

Procedure 7.9: Extracting Transcript for Receiver’s Accountability

Input: CRS∗, a branch b ∈ {0, 1}, y = (y1, . . . , y`) as the input of the receiver, randomness
r = (r[1], . . . , r[`]) for the receiver, ∆ = (∆1, . . . ,∆n) as the shift of the sender.

Goal: Generating transcript corresponding to input ∆i everywhere except for the first λ positions
i for which yi = 0, in which the input of the sender is ∆i ⊕ chb[j], where chb is the challenge in the
CRS.

The procedure:

1. Compute

(
GC,

{
K

(x)
i,0 ,K

(x)
i,1 ,K

(y)
i,0 ,K

(y)
i,1

}
i∈[`]

)
← Garble.Gen

(
1λ, C; rGarble

)
.

2. Let λ = |K(x)
i,0 | be the length of each one of the keys.

52

3. Compute the transcript as follows. Set j = 1. For every i ∈ [`] generate msgS [i] as follows:

If yi = 1 or j > λ: then generate msgR[i]′ = OT2λ+1
1 (CRSOT, 1;Ri) using some randomness

Ri. Secret share sh0
i ⊕ sh1

i = ∆i, and set

msgS [i]′ = OT2λ+1
2

(
CRSOT, msgR[i],

(
K

(x)
i,0 ‖sh

0
i ‖K

(y)
i,0 , K

(x)
i,∆i
‖sh1

i ‖K
(y)
i,1

))
Then, use (msgR[i]′,msgS [i]′)← RerandOT((msgR[i]′,msgS [i]′)) to rerandomize this string OT
transcript such that the randomness of the receiver is r[i], and assign the result in trans[i].

If yi = 0 and j < λ: then the goal is to produce a transcript trans[i] for string OT in which
the input of the receiver is 0 and its randomness is r[i], and the transcript correspond to:

trans[i] = OT2λ+1
2

(
CRSOT,OT

2λ+1
1 (CRSOT, 0; r[i]), K

(x)
i,0 ‖sh

0
i ‖K

(y)
i,0 , K

(x)
i,chb[j]⊕∆i

‖sh1
i ‖K

(y)
i,1

)
.

This is accomplished by composing the OTs bit-by-bit as follows:

(a) The first λ bits: For every k ∈ [λ]: Let `0 = K
(x)
i,0 [k] and `1 = K

(x)
i,1 [k]. Set trans[i][k] =

βb,j,∆i,`0,`1 . Note that

trans[i][k] = OTbit(0, (K
(x)
i,0 [k], Ki,∆i⊕chb[j][k]))

(b) The (λ+ 1)st bit: Choose sh0 ← {0, 1}, and set m1 = ∆i ⊕ sh0. Set trans[i][λ+ 1] =
γb,j,sh0,m1 . Note that it holds that

trans[i][λ+ 1] = OTbit(0, (sh0, sh1))

for which sh0 ⊕ sh1 = chb[j]⊕∆i.

(c) The last λ bits: Here we do not need extra information from the CRS. Generate

trans[i][λ+ 2, . . . , 2λ+ 1] = OTλ(CRSOT, (0;Rb), (K
(y)
i,0 ,K

(1)
i,1)) .

(d) Overall, trans[i] correspond to the following string OT:

trans[i] = OT2λ+1
(
CRSOT, (0;Rb), K

(x)
i,0 ‖sh

0
i ‖K

(y)
i,0 , K

(x)
i,chb[j]⊕∆i

‖sh1
i ‖K

(y)
i,1

)
.

We set trans[i] = RerandOT(trans[i]) such that the randomness of the receiver is r[i].
Increment j.

4. The resulting trans defines (msgR,msgS).

5. Output: (GC,msgR,msgS).

Acknowledgments

The authors thank the anonymous reviewers of EUROCRYPT 2021 for many helpful comments.
Gilad Asharov is sponsored by the Israel Science Foundation (grant No. 2439/20), and by the

BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office, and by the European Union’s Horizon 2020
research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 891234.
Hila Dahari is a fellow of the Ariane de Rothschild Women Doctoral Program and supported in
part by grants from the Israel Science Foundation (No. 950/15 and 2686/20) and by the Simons
Foundation Collaboration on the Theory of Algorithmic Fairness. Vipul Goyal is supported in part
by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a
JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab
seed funding award.

53

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Annual International Cryptology
Conference, pages 468–499. Springer, 2017.

[ADKL19] Prabhanjan Ananth, Apoorvaa Deshpande, Yael Tauman Kalai, and Anna Lysyan-
skaya. Fully homomorphic NIZK and NIWI proofs. In Theory of Cryptography TCC
2019, volume 11892, pages 356–385. Springer, 2019.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public
verifiability. In Advances in Cryptology - ASIACRYPT 2012, volume 7658, pages 681–
698. Springer, 2012.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure lwe suffices. IACR Cryptol. ePrint
Arch., 2020:1024, 2020.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Symposium on Theory of Computing (STOC),
pages 103–112. ACM, 1988.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an untrusted
CRS: security in the face of parameter subversion. In Advances in Cryptology - ASI-
ACRYPT 2016, volume 10032, pages 777–804, 2016.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In CRYPTO,
pages 1–18. Springer, 2001.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita
Khurana, and Amit Sahai. Promise zero knowledge and its applications to round
optimal mpc. In Annual International Cryptology Conference, pages 459–487. Springer,
2018.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure compu-
tation without setup. In Theory of Cryptography Conference, pages 645–677. Springer,
2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 500–532. Springer,
2018.

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In
Advances in Cryptology - CRYPTO 2003, volume 2729, pages 299–315. Springer, 2003.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptol., 13(1):143–202, 2000.

[CCG+20] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostro-
vsky. Round optimal secure multiparty computation from minimal assumptions. In
Theory of Cryptography - TCC ’20, 2020. to appear.

54

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Annual
International Cryptology Conference, pages 19–40. Springer, 2001.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Advances in Cryptology
- CRYPTO ’94, volume 839, pages 257–270. Springer, 1994.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of univer-
sally composable two-party computation without set-up assumptions. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 68–86.
Springer, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In ACM symposium on Theory of
computing (STOC), pages 494–503, 2002.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In Foundations of Com-
puter Science, FOCS 2000, pages 283–293, 2000.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge snarks. In Public-Key Cryptography -
PKC 2018, volume 10769, pages 315–347. Springer, 2018.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different
beliefs together to do UC. In Theory of Cryptography - TCC 2011, volume 6597, pages
311–328. Springer, 2011.

[GK08] Vipul Goyal and Jonathan Katz. Universally composable multi-party computation with
an unreliable common reference string. In Theory of Cryptography, TCC 2008, volume
4948, pages 142–154. Springer, 2008.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptol., 7(1):1–32, 1994.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In CRYPTO
2007, volume 4622, pages 323–341. Springer, 2007.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In CRYPTO 2006, volume 4117, pages 97–111. Springer, 2006.

[Goy07] Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems. In CRYPTO
2007, volume 4622, pages 430–447. Springer, 2007.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 736–749, 2021.

55

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Theory and Applications of Cryptographic Techniques
(TCC), pages 468–499, 2018.

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Round-optimal secure multi-party computation. In Annual Interna-
tional Cryptology Conference, pages 488–520. Springer, 2018.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 60–73. ACM, 2021.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Annual International Cryptology Conference, pages 335–354. Springer, 2004.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Advances in Cryptology - EUROCRYPT 2016, volume 9666, pages 735–
763. Springer, 2016.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Advances in Cryptology - EUROCRYPT 2003, volume 2656, pages 160–176.
Springer, 2003.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In Advances in Cryptology - CRYPTO 2008, volume
5157, pages 554–571. Springer, 2008.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 127–156. Springer, 2021.

56

	Introduction
	Our Results

	Technical Overview
	Malicious Authority Security for NIZK
	Malicious Authority Security for Oblivious Transfer
	Malicious Authority Security for Two Party Computation

	Preliminaries
	Rerandomizable Commitment Scheme
	Non-Interactive Zero Knowledge (NIZK)
	Non-Interactive Witness Indistinguishability (NIWI)
	Secure Two-Party Computation
	Garbled Circuits
	Puncturable Pseudorandom Functions
	Indistinguishability Obfuscation (IO)

	Defining Malicious Authority Security
	Malicious Authority Security for NIZK
	Malicious Authority for Secure Two-Party Computation
	Strong Accountability

	Malicious Authority Security for NIZK
	Malicious Authority Security for Oblivious Transfer
	The OT Functionality
	Two-Round Rerandomizable OT Protocol
	Instantiation: The PVW OT Protocol
	Malicious Authority Security
	Oblivious Transfer with Strong Accountability

	Malicious Authority Security for Secure Two-Party Computation
	Impossibility Result: Malicious Authority Security for General Two-Party Computation is Impossible
	The Basic Protocol
	Extending to Malicious Authority Security

	References

