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Abstract. Keeping privacy for every entity in outsourced computation is always a crucial issue. For
efficient secure computation, homomorphic encryption (HE) can be one of nice solutions. Especially,
multikey homomorphic encryption (MKHE) which allows homomorphic evaluation on encrypted data
under different keys can be one of the simplest solutions for a secure computation which handles
multiple users’ data. However, the current main problem of MKHE is that the dimension of its evaluated
ciphertext relies on the number of users. To solve this problem, there are several variants of multikey
homomorphic encryption schemes to keep the size of ciphertext constant for a fixed number of users.
However, users interact one another before computation to provide their inputs, which increases setup
complexity. Moreover, all the existing MKHE schemes and their variants have unique benefits which
cannot be easily achieved at the same time in one scheme. In other words, each type of scheme has a
suitable computational scenario to put its best performance.
In this paper, we suggest more efficient evaluation key generation algorithms (relinearization key and
bootstrapping key) for the existing variants of MKHE schemes which have no ciphertext expansion for
a fixed number of users. Our method only requires a very simple and minor pre-processing; distributing
public keys, which is not counted as a round at all in many other applications. Regarding bootstrapping,
we firstly provide an efficient bootstrapping for multiple users which is the same as the base single-
key scheme thanks to our simplified key generation method without a communication. As a result,
participants have less communication, computation, and memory cost in online phase. Moreover, we
provide a practical conversion algorithm between the two types of schemes in order to efficiently utilize
both schemes’ advantages together in more various applications. We also provide detailed comparison
among similar results so that users can choose a suitable scheme for their homomorphic encryption
based application scenarios.
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1 Introduction

Homomorphic encryption (HE) supports an operation on encrypted data. Therefore, it can be applied to an
outsourced computation where a server computes a function value of client’s encrypted data. Likewise, HE
seems to be a proper solution for a computation keeping data privacy. Hence, it has been studied actively to
enhance the efficiency for a practical use. As a result, many of homomorphic encryption schemes [CGGI17,FV12,
BGV12] and approximate HE [CKKS17] are now considered practical due to their continuous improvement
and optimization.

However, HE is not always a proper solution for any outsourced computation, specifically, handling
multiple users’ data. It is because HE schemes are originally defined for single user setting where only one
key is involved in ciphertexts (we call them single-key HE throughout this paper). Instead, multikey HE
(MKHE) [LTV12] which allows a computation on ciphertexts encrypted under different keys can be a solution
for such case. Since each user encrypts its input by its key, each input is protected from other users for free.
MKHE ciphertexts can be correctly decrypted only when the associated secret keys are gathered for semantic
security. Therefore, MKHE may provide more advanced security by its nature for a computation among
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multiple users than single-key HE; input privacy and output privacy. We call it multikey security. Indeed,
MKHE seems much more suitable in real application scenarios than just single-key HE. In real worlds, many
of companies have their own private data which might be confidential or involved in patenting issue, they
do not want to reveal the data to others. At the same time, all they need is to compute a function value
with their data such as predicted value of a machine learning model. On the other hand, in this case, the
input security cannot be naturally achieved by using single-key HE. If all the companies share the same
key (using single-key HE), dishonest companies can decrypt other honest parties’ inputs. Then the input
security may not be fully achieved. In order to prevent this, one may assume or build a specific computing
environment where the transmit channel between a user and the server is private, hence no one can obtain
other’s information without permission. This kind of assumption is somewhat strong so that it seems quite
expensive to be instantiated in practice.

Even though MKHE schemes have been implemented with practical results [CDKS19, CCS19], the
ciphertext expansion during homomorphic operation is still the main issue to be solved. That is, the ciphertext
size grows relying on the number of users, which results in increasing both computation and communication
cost proportional to the number of users (say k). Even though the size of ciphertext in MKHE is significantly
reduced (from quadratic to linear on k) [BP16], the computation time and memory costs still at least k
times more than underlying single-key scheme. This structure seems inevitable to keep on-the-fly property
which is a strong benefit of homomorphism between ciphertext and plaintext. The property lets a new user
join an ongoing computation at any point, freely. So no information about participants are not needed to
be known ahead of time. This is specifically called dynamic computation which is useful in general, but the
current problem of the schemes having the property is that the ciphertext size, more precisely, the dimension
of ciphertext vector, grows depending on the number of users. For a certain computation scenario with
pre-defined number of users (i.e when there is no new dynamic computation), it is not fully recommended to
use such scheme sacrificing efficiency. In the case, the short ciphertext size and multikey security are essential
for an efficient and secure computation among pre-defined users.

As a partial solution to achieve constant size of ciphertext, there are variants of MKHE schemes which only
work when participants are fixed, by creating a common public key among pre-defined multiple parties. We
categorize those all as a compact MKHE scheme throughout this paper since they achieve multikey security,
and have no ciphertext expansion relying on the number of users. All existing approaches [AH19,MTPBH21]
have the same structure based on threshold FHE (ThFHE) [AJLA+12] where more than t out of N parties
can decrypt an evaluated ciphertext encrypted under N different secret keys (if t = N , it is called multikey
variant Threshold FHE [BGG+17]). In threshold FHE based schemes, users generate a common public key,
therefore, the asymptotic complexity of the scheme becomes as same as its base single-key HE scheme with
multikey security. However, each has been built upon a particular computing scenario and their evaluation
key generation procedure is a protocol by taking some interactions among users. In other words, users need
to be online to generate such keys. Then homomorphic operation can be performed with those keys. Even,
key switching and bootstrapping steps also require an interaction among users. Hence, such schemes have lost
on-the-fly property to some extent. Especially, dynamic computation is hardly achievable.

Overall, the suggested two types of schemes (MKHE and multikey variant Threshold FHE) are the
most suitable solutions for computations handling multiple users’ data based on homomorphic encryption.
However, they have very different advantages. And one is not simply compatible with the other. Furthermore,
the suggested multikey-Threshold FHE schemes are not optimized in the sense of communication round
complexity. In practice, it is always better to minimize the communication among multiple users for efficiency
in terms of storage, computation, and more. Therefore, it is important to provide an efficient solution to take
both advantages for more application scenarios.

1.1 Our Contribution

In order to solve the aforementioned issues, we first present efficient evaluation key generation algorithms
(for relinearization and bootstrapping) for a compact MKHE scheme where the size of ciphertext does
not grow depending on the number of users. The main goal is to generate evaluation keys by taking no
interaction among pre-defined users. The procedure is not a protocol anymore so that the scheme becomes
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more user-friendly by reducing computation, storage cost per user than other works [AH19, MTPBH21].
Regarding bootstrapping, we firstly provide an efficient bootstrapping for multiple users which is the same as
the base single-key scheme thanks to our simplified key generation method without a communication. To do
this, we need a simple pre-processing step, distributing public keys to all, which is not a big deal in realistic
scenarios such as in public key infrastructure (PKI). We use the latest multikey variant of Threshold FHE
scheme [MTPBH21] as a base scheme to apply our evaluation key generation algorithms. Also, our method
is always applicable to every such ciphertext format encrypted under the secret key (s1 + s2 + · · ·+ sk, 1),
where si is the i-th user’s secret.

Moreover, thanks to the minimal communication, we could suggest an efficient method to connect existing
compact MKHE schemes and other (non-compact) MKHE schemes to maximize the performance in a various
computation environment. For example, compact schemes have no ciphertext expansion for a fixed number of
users, but on-the-fly computation is not directly applicable for new users. On the other hand, the non-compact
schemes have ciphertext expansion but easily allow to join on-going computation at any point. In order to
compensate each negative point, it is the best way to make one to be compatible with the other efficiently. In
particular, the conversion from non-compact to compact scheme is very meaningful to reduce the network cost.
The conversion is efficient since a server only runs key switching algorithm without requiring any interaction
among users. Our algorithms are instantiated based on BFV homomorphic encryption scheme [FV12], but
the same idea can be applied to other FHE schemes such as BGV [BGV12] and CKKS [CKKS17].

Main idea behind the contribution Existing compact MKHE schemes [AH19,MTPBH21] employ the
interactive evaluation key generation algorithm [AJLA+12] for relinearization. In fact, after the tensor product
of two multikey ciphertexts, ct1 and ct2 encrypting m1 and m2, respectively, under sk = (s1 + s2 + · · ·+ sk, 1),
the resulting ciphertext ct⊗ satisfies 〈ct⊗, sk⊗ sk〉 = ct⊗[1](s1 + · · ·+ sk)2 + ct⊗[2](s1 + · · ·+ sk) + ct⊗[3](s1 +
· · ·+sk)+ct⊗[4] ≈ ∆m1m2. So ct⊗ is a degree 2 ciphertext which should be reduced to a degree 1 ciphertext as
the original ciphertexts in the end. To do this, one can homomorphically relinearize the degree 2 ciphertext and
this method requires some additional key K ∈ R`×2q such that K[1](s1 + · · ·+sk)+K[2] = (s1 + · · ·+sk)2g+e

for some error e and a gadget vector g ∈ R`q. Then relinearization performs ct×[1] = 〈g−1(ct⊗[1]),K[1]〉+
ct⊗[2] + ct⊗[3], ct×[2] = 〈g−1(ct⊗[1]K[2])〉 + ct⊗[4] to generate the final ciphertext ct× of degree 1. As a
result, 〈ct⊗, sk⊗ sk〉 ≈ 〈ct×, sk〉.

What [AJLA+12] based schemes are trying to do is to generate a pseudo encryptions of (s1 + . . .+ sk),
K, under (s1 + . . .+ sk) by combining all single-key encryptions of si encrypted under its own key si for each
user i ∈ [k] at the end. The way to transform a single-key ciphertext into multikey one takes some interaction,
resulting in 2 rounds. Then a server collects the final information and adds them to obtain K.

However, it becomes much simpler if each user generates a multikey encryption of si under a common
public key from the beginning, since the public keys are already known. As a result, the essential number of
interaction is reduced to one from two; distributing public keys which can be saved in a certain computation
scenarios such as PKI. Then no interaction is required.

This solution reduces computational burden such as time memory, etc. on the user’s side when such
schemes are applied to real computation scenarios. More importantly, it strikes a better balance between two
different types of schemes which have distinct benefit. Therefore, the existing compact MKHE schemes become
simpler to be compatible with original MKHE schemes, which may provide more convenient computing tool
for users.

1.2 Related Works

Multikey homomorphic encryption scheme is firstly introduced by López-Alt et al. [LTV12] based on NTRU.
Then a multikey version of GSW scheme [CM15] was introduced for the first time. It was developed to
achieve round optimal multiparty computation [MW16]. Also there were plausible results to get rid of CRS
[BHP17,KLP20] among multiple users based on GSW scheme. Other works allowed multi-hop (dynamic)
property [PS16, BP16] in MKHE schemes. Brakerski and Perlman [BP16] proposed the shorter size of
ciphertext which has linear growth on the number of users at first. Then other FHE primitives were naturally
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transformed to multikey variants such as multikey BGV [CZW17], multikey TFHE [CCS19, LP19], and
multikey BFV, and CKKS [CDKS19] with linear growth ciphertext length.

In order to have constant size of ciphertext size (to achieve a compact MKHE), there is a multikey variant
of Threshold FHE [AH19,MTPBH21], where a joint public keys are computed by users employing the idea
of [AJLA+12] taking two rounds, hence the ciphertext size remains constant for a fixed number of users. The
protocol takes four rounds in total. Due to their round complexity, it is not fully practical even in their specific
computation scenarios; specifically, the work [AH19] is recommended to an outsourced computation with
multiple model providers which are usually fixed and clients who can be anyone. Then the model provider
uses multikey ThFHE and the clients use the original MKHE schemes for dynamic property. Mouchet et
al. [MTPBH21] suggests their scheme for multiparty computation where multiple parties jointly compute a
function value and computing materials such as evaluation keys. Again, each is still not fully practical for its
best case since users need some interactions for homomorphic evaluation. There is a detailed survey about
the line of works [AHSL20].

1.3 A note on compact MKHE

We define a compact MKHE (CMKHE) if an MKHE scheme or its variant supports that the ciphertext size
remains constant for a polynomially many number of users. Hence, the asymptotic complexity of computation
and communication of CMKHE schemes remains as same as single-key homomorphic encryption. Therefore,
CMKHE can be an efficient solution for secure computations handling multiple users’ data.

The first MKHE scheme [LTV12] is based on NTRU problem and it is a compact MKHE without creating
a joint key among users. Moreover, it allows dynamic property directly as well. More importantly, the
participants are not need to be pre-defined. However, the scheme is too inefficient due to its large parameters.
Furthermore, it was broken by subfield attacks [ABD16,CJL16]. Hence, so far, the only method to instantiate
a secure and efficient lattice based compact MKHE is based on Threshold FHE [AH19,MTPBH21], where
users jointly generate a common public key. Due to a common public key, the size of ciphertext does not
increase depending on the number of joint users. It is still an open problem to build a secure and efficient
compact MKHE scheme without any interaction among users before computation.

2 Preliminaries

Notation: We let λ denote the security parameter. Vectors and matrices are denoted in lowercase bold
and uppercase bold, respectively. We denote by 〈v,w〉 the dot product of two vectors v,w. For a vector x,
x[i] denotes the i-th component scalar. Let R and Rq denote Z[X]/(XN + 1) and Z[X]/(XN + 1) mod q,
respectively, for positive integers q,N . For a real α > 0, Dα denotes the Gaussian distribution of standard
deviation α. The key distribution χ is the uniform distribution over the set of binary polynomials. log(·)
is binary logarithm. We also denote the set {1, . . . , n} by [n]. If an element a ≈ 0 mod p for some a ∈ R,
ba− 0e = 0 mod p for some modulus p. [b]q for b ∈ R means b mod q. U(Rq) denotes uniform distribution
over Rq. We denote Var(a) is the maximum variance of each coefficient of a ∈ R. Then the variance of the

product of two polynomials in R is that Var(ab) = nVar(a)Var(b) for a, b ∈ R. Var(a) is defined as
∑`
i=1

1
`a[i]

for a polynomial vector a ∈ R`. The error contained in a ciphertext ct ∈ R2 is denoted by Err(ct). Let X and

Y be two distributions over a finite domain. X
comp
≈ Y if they are computationally indistinguishable

2.1 Ring Learning With Errors

We recall the decisional ring learning with error (RLWE) problem which is a simple ring-based version of the
LWE problem [Reg09].

Definition 1. For security parameter λ, let Φm(X) be a cyclotomic polynomial with degree φ(m) and set
R = Z[X]/(Φm(X)). Let q = q(λ) ≥ 2 be an integer. For a fixed secret random element s ∈ Rq and a
distribution χ = χ(λ) over R, the decisional RLWE problem says the distribution outputting (a, [a · s+ e]),
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where a and e is chosen uniformly at random from Rq and χ, respectively, and the distribution outputting
(a, u) chosen uniformly at random from R2

q are computationally indistinguishable.

The sample (a, [a · s+ e]) ∈ R2
q is called RLWE sample. We assume the above problem for our scheme.

For a simple and convenient use like many schemes, we set Φ(X) = XN + 1, where N is a power of 2.

2.2 BFV Homomorphic Encryption Scheme

We briefly introduce BFV homomorphic encryption scheme [Bra12,FV12]. We call the scheme as single-key
BFV scheme throughout the paper. BFV scheme is derived from LPR [LPR10] public key encryption scheme.
Let Rp be plaintext space, where p > 1 is plaintext modulus. We define ∆ = b qpe, where q is ciphertext

modulus such that q � p. Let χ be a secret key distribution. Note that EvalKeyGen generates (public)
evaluation keys used in evaluation algorithm Eval.

Definition 2. BFV homomorphic encryption scheme is a tuple of algorithms (KeyGen,EvalKeyGen,Enc,Dec,Eval):

– KeyGen(1λ)→ (pk, sk): On input security parameter λ, it generates a key pair pk, sk:
• Set sk: s← χ over Rq
• Set pk: (a, b = (−as+ e)) mod q, where a← Rq uniformly at random, and e← Dα.

– EvalKeyGen(sk, T )→ evk : Set sk = s. For i ∈ {0, . . . , ` = blogT qc}, evk = (ai,−ais+ ei + T is2) mod q
– Enc(pk,m) → ct: For the message m ∈ Rt, and public key pk = (a, b), it outputs a fresh ciphertext

ct = (ua+ e1, ub+∆m+ e2) mod q ∈ R2
q, where u← χ uniformly at random and e1, e2 ← Dα.

– Dec(ct, sk)→ m: Let ciphertext ct = (c0, c1) and sk = s, it outputs m = bpq [c0s+ c1]qe mod p.

– Eval(ct1, ct2, evk):
• Add(ct1, ct2)→ ct+: Output ct+ = (ct1[1] + ct2[1], ct1[2] + ct2[2]) mod q ∈ R2

q.
• Mult(ct1, ct2, evk)→ ct×:

(1) Compute b tq ct1⊗ ct2e = (c1, c2, c3, c4). Set ct⊗ = (c′1, c
′
2, c
′
3), where c′1 = c1, c

′
2 = c2 + c3, c

′
3 = c4.

(2) Let evki[1] = ai, evki[2] = −ais + ei + T is2 mod q for i ∈ [`], where T is the base of a gadget
vector.
Compute ct×[1] = c′2 +

∑`
i=0 evki[1]c

′(i)
1 ,

ct×[2] = c′3 +
∑`
i=0 evki[2]c

′(i)
1 , where c′1 =

∑`
i=0 T

i · c′(i)1 .
(3) Output ct× = (ct×[1], ct×[2]).

A canonical RLWE based ciphertext like BFV ciphertext is a form of RLWE sample, which is, (a, b) ∈ R2
q .

Homomorphic multiplication over this kinds of ciphertext contains computing tensor product of two ciphertexts,
in general. So the size of ciphertext grows to square and there is non-linear element in the result. To fix
the problems, a procedure called relinearization is performed after tensor product (step (2) of Mult), which
requires additional evaluation keys.

2.3 Basic Scheme for Multikey variant of Threshold FHE based on BFV

We recall a multikey ThFHE scheme based on BFV [MTPBH21] since we improve the evaluation key
generation algorithm of existing compact MKHE schemes. As we mentioned in Section 1, the existing such
works are instantiated multikey-threshold homomorphic encryption. So we choose this scheme [MTPBH21] to
apply our new technique. Let p and q be a plaintext modulus and a ciphertext modulus, respectively, and
q � p. ∆ = bq/pe as defined in original BFV.

– CMKHE .Setup(1λ) → params: It takes security parameter λ and outputs public parameter params =
{N,χ, p, q, α, a}, where N is a polynomial degree, χ is a secret key distribution, α is a standard deviation
of Gaussian distribution and a ∈ Rq is CRS.

– CMKHE .KeyGen(params)→ (sk, pk): Given params,
• set a secret key sk = s ∈ Rq, where s← χ over Rq
• set a public key pk = (a, b) ∈ R2

q, where b← (−as+ e) and e← Dα over Rq.
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• Outputs a key pair (sk, pk).

After Key generation, all users share their public keys through public channel. Then parties generate a
common public key by adding the second component of all given public keys.

– CMKHE .ComKey(pk1, . . . , pkk)→ p̂k: Given all parties’ public keys (pki = (a, bi), it outputs a common

public key p̂k := (a,
∑k
i=1 bi) such that a(

∑k
i=1 si) + b ≈ 0 mod q.

– CMKHE .Enc( ˆpk),m)→ ct: It takes a common public key p̂k and a message m ∈ Rp on input, it outputs
a fresh ciphertext ct.
• parse p̂k := (a′, b′) such that a(

∑k
i=1 si) + b ≈ 0 mod q.

• samples u← χ, e1, e2 ← Dα

• computes a fresh ciphertext cti = (ua′ + e1, ub
′ + e2 +∆m) ∈ R2

q.
• Outputs cti.

– CMKHE .Dec(sk1, . . . , skk, ct)→ m: On input all users’ secret keys {ski = si}i∈[k] and a ciphertext ct,

• Set ŝk = (s1 + · · ·+ sk, 1) ∈ R2
q, where each si from ski.

• Compute 1
∆ 〈ct, ŝk〉 ≈ m mod p

As we can see, a fresh ciphertext is encrypted under all involved users’ keys. Therefore, the public keys
of different users are simply added with a common randomness. More precisely, cti is decrypted with all
associated secret key elements s1, . . . , sk, that is, 1

∆ 〈cti, (s1+· · ·+sk, 1)〉 = cti[1]·(s1+· · ·+sk)+cti[2] = m+ec,
where ec is an error, si is a secret element of i-th user. The ciphertext space is just as same as the space of
single-key BFV, working as a single-key homomorphic encryption.

2.4 Multikey Homomorphic Encryption based on BFV

The existing multikey BFV scheme [CDKS19] is a generalization of the above single-key BFV scheme. They
let a server expand a single-key BFV ciphertext using other public materials given by all users. That is, each
user generates key pair independently and encrypts each message only with its own public key, hence users
do not need to know one another before computation. Therefore, its key generation and encryption algorithm
are just as same as single-key BFV scheme. However, the size of evaluated ciphertext grows linearly in the
number of users.

For example, A fresh ciphertext encrypting mi of the i-th user is cti = (c1, c2) ∈ R2
q and it is decrypted

with a corresponding secret key ski = (si, 1) as p
q 〈cti, ski〉 = c1si + c2 ≈ mi mod p. Each operation (either

addition or multiplication) with other user’s fresh ciphertext adds one more component in a ciphertext i.e.
ct′ = (c1, c2, c3) ∈ R3

q, if there are two users. More precisely, if we add two fresh ciphertexts ct1 and ct2 of
two parties, first rearrange the ciphertext entries by increasing the dimension of input ciphertexts such as
ct′1 = (ct1[1], 0, ct1[2]), ct′2 = (0, ct2[1], ct2[2]) then their underlying secret key sk is (s1, s2, 1). For addition,
just add the two expanded ciphertexts, i.e. ct+ := ct′1 + ct′2 mod q ∈ R3

q. For multiplication, tensor product
is used between two expended ciphertexts as single-key BFV does. We first do tensor product which outputs
ct⊗ = ct′1⊗ ct′2 ∈ R9

q. Then ct satisfies 〈ct⊗, sk⊗ sk〉 = 〈ct′1, sk〉 · 〈ct′2, sk〉. We then relinearize it by using
additional material (evaluation keys) since there is some non-linear parts such as s1 · s2. Then the final
evaluated ciphertext ct× ∈ R3

q satisfies q
p 〈ct×, sk〉 ≈ m1m2 mod p

After computation with k users, the evaluated ciphertext is ĉt = (c1, . . . , ck+1) ∈ Rk+1
q , which is decrypted

as p
q 〈ĉt, ŝk〉 ≈ f(m1, . . . ,mk) mod p, where ŝk = (s1, . . . , sk, 1) and f(m1, . . . ,mk) is a desired function value

of all users.

3 Main Technique

In this section, we present an efficient evaluation key (also bootstrapping key) generation algorithm for
compact MKHE scheme to be round optimal. We assume that a common random string (CRS) is given to all
users from a trusted generator in the following scheme.
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3.1 Evaluation key generation algorithm

We recall a gadget vector which is g = (g1, . . . , g`) ∈ R`q (usually, gi = gi−1 for some g ∈ Zq). The
gadget vector is widely used in homomorphic encryption schemes to control noise growth since the gadget
decomposition (inverse of g, g−1) keeps the size of output less than min{gi}. Furthermore, if g−1 is randomized
(output follows subguassian distribution), it gives a tight bound for error analysis due to independent error
term [AP14, GMP19, JLP21]. Note that g−1 : Rq → R`, which outputs g−1(a) = (u1, . . . , u`) for a ∈ Rq,
such that g1u1 + . . .+ g`u` = a mod q, ` = O(logg q).

We first define our simple evaluation key generation algorithm for relinearization. This process is simple
and no much noise is contained in the output keys. Once joint parties’ public keys are known, no interaction
is required for generating a ciphertext and evaluation keys among participants, which makes our scheme more
practical than other similar approaches [AJLA+12,AH19,MTPBH21].

– CMKHE .EvalKeyGen(p̂k, si)→ Ki ∈ R`×2q :

(1) ui ← χ` over Rq, ei, e
′
i ← D`

α over Rq.
(2) Parse p̂k = (a, b) such that a(

∑k
i=1 si) + b ≈ 0 mod q.

(3) Ki[1] = a · ui + si · g + ei mod q,

Ki[2] = b · ui + e′i = −a(
∑k
t=1 st) · ui + ẽi ∈ R`q mod q.

Let Ki be an evaluation key of i-th user. Then

Ki[1] ·
k∑
t=1

st + Ki[2] = si(

k∑
t=1

st) · g + êi mod q, (1)

for some error vector êi ∈ R`q. Note that a of the common public key p̂k is the same common random
parameter given by a trusted setup in this section.

In fact, the keys are pseudo-encryptions of secret key. Hence we assume circular security as general
homomorphic encryption schemes do. The keys are securely encrypted by multiple users’ secret keys, which
we will discuss in A by proving this pseudo-encryptions of secrets are computationally indistinguishable to
uniform random elements by RLWE assumption. Therefore, any secret key information is not leaked at all
unless all of the users agree on it.

Now we define our evaluation algorithm consisting of addition and multiplication over ciphertexts. We
note that a server can use the master evaluation key by adding all given individual evaluation keys from k
users to save memory and computation cost. Then the evaluation algorithm is just as same as the one of the
underlying single-key FHE scheme. Let K̂ :=

∑k
t=1 Kt be the master evaluation key. Let cti = (ci,1, ci,2) ∈ R2

q

, ctj = (cj,1, cj,2) ∈ R2
q be two multikey ciphertexts encrypted under k different keys, and mi,mj be a

corresponding plaintext respectively, for i, j ∈ [k] (i and j are possibly same).

– CMKHE .Eval(C, cti, ctj , K̂) ∈ {ct+, ct×}, C is a circuit.
• [Addition] CMKHE .Add(cti, ctj)→ ct+ ∈ R2

q:
(1) ct+ = cti + ctj mod q = (ci,1 + cj,1, ci,2 + cj,2) mod q.

• [Multiplication] CMKHE .Mult(cti, ctj , K̂)→ ct× ∈ R2
q:

(1) ct′ = cti⊗ ctj ∈ R4.
(2) Compute cv = [b 1

∆ ct′[v]e]q for v ∈ [4].

(3) ct×[1] = 〈g−1(c1), K̂[1]〉+ (c2 + c3) mod q,

ct×[2] = 〈g−1(c1), K̂[2]〉+ c4 mod q.

After the first step (tensor product), the output ct′ satisfies 〈ct′, sk⊗ sk〉 = 〈cti, sk〉 · 〈ctj , sk〉, where sk =
(s1 + · · · + sk, 1). Then 1

∆ [ct′[1](s1 + · · · + sk)2 + (ct[2] + ct[3])(s1 + · · · + sk) + ct′[4]] ≈ mimj . Therefore,
the dimension of ct′ is increased and the ciphertext contains some non-linear parts such as si · sj . So we use
relinearization algorithm to reduce the dimension as the original one. The third step of the multiplication
is relinearization. The computation complexity is as same as single-key BFV since there is no ciphertext
expansion.
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Correctness of evaluation: Let ŝk = (s1 + · · ·+ sk, 1) ∈ R2
q be a corresponding secret key of a multikey

ciphertext. For addition, we can easily check that

[〈ct+, ŝk〉]q = [ct+[1](s1 + · · ·+ sk) + ct+[2]]q

≈ ∆(mi +mj) mod q.

For multiplication, we first note that ct′ satisfies the following equation with a secret key ŝk⊗ ŝk:

1

∆

[
c1 · (

k∑
i=1

si)
2 + (c2 + c3) ·

k∑
i=1

si + c4

]
q

≈ mimj mod p

After relinearization (step (3)) with evaluation keys, it satisfies that

〈ct×, ŝk〉 mod q = ct×[1](s1 + · · ·+ sk) + ct×[2] mod q

= 〈g−1(c1), K̂[1]〉 · (
k∑
i=1

si) + (c2 + c3) · (
k∑
i=1

si)

+ 〈g−1(c1), K̂[2]〉+ c4 mod q

=

[
〈g−1(c1), K̂[1] · (

k∑
i=1

si) + K̂[2]〉+ (c2 + c3) ·
k∑
i=1

si + c4

]
q

=

[
〈g−1(c1), (s1 + · · ·+ sk)2 · g + e〉+ (c2 + c3) ·

k∑
i=1

si + c4

]
q

=

[
(s1 + · · ·+ sk)2〈g−1(c1),g〉+ (c2 + c3) ·

k∑
i=1

si + c4 + ẽ

]
q

≈
[
c1 · (s1 + · · ·+ sk)2 + (c2 + c3) · (s1 + · · ·+ sk) + c4

]
q

≈ ∆mimj mod q,

where e ∈ R`q and ẽ ∈ Rq are some errors.

3.2 Bootstrapping for CMKHE

Bootstrapping of standard FHE is not straightforward to do and even requires large size of additional
key materials (encryptions of secret key). Moreover, a server needs much larger storage and takes more
computation time for MKHE scheme (at least k times more than its single-key scheme). Even though it seems
inevitable to take all key elements from each user, we can reduce the computation time of a server at least
since we use compact MKHE.

We follow the bootstrapping of [CDKS19], but ours is much simpler since the size is reduced to single-key
version. Moreover, there is no interaction among users for bootstrapping, even creating a bootstrapping
key unlike [MTPBH21]. Everything we need to modify is evaluation of Galois automorphisms which is a
linear transformation requiring rotations on encrypted elements since the rest is as same as an improved
single-key BFV bootstrapping procedure [CH18]. It is mainly based on key switching such as using a map
τt : P (X) 7→ P (Xt), where P (X) is a polynomial in Rq. We denote τt(a) = (τt(a1), . . . , τt(ad)) for a
d-dimensional vector a = (a1, . . . , ad). It is easy to see that τt(ct) is encrypting τt(m) under a secret key
τt(sk), where CMKHE .Dec(ct, sk) = m, sk = (s, 1). To bootstrap an evaluated multikey ciphertext, it requires
secret key elements, say, µs ∈ Rq, which is generated by additional algorithm only for bootstrapping key
in [CDKS19]. We first generate an key generation algorithm which takes a secret key element on input. Let

p̂k be a common public key of k users.
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– CMKHE .EncSKGen(p̂k, µs)→ key ∈ R`×2q

(1) u← χ` over Rq, e, e′ ← D`
α over Rq.

(2) Parse p̂k = (a′, b′) such that a′(
∑k
i=1 si) + b′ ≈ 0 mod q

(3) key[1] = a′ · u + e mod q,

key[2] = b′ · u + µs · g + e′ = −a(
∑k
i=1 si) · u + µs · g + ẽ ∈ R`q mod q, for some error ẽ ∈ R`q.

We can easily check key satisfies the following equation:

key[1] · (
k∑
i=1

si) + key[2] ≈ µs · g mod q ∈ R`×2q

Then one may transform a ciphertext encrypted under s to an encryption of the same plaintext under
different secret key s′. Then we use key switching algorithm similarly defined in [CDKS19] but more efficient
than that since we only require one 2` ring multiplication rather than 2k`. Let ct be a ciphertext encrypted
under s and the key is encrypting s′ under the secret s.

– CMKHE .KeySwitch(ct, key)→ ct′ ∈ R2
q

• Compute ct′ = (ct′[1], ct′[2]) as

∗ ct′[1] = 〈g−1(ct[1]), key[1]〉 mod q
∗ ct′[2] = 〈g−1(ct[1]), key[2]〉+ ct[2] mod q

Then, in our case, bootstrapping key (also called Galois key) is generated by running CMKHE .EncSKGen
algorithm as [CDKS19]. We define Galois key generation algorithm below.

– CMKHE .GkGen(p̂k, τt(si))→ GKi,t, for i ∈ [k], t ∈ Z∗2N
(1) Runs CMKHE .EncSKGen(p̂k, τt(si))→ keyi,t
(2) Outputs GKi,t := keyi,t

In fact, like the master evaluation key, a server can save the master bootstrapping key by adding all bootstrap-
ping keys of users. It can save memory consumption of a server definitely. An evaluation of Galois automorphism
on a compact MKHE ciphertext is easily done by running key switching algorithm CMKHE .KeySwitch tak-
ing bootstrapping key on input. For simplicity and efficiency, we use ĜKt :=

∑k
i=1 GKi,t as the master

bootstrapping key. Now we check the correctness of key switching with the master bootstrapping key.
Correctness: We show that 〈ct′, ŝk〉 = τt(〈ct, ŝk〉) mod q, where ŝk = (s1 + · · ·+ sk, 1).

〈ct′, ŝk〉 = ct′[1](s1 + · · ·+ sk) + ct′[2]

= 〈g−1(τt(ct[1])), ˆGKt[1] ·
k∑
i=1

si〉+ 〈g−1(τt(ct[1])), ˆGKt[2]〉

+ τt(ct[2]) mod q

=

[
〈g−1(τt(ct[1])), ˆGKt[1] ·

k∑
i=1

si + ˆGKt[2]〉+ τt(ct[2])

]
q

≈
[
〈g−1(τt(ct[1])), (τt(s1) + · · ·+ τt(sk)) · g + e〉+ τt(ct[2])

]
q

≈ τt(ct[1]) · (τt(s1) + · · ·+ τt(sk)) + τt(ct[2]) mod q

= 〈τt(ct), τt(ŝk)〉 mod q

= τt(〈ct, ŝk〉) mod q,

where e ∈ Rq is an error.
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3.3 Security

We can prove that the distribution of our evaluation keys are computationally indistinguishable to uniform
distribution, since the evaluation keys are only different to existing secure constructions [AH19,MTPBH21].
We define the CMKHE .EvalKeyGen (resp. CMKHE .EncSKGen)is an encryption algorithm of message m under
a public key generated from CMKHE .KeyGen. We prove that the encryption algorithm is semantically secure,
then equivalently we conclude that the evaluation keys do not leak any information about underlying message
(secret key) against passive adversaries by assuming circular security.

For MKHE security with multiple decryptor, it is recommended to prove that the scheme is secure against
both internal adversary and external adversaries [LP19]. However, we only care of the internal adversary
which is one of participants for evaluation keys, since the keys are not used for decryption process. We show
the entire security proof of the proposed scheme in Appendix C with the brief explanation about proper
adversaries.

Theorem 1. The distribution of evaluation keys are computationally indistinguishable to uniform distribution
over R`×2q by assuming underlying RLWE assumption with the parameter (n, q, χ,Dα) is hard and circular
security.

Proof. Let k be the number of users, (pki, ski)← CMKHE .KeyGen (params), where params← CMKHE. Setup

for i ∈ [k], and we set pki = (ai, bi), ski = si. Let Kb ← CMKHE .EvalKeyGen(p̂k, b) be a relinearization key

encrypting a bit b under k users’ secrets. Let keyb ← CMKHE .EncSKGen(p̂k, b) be a bootstrapping key of
encryption a bit b under k user’s keys. Without loss of generality, we assume k = 2. Here, the challenge
ciphertext is an evaluation key Kb (resp. keyb). We denote an internal adversary of CMKHE by A and an
RLWE distinguisher by B. In the security game for internal adversary [KLP20], A performs what he can do
such as accessing certain oracle after receiving a challenge ciphertext Kb (resp. keyb) from a challenger of
a security game, sends the value to B by letting him guess which b was chosen by the challenger. Then A
forwards the answer of B to the challenger.

It is clear to see that the challenge ciphertext Kb (resp. keyb) encrypting b under pk1 and pk2. Then the
internal adversary who holds sk2 (assume he is the second user), can partially decrypt Kb (resp. keyb) with its
key by performing 〈(Kb[1, j],K2,j), sk2〉 for some j ∈ [ell], resulting in an element aujs1 + b · s2 · gj + ej ∈ Rq
denoted by bj . Now we can see that (a, bj) is an RLWE sample under the given parameter. Then the adversary
sends b1 with a which is a uniform random element and pk1 to B. In other words, the advantage of A becomes
the advantage of the adversary B. which is negligible by RLWE assumption with the given parameter.

Therefore, we conclude that the encryption scheme for evaluation keys are IND-CPA secure assuming
circular security and that RLWE assumption is hard with such parameter set. Equivalently, the keys are
computationally indistinguishable to R`×2q , hence do not leak any information about secret key through
public channel against passive adversary.

4 Compatibility with Existing Schemes

Table 1. Pros and Cons of existing CMKHE and original MKHE

Existing CMKHE MKHE

Pros No ciphertext expansion
Dynamic computation for free

No restriction for the number of joint users before computation

Cons
Dynamic computation takes some rounds

Ciphertext size grows linearly in the number of users
Users should be pre-defined

Compact MKHE schemes we present above are as efficient as its base single-key HE schemes. However,
they are not always better than other existing schemes. In order to show the different ability of MKHE
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schemes and their variants depending on computing environment, we denote our scheme by CMKHE and a
multikey BFV scheme [CDKS19] by MKHE in this section,.

We let the key generation of MKHE be same as CMKHE’s in the presence of CRS. We summarize the
properties of each scheme which may affect on a computation in a positive or negative way in Table 1. It is
interesting to see that the benefit that one scheme posses is what the other scheme cannot achieve directly.
That is to say, in all existing CMKHE schemes, there is no ciphertext expansion for pre-defined users, but
dynamic computation is hardly achievable directly. On the other hand, MKHE allows dynamic computation
for free but the ciphertext size grows linearly in the number of users.

In fact, it would be the best if the dynamic computation is possible between different schemes to achieve
the best performance using each benefit. Therefore, we suggest practical methods to convert one scheme into
the other to compensate the negative point of a scheme by the positive point of the other to some extent.

– The conversion from MKHE to CMKHE is meaningful if a server has lack of its computation power at
some point or no more new users join the computation. Moreover, it can be used to reduce communication
cost by a server without any interaction with users after evaluation a function value.

– We recommend the opposite direction (from CMKHE to MKHE) for a case that new users often take part
in a computation after computing a joint function value among a fixed number of users.

We note that these conversion algorithms are also applicable to existing compact MKHE schemes [AH19,
MTPBH21] since they have basically the same structure but it is preferable to use ours due to lower round
complexity.

We only consider the issue on adding new users in the paper since we can remove users by using
multikey proxy re-encryption [YKHK18] regardless of type of schemes. If a user wants to stop continuing the
computation, we have to make sure that anything about security issue can not happen. To do this, there is
no other efficient solution than multikey proxy re-encryption so far. With all users’ proxy re-encryption keys,
the server partially decrypt the output then sends to the user. And user can finally decrypt the output with
its own key, while the server can continue further computation with the rest of users’ information.

4.1 Conversion CMKHE into MKHE

The conversion from CMKHE to MKHE is pretty straightforward. Just add a new component for a new user
by extending ciphertext dimension. To do this, however, users’ evaluation keys of MKHE should be previously
generated and sent to a server(or a computing party). For example, let ct = (a, b) ∈ R2 be an CMKHE
ciphertext encrypting m under secret s1 + s2 and let ct3 = (a3, b3) be a MKHE ciphertext encrypting m3

under s3. The server expands ct to ct′ = (a, 0, b) and ct3 to ct′3 = (0, a3, b3), of which underlying secret key is
(s1 + s2, s3, 1). Then a server computes a function f over ct′ and ct′3 by using MKHE .Eval algorithm with
evaluation keys of MKHE, i.e., addition and multiplication are performed as MKHE’s evaluation procedure,
then the output is ct′ = (a1, a2, b) ∈ R3 such that b+ a1(s1 + s2) + a2s3 ≈ ∆f(m,m3).

We note that this conversion is actually used in [AH19] to collaborate both schemes by giving a particular
example (between a model owners who use a compact MKHE scheme and users who are dynamically join the
computation by using MKHE). We say that this conversion can be extended to more general cases with less
communication among users.

If a group of new users are joining at the same time, it would be better to extend only one component for
the new group of which information is encrypted by using CMKHE than adding every component according
to the number of new users. Then run MKHE .Eval algorithm between two groups (the old and the new). If
new users unexpectedly join the computation, it is better to use MKHE is used from then.

4.2 Conversion MKHE into CMKHE

Before going to the conversion, we note that it is the most efficient way to use our scheme among any other
CMKHE schemes such as [AH19,MTPBH21] for the conversion because it takes no round for that. Server can
do everything with previously given information.
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We assume a CRS for large number of k and that public keys are known to one another. Let k users
have jointly computed a function value f(m1, . . . ,mk) based on MKHE, where the resulting evaluated MKHE
ciphertext ct ∈ Rk+1

q which satisfies 1
∆ [〈ct, (s1, . . . , sk, 1)〉]q ≈ f(m1, . . . ,mk) mod p. A server converts it to

CMKHE ciphertext for a further computation with a function g with the same joint users. Let MKHE pubic
key of each user be (a, bi) ∈ R2

q, and secret key be si for i ∈ [k], where a is CRS. Then the protocol between
k users and a server is following:

– Setup: Before computation, users share their public keys to create a common public key p̂k then generate
conversion keys CKi (for i ∈ [k]) by running ConvKeyGen which can be precomputed. Then sends them
to a server.

– Server:

• runs MKHEtoCMKHE(ct, {CKi}i∈[k], )

The setup phase can be considered as pre-processing in many of applications. Now, we define the conversion
key generation algorithm ConvKeyGen and the conversion algorithm MKHEtoCMKHE. It is basically, running
similar process in key switching CMKHE .KeySwitch algorithm with conversion keys of k users.

– ConvKeyGen(p̂k, si)→ CKi ∈ R`×2q

• Run CMKHE .EncSKGen(p̂k, si)→ key

• Output CKi := key

– MKHEtoCMKHE(ct, {CKi}i∈[k])→ ct′ ∈ R2
q

• Parse ct = (a1, a2, . . . , ak, b).

• ct′[1] =
∑k
i=1〈g−1(ai),CKi[1]〉 mod q

• ct′[2] =
∑k
i=1〈g−1(ai),CKi[2]〉+ b mod q

Correctness: We only check that 1
∆ [〈ct′, (

∑k
i=1 si, 1)〉]q ≈ f(m1 . . . ,mk)

[〈ct′, (
k∑
i=1

si, 1)〉]q = [
∑
i∈[k]

〈g−1(ai),CKi[1]〉(
k∑
i=1

si)

+
∑
i∈[k]

〈g−1(ai),CKi[2]〉+ b]q

= [
∑
i∈[k]

〈g−1(ai),CKi[1](

k∑
i=1

si)〉+
∑
i∈[k]

〈g−1(ai),CKi[2]〉+ b]q

= [
∑
i∈[k]

〈g−1(ai),CKi[1](

k∑
i=1

si) + CKi[2]〉+ b]q

≈ [
∑
i∈[k]

(〈g−1(ai), sig〉+ b]q

≈ [
∑
i∈[k]

aisi + b]q

≈ ∆f(m1, . . . ,mk) mod q

We note that the conversion key’s security is also guaranteed as we discussed of the security of the
evaluation keys in Section 3.
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Table 2. Complexity comparison between our work and other similar works. We let k be the number of users, n be
a degree of ciphertext polynomial, ` be evaluation key parameter, σg be the variance of the gadget decomposition
algorithm.

Relin noise EvalKeyGen p user | evk | Pre-processing # interaction # interaction in PKI Setup

MKHE [CDKS19]
w/o pre Õ(k2n2`σg) Õ(`) Õ(k`) − 0 0 NO

w pre Õ(k2n2`2σ2
g) Õ(`) Õ(k2`) Õ(k2`2) 0 0 YES

CMKHE
[MTPBH21] Õ(k2n2`σg) Õ(k`) Õ(`) − 2 1 YES

Ours Õ(k2n2`σg) Õ(`) Õ(`) − 1 0 YES

4.3 Complexity comparison with similar works

We show the complexity comparison between multikey [CDKS19] scheme and compact MKHE schemes
( [MTPBH21] and ours) in Table 2 based on what we mentioned in this section. Since both [MTPBH21]
and [AH19] (as model owners side) schemes basically have same structure but [MTPBH21] improved the noise
growth, so we compare [MTPBH21] as a representative previous compact MKHE scheme. We also show two
kinds of MKHE [CDKS19] in the presence of pre-processing. They suggest pre-processing model to improve
the time cost of relinearization by generating a common evaluation key as a setup process. Therefore, the
number of users should be pre-defined in this case. As a trade-off, their storage for keys increased quadratically
in k, compared to O(k) in others.

Relin noise denotes the complexity of noise growth after relinearization with evaluation keys. EvalKeyGen
p user denotes the complexity of evaluation key generation algorithm per user. | evk | denotes the evaluation
key (relinearization) key size which a server stores for homomorphic multiplication. Pre-processing denotes
the server’s computation complexity for combining evaluation keys to generate a common relinearization key
before computation starts. And we show how many interactions among users for homomorphic operation are
needed in general and in PKI model where public keys are stored in advance, respectively. The last column
shows that if the users are required to know each other to use each scheme. We let k be the number of users.

We first look into the noise after relinearization. The compact MKHE schemes have the same k2 factor
in noise complexity as original non-compact MKHE scheme [CDKS19]. In compact MKHE schemes, the
sum of k independent noise of distinct public keys are contained in a common public keys, hence, this factor
influences in each evaluation key. Since the common evaluation key is the sum of k users’ evaluation keys,
total k2 factors are inevitable in this construction. Regarding the noise, MKHE with pre-processing has the
large complexity since they deal with large size of key sets. We show our noise analysis in Appendix A.

Then we compare the complexity of the evaluation key generation algorithm for each user in every scheme.
Interactive protocols take k evaluation key materials in each round, whereas each user in MKHE scheme
and ours scheme only generates its evaluation key without interaction. More precisely, in [MTPBH21] (also
in [AH19]), every user generates an evaluation key material in the first round and publishes all to every user.
After that, users can generate the final material by combining previously given materials and publish them to
all. After gathering all final information, a common evaluation key is then generated. Therefore, they have k
factor in the computation complexity since they are dealing with k information in every round, whereas users
in our scheme only generate a common evaluation key on their own without interaction if public keys are
known. As a result, previous CMKHE schemes [MTPBH21,AH19] takes 2 rounds for homomorphic operations
and our work needs one round; distributing public keys. If we assume a public key infrastructure (PKI) as a
pre-processing model, we have no round at all, whereas [MTPBH21,AH19] still require one round to generate
a common evaluation key by combining additional materials.

Users in MKHE with pre-processing generate its public key and evaluation key on their own and send them
to a server (or a computing party). Then the server computes a shared evaluation key by taking non-negligible
time due to its large key size comparing to relatively negligible time in other CMKHE schemes. Also the
server uses large storage due to large size of keys with k2 factor. MKHE without pre-processing does not
generate a shared relinearization key so a server stores all k evaluation keys of users. However, a server only
stores a common evaluation key of CMKHE schemes, which occupies the smallest storage.
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Consequently, we present the most efficient compact MKHE scheme for arithmetic operation until now.
Moreover, in practice, our scheme may outperform than MKHE with pre-processing in terms of time, noise,
memory, and network cost since it anyway requires pre-defined users, even though ours needs one round
interaction among users. If a computation keeps adding new users’ information, it is recommended to use
practical MKHE schemes [CCS19,CDKS19] since the conversion from CMKHE to MKHE is a non-negligible
time algorithm.

5 Conclusion

We propose an efficient evaluation key generation method for compact MKHE schemes where the size of
ciphertext does not depend on the number of users. Hence, no further interaction is needed for homomorphic
evaluation. Moreover, we suggest a practical conversion algorithm to efficiently convert non-compact one to
compact one and the inverse direction in order to utilize unique advantages of both schemes together. In
other words, compact MKHE scheme is as efficient as single-key preserving individual input privacy for free,
but dynamic computation is not easily achievable since it only works for pre-defined number of users. On the
other hand, original non-compact scheme allows new users to join on-going computation freely, but having
ciphertext expansion. As a result, we provide multiple choices to users for their practical secure computation.
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A Noise analysis on evaluation

We can provide an average-case noise analysis on variance of the noise instead of the use of other measures
such as infinity norm if we use a heuristic assumption that all the coefficients of the noise independently
follows subgaussian distribution or we use a real subgaussian sampling [JLP21,GMP19] for g−1(·). We define
the secret key is sampled the uniform distribution over the set of binary polynomials.

Since other algorithms are as same as previous works, we only look into the noise contained in evaluation
key first. As denoted in this section, the noise contained in K̂i is êi. êi = (

∑k
t=1 st)ei + epkui + e′i, where epk

is an error contained in a public key. Therefore,

Var(Err(Ki)) = Var(êi) ≈ knα2 + nα2 + α2 = (kn+ n+ 1)α2.

Hence, the variance of the noise in the common evaluation key is Var(Err(K)) ≈ k(nk + n+ 1)α2. Comparing
to other work [MTPBH21] which significantly reduces the output noise in evaluation key as opposed to the
technique in [AJLA+12] and its extension [AH19], we have similar (a bit smaller) noise in evaluation keys.

Now we observe the error after relinearization. As we can see that, 〈ct×, sk〉 = 〈g−1(c1), K̂[1](
∑k
i=1 si) +

K̂[2]〉+(c2 +c3)(
∑k
i=1 si)+c4 = 〈ct′, sk⊗ sk〉+〈g−1(c1),Err(K̂)〉, where sk = (

∑k
i=1 si, 1). The relinearization

error is 〈g−1(c1),Err(K̂)〉 The variance of this noise is following:

VarRelin(ct×) = n`Var(g−1(c1)) · Var(Err(K̂))

As a result, compact MKHE schemes have the same k2 factor in noise complexity as original non-compact
MKHE scheme [CDKS19]. In compact MKHE schemes, the sum of k independent noise of distinct public keys
are contained in a common public keys, hence, this factor influences in each evaluation key. Since the common
evaluation key is the sum of k users’ evaluation keys, total k2 factors are inevitable in this construction.

B Different Types of Decryption

We can use several proposed decryption algorithms depending on processing environment. In single decryptor
setting, where the trusted party holds all the involved secret keys, the one can simply run CMKHE .Dec
algorithm as [LTV12].

In the multi decryptor setting, where all involved users jointly decrypt a common ciphertext, the decryption
is a protocol, more precisely, distributed decryption protocol taking one round. The protocol consists of two
algorithms PartDec, FinDec run by each user. The FinDec is originally proposed as a public algorithm of
which all inputs are public elements, but it may leak output information to the one who watch the public
channel and run the public algorithm on its own, hence, it is modified to an algorithm requiring a valid secret
key as an input to achieve output privacy of multikey ciphertext [LP19].

We can use all the existing solutions for different cases, hence, introduce the methods to decrypt evaluated
ciphertexts of our scheme:

(1) If the output privacy is not concerned such as standard MPC protocol or users employ their own secure
channel, they can use the one round distributed decryption protocol [CCS19] with noise flooding technique.
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(2) To achieve the output privacy through public channels, users use a decryption protocol suggested in [LP19],
with re-encrypting the output of PartDec. It requires more communication cost than (1).

(3) As proposed in [YKHK18], a server can run partial decryption algorithm on behalf of each user using
re-encryption key given in advance, hence, there is no communication among users at decryption phase,
requiring large storage and computation time of a server instead.

C Security of proposed Scheme

We first recall static adversaries of multikey homomorphic encryption schemes [LP19]. There are two types of
adversaries; the internal adversary who is a member of joint users, and the external adversary who does not
take part in a computation but can see what is transmitted through a public channel.

The input security is achieved by the multikey IND-CPA security [KLP20] which models the same
adversary as IND-CPA security except that the adversary (internal adversary) can perform the decryption by
its own secret key before and after challenge phase (also with challenge message). The output security models
adversaries who is an adversary of IND-CPA security except that he (external adversary) can additionally
access the partial decryption oracle for each party’ secret key before and after challenge step (also with
challenge message) [LP19].

she can obtain the output but wishes to learn other users’ inputs. The external adversary is not taking
part in a computation but able to see users’ transmit channel hoping to learn both input and output.

Therefore, if a scheme considers a single decryptor, it only focus on internal adversaries for security. For
multi decryptor setting, a scheme should be secure against both internal and external adversaries. We show
that our scheme is semantically secure in the multi decryptor setting to consider both adversaries. We follow
the security game and the proof of [LP19,KLP20]

Theorem 2. The scheme CMKHE with multi decryptor is semantically secure if underlying single-key BFV
is semantically secure under RLWE assumption.

Proof. Let k be the number of users, (pki, ski)← CMKHE .KeyGen(params), where params← CMKHE. Setup
for i ∈ [k], and we set pki = (ai, bi), ski = si. ct be a multikey ciphertext under the common public key pk. Let

{Ki ← CMKHE .EvalKeyGen(p̂k, si)} be evaluation keys of i-th user. Let keyi ← CMKHE . EncSKGen(p̂k, si)
be bootstrapping key of each user. Without loss of generality, we assume k = 2. We denote any kind of
adversary of CMKHE by A and the adversary which breaks underlying BFV scheme by B. In each security
game per each type of adversary [KLP20,LP19], A performs what he can do such as accessing certain oracle
after receiving a challenge ciphertext ctb from a challenger of a security game, sends the value to B by letting
him guess which b was chosen by the challenger. Then A forwards the answer of B to the challenger. We note
that A and B cannot learn anything from {Ki} and {keyi} by RLWE assumption as we proved in 3.

1. For input security against an internal adversary, it is clear to see that the challenge ciphertext ctb
encrypting mb under pk1 and pk2. Then the internal adversary who holds sk2 (assume he is the second
user), can partially decrypt ctb with its key by performing 〈ctb, sk2〉, resulting in a ciphertext ct′b which
is a BFV ciphertext encrypted under sk1. Then the adversary sends ct′b and pk1 to an adversary who
breaks BFV scheme. In other words, the advantage of A becomes the advantage of BFV adversary B
which is negligible by RLWE assumption.

2. For output security against the external adversary A which does not have any associated secret keys, we
consider the decryption of [LP19] consisting of two algorithms PartDec and FinDec. For more detail, we
focus on other transmitted information, partial decryption which is the output of PartDec. Our PartDec
partially decrypts a multikey ciphertext with its own key then re-encrypt the result with BFV scheme by
the receiver’s public key. Recall the security game of [LP19], the challenge ciphertext ctb is encrypted
under sk1, sk2, encrypting mb. The adversary can access to partial decryption oracle to obtain partial
decryption information d1 and d2, which is a BFV encryption under sk1 and sk2, respectively. Then A
forwards d1, d2 and pk1, pk2 to the BFV adversary B. Since the advantage of B is negligible due to RLWE
assumption, so is A’s.
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CMKHE is semantically secure since it is CPA-secure against both internal adversaries and external adversaries,
if single-key BFV is CPA-secure under RLWE assumption.
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