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Abstract
In this paper we derive a suite of lemmas which allows users
to internally reflect EasyCrypt programs into distributions
which correspond to their denotational semantics (proba-
bilistic reflection). Based on this we develop techniques for
reasoning about rewinding of adversaries in EasyCrypt. (A
widely used technique in cryptology.) We use our reflection
and rewindability results to prove the security of a coin-toss
protocol.
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1 Introduction
Handwritten cryptographic security proofs are inherently
error-prone. Humans will make mistakes both when writing
and when checking the proofs. To ensure high confidence
in cryptographic systems, we use frameworks for computer-
aided verification of cryptographic proofs. One widely used
such framework is the EasyCrypt tool [5]. In EasyCrypt, a
cryptographic proof is represented by a sequence of “games”
(simple probabilistic programs), and the relationship between
programs are analyzed in a probabilistic relational Hoare
logic (pRHL). EasyCrypt has been successfully used to verify
a variety of cryptographic schemes: electronic voting [13],
digital signatures [14], differential privacy [3], security of
IPsec [16], and many others.

However, there is one cryptographic proof technique that
seems very difficult to implement in EasyCrypt, namely
rewinding. Rewinding is ubiquitous in more advanced proofs,
especially when involving zero-knowledge proofs, multi-
party computation, but also in relatively simple cases such
as building a coin-toss from a commitment. (The latter case
we will explore in Sec. 5.) In a nutshell, rewinding refers
to the proof technique in which we take a given (usually
unknown) program 𝐴 (an adversary), and convert it into an
adversary 𝐵 that performs the following or similar steps:

1. Remember the initial state of 𝐴.
2. Run 𝐴.
3. Restore the original initial state of 𝐴.
4. Run 𝐴 again.
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5. Combine the results from the runs and/or repeat this
until it yields a desired outcome.

While the above steps seem simple, we run into numerous
challenges when trying to implement rewinding in Easy-
Crypt, both due to restrictions in the type system, and due
to the necessity for reasoning about probability distributions
of program outputs in a way that is not directly supported
by EasyCrypt’s tactics.
To the best of our knowledge, rewinding has not been

implemented in EasyCrypt, nor in other frameworks for
reasoning about cryptographic proofs, see Sec. 1.4.

Our contribution. In this work, we design a set of tools
to address rewindability in the EasyCrypt framework, and
for reasoning about the probabilistic semantics of programs
inside EasyCrypt (we call this probabilistic reflection). We
validate our results by developing a formal proof of a coin-
toss protocol based on rewinding. The EasyCrypt code of
our framework is found in [15].

1.1 Challenges
To understand the motivation behind our project, let us look
at the example of a pen-and-paper derivation using rewind-
ing. When analyzing a coin-toss protocol based on a commit-
ment, we are faced with the following situation: We have an
adversary 𝐴 that can open the commitment to contain given
boolean value 𝑏 (with some non-zero probability). We want
to show that this means that 𝐴 could also, in the same run,
produce openings to both boolean values (i.e., false and true).
This is done by defining a different adversary 𝐵 that runs
𝐴.commit (to produce the commitment), stores the state of𝐴,
runs 𝐴.open(false) (to produce the first opening), restores
the state of 𝐴, and runs 𝐴.open(true) (to produce the second
opening). Then we show that the probability that 𝐵 produces
two valid openings is lower-bounded in terms of the prob-
ability that 𝐴 is successful in producing one valid opening.
As we will see in more detail in Sec. 5.1, the core theorem
for showing this is the following.

Theorem 1.1. Let 𝐴 be a probabilistic program and let m
denote a memory configuration which represents an initial
state of 𝐴. We write Pr [ 𝑟 ← 𝑋 .p()@m : 𝑀 ] to denote the
probability of a predicate𝑀 being satisfied by the result of run-
ning the procedure p() of a module 𝑋 on the initial memorym.
In this case, the following inequality holds:

Pr


𝐴.init(); 𝑠 ← 𝐴.getState();

𝑟1 ← 𝐴.main(); 𝐴.setState(s);
𝑟2 ← 𝐴.main() @m : 𝑟1 ∧ 𝑟2


≥ Pr [𝐴.init(); 𝑟 ← 𝐴.main()@ m : 𝑟 ]2 .

Proof. Step (1) applies “the averaging technique” by repre-
senting 𝐴.init() as a family of distributions 𝐷m

𝐴
. (𝐷m

𝐴
denotes

the distribution in the family corresponding to memory m.)
We write 𝜇1 (𝐷m

𝐴
,n) for the probability that 𝐷m

𝐴
assigns to

memory configuraion n. Then 𝜇1 (𝐷m
𝐴
,n) is the probability

of 𝐴.𝑖𝑛𝑖𝑡 () terminating in the memory state n given that it
starts in the initial statem. The rest of the computations are
run starting from memory configuration n.

Pr


𝐴.init(); 𝑠 ← 𝐴.getState();

𝑟1 ← 𝐴.main(); 𝐴.setState(s);
𝑟2 ← 𝐴.main()@m : 𝑟1 ∧ 𝑟2


(1)
=

∑
n

𝜇1 (𝐷m
𝐴 ,n) · Pr


𝑠 ← 𝐴.getState();

𝑟1 ← 𝐴.main();𝐴.setState(s);
𝑟2 ← 𝐴.main() @ n : 𝑟1 ∧ 𝑟2


(2)
=

∑
n

𝜇1 (𝐷m
𝐴 ,n) · Pr [𝑟 ← 𝐴.main() @ n : 𝑟 ]2

(3)
≥

(∑
n

𝜇1 (𝐷m
𝐴 ,n) · Pr [𝑟 ← 𝐴.main() @ n : 𝑟 ]

)2
(4)
= Pr [𝐴.init(); 𝑟 ← 𝐴.main() @m : 𝑟 ]2 .

Step (2) makes use of the fact that the probability of a success
(i.e., A.main returning true) in both of two independent runs
equals to the square of a probability of a success in a single
run. Step (3) is an application of Jensen’s inequality. The final
step undoes the averaging. □

There are number of challenges in performing this proof
formally in EasyCrypt:

1. Our proof turns the program 𝐴.init() into a parame-
terized distribution of final memories (memories after
𝐴.init() terminates). While EasyCrypt has a notion
Pr [𝐴.init() @m : 𝑀 ] it does not formally recognize
that this defines a distribution, not withstanding the
suggestive syntax.

2. Also, our proof makes use of results about probabil-
ity distributions (e.g., Jensen’s inequality) which can
be easily stated and proved in terms of probabilistic
distributions while they would be much harder (or
even impossible) to express and prove directly using
program logics (e.g., probabilistic Hoare logic).

3. Another challenge is that EasyCrypt does not have a
type “memory”; we cannot define a distribution over
memories because we cannot even assign it a type. In
EasyCrypt, memories are recognized purely syntacti-
cally by prepending the variable names with &.

4. Finally, it is not immediate how one can generically
specify the interface of programs (modules) which can
return their own state. In other words, what should be
the type of the return value of the function𝐴.getState()?

1.2 Probabilistic Reflection
As explained above, one of the challenges is that we cannot
access the distribution which corresponds to the semantics of
the program. To enable this, we introduce a suite of lemmas
which allows us to access the distribution corresponding to
a program.
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This turned out to be a powerful tool for rewinding proofs,
but we also believe that it can be useful when one needs to
derive facts for programs based on their denotational seman-
tics. For example, in a situation when a particular tactic is
not available in EasyCrypt, but in a pen-and-paper proof one
would show it simply based on probability theory reasoning
(e.g., Jensen’s inequality, averaging). In the following, we
sketch our solution for what we call probabilistic reflection.
(A word on terminology: The term reflection is used in

many different ways in the literature. For example, in pro-
gramming languages it often refers to the ability of a program
to see its own structure at runtime. In proof assistants, re-
flection often means that one translates a term into abstract
syntax and can reason about it inside the logic. Our proba-
bilistic reflection is different from these, but we believe the
term “reflection” is still justified because it allows us to ex-
pose the internal denotational semantics inside the program
logic.)

Recall that there are no valid types which refer to distribu-
tion of final memories. These would be needed to give a type
to the denotational semantics of a program, let alone define
those semantics. However, in EasyCrypt each program has
an associated variable Gm

𝐴
(the type of Gm

𝐴
is G𝐴) which

refers to the part of the memory m accessible by module 𝐴.
It is guaranteed that running a program 𝐴 will never change
anything outside Gm

𝐴
. So “effectively”, the semantics of a

program can be described by looking only at the G𝐴-part of
a memory. So, we define a family of distributions 𝐷𝑔

𝐴
for 𝑔 of

type G𝐴 such that 𝜇1 (𝐷𝑔

𝐴
, ℎ) is the probability that we get ℎ

in G𝐴-part of the final memory configuration when starting
with 𝑔 in G𝐴-part of the initial memory configuration.

Another problem is that EasyCrypt forbids to refer to the
type G𝐴 in the top-level definitions (global definitions of
operators/constants). So, in particular, we cannot define a
distribution 𝐷

𝑔

𝐴
parameterized by G𝐴-values in EasyCrypt.

In our workaround to this problem, we prove lemmas of the
existence of that family of distributions, but we do not define
a constant referring to that family. This works since we
only need to refer to the type of 𝐷𝑔

𝐴
locally in the theorem

statement. Then, when reasoning, one can inside a proof
refer to “the” distribution that exists by our lemmas.

In conclusion, our lemma for probabilistic reflection looks
roughly as follows:

Theorem 1.2. For all memories m and programs 𝐴 there
exists a family of distributions 𝐷𝑔

𝐴
(with 𝑔 of type G𝐴) such

that for all predicates𝑀 on values of type G𝐴:

Pr
[
𝐴.main() @m : 𝑀 (Gfin

𝐴
)
]
= 𝜇 (𝐷G

m
𝐴

𝐴
, 𝑀).

Here, fin is the final memory after execution of 𝐴.main()
and 𝜇 (𝑑,𝑀) denotes the probability that the predicate 𝑀

holds for values distributed according to 𝑑 . Actual reflection
lemma adds generality, e.g., referring also to the inputs/out-
puts of 𝐴.main, see Sec. 3.1.

However, being able to reflect the distribution correspond-
ing to a given program is not enough. If we want to reason
about composite programs, we will also need to understand
how the different constructs in our language operate on the
distributions. For example, given a program 𝐴;𝐵, reflection
gives us distributions 𝐷𝐴𝐵 , 𝐷𝐴, and 𝐷𝐵 relating to the se-
mantics of (𝐴;𝐵), 𝐴, and 𝐵, respectively. However, we do
not, a priori, know how 𝐷𝐴𝐵 is related to 𝐷𝐴 and 𝐷𝐵 . It is
not even a priori clear whether inside the logic of EasyCrypt,
it is possible to derive that relationship. Thus we prove ad-
ditional lemmas for this and other cases that allow us to
derive the distribution of a more complex program from the
distributions of its components (see Sec. 3.5). For example,
𝐷𝐴𝐵 is shown to be the monadic bind of 𝐷𝐴 and 𝐷𝐵 .
Altogether this gives us a library for probabilistic reflec-

tion in EasyCrypt, independent of the results on rewinding
below. See Sec. 3 for details.

1.3 Rewinding
The final challenge in the formal derivation of Thm. 1.1 is
that in EasyCrypt, we cannot define a generic interface of
modules which return their own state. Morally, we want
𝐴.getState() to return a value Gm

𝐴
of type G𝐴. However, this

is impossible since the type G𝐴 is only allowed to appear in
the logical statements and program code of other modules
but not in the code of the module 𝐴 itself.

We solve the above problem by defining what it means for
a module to be rewindable. In essence, a module is rewind-
able if and only if the state of the program can be encoded
as a bitstring (or equivalently, as any other countable type).
In particular, a program with variables of type “real” (which
is uncountable) would not be rewindable in that sense.1 A
security proof using rewinding would then only apply to
rewindable adversaries which is not a restriction from the
cryptographic point of view. (Typically, cryptographic adver-
saries are assumed to operate on data that is representable in
a computer. Such data can always be encoded as a bitstring.)

In conclusion, our definition for rewindable modules (pro-
grams) roughly requires amodule to have procedures getState
and setState. The execution of 𝐴.getState() in state m must
return the value 𝑓 (Gm

𝐴
) where 𝑓 is an arbitrary injective

mapping from the type G𝐴 to some parameter type sbits.
The setState procedure gets an argument 𝑥 : sbits and sets
Gm
𝐴

to 𝑓 −1 (𝑥) if 𝑓 −1 (𝑥) is defined.
Altogether this gives an approach forworkingwith rewind-

able adversaries in EasyCrypt. See Sec. 4 for details.

1The restriction to countable types is arbitrary. We could choose a differ-
ent, larger type sbits instead of bitstrings for encoding program states.
However, we choose bitstrings because these are more natural in the com-
putational setting – notions of runtime of algorithms apply naturally to
bitstrings but not to uncountable types such as reals.
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1.4 Rewinding in Other Verification Frameworks
To the best of our knowledge, rewinding has not been imple-
mented in EasyCrypt, nor in other frameworks for reasoning
about cryptographic proofs such as CryptHOL [7] in Isabelle,
FCF [17] in Coq, CryptoVerif [9] in OCaml, Verypto [8] in
Isabelle, CertiCrypt [6] in Coq, SSProve [1] in Coq.
A natural question is: Can the methods from the present

work be ported to these other frameworks? Can rewinding
be implemented in those frameworks in other ways? If our
work on rewinding in EasyCrypt is any indication, then
it is hard to make a reasonable estimate how difficult it is
to implement (or even whether it is possible at all) before
actually going through the process of doing it. Nonetheless,
we will hazard some guesses:

CryptHOL, FCF, Verypto, CertiCrypt, and SSProve are
foundational frameworks. That is, they are implemented in-
side the general purpose logic of existing frameworks such as
Coq and Isabelle. This means that the details of the probabilis-
tic semantics of the language are already directly accessible;
probabilistic reflection as we did in EasyCrypt would not
be necessary. Then it should be possible to implement the
different result on reflection (Sec. 3) directly as theorems in
Coq/Isabelle. (How hard or easy the proofs of these theo-
rems would be is, like always in formal verificiation, hard to
predict in advance.)
On the other hand, CryptoVerif is, like EasyCrypt, not

foundational. This means that we cannot directly access
the semantics, and thus would probably have to implement
something akin to our probabilistic reflection. In addition,
it is not clear whether the various facts about rewinding
(Sec. 3) can even be expressed inside CryptoVerif. If not, the
logic of these tools would have to be extended, and the tools
rewritten accordingly.
But, as we stated, these are educated guesses only. To

know for sure, one would have to actually put in the work
and implement rewinding in these various frameworks.

2 Preliminaries
In this section we review the syntax and semantics of the
main EasyCrypt constructs. Readers familiar with EasyCrypt
can skip this section and just familiarize themselves with
our syntactic conventions in this footnote2. The top-level
definitions in EasyCrypt consist of types, operators, lem-
mas/axioms, module types, and modules. In EasyCrypt one
can specify datatypes and operators, where types intuitively
denote non-empty sets of values and operators are typed

2We write← for both <- and <@, $← for <$, ∧ for /\, ∨ for \/, ≤ for <=, ∀
for forall, ∃ for exists, m for &m, G𝐴 for glob A, Gm

𝐴
for (glob A){m},

𝜆𝑥. 𝑥 for fun x => x, × for *, t L for t list, t D for t distr, 𝜇 for mu,
𝜇1 for mu1, t O for t option. Furthermore, in Pr-expressions, in abuse of
notation, we allow sequences of statements instead of a single procedure
call. It is to be understood that this is shorthand for defining an auxiliary
wrapper procedure containing those statements.

pure functions on these sets. EasyCrypt provides basic built-
in types such as unit , bool , int , etc. The standard li-
brary includes formalizations of lists, arrays, finite sets, maps,
probability distributions, etc. EasyCrypt also allows users
to implement their own datatypes and functions (including
inductive datatypes and functions defined by pattern match-
ing). For example, we can give a definition of a polymorphic
identity function as follows:

op id [ ′a ] : ′a → ′a = 𝜆 x. x.

In this paper, for ease of readability, we use a more compact
notation 𝜆 x. x for lambda-abstractions. In the original
EasyCrypt code, this would be written as fun x => x.

The ambient logic in EasyCrypt is based on a classical (i.e.,
non-constructive) set theory which we can use to state and
prove properties. (The term ambient logic refers to a built-in
logic in EasyCrypt. Ambient logic is not specific to reasoning
about programs). For example, we can prove that application
of id to any x equals to x. In lemmas and axioms we will
use symbols ∀ and ∃ instead of the EasyCrypt syntax which
uses keywords forall and exists, respectively.

lemma id_prop [ ′a ] : ∀ (x : ′a ), id x = x.

proof. trivial. qed.

In EasyCrypt, a proof starts with the keyword proof . The
steps of the proof consist of tactic applications (e.g., auto ,
trivial , etc.) which either discharge the proof obligation
or transform it into subgoal(s). The qed finishes the proof.

Types and operators without definitions are abstract and
can be seen as parameters to the rest of the development.
Parameters can additionally be restricted by axioms. For
example, we can parameterize the development by a uniform
distribution of elements of type bits .

type bits.

op bD : bits D.
axiom bDU : is_uniform bD.

The theory containing this axiom can later be “cloned” and
the operator bD instantiated with a value for which the
axiom bDU is actually provable. This enables modular design
of theories.
In this paper we will use notation bits D as a more

concise version of the EasyCrypt syntax bits distr which
denotes the type of distributions of bits. Similarly, we will
use bits L instead of bits list, and bits O instead of
bits option.

Distributions. In EasyCrypt, every type t is associated
with the type t Dof discrete distributions. A discrete distri-
bution over type t is fully defined by its mass function. i.e. by
a non-negative function 𝑓 from elements of type t to reals so
that Σ𝑥 𝑓 (𝑥) ≤ 1. The probability mass function of distribu-
tion d can be accessed by writing 𝜇 1 d (i.e., 𝜇 1 d x is the
probability assigned to element x by distribution d). Also,
for any predicate P : t → bool we can write 𝜇 d P to
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get the total probability assigned by d to elements which
satisfy P.
Modules. In EasyCrypt, modules consist of typed global

variables and procedures. The set of all global variables of
a module is the union of the set of global variables that are
declared in that module and the set of all global variables
(declared in other modules) which the module could read
or write by a series of procedure calls beginning with a call
of one of its procedures. In EasyCrypt, the whole memory
(state) of a program is referred to by &m (or &n etc.). We can
refer to the tuple of all global variables of the module A in &m
as (glob A){m}. The type of all global variables of A (i.e., the
type of (glob A){m}) is denoted by glob A. For readability,
we will use syntax G𝐴 for the type glob A. Memories &mwill
be typed in bold without the & (i.e., m for &m). And Gm

𝐴
will

denote the EasyCrypt value (glob A){m}.
For illustration, we implement the following example of a

guessing-game module GG:

module GG = {

var c,win ,q,r

proc init(x : int) = {

(c,win ,q) ← (0,false ,x); // simultaneous assignment

}

proc guess(x : bits) : bool = {

if (c < q){

r
$← bD;

win ← win || r = x;

c ← c + 1;

}

return win;

}

}.

The module GG has three global variables: c and q of type
int , and win of type bool . Hence, for anymemorym,Gm

𝐺𝐺

has type G𝐺𝐺 which equals to a product bool × int × int.
The GG module allows a player to guess (call the GG.guess
procedure) the next value sampled from distribution bD . The
player has at most q attempts (set during initialization by pro-
cedure GG.init). The player wins if they guess correctly
at least once.

Module types. In EasyCrypt, module types specify the
types of a set of module procedures [4]. Therefore, module
types in EasyCrypt are similar to interfaces in other pro-
gramming languages (e.g., Java). We can specify the module
type of GG as follows:

module type GuessGame = {

proc init(x : int) : unit

proc guess(x : bits) : bool

}.

Note that module types say nothing about the global vari-
ables a module could have and only specify the input and
output types of the module procedures.
Next, we define a module type of protocol parties (ad-

versaries), who receive an instance G of a guessing game

as a module parameter. An adversary must have a play
procedure which starts the game:
module type Adversary(G : GuessGame) = {

proc play() : unit {G.guess}

}.

To forbid adversaries to reinitialize the game the play proce-
dure can only execute the guess procedure of the parameter
game G. This is optionally expressed by listing the allowed
method(s) in the curly braces next to the procedure.

Probability expressions. EasyCrypt has Pr-constructs
which can be used to refer to the probabilities of events in pro-
gram executions: Pr[r ← X.p() @ m: M r] denotes
the probability that the return value r of procedure p of mod-
ule X given initial memory m satisfies the predicate M. (I.e., the
general form is Pr[program @ initial memory: event].)
The Pr-notation in EasyCrypt is somewhat restrictive, the
program can only be a single procedure call. In our presen-
tation, we relax this notation and allow multiple statements;
it is to be understood that in the actual EasyCrypt code this
is implemented by defining an auxiliary wrapper procedure
that contains those statements.
For example, we can express that for any adversary A

the probability of winning the guessing-game is equal to or
smaller than 𝑞

𝑛
, where 𝑛 is the size of the support of distri-

bution used by GG and 𝑞 is the maximal allowed number of
guesses.
lemma winPr : ∀ (A <:Adversary {GG}) m q, 0 ≤ q

⇒ Pr[GG.init(q); A(GG).play() @ m: GG.win]

≤ q / (support_size bD).

(In EasyCrypt, X <: T states that the module X satisfies
the module type T.) Note that the module type Adversary
also includes adversaries who simply set the value GG.win
to true . EasyCrypt allows us to write Adversary{GG}
to denote a subset of adversaries who has disjoint set of
global variables from the module GG .

3 Toolkit for Probabilistic Reflection
In this section, we discuss a derivation of probabilistic reflec-
tion for programs (i.e., modules) in EasyCrypt. Recall that by
probabilistic reflection, we mean tools to get access to proba-
bilistic denotational semantics of imperative programs inside
EasyCrypt proofs. (Without needing any meta-reasoning.)
Also, we use the probabilistic reflection to derive a power-
ful toolkit of lemmas which are common in pen-and-paper
proofs when arguing about distributions underlying pro-
grams.

3.1 Probabilistic Reflection
Recall that in Sec. 1.2, we introduced Thm. 1.2 that proves
the existence of a distribution corresponding to a program’s
denotational semantics. In EasyCrypt, we formally state this
theorem as follows:
lemma reflection_simple : ∃ (D : G𝐴 → G𝐴 D),

5
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∀ m M, 𝜇 (D Gm
𝐴
) M = Pr[A.main() @ m: M Gfin

𝐴
].

Here, D g corresponds to the family 𝐷
𝑔

𝐴
from Thm. 1.2, i.e.,

D Gm
𝐴
is the supposed distribution of final states of the pro-

gram after running on initial memory m.
Inside an EasyCrypt proof, this lemma could be used as

elim (reflection_simple A) ⇒ D H_D ; this will
introduce a variable D in the environment of the proof, to-
getherwith its defining property H_D stating the relationship
between D and Pr[A.main() . . .].
However, reflection_simple as stated is not gen-

eral enough for many purposes. In particular, if A.main
takes an argument i or returns a value r then we cannot
reason about the distribution of r and express how D de-
pends on r. The following more general reflection lemma
removes these limitations:
lemma reflection : ∃ (D : G𝐴 → at → (rt × G𝐴) D),
∀ m M i, 𝜇 (D Gm

𝐴
i) M

= Pr[r ← A.main(i) @ m: M (r,Gfin
𝐴

)].

The intuition behind this lemma and the previous one is the
same. The only difference is that D now has an additional
argument i, referring to the input of A.main , and the re-
sulting distribution (D Gm

𝐴
i) is a distribution over pairs

(r,Gfin
𝐴

) of output and final memory.
Note that while EasyCrypt allows us to all-quantify over

the module A and over the argument and input types (i.e.,
at and rt), we cannot quantify over the name main of the
procedure. Similarly, the number of arguments of procedure
main is fixed in the lemma. Fortunately, this only consti-
tutes a minor inconvenience, not a real restriction because
we can always define a wrapper module A′ that has a pro-
cedure main with a single argument i (possibly of a tuple
type). Then main can untuple i and invoke the procedure
that we actually want to investigate. A simple call to the
tactic inline A′ .main in the proof will then unwrap
this wrapper procedure.
In EasyCrypt, we directly prove reflection and de-

rive reflection_simple as an immediate corollary. For
readability, we proceed with describing a direct proof of
reflection_simple instead.

Proof. We start the proof by defining a predicate P on proba-
bilities which is parameterized by an initial state g of type
G𝐴 and an element x of type G𝐴. Below we use the Easy-
Crypt tactic pose to give a definition which is local to the
proof.
pose P g x := 𝜆 p. ∀ n,

Gn
𝐴

= g ⇒ Pr[r ← A.main() @ n: Gfin
𝐴

= x] = p.

The probability p satisfies the predicate (P g x) if it equals
to the probability of A.main terminating in the state x by
starting its run from a memory n which has G𝐴 variables
equal to g.
Before continuing with the proof, we explain that the

standard library of EasyCrypt provides the formalization of

the Axiom of Choice in the form of the operator choiceb
and its corresponding property choicebP :

op choiceb [ ′a ] : ( ′a → bool) → ′a .

axiom choicebP [ ′a ] : ∀ (P : ′a → bool),

(∃ (x : ′a ), P x) ⇒ P (choiceb P).

It states that for any predicate P if there exists an element
which satisfies it then the element denoted by (choiceb P)
satisfies P. Here, it is worth mentioning that all propositions
in EasyCrypt have type bool .

The next step of the proof is to define a function (Q g x)
which uses the choice operator on the predicate (P g x)
to assign a probability to x.

pose Q g x := choiceb (P g x).

The intuition is that (Q g x) returns “the” probability
Pr[A.main() @ n: Gfin

𝐴
= x] for all n with Gn

𝐴
= g.

Note that a priori we do not know that there is such a prob-
ability, because probability could depend on n. To show that
(Q g x) is a well-defined we need to prove that the value
(Q g x) satisfies the predicate (P g x). Because in the
lemma, (D g) is only used for g of the form Gm

𝐴
, we specif-

ically need to show the following claim:

have Q_well_def : P Gm
𝐴

x (Q Gm
𝐴

x).

(Here we use the EasyCrypt tactic have name : fact
which allows to locally prove the fact and call it name .)

If we can show that there exists a probability q, so that
(P Gm

𝐴
x q) then the proof Q_well_def amounts to a

simple application of the choicebP property. The obvious
candidate for this probability q is the Pr-expression:

Pr[A.main() @ m: Gfin
𝐴

= x].

To show that this candidate satisfies (P Gm
𝐴

x), we must
prove the following (by definition of P):

have good_q : ∀ n, Gn
𝐴

= Gm
𝐴
⇒

Pr[A.main() @ m: Gfin
𝐴

= x]

= Pr[A.main() @ n: Gfin
𝐴

= x].

The good_q is intuitively simple and we prove it using the
pRHL which is available in EasyCrypt.
Now, as we know that (Q g) assigns adequate proba-

bilities to elements of type G𝐴, we use the standard Easy-
Crypt constructor mk which turns any function of type
′a → real into distribution of type ′a D.
pose D g := mk (Q g).

The above defines a parameterized distribution D typed as
G𝐴 → G𝐴 D. We skip the technical details of a proof which
shows that D is a well-formed probability distribution. We
only show the final derivation which proves that D is the
denotation of A.main . To achieve this we show the point-
wise equality of distribution D and Pr-expression. Let x be
an element of type G𝐴:
have pointwise :

6
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𝜇 1 (D Gm
𝐴
) x = Pr[A.main() @ m: Gfin

𝐴
= x].

The proof is as follows:

𝜇 1 (D Gm
𝐴
) x = 𝜇 1 (mk (Q Gm

𝐴
)) x

= Q Gm
𝐴

x

= choiceb (P Gm
𝐴

x)

= Pr[A.main() @ m: Gfin
𝐴

= x].

The first equality is by definition of D, in the second equality
𝜇 1 cancels application of mk since D is a well-defined distri-
bution (see muK from EasyCrypt standard library), the third
equality is by definition of Q, the fourth equality is an appli-
cation of the previously proved property Q_well_def .

At the first glance, it seems that this implies that (D Gm
𝐴
)

indeed describes the probability distribution corresponding
to A.main . That is, we want:

have onsubs : 𝜇 (D Gm
𝐴
) M = Pr[A.main() @ m: M Gfin

𝐴
].

meaning that the probability that a value sampled from
(D Gm

𝐴
) satisfies M equals the probability that the final

state of A.main satisfies M. Unfortunately, this is not im-
mediate. For example, hypothetically, the function M ↦→
Pr[A.main() @ m: M Gfin

𝐴
] might not be a discrete

probability measure and thus it might not be determined
by its values on singleton sets. To show onsubs , we need to
use one more trick: We define an auxiliary module and proce-
dure P.sampleFrom such that P.sampleFrom(d) sim-
ply returns some x $← d. Then (𝜇 (D Gm

𝐴
) M) equals to

Pr[x ← P.sampleFrom(D Gm
𝐴
) @ m: M x] and we

get:

have aux1 : Pr[x ← P.sampleFrom(D Gm
𝐴
) @ m: M x]

= Pr[A.main() @ m: M Gfin
𝐴

].

For goals of this shape, we use a combination of the byequiv
and bypr tactics from EasyCrypt; byequiv changes this
goal into a pRHL judgment relating the programs A.main
and P.sampleFrom . And bypr converts such a pRHL
judgment back to an equality of probabilities. It seems that
we are back at onsubs now. However, the final equality is
actually:

have aux2 : ∀ x,

Pr[r ← P.sampleFrom(D Gm
𝐴
) @ 1: r = x]

= Pr[A.main() @ 2: Gfin
𝐴

= x].

(for memories 1 and 2 that are equal to m in global variables
ofG𝐴.) But this follows from pointwise proven above. □

We clarify that reflection results are proved “once and for
all” – by using the EasyCrypt’s module cloning mechanism
the reflection lemma could be instantiated for arbitrary
adversaries.

Note that in our proof we rely on the fact that the tactics
byequiv and bypr in combination imply that the proba-
bility Pr[ . . .: M x] (even for infinite M) can be related to
𝜆 y. Pr[ . . .: x = y].

3.2 Finite Pr-Approximation
In this section, we derive a well-known result from proba-
bility theory which states that the support of a distribution
can be finitely approximated with arbitrary precision. We
formally prove finite approximation for distributions first
and then use the probabilistic reflection to extend it to pro-
grams. In Sec. 3.3 the finite approximation will be used in the
derivation of averaging which in its turn is needed to prove
the sum-binding inequality and then conclude the security
of a coin-toss protocol (see Sec. 1.1).
Let d be a distribution of type ′a D. Then there exists

a sequence of lists (L n) so that the probability that an
element sampled from d is not in the list (L n) converges
to 0 (for 𝑛 →∞). (This holds for discrete distributions only.)

lemma fin_pr_approx _distr _conv [ ′a ] :

∀ (d : ′a D), ∃ (L : int → ′a L),
convergeto (𝜆 n. 𝜇 d (𝜆 x. x ∉ L n)) 0.

Proof. The proof of this lemma is mainly based on the results
from standard library of EasyCrypt. In particular, lemma
muE proves that for any distribution d and predicate M the
probability 𝜇 d M equals to the sum of probabilities of indi-
vidual elements satisfying the predicate M. Below, the opera-
tor sum f denotes a sum of all f-images.

have muE [ ′a ] : ∀ (d : ′a D) (M : ′a → bool),

𝜇 d M = sum (𝜆 (x : ′a ).

if M x then 𝜇1 d x else 0).

Another important component of our proof is the result
from a standard library sum_to_enum which shows that
any finite sum can have no more than a countable num-
ber of nonzero components. Here, summable s is a pred-
icate which ensures that the sum of all elements of s are
bounded from above by some real number; support s is
the predicate which filters out elements with weight 0 (i.e.,
s x = 0); and enumerate L P is a predicate which en-
sures that L is injective and each element which satisfies P
appears in L at some (non-negative) index:

have sum_to_enum [ ′a ]:

∀ (s : ′a → real), summable s ⇒
∃ (L : int → ′a O), enumerate L (support s).

Also, the standard library proves that any upper-bounded
sum can be seen as a limit:
have sumE [ ′a ]: ∀ (s : ′a → real)(L : int → ′a O),

enumerate L (support s) ⇒ summable s ⇒
sum s = lim (𝜆 (n : int). Σx∈(L n) s x).

(Here, Σx∈X f x denotes a finite sum which in EasyCrypt is
implemented via operator big .) As a consequence of these
facts (i.e., muE , sum_to_enum , and sumE) we prove that
for any distribution d there exists a family of lists (L n) so
that the total weight of the probability distribution equals to
Σx∈(L n) 𝜇1 d x as n goes to infinity.

7
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have cntbl_sum : ∀ (d : ′a D),
∃ (L : (int → ′a L)),
𝜇 d (𝜆 _. true)

= lim (𝜆 (n : int). Σx∈(L n) 𝜇1 d x).

Next, we can show by induction on list xs that the total
probability weight of elements in the duplicate-free list xs
equals to the sum of probabilities of individual elements.
have fin_fragment : ∀ xs,

uniq xs ⇒ 𝜇 d (𝜆 x. x ∈ xs) = Σx∈xs 𝜇1 d x.

Finally, we conclude fin_pr_approx _distr as follows:
Given a particular 𝜖 we combine the lemma cntbl_sum
and the definition of limits to get a list (L n) which makes
the sum (Σx∈(L n) 𝜇1 d x) at most 𝜖-away from the limit
lim (𝜆 (n : int). Σx∈(L n) 𝜇1 d x). We finish the
proof by arguing as follows:

𝜇 d (𝜆 x. x ∉ L n)

= 𝜇 d (𝜆 _. true) - 𝜇 d (𝜆 x. x ∈ L n)

= lim (𝜆 n. Σx∈(L n) 𝜇1 d x) - 𝜇 d (𝜆 x. x ∈ L n)

= lim (𝜆 n. Σx∈(L n) 𝜇1 d x) - Σx∈(L n) 𝜇1 d x

< 𝜖 .

□

Having the finite probabilistic approximation for distribu-
tions allows us to use the probabilistic reflection mechanism
to extend the finite probabilistic approximation to programs.
More specifically, let A.main be a procedure which takes
an argument of type at and produces the result of type rt .
In this case, there exists a sequence of lists (L n), so that
the result and the final state produced by A.main(i) are
not in (L n) with probability converging to 0.
lemma fin_pr_approx_prog_conv : ∀ m i,

∃ (L : int → (rt × G𝐴) L),
convergeto

(𝜆 n. Pr[r ← A.main(i) @ m: (r,G𝐴) ∉ L n]) 0.

3.3 Averaging
Averaging is another standard result from probability theory
which is frequently used in cryptographic proofs. In our case,
we need averaging to derive sum-binding of commitments
which in its turn will enable us to conclude the security of a
coin-toss (see Sec. 1.1).

Averaging allows one to express the probability of an event
of a program x

$← d; A.main(x) in terms of probabili-
ties of the event of a program A.main(x) for every indi-
vidual x in the support of d. In this sense, the averaging tech-
nique can be seen as a generalized version of case-analysis
in the case of distributions with fintie support. Indeed, if d is
a distribution of Boolean values and our program starts with
sampling a Boolean b from d and then continues with a pro-
cedure call A.main then by using the finite case-distinction
we can prove the following equalities:
Pr[b

$← d; r ← A.main(b,i) @ m : M r]

= 𝜇 1 d false ··· Pr[r ← A.main(false ,i) @ m : M r]

+ 𝜇 1 d true ··· Pr[r ← A.main(true ,i) @ m : M r]

= sum (𝜆 b. 𝜇1 d b ··· Pr[r ← A.main(x,i) @ m: M r]).

Below, we state and prove a general version of averaging for
an arbitrary distribution d : rt Dwhich might have an
infinite support:

lemma averaging : ∀ m M i d,

Pr[x
$← d ; r ← A.main(x,i) @ m : M r]

= sum (𝜆 x. 𝜇1 d x ··· Pr[r ← A.main(x,i) @ m: M r]).

Proof. The standard library of EasyCrypt provides a lemma
summable_cnvto which states that if there exists a family
of duplicate-free lists (L n), so that as n goes to infinity the
expression Σx ∈ (L n)f x has a limit then sum (𝜆 x. f x)
equals to that limit. Therefore, to prove the averaging
lemma it remains to show the following convergence:

have averaging_conv : ∀ m M i d,

∃ (L : int → rt L),
Pr[x

$← d ; r ← A.main(x,i) @ m : M r]

= lim (𝜆 n.

Σx∈(L n) 𝜇1 d x ··· Pr[r ← A.main(x,i) @ m : M r]).

The proof of averaging_conv we start by showing that
if in the event of the probability expression we additionally
require that the elements sampled from d must belong to a
duplicate-free list xs then this probability can be rewritten
as a finite sum of the respective probabilities of elemens of
list xs . This is proved by induction on the list xs:

have averaging_fin : ∀ m M i d xs, uniq xs ⇒
Pr[x

$← d ; r ← A.main(x,i) @ m : M r ∧ x ∈ xs]

= Σx ∈ xs 𝜇1 d x ··· Pr[r ← A.main(x,i) @ m : M r].

Next, we use the finite probabilistic approximation of distri-
bution d (from Sec. 3.2) to get a family of duplicate-free lists
(L n) so that:

have fin_approx_d : ∀ m M i,

∃ (L : int → L rt),

∀ (𝜖 : real),

∃ (n : int), Pr[x
$← d : x ∉ L n] < 𝜖 .

According to the definition of lim , to prove averaging_conv
we need to show that for any value 𝜖 there exists a list
(L n) so that the following difference:

Pr[x
$← d ; r ← A.main(x,i) @ m : M r]

- Σx∈(L n) 𝜇1 d x ··· Pr[r ← A.main(x,i) : M r]

is less than 𝜖 . To achieve that, we use fin_approx _distr
to get the respective list (L n) and finish the proof of
averaging_conv by arguing as follows:

Pr[x
$← d; r ← A.main(x,i) @ m : M r]

= Pr[x
$← d; r ← A.main(x,i) @ m : M r ∧ x ∈ (L n)]

+ Pr[x
$← d; r ← A.main(x,i) @ m : M r ∧ x ∉ (L n)]

≤ Pr[x
$← d; r ← A.main(x,i) @ m : M r ∧ x ∈ (L n)]

+ Pr[x
$← d @ m : x ∉ (L n)]

≤ Σx∈(L n) 𝜇1 d x ··· Pr[r ← A.main(x,i) @ m : M r] + 𝜖 .

□
8
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3.4 Jensen’s Inequality
Jensen’s inequality is another well-known result which is
widely used in cryptography. In general, it relates the value
of a convex function of an integral/sum to the integral/sum
of the convex function. In the context of probability the-
ory, it is generally stated in the following form: if X is a
distribution, g maps elements of X to reals, and f is convex
then f (E X g) ≤ E X (f ◦ g). Here, E X h is an
expected value and ◦ denotes function composition.

We prove a slightly restricted version of Jensen’s inequal-
ity. In particular, we assume that on the support of X the func-
tion g takes values in an interval between some parameter-
values a and b and that f x takes values in an interval
between parameter-values c and d if a ≤ x ≤ b. Also,
the standard assumptions are that f is convex, that the dis-
tribution X is lossless (i.e., 𝜇 X (𝜆 x. true) = 1), and
that the expectations E X g and E X (f ◦ g) exist.
lemma Jensen _inf [ ′a ] :

∀ (X : ′a D) g f (a b c d : real),

is_lossless X ⇒ hasE X g ⇒ hasE X (f ◦ g)

⇒ (∀ (a b : real), (convex f a b))

⇒ (∀ x, a ≤ x ≤ b ⇒ c ≤ f x ≤ d)

⇒ (∀ x, x ∈ X ⇒ a ≤ g x ≤ b)

⇒ f (E X g) ≤ E X (f ◦ g).

(The EasyCrypt standard library derives Jensen’s inequality
for distributions with finite support only.)

3.5 Reflection of Composition
In this section we address the probabilistic reflection of the
sequential composition of programs. For example, let us an-
alyze the program: r 1 ← A.ex1(); A.ex2(r 1 ). We can
use the reflection_simple lemma from Sec. 3.1 to get
access to a distribution D12 such that:
∀ m M, 𝜇 (D12 Gm

𝐴
) M

= Pr[r 1 ← A.ex1(); A.ex2(r 1 ) @ m: M Gfin
𝐴

].

The distribution D12 corresponds to a composite program
as a whole. However, being able to reflect the distribution
corresponding to a composite program is not enough to
enable reasoning about composite programs based on the
properties of its components; we do not know how D12 is
related to A.ex1 and A.ex2 separately.

In the following, we prove a lemma for reflection of compo-
sition which allows us to show that there exist distributions
D1 and D2 which are the probabilistic reflection of proce-
dures A.ex1 and A.ex2, and that the composition of D1 and
D2 is D12. So, the main goal is to prove lemmas that allow us
to derive the distribution of a more complex program from
the distributions which correspond to its components.
In EasyCrypt, the composition of distributions is imple-

mented as an operator dlet which has the following type:
′a D→ ( ′a → ′b D) → ′b D. Intuitively, the distri-
bution (dlet d 1 d 2 ) could be described imperatively as:
x 1

$← d 1 ; x 2
$← d 2 x 1 ; return x 2 .

We can formally state the theorem of reflection of compo-
sition as follows:
lemma refl_comp_simple :

∃ ( D1 : G𝐴 → (rt 1 × G𝐴) D) ( D2 : G𝐴 → rt 1 → G𝐴 D),
(∀ m M, 𝜇 ( D1 Gm

𝐴
) M

= Pr[r 1 ← A.ex1() @ m: M r 1 ]) ∧
(∀ m M r 1 , 𝜇 ( D2 (r 1 ,Gm

𝐴
)) M

= Pr[r 2 ← A.ex2(r 1 ) @ m: M r 2 ]) ∧
∀ m M, 𝜇 (dlet ( D1 Gm

𝐴
) D2 ) M

= Pr[r 1 ← A.ex1(); A.ex2(r 1 ) @ m: M Gfin
𝐴

].

We give only a rough sketch of the proof. First, by using the
reflection lemma from Sec. 3.1 we get distributions D1
and D2 which correspond to procedures A.ex1 and A.ex2,
respectively. Next, we use pRHL reasoning to prove that
the imperative composition of D1 and D2 corresponds to
composition of A.ex1 and A.ex2:

Pr[x 1
$← D1 ; x 2

$← D2 x 1 @ m: M x 2 ]

= Pr[r 1 ← A.ex1(); A.ex2(r 1 ) @ m: M Gfin
𝐴

].

Finally, we prove that the imperative composition of D1 and
D2 corresponds to their declarative composition, namely,
dlet D1 D2 :
Pr[x 1

$← D1 ; x 2
$← D2 x 1 @ m: M Gfin

𝐴
]

= 𝜇 (dlet ( D1 Gm
𝐴
) D2 ) M.

This step uses averaging (see Sec. 3.3).
In EasyCrypt formalization we prove a stronger lemma

refl_comp which generalizes refl_comp_simple in
the following aspects:
• The procedures A.ex1 and A.ex2 take all-quantified
arguments i 1 of type at1 and i 2 of type at2 , re-
spectively. As a result, the distributions D1 and D2
also become parameterized by values of types at1
and at2 , respectively.
• The distribution ( D2 i g) is over pairs (r,Gfin

𝐴
)

of output of A.ex2 and final memory (not just the final
memory).
• In the event part of the probability expression (i.e.,
Pr[ . . .: M (r 1 ,r 2 ,Gfin

𝐴
)]) we allow the predi-

cate M to depend on the r 1 (output of A.ex1), r 2 (out-
put of A.ex2), and the final memory Gfin

𝐴
(not just the

final memory).
In EasyCrypt, we prove the following general version of
reflection of composition:
lemma refl_comp : ∃ ( D1 : at1 → G𝐴 → (rt 1 × G𝐴) D)

( D2 : at2 → rt 1 × G𝐴 → (rt 2 × G𝐴) D),
(∀ m M i 1 , 𝜇 ( D1 i 1 Gm

𝐴
) M

= Pr[r 1 ← A.ex1(i 1 ) @ m: M (r 1 ,Gfin
𝐴

])) ∧
(∀ m M r 1 i 2 , 𝜇 ( D2 i 2 (r 1 ,Gm

𝐴
)) (M r 1 )

= Pr[r 2 ← A.ex2(i 2 ,r 1 ) @ m: M r 1 (r 2 ,Gfin
𝐴

)]) ∧
∀ m M i 1 i 2 , 𝜇 (dlet ( D1 i 1 Gm

𝐴
)

(𝜆 r. dmap ( D2 i 2 r) (𝜆 x. (r.1,x)))) M

= Pr[r 1 ← A.ex1(i 2 ); r 2 ← A.ex2(i 2 ,r 1 )

@ m: M (r 1 ,r 2 ,Gfin
𝐴

)].

9
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Here, (dmap d f) denotes the distribution of (f x) for
x

$← d.

4 Rewinding
In Sec. 1, we briefly explained that rewinding is a commonly
used technique which allows one module (i.e., program) to
save a state of another module and also restore that state at
some later time. More precisely, we say that a module A is
rewindable iff:

1. There exists an injective mapping f from G𝐴 to some
parameter type sbits3.

2. The module A must have a terminating procedure
getState , so that whenever A.getState is called
from the state g : G𝐴, the result of the call must be
equal to (f g) and the state of A must not change.

3. The module A must have a terminating procedure
setState , so that whenever it is given an argument
x : sbits , so that x = f g for some g : G𝐴
then A must be set into a state g.

In EasyCrypt, we start formalizing this definition by defining
a module type Rew for rewindable programs:
module type Rew = {

proc getState () : sbits

proc * setState(s : sbits) : unit

}.

(Here, the symbol * indicates that the procedure (re)initializes
all global variables of a module.)

We formalize the rewinding properties of getState and
setState procedures as a predicate RewProp on mod-
ules typeable as Rew . Unfortunately, in EasyCrypt we can-
not define an operator like RewProp because its definition
depends on a module which is not allowed. As a result, in
the actual EasyCrypt code the workaround is to copy-and-
paste the verbose definition of RewProp(A). This reduces
readability, but is conceptually the same.
op RewProp(A : Rew) : bool =

∃ (f : G𝐴 → sbits), injective f ∧
(∀ m, Pr[r ← A.getState () @ m:

Gfin
𝐴

= Gm
𝐴
∧ r = f Gm

𝐴
] = 1) ∧

(∀ m (g : G𝐴), Pr[A.setState(f g) @ m:

Gfin
𝐴

= g] = 1) ∧ islossless A.setState.

(In EasyCrypt, islossless X.p expresses that the pro-
cedure p of module X must terminate on all inputs.)
Then, whenever we do a proof using rewinding, we will

need to explicitly assume that our adversary A satisfies prop-
erty RewProp(A), or, equivalently, quantify only over ad-
versaries of module type Rew satisfying RewProp(A).

3Intuitively, sbits is the type of bitstrings. To keep our development more
general, we do not require this, but only assume the existence of embed-
dings nat_sbits: nat → sbits (to ensure that sbits is infinite) and
pair_sbits: sbits × sbits → sbits. The EasyCrypt theory cloning
mechanism makes it possible to later replace this sbits type by a concrete
type such as lists of bits.

The first litmus test of our definition of rewindability is
to show that modules without global variables are (trivially)
rewindable. For a module without global variables, G𝐴 will
be a singleton type (i.e., ∀(x y : G𝐴), x = y). Then
we can generically state that A will be rewindable, as long as
we implement getState and setState as terminating
procedures (it does not matter what they do):

lemma no_globs_rew : ∀ (A <: Rew),

(∀ (x y : G𝐴), x = y)

⇒ islossless A.getState ∧ islossless A.setState

⇒ RewProp(A).

On the necessity of the RewProp axiom. The reader
may wonder whether adding the explicit assumption in a
security proof that the adversary A satisfies RewProp(A)
does not weaken the security proof. After all, it means that
security only holds with respect to such adversaries, but not
with respect to adversaries that do not satisfy RewProp(A).
We argue that RewProp(A) is not a true restriction of the
adversary, merely a requirement that the adversary has a
certain interface with certain properties. The only actual
restriction about the inner workings of the adversary that
RewProp(A) makes is that the adversary’s state can be
encoded as a sequence of bits (sbits). Usually, in cryp-
tography, we make even stronger assumptions about the
adversary, namely that its state is a sequence of bits (or a
Turing machine tape). In contrast, here we only assume that
its state can be encoded as a sequence of bits.

We stress that we only need to make this assumption for
abstract (i.e., all-quantified) adversaries. For adversaries that
we explicitly construct as part of a reduction, we can actually
prove RewProp , see the next section.

4.1 Transformations
Cryptographic proofs are commonly based on transforma-
tions of adversaries (or reduction of adversaries). In Easy-
Crypt, a transformation is a module which receives other
modules as parameters, defines its own global variables, and
has procedures which can call procedures of its parameter-
modules. Typically, one of the parameter-modules will be
the original adversary.
In this section, we show how to prove rewindability of

a module which is parameterized by rewindable modules
and which has at most countable state. We illustrate this
by implementing a module T which is parameterized by
rewindable modules A and B and has a global variable x of a
parameter type ct. As a result, the global state of module
T(A,B) consist of variable T.x and all global variables
of modules A and B. (i.e., G𝑇 (𝐴,𝐵) = ct × G𝐴 × G𝐵).
Since, by the definition of rewindability, we need to embed
elements of type G𝑇 (𝐴,𝐵) into sbits then we parameterize
our development by an injection from ct to sbits :

op ct_sbits : ct → sbits.

axiom bcu : injective ct_sbits.

10
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module T(A : Rew , B : Rew) : Rew = {

var x : ct

// add any other procedures here

proc getState (): sbits = {

var stateA , stateB , xsbits : sbits;

stateA ← A.getState ();

stateB ← B.getState ();

xsbits ← ct_sbits x;

return pair_sbits

(xsbits ,pair_sbits(stateA ,stateB ));

}

proc setState(state: sbits): unit = {

var stateA , stateB , xsbits : sbits;

(xsbits ,s) ← unpair_sbits state;

(stateA ,stateB) = unpair_sbits s;

A.setState(stateA );

B.setState(stateB );

x ← unct_sbits xsbits;

}

}.

The procedure getState stores the global states of A and
B in the local variables stateA and stateB , respectively.
Then the global variable T.x is converted into sbits and
saved in variable xsbits . The resulting state is an embed-
ding of a nested tuple (xsbits ,(stateA ,stateB ))
into sbits . (Recall that pair_sbits is an embedding
sbits × sbits → sbits .)
The procedure setState receives an sbits argument

which is then “untupled” into sbits variables xsbits ,
stateA , and stateB . The state of A is set by passing ar-
gument stateA to its implementation of setState pro-
cedure (similarly for B, mutatis mutandis). The variable T.x
is set to the preimage of xsbits . Finally, we use pHL to
prove that T(A,B) is also rewindable:
lemma trans_rew : ∀ (A :> Rew) (B :> Rew{A}),

RewProp(A) ∧ RewProp(B) ⇒ RewProp(T(A,B)).

Note, that in the statement of the lemma we additionally
require a state of B to be disjoint from a state of A (i.e.,
B :> Rew{A}). This is required because in case of possibly
overlapping states not all values of type G𝑇 (𝐴,𝐵) are valid
states. For example, if Gm

𝐴
and Gn

𝐵
have overlapping variables

with different values then the value (Gm
𝐴
,Gn

𝐵
,x) is typeable

as G𝑇 (𝐴,𝐵) (for any x of type ct), but does not represent a
possible state of T(A,B). Unfortunately, in EasyCrypt, it is
not possible to express “consistency” of possibly overlapping
states of abstract modules.

4.2 Multiplication Rule and Commutativity
The multiplication rule from probability theory states that
the probability of independent events occurring simultane-
ously is found by multiplying the probabilities of each event.

In terms of probabilistic programs it is natural to say that
an execution of a procedure P.run is independent of an
execution of Q.run if after termination of P.run the state

of Q is not affected. In EasyCrypt, it is easy to prove the
multiplication rule for modules with disjoint states:
lemma rew_ mult _simple : ∀ (P :> Runnable)

(Q :> Runnable{P}) m M 1 M 2 i 1 i 2 ,

Pr[r 1 ← P.run(i 1 ); r 2 ← Q.run(i 2 ) @ m:

M 1 r 1 ∧ M 2 r 2 ]

= Pr[r 1 ← P.run(i 1 ) @ m: M 1 r 1 ]

··· Pr[r 2 ← Q.run(i 2 ) @ m: M 2 r 2 ].

However, if we need independent runs of the procedure(s)
of the same module then we need rewinding. Recall, that
the main goal of rewindability is to be able to restore the
state of a module after running one of its procedures. Let
A be a rewindable module (i.e., A satisfies RewProp(A))
with procedures ex 1 and ex 2 which take all-quantified
arguments i 1 : at1 and i 2 : at2 and compute results
r 1 : rt 1 and r 2 : rt 2 , respectively. Let us analyze the
following program.
(1) Save the initial state of A by s ← A.getState () .
(2) Run the procedure r 1 ← A.ex1(i 1 ).
(3) Restore the initial state by calling A.setState(s).
(4) Run the procedure r 2 ← A.ex2(i 2 ).

First, we analyze the steps (1)–(3) as a standalone program.
In particular we must show that the getState and the
setState calls do not affect the result computed by A.ex1
procedure and also show that the final state of A equals to
its initial state.
lemma rew_clean : ∀ m M 1 i 1 ,

Pr[s ← A.getState (); r 1 ← A.ex1(i 1 );

A.setState(s) @ m: M 1 r 1 ∧ Gm
𝐴

= Gfin
𝐴

]

= Pr[r 1 ← A.ex1(i 1 ) @ m: M 1 r 1 ].

(The proof requires only basic pHL tactics and rewindabil-
ity axioms.) This result allows us to derive the multiplica-
tion rule which states that the probability of a joint event
M 1 r 1 ∧ M 2 r 2 for the program (1)–(4) on memory m
equals to the product of probabilities of events M 1 r 1 and
M 2 r 2 occurring after independent runs of A.ex1 and A.ex2
on m, respectively. In EasyCrypt this is stated as follows:
lemma rew_ mult _law : ∀ m M 1 M 2 i 1 i 2 ,

Pr[s ← A.getState (); r 1 ← A.ex1(i 1 );

A.setState(s); r 2 ← A.ex2(i 2 ) @ m:

M 1 r 1 ∧ M 2 r 2 ]

= Pr[r 1 ← A.ex1(i 1 ) @ m: M 1 r 1 ]

··· Pr[r 2 ← A.ex2(i 2 ) @ m: M 2 r 2 ].

In its essence, rew_ mult _law is derived by a single call
to the built-in seq tactic.

Commutativity. In its turn, the multiplication rule opens
for us an easy route to proving commutativity for rewindable
modules. Consider a program consisting of steps (1)–(4)–(3)–
(2) (i.e., A.ex1 and A.ex2 calls are swapped). We can prove
that it computes the same distribution of pairs (r 1 ,r 2 ) as
the program (1)–(4).
lemma rew_comm_law_simple : ∀ m M i 1 i 2 ,

Pr[s ← A.getState (); r 1 ← A.ex1(i 1 );

11
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A.setState(s); r 2 ← A.ex2(i 2 ) @ m: M (r 1 ,r 2 )]

= Pr[s ← A.getState (); r 2 ← A.ex2(i 2 );

A.setState(s); r 1 ← A.ex1(i 1 ) @ m: M (r 1 ,r 2 )].

By using the combination of byequiv and bypr tac-
tics we reduce the above lemma to a point-wise equality of
programs:
have aux1 : ∀ x 1 x 2 ,

Pr[s ← A.getState (); r 1 ← A.ex1(i 1 );

A.setState(s); r 2 ← A.ex2(i 2 ) @ m

: r 1 = x 1 ∧ r 2 = x 2 ]

= Pr[s ← A.getState (); r 2 ← A.ex2(i 2 );

A.setState(s); r 1 ← A.ex1(i 1 ) @ m

: r 1 = x 1 ∧ r 2 = x 2 ].

Then:
have aux2 : ∀ x 1 x 2 ,

Pr[s ← A.getState (); r 1 ← A.ex1(i 1 );

A.setState(s); r 2 ← A.ex2(i 2 ) @ m

: r 1 = x 1 ∧ r 2 = x 2 ]

= Pr[r 1 ← A.ex1(i 1 ) @ m : r 1 = x 1 ] // rew_mult

··· Pr[r 2 ← A.ex2(i 2 ) @ m : r 2 = x 2 ]

= Pr[r 2 ← A.ex2(i 2 ) @ m : r 2 = x 2 ] // comm of ···
··· Pr[r 1 ← A.ex1(i 1 ) @ m : r 1 = x 1 ]

= Pr[s ← A.getState (); r 2 ← A.ex2(i 2 );

A.setState(s); r 1 ← A.ex1(i 1 ) @ m

: r 1 = x 1 ∧ r 2 = x 2 ]. // rew_mult

(In the second invocation of rew_ mult , the procedure names
ex 1 and ex 2 are exchanged. Since lemmas in EasyCrypt
are not parametric in the procedure names, we achieve this
by using a wrapper module.)

In the actual EasyCrypt formalization, we prove a slightly
more general version of commutativity for rewindable mod-
ules. In particular, we allow the program to start with a call
to B.init (which might not be disjoint from A). As a result
of this change, the proof starts by reflecting the composition
of B.init with the rest of the program and then using the
lemma rew_comm_law_simple .
lemma rew_comm_law : ∀ m M i 0 ,

Pr[r 0 ← B.init(i 0 ); s ← A.getState ();

r 1 ← A.ex1(r 0 ); A.setState(s);

r 2 ← A.ex2(r 0 ) @ m : M (r 0 , r 1 , r 2 )]

= Pr[r 0 ← B.init(i 0 ); s ← A.getState;

r 2 ← A.ex2(r 0 ); A.setState(s);

r 1 ← A.ex1(r 0 ) @ m : M (r 0 , r 1 , r 2 )].

Note that the reflection of composition relies on “averaging
technique” which relies on finite probabilistic approximation
(see Sec. 3).

4.3 Rewinding with Initialization
In Thm. 1.1 we sketched a derivation of the equation which
is needed to prove sum-binding property for commitments
(see Sec. 5). More specifically, we analyzed a program which
starts with an explicit state initializer, saves the resulting
state of module A, runs a procedure A.run for the first time,

restores the saved state, and then runs the A.run procedure
for the second time. We proved that the probability of a
success (according to some predicate) in two sequential runs
of A.run is lower-bounded by a square of probability of a
success in a “initialize-then-run” case (i.e., initialize the state
and execute the A.run procedure once).

In EasyCrypt, we derive a similar equation, but for a more
general case:
• The initialization is done with a procedure B.init ,
where B is a module with a state which can possibly
intersect with the state of module A.
• The initialization produces a result r 0 of a parameter
type which is then supplied to A.run .
• The procedure B.init receives all-quantified argu-
ment i of a parameter type.
• The procedure A.run returns a result of a parameter
type rt . The success of a run is defined by a parame-
ter predicate M (r 0 ,r i ), where r 0 and r i are the
values returned by B.init and A.run procedures,
respectively.

The EasyCrypt statement of the lemma is as follows:

lemma rew_with _init : ∀ m M i,

Pr[r 0 ← B.init(i); s ← A.getState ();

r 1 ← A.run(r 0 ); A.setState(s);

r 2 ← A.run(r 0 ) @ m: M (r 0 ,r 1 ) ∧ M (r 0 ,r 2 )]

≥ Pr[r 0 ← B.init(i); r ← A.run(r 0 ) @ m: M (r 0 ,r)]
2 .

We skip the proof as it roughly follows the steps sketched in
Thm. 1.1.

5 Case Study: Coin-Toss Protocol
As a case study for our techniques we prove the security of
a coin-toss protocol based on bit-commitment. Historically,
Blum described the problem of coin-toss protocol with the
following example: Alice and Bob are recently divorced, living
in two separate cities, and want to decide who gets to keep the
car. To decide, Alice wants to flip a coin over the telephone.
However, Bob is concerned that if he were to tell Alice the result
of his coin toss, she would adjust hers and automatically tell
him that she wins. Thus, the problem with Alice and Bob
is that they do not trust each other; the only resource they
have is the telephone communication channel, and there is
not a third party available to read the coin [10].

In the following, we describe the coin-toss protocol based
on a bit-commitment scheme which is similar to the original
Blum’s solution to the coin-toss problem:

1. Alice chooses a random bit r 1 and then generates a
commitment c containing that bit (let d be the respec-
tive opening).

2. Alice sends the commitment c to Bob.
3. Bob chooses a random bit r 2 and sends it to Alice.
4. Alice opens her commitment by sending the bit r 1

and the opening d to Bob.
12
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5. Bob verifies that d is a valid opening of r 1 for c. Oth-
erwise Bob aborts.

6. Alice and Bob compute the final bit as r 1 ⊕ r 2 (xor).
The coin-toss protocol must ensure the following property:

if at least one of the parties correctly generates a random bit,
then the final bit will be (nearly) random.
Security of the coin-toss is almost immediate if the com-

mitment scheme satisfies a property called “sum-binding”
in [18]. This property says that the probability of Alice open-
ing the commitment to false and the probability of Alice
opening it to true add to at most 1 (plus a negligible error).
This property in turn is implied by the usual “computation-
ally binding” property which says that Alice cannot open to
both false and true simultaneously (except with negli-
gible probability). Showing that “computationally binding”
implies “sum-binding”, however, requires rewinding. There-
fore that proof is a prime candidate for our case-study. (In the
post-quantum setting, for example, computationally binding
does not imply sum-binding [2]. This illustrates that this
seemingly trivial implication is not as easy as it might seem,
and that we indeed need rewinding here.)

5.1 Commitments
The standard library of EasyCrypt defines the module type
CommitmentScheme which requires a scheme S to imple-
ment the following procedures:

1. p ← S.gen() generates the public key of a commit-
ment scheme (also known as the public parameters).

2. (c,d) ← S.commit(p,m) produces commitment-
opening pair for a message m and a public key p.

3. b ← S.verify(p,m,c,d) returns b = true iff
d is a valid opening for message m, commitment c, and
public key p.

For our development, we additionally require the existence
of a verification function Ver (an “operator” in EasyCrypt-
parlance) which must agree with the procedure S.verify
on all arguments:
op Ver : pubkey × msg × commitment × opening

→ bool.

axiom verify_det : ∀ m a,

Pr[r ← S.verify(a) @ m: r = Ver a] = 1.

This means that verification is side-effect free (and determin-
istic). Otherwise, two runs of the verification algorithm could
interfere with each other (and with calls to S.commit) and
give different results.

In cryptography, a commitment scheme is called computa-
tionally binding iff the probability that adversary A can pro-
duce a commitment with openings of two different messages
is negligible. The EasyCrypt standard library defines a mod-
ule type Binder with a single procedure bind ; we can then
define the probability of success of adversary A : Binder
in the “binding-game”:
op binding_pr(A,m) = Pr[p ← S.gen();

(c,m 1 ,d 1 ,m 2 ,d 2 ) ← A.bind(p);

v 1 ← S.verify(p,m 1 ,c,d 1 );

v 2 ← S.verify(p,m 2 ,c,d 2 ) @ m: v 1 ∧ v 2 ∧ m 1 ≠ m 2 ].

(Here, binding_pr is only a shortcut notation used in this
text.) Hence, scheme is binding iff binding_pr(A,m) is
negligible for all A and m.

Sum-Binding. Next, we define the “sum-binding” prop-
erty of commitments. Let A be an adversary and pb be a prob-
ability that A can open the commitment to contain b given
input b = false ,true . The commitment scheme is sum-
binding iff for all such adversaries the pf + pt ≤ 1 + 𝜖 ,
where 𝜖 is negligible. We define a module type SumBinder
with procedures commit and open . Then we define the
probability of success of adversary A : SumBinder in
the “sum-binding-game”:
op sum_binding_pr(A,m) =

Pr[p ← S.gen(); c ← A.commit(p);

d ← A.open(false); v ← S.verify(p,false ,c,d)

@ m: v]

+ Pr[p ← S.gen(); c ← A.commit(p);

d ← A.open(true); v ← S.verify(p,true ,c,d)

@ m: v].

(Again, sum_binding_pr is only a shortcut notation.)
Hence, scheme is sum-binding if and only if for all A and
m, there exists a negligible 𝜖 , so that we can show that
sum_binding_pr(A,m) ≤ 1 + 𝜖 . Before addressing
the sum-binding property for commitments, we prove amore
generic sum-binding inequality which shows that the sum
of probabilities of success of independent runs of arbitrary
procedures A.ex1 and A.ex2 is related to the probability of
joint success in the same run.4 More specifically, assume that
module A is rewindable and B.init is some initialization
procedure. We let p 1 be the probability that after initializa-
tion the procedure A.ex1 succeeds according to some predi-
cate M (similarly for p 2 and A.ex2,mutatis mutandis). In this
case, we can prove that the sum of probabilities p 1 + p 2 is
upper-bounded by a sum 1 + 2 ··· q, where q is the prob-
ability that A.ex1 and A.ex2 both succeed in the same run
(i.e., both starting from the same initial state produced by
B.init). In EasyCrypt, we state this equation as follows:
lemma sum_binding_generic : ∀ m M i,

Pr[r 0 ← B.init(i); r ← A.ex1(r 0 ) @ m: M r]

+ Pr[r 0 ← B.init(i); r ← A.ex2(r 0 ) @ m: M r]

≤ 1 + 2 ··· Pr[r 0 ← B.init(i); s ← A.getState ();

r 1 ← A.ex1(r 0 ); A.setState(s);

r 2 ← A.ex2(r 0 ) @ m: M r 1 ∧ M r 2 ].

The proof revolves around rew_with _init inequality.

Proof. Let us define the following shortcut-notation:
P j = Pr[r 0 ← B.init(i); r ← A.ex j (r 0 ) @ m : M r].

P j k = Pr[r 0 ← B.init(i); s ← A.getState ();

4This generic lemma may also be useful when analyzing extractors for
proof of knowledge protocols with two challenges, e.g., the zero-knowledge
protocols for Hamiltonian cycles [11] and graph isomorphism [12].
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r 1 ← A.ex j (r 0 ); A.setState(s);

r 2 ← A.ex k (r 0 ) @ m : M r 1 ∧ M r 2 ].

P $ = Pr[r 0 ← B.init(i); j
$← {1,2};

r ← A.ex j (r 0 ) @ m : M r].

P $$ = Pr[r 0 ← B.init(i);

s ← A.getState (); j
$← {1,2};

r 1 ← A.ex j (r 0 ); A.setState(s); k
$← {1,2};

r 2 ← A.ex k (r 0 ) @ m : M r 1 ∧ M r 2 ].

Here, P j denotes a probability of success of a run of a pro-
cedure A.ex j (in EasyCrypt, we implement A.ex j using
the if-then -else construct). P j k denotes a probabil-
ity of a joint success of a run of procedures A.ex j (r 0 )
and A.ex k (r 0 ) from the same initial state. P $ denotes a
success of a run of a procedure A.ex j where j is sampled
uniformly from {1,2} . Finally, P $$ denotes a probability
of a joint success of a run of procedures A.ex j and A.ex k

where both j and k are uniformly sampled from {1,2} .
Using our notation, the statement of the lemma

sum_binding_generic can be therefore expressed as:
have goal : P 1 + P 2 ≤ 1 + 2 ··· P 12 .

Before continuing with the proof we list some basic facts
about these definitions:
have f 1 : P $ = 1/2 ··· (P 1 + P 2 ).

f 2 : P $$ = 1/4 ··· (P 11 + P 12 + P 21 + P 22 ).

f 3 : ∀ x y, P x ≥ P xy .

f 4 : P $$ ≥ P $
2 .

The facts f 1 and f 2 are by case analysis. The fact f 3 is by
event inclusion. The fact f 4 is by rewinding with initializa-
tion equation rew_with _init derived in Sec. 4.3.
To prove the goal we first derive an equation which

connects P 12 and P 21 to P 1 and P 2 :
have aux : P 12 + P 21 ≥ P 1 + P 2 - 1.

To prove aux we argue as follows:
P 12 + P 21
= 4 ··· (1/4 ··· (P 12 + P 21 + P 11 + P 22 )

- 1/4 ··· (P 11 + P 22 )) // math

= 4 ··· (P $$ - 1/4 ··· (P 11 + P 22 )) // f 2
≥ 4 ··· (P $$ - 1/4 ··· (P 1 + P 2 )) // f 3
= 4 ··· (P $$ - 1/2 ··· P $ ) // f 1
≥ 4 ··· (P $

2 - 1/2 ··· P $ ) // f 4
≥ 2 ··· P $ - 1 // math

= P 1 + P 2 - 1. // f 1

Finally, the goal is concluded by using the aux inequality
and observing that P 12 = P 21 (due to commutativity rule
rew_comm_law , see Sec. 4.2). □

Equipped with the generic sum-binding inequality, we
can now finish the proof that binding commitment schemes
are also sum-binding. We start by implementing a reduc-
tion R(A) which runs A.commit (to produce the commit-
ment), stores the state of A, runs A.open(false) (to pro-
duce the first opening), restores the state of A, and runs
A.open(true) (to produce the second opening). Then
we show that the probability that R(A) produces two valid

openings (i.e., breaks binding) is lower-bounded in terms of
the probability that A is successful in producing one valid
opening.

module R(A : SumBinder) : Binder = {

proc bind(p : pubkey) = {

var c,s,d 1 ,d 2 ;

c ← A.commit(p);

s ← A.getState ();

d 1 ← A.open(false);

A.setState(s);

d 2 ← A.open(true);

return (c,false ,d 1 ,true ,d 2 );

}

}.

Next, we implement wrapper-modules B and A′ , so that
B.init is a wrapper around the “commitment initializa-
tion” phase p ← S.gen(); c ← A.commit(p). The
procedure A′ .ex 1 is defined as A.open(false), and
A′ .ex 2 as A.open(true). In this case, sum-binding for
commitments becomes an immediate consequence of the in-
equality sum_binding_generic and we can conclude:

lemma commitment_sum_binding : ∀ m,

sum_binding_pr(A,m) ≤ 1 + 2 ··· binding_pr(R(A),m).

5.2 Coin-Toss Protocol
Recall, that a coin-toss protocol is considered secure if it is
ensured that if at least one of the parties correctly generates
a random bit then the final bit will be (nearly) random.

In the first case, we assume that Alice is honest and Bob is
cheating. To simplify this case, we additionally assume that
the commitment scheme is perfectly hiding. This means that
Bob gets no information about r 1 after receiving the com-
mitment c. Therefore, if Alice follows the protocol honestly
and r 1 is uniformly random and independent of r 2 (due
to the perfect hiding) then the bit (r 1 ⊕ r 2 ) is also uni-
formly random. (The case of cheating Bob does not involve
rewinding and is therefore not the focus of this paper.)
In the second case, we are left to show that if Bob hon-

estly follows the protocol, then for any Alice (adversary
A : CoinTossAlice ) the resulting bit is nearly uniform.
Below we assume that module type CoinTossAlice re-
quires a module to have procedures commit and toss ,
where commit produces a commitment c, and toss gets a
Bob’s bit r 2 as an argument and then computes a bit together
with its opening for c. Wewrite coin_toss_pr(A,m,b)
to denote a probability of A being able to open the commit-
ment to Boolean b.

op coin_toss_pr(A,m,b) =

Pr[p ← S.gen(); r 2
$← {0,1}; c ← A.commit(p);

(r 1 ,d) ← A.toss(r 2 ) @ m:

Ver (p,r 1 ,c,d) ∧ r 1 ⊕ r 2 = b].
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(Once more, coin_toss_pr is only a shortcut notation.)
We define Bf (A) and Bt (A) as the transformations of coin-
toss adversary into an adversary that breaks binding for the
cases b = false and b = true , respectively:
// getState and setState procedures are skipped

module Bf (A : CoinTossAlice) : SumBinder = {

proc commit(p : pubkey) = {

return A.commit(p);

}

proc open(x : bool) = {

var d, r 1 ;

(r 1 ,d) ← A.toss(x);

return d;

}

}.

module Bt (A : CoinTossAlice) : SumBinder = {

proc commit(p : pubkey) = {

return A.commit(p);

}

proc open(x : bool) = {

var d, r 1 ;

(r 1 ,d) ← A.toss(not x);

return d;

}

}.

Bf (A) delegates the commitment generation to A and when
asked to open a commitment to bit x then x is submitted
to A.toss and the resulting opening is returned. Bt (A) is
different in that the negation of x is submitted to A.toss .
Finally, we can derive that if Bob is honest then for any Alice
the resulting bit is nearly uniform.
lemma coin_toss_alice: ∀ m b, coin_toss_pr(A,m,b)

≤ 1/2 + max binding_pr(R( Bt (A)),m)

binding_pr(R( Bf (A)),m).

Proof. We start the proof with analysis of the case when
b = true (i.e., r 1 ⊕ r 2 = true). We prove that this
case is upper-bounded by 1/2 + 𝜖 , where 𝜖 is the proba-
bility of breaking the binding of S by R( Bt (A)) .
have coin_toss_alice_t : coin_toss_pr(A,m,true)

≤ 1/2 + binding_pr(R( Bt (A)),m).

We prove this case by arguing as follows:
Pr[p ← S.gen (); r 2

$← {0,1}; c ← A.commit(p);

(r 1 ,d) ← A.toss(r 2 ) @ m:

Ver (p,r 1 ,c,d) ∧ r 1 ⊕ r 2 = true]
(1)
= 1/2 ··· (Pr[p ← S.gen(); c ← A.commit(p);

(r 1 ,d) ← A.toss(false) @ m:

Ver (p,r 1 ,c,d) ∧ r 1 ⊕ false = true]

+ Pr[p ← S.gen(); c ← A.commit(p);

(r 1 ,d) ← A.toss(true) @ m:

Ver (p,r 1 ,c,d) ∧ r 1 ⊕ true = true])
(2)
≤ 1/2 ··· (Pr[p ← S.gen(); c ← A.commit(p);

(r 1 ,d) ← A.toss(false) @ m:

Ver (p,true ,c,d)]

+ Pr[p ← S.gen(); c ← A.commit(p);

(r 1 ,d) ← A.toss(true) @ m:

Ver (p,false ,c,d)])
(3)
= 1/2 ··· (Pr[p ← S.gen(); c ← A.commit(p);

d ← B(A).open(true) @ m:

Ver (p,false ,c,d)]

+ Pr[p ← S.gen(); c ← A.commit(p);

d ← B(A).open(false) @ m: Ver (p,true ,c,d)])
(4)
≤ 1/2 + binding_pr(R( Bt (A)),m).

(Here {0,1} denotes a uniform distribution of Booleans.)
Step (1) is by case distinction of r 2 . Step (2) is by simplifica-
tion and event-inclusion. Step (3) is by definition of transfor-
mation Bt . Step (4) applies commitment_sum_binding
from Sec. 5.1. In a similar way we handle the case when
b = false and show:
have coin_toss_alice_f : coin_toss_pr(A,m,false)

≤ 1/2 + binding_pr(R( Bf (A)),m).

Finally, coin_toss_alice is a trivial consequence of
coin_toss_alice_t and coin_toss_alice_f . □

6 Conclusions
In this paper we focused on probabilistic reflection and
rewindability of adversaries. First, we implemented a pow-
erful toolkit for probabilistic reflection which includes fi-
nite probabilistic approximation, averaging, and reflection
of composition inside EasyCrypt. Second, we described a no-
tion of rewindable adversaries and derived their basic prop-
erties: transformations, multiplication rule, commutativity,
rewinding with initialization. Third, by combining these re-
sults together we were able to derive a generic sum-binding
equation for arbitrary rewindable computations. Fourth, we
instantiated the sum-binding property for commitments and
proved that if a commitment scheme is binding then it is
also sum-binding. Finally, we used this result to prove the
security of a bit-commitment based coin-toss protocol.
To the best of our knowledge, probabilistic reflection,

rewindable adversaries, and security of a coin-toss proto-
col have not yet been addressed in theorem provers.
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