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Abstract

Nonlinear feedback shift registers (NFSRs) are used in many stream ciphers as their
main building blocks. In particular, Galois NFSRs with terminal bits are used in the
typical stream ciphers Grain and Trivium. One security criterion for the design of stream
ciphers is to assure their used NFSRs are nonsingular. The nonsingularity is well solved
for Fibonacci NFSRs, whereas it is not for Galois NFSRs. In addition, some types of
Galois NFSRs equivalent to Fibonacci ones have been found. However, whether there
exist new types of such Galois NFSRs remains unknown. The paper first considers the
nonsingularity of Galois NFSRs. Some necessary/sufficient conditions are presented. The
paper then concentrates on the equivalence between Galois NFSRs and Fibonacci ones.
Some necessary conditions for Galois NFSRs equivalent to Fibonacci ones are provided.
The Galois NFSRs with terminal bits equivalent to a given Fibonacci one are enumerated.
Moreover, two classes of nonsingular Galois NFSRs with terminal bits are found to be
the new types of Galois NFSRs equivalent to Fibonacci ones.
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1 Introduction

Our society greatly depends on security of information. To protect the confidential informa-
tion from unauthorized or accidental disclosure, cryptographic methods are applied. Stream
cipher is a one-time pad approach, and has been widely used in communication, diplomacy,
military and other fields, due to its efficient encryption and decryption, simple hardware
implementation and low error-propagation rate. In many recent stream ciphers, such as the
finalists Grain [1] and Trivium [2] in the eSTREAM project, and the finalist Acorn [3] in the
CAESAR competition, nonlinear feedback shift registers (NFSRs) have been used as their
main building blocks.

An NFSR can be generally implemented in Fibonacci or Galois configuration. In Fi-
bonacci configuration, the NFSR’s feedback is only applied to the last bit, while in the Galois
configuration, the feedback can be applied to every bit. Compared with Fibonacci NFSRs,
Galois ones may decrease the propagation time and increase the throughput [4]. Notably, the
foregoing stream ciphers use Galois NFSRs as their main building blocks. More precisely,
they use Galois NFSRs with terminal bits, which have the first several bits involved only
shifts, as their building blocks.

An NFSR is nonsingular if every state has one unique predecessor, which means that
the NFSR’s state diagram consists of only pure cycles without branches, or equivalently, all
sequences generated by the NFSR are periodic. One security criterion in the design of NFSR-
based stream ciphers is to assure their used NFSRs are nonsingular. If an NFSR is singular,
then there must exist two different states producing the same successor, and hence, equivalent
secret keys probably exist. Thus, it might encounter weak attacks [5]. So far, some work has
been done on the nonsingularity of NFSRs. A Fibonacci NFSR is nonsingular if and only if
its feedback function is nonsingular [6]. As a particular Galois NFSR, a cascade connection
of two Fibonacci NFSR is nonsingular if and only if the feedback functions of both Fibonacci
NFSRs are nonsingular [7]. However, all nonsingular feedback functions cannot guarantee a
general Galois NFSR to be nonsingular. In [8], it stated that all feedback functions of an
n-stage Galois NFSR satisfy fi = Xi+1⊕gi(X1, X2, . . . , Xi, Xi+2, . . . , Xn) with i = 1, 2, . . . , n

is a necessary condition for the nonsingularity of Galois NFSR. Compared to the well-solved
nonsingularity of Fibonacci NFSRs, the nonsingularity of Galois NFSRs is far from being
understood.
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Two NFSRs are said to be equivalent if their sets of output sequences are equal [4].
Studying the equivalence of NFSRs is helpful to select preferable ones in the design of
NFSR-based stream ciphers according to requirement criteria, such as low cost of hard-
ware implementation, good hardware performance, and high security level. So far, some
work has been done on the equivalence of NFSRs. First, for the equivalence between Galois
NFSRs, a Galois NFSR in which the i-th bit feedback function satisfies fi(X1, X2, . . . , Xn) =

X(i+1) mod n ⊕ gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) was found equivalent to a class of Galois NF-
SRs [8]. In addition, as particular Galois NFSRs, cascade connections of two NFSRs were
characterized from the perspectives of feedback functions if they are equivalent [9]. Second,
for the equivalence between Galois NFSRs and Fibonacci ones, it was found that any given
Fibonacci NFSR can be equivalent to uniform Galois one with the same stage number [4],
and their initial states were matched [10]; moreover, lower triangular Galois NFSRs [11]
and cascade connections of two NFSRs [12] were revealed equivalent to Fibonacci NFSRs.
Meanwhile, it discovered a new type of Galois NFSRs (called Type-IV, therein) that can be
transformed to Fibonacci NFSRs [13]. In fact, these are some sufficient conditions for Galois
NFSRs equivalent to Fibonacci ones.

The paper first considers the nonsingularity of Galois NFSRs. Some necessary/sufficient
conditions are presented. The paper then concentrates on the equivalence between Galois
NFSRs and Fibonacci ones. It gives some necessary conditions for Galois NFSRs that are
equivalent to Fibonacci ones, from the perspectives of their feedback functions. It also enu-
merates the Galois NFSRs with terminal bits equivalent to a given Fibonacci one with the
same stage number. Moreover, it discloses two new types of nonsingular Galois NFSRs with
terminal bits that are equivalent to Fibonacci NFSRs. All of these are helpful to the design
of NFSR-based stream ciphers.

The reminder of this paper is organized as follows. Sction 2 introduces some preliminaries
on NFSRs. Section 3 reviews some previous work on the equivalence of NFSRs. Section 4
presents our results on the nonsingularity of NFSRs, followed by those on the equivalence in
Section 5. The paper concludes in Section 6.
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2 Nonlinear Feedback Shift Registers

In this section, we review some basic concepts and related results on NFSRs. Before that,
we first introduce some notations used throughout the paper.

Notations: F2 denotes the binary field, and Fn
2 is an n-dimensional vector space over F2.

N represents the set of nonnegative integers. +, − and × are the ordinary addition, subtrac-
tion and multiplication in the real field, while ⊕ and � are the addition and multiplication
over F2, respectively.

Galois and Fibonacci NFSRs: Figure 1(a) gives the diagram of an n-stage Galois
NFSR, in which each small square represents a binary storage device, also called bit. Each
i-th bit has a feedback function fi. All these feedback functions f1, f2, . . . , fn form the
feedback F = [f1 f2 . . . fn]

T of the Galois NFSR. At each periodic interval determined by
a master clock, the content of each bit is updated by the value of its feedback function at the
previous contents of all bits. The n-stage Galois NFSR can be described as the following set
of difference equations, also called nonlinear system:

X1(t+ 1) = f1(X1, X2, . . . , Xn),

X2(t+ 1) = f2(X1, X2, . . . , Xn),

...

Xn(t+ 1) = fn(X1, X2, . . . , Xn).

(1)

or equivalently described by a system of vector form as:

X(t+ 1) = F (X(t)), (2)

where X = [X1 X2 . . . Xn]
T ∈ Fn

2 is the state of the Galois NFSR, the feedback F is also
called state transition function, and t ∈ N represents time instant. Throughout the paper,
without specification, the content of the lowest bit is always used as the output of the Galois
NFSR.

In particular, if there are only shifts between the first n − 1 neighboring bits, that is,
fi(X1, X2, . . . , Xn) = Xi+1 for all i = 1, 2, . . . , n−1, then the n-stage Galois NFSR is reduced
to an n-stage Fibonacci NFSR, whose diagram is shown in Figure 1(b), in which the Boolean
function f is called feedback function of the Fibonacci NFSR.

State Diagram of NFSRs: The state diagram of an n-stage NFSR is a directed graph
consisting of 2n nodes and 2n edges, in which each node represents a state of the NFSR, and
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(b) An n-stage Fibonacci NFSR.

Figure 1: Galois and Fibonacci NFSRs.

each edge represents a transition between states. An edge from state X to state Y means
that the state X is updated to the state Y. X is called a predecessor of Y, and Y is called
the successor of X. A sequence of p distinct states, X1,X2, . . . ,Xp, is called a cycle of length
p if X1 is the successor of Xp, and Xi+1 is a successor of Xi for any i ∈ {1, 2, . . . , p− 1}.

Let G = (V,A) and Ḡ = (V̄ , Ā) be the state diagrams of two n-stage NFSRs, where V

and V̄ are their sets of states, while A and Ā are their sets of edges. G and Ḡ are said to be
isomorphic if there exists a bijection mapping φ : V → V̄ such that for any edge E ∈ A from
state X to state Y, there exists an edge Ē ∈ Ā from φ(X) to φ(Y).

Lemma 1 ([7]) If an n-stage Fibonacci NFSR and an n-stage Galois NFSR are equivalent,
then their state diagrams are isomorphic.

Definition 1 ([14]) Suppose F and Fπ to be the feedback of two n-stage Galois NFSRs. Let
F (X) = [f1(X1, . . . , Xn) f2(X1, . . . , Xn) . . . fn(X1, . . . , Xn)]

T and let π be a permutation of
{1, 2, . . . , n}. The Galois NFSR with feedback Fπ is said to be π-equivalent to the Galois NFSR
with feedback F if Fπ(X) = [fπ(1)(Xπ(1), . . . , Xπ(n)) fπ(2)(Xπ(1), . . . , Xπ(n)) · · · fπ(n) (Xπ(1), . . . , Xπ(n))]

T .

Definition 2 Given a positive integer τ satisfying 1 ≤ τ ≤ n − 1, an n-stage Galois NFSR
with feedback F = [f1 f2 . . . fn]

T is said to have the terminal bit τ if fi(X) = Xi+1 for all
i = 1, 2, . . . , τ and for all X = [X1 X2 . . . Xn]

T ∈ Fn
2 . Such an NFSR with terminal bit τ

is called an n-stage τ -terminal-bit Galois NFSR.

Notably, if an n-stage Galois NFSR has the terminal bit n − 1, then it is reduced to an
n-stage Fibonacci NFSR.
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3 Previous Work

In this section, we review some previous work regarding the equivalence of NFSRs since they
are necessary for the discussion in Section 5.

Lemma 2 ([4]) For an n-stage Galois NFSR with state X = [X1 X2 . . . Xn]
T and feedback

F (X) = [f1(X) f2(X) . . . fn(X)]T , if there exists a recurrence relation of order n describing
each output sequence of the i-th bit Xi with some i ∈ {1, 2, . . . , n}, then the set of output
sequences of the i-th bit of the Galois NFSR is a subset of the set of output sequences of an
n-stage Fibonacci NFSR.

Lemma 3 ([14]) For an n-stage nonsingular Galois NFSR with state X = [X1 X2 · · · Xn]
T ,

if it uses the content of the i-th bit as its output, and there exists a recurrence relation of
order n describing each output sequence of the i-th bit Xi with some i ∈ {1, 2, . . . , n}, then
this n-stage nonsingular Galois NFSR is equivalent to an n-stage Fibonacci NFSR.

Lemma 4 ([15]) An n-stage Galois NFSR with state X = [X1 X2 · · · Xn]
T ∈ Fn

2 is
equivalent to an n-stage Fibonacci NFSR if and only if there exists a unique bijection h =

[h1 h2 · · · hn]
T over Fn

2 such that

Xi(t) = hi(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)) (3)

for all i = 1, 2, . . . , n and for all t ∈ N; moreover h1(X1(t), X1(t+1), . . . , X1(t+n−1)) = X1(t)

for all t ∈ N.

Lemma 5 If an n-stage Galois NFSR with feedback F = [f1 f2 · · · fn]
T satisfies one of the

following conditions:
1) Cascade connection [16]:

fi = Xi+1, i 6= m,n with m < n,

fm = Xm+1 ⊕ gm(X1, X2, . . . , Xm),

fn = gn(Xm+1, Xm+2, . . . , Xn),

(4)

2) Uniform Galois NFSR [4]:fi = Xi+1, i = 1, 2, . . . , τ,

fi = X(i+1) mod n ⊕ gi(X1, X2, . . . , Xτ+1), i = τ + 1, τ + 2, . . . , n,
(5)
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3) Lower triangular Galois NFSR [11]:fi = Xi+1 ⊕ gi(X1, X2, . . . , Xi), i = 1, 2, . . . , n− 1,

fn = gn(X1, X2, . . . , Xn),
(6)

where gis are Boolean functions, then the n-stage Galois NFSR is equivalent an n-stage
Fibonacci NFSR.

Clearly, cascade connections and uniform Galois NFSR are two particular types of lower
triangular Galois NFSRs.

4 Nonsingularity of NFSRs

In this section, we give some necessary/sufficient conditions for the nonsingualarity of Galois
NFSRs.

Theorem 1 Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n − 1. An n-stage τ -
terminal-bit Galois NFSR is nonsingular, if its feedback F = [f1 f2 . . . fn]

T satisfies
fi = Xi+1, i = 1, 2, . . . , τ,

fi = Xji ⊕ gi(X2, . . . , Xτ+1, Xjτ+1 , . . . , Xji−1 , hn), i = τ + 1, . . . , n− 1,

fn = hn ⊕ gn(X2, . . . , Xτ+1),

(7)

where hn = Xjn⊕ g̃n(X2, . . . , Xτ+1, Xjτ+1 , Xjτ+2 , . . . , Xjn−1), {Xjτ+1 , Xjτ+2 , . . . , Xjn} = {X1,

Xτ+2, . . . , Xn}, or the feedback F = [f̃1 f̃2 . . . f̃n]
T satisfiesf̃i = Xi+1, i = 1, 2, . . . , τ

f̃i = fρ(i)(X), i = τ + 1, τ + 2, . . . , n,
(8)

where ρ is a permutation of {τ + 1, τ + 2, . . . , n}.

Proof. A Galois NFSR is nonsingular, if and only if its feedback F is bijection. Hence, we
only need to prove that for any a = [a1 a2 . . . an]

T ∈ Fn
2 , the equation F (X1, X2, . . . , Xn) = a

has a unique solution [X1 X2 . . . Xn]
T ∈ Fn

2 .
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Consider the solution of the following system derived from Equation (7) by setting fi = ai

for all i = 1, 2, . . . , n:

a1 = X2,

...

aτ = Xτ+1,

aτ+1 = Xjτ+1 ⊕ gτ+1(X2, . . . , Xτ+1, hn),

aτ+2 = Xjτ+2 ⊕ gτ+2(X2, . . . , Xτ+1, Xjτ+1 , hn),

...

an−1 = Xjn−1 ⊕ gn−1(X2, . . . , Xτ+1, Xjτ+1 , . . . , Xjn−2 , hn),

an = hn ⊕ gn(X2, . . . , Xτ+1).

(9)

First, it can be seen that Xis for 2 ≤ i ≤ τ +1 are determined by the first τ equations. Then,
we can determine the value of gn(X2, . . . , Xτ+1), denoted by cn. Therefore, according to the
last equation of (9), we have hn = an ⊕ cn. Substituting hn and Xi with 2 ≤ i ≤ τ +1 to the
equations from the (τ + 1)-th to the (n− 1)-th of Equation (9), we have

aτ+1 = Xjτ+1 ⊕ gτ+1(X2, . . . , Xτ+1, an ⊕ cn),

aτ+2 = Xjτ+2 ⊕ gτ+2(X2, . . . , Xτ+1, Xjτ+1 , an ⊕ cn),

...

an−1 = Xjn−1 ⊕ gn−1(X2, . . . , Xτ+1, Xjτ+1 , . . . , Xjn−2 , an ⊕ cn),

an = hn ⊕ gn(X2, . . . , Xτ+1).

(10)

Based on this, Xjτ+1 is determined by the (τ + 1)-th equation. Continuing this process,
we see that each Xji with i ∈ {τ + 1, . . . , n − 1} is determined by the i-th equation under
the condition that X2, . . . , Xτ+1, Xjτ+1 , . . . , Xji−1 have already been determined. Thus, the
value of g̃n(X2, . . . , Xτ+1, Xjτ+1 , . . . , Xjn−1) in the function hn is determined, denoted by bn.
Substituting this to the last equation of (10), we have an = Xjn ⊕ bn ⊕ cn. Thus, Xjn is
determined. Hence, all Xis are determined.

Using the process similar to the above, for the feedback F satisfying Equation (8), the
equation F (X1, X2, . . . , Xn) = a also has a unique solution for any a ∈ Fn

2 , but only the order
and value of the solution are different. Thus, the proof is complete. 2
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0

Figure 2: State diagram of the Galois NFSR in Example 1.

Example 1 Consider a 4-stage 2-terminal-bit Galois NFSR given by Theorem 1, whose
feedback F = [f1 f2 f3 f4]

T satisfies

f1 = X2,

f2 = X3,

f3 = X1 ⊕X2 ⊕X2X3 ⊕X3X4,

f4 = X2 ⊕X3 ⊕X4 ⊕X2X3.

(11)

We use the notations in Theorem 1. Then, based on Equations (7) and (11), we can easily
get that Xj3 = X1, Xj4 = X4, g3(X2, X3, h4) = X2⊕X3h4, h4 = X4⊕X2X3 and g4 = X2⊕X3.
Figure 2 shows that the state diagram of the Galois NFSR contains only cycles, which means
the Galois NFSR is nonsingular. This result is consistent with Theorem 1.

Remark 1 Theorem 1 gives a sufficient condition for an n-stage Galois NFSR to be nonsin-
gular. However, this nonsingular Galois NFSR, clearly, does not satisfy the stated necessary
condition for the nonsingularity of an n-stage Galois NFSR [8], that is, all feedback func-
tions of the Galois NFSR satisfy fi = X(i+1) mod n ⊕ gi(X1, X2, . . . , Xi, Xi+2, . . . , Xn) with
i = 1, 2, . . . , n. Actually, in Example 1, we can easily know that f3 and f4 does not contain
the linear term X4 and X1, respectively. Therefore, that stated necessary condition therein is
not reasonable. Nevertheless, we give some necessary conditions as follows.

Theorem 2 If an n-stage Galois NFSR with feedback F = [f1 f2 . . . fn]
T is nonsingular,

then all linear terms Xis with i = 1, 2, . . . , n, appear in the feedback F of the Galois NFSR.

Proof. If the Galois NFSR is nonsingular, then F is invertible. Thereby, F is bijective.
Hence, for any a = [a1 a2 . . . an]

T ∈ Fn
2 , the equation F (X1, X2, . . . , Xn) = a has a unique

solution [X1 X2 . . . Xn]
T ∈ Fn

2 .
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We assume there exists a linear term Xi0 with some i0 ∈ {1, 2, . . . , n} does not appear in
feedback function fi for any i ∈ {1, 2, . . . , n}. Since the function fi can be written as

fi(X1, . . . , Xn) = hi(X1, X2, . . . , Xi0−1, Xi0+1, . . . , Xn)Xi0

⊕pi(X1, X2, . . . , Xi0−1, Xi0+1, . . . , Xn),
(12)

where hi and pi are Boolean functions, we can infer that hi(0, 0, . . . , 0) = 0 for any i ∈

{1, 2, . . . , n}. Then, according to Equation (12), we have

fi(0, . . . , 0, Xi0 , 0, . . . , 0) = pi(0, 0 . . . , 0) := ci (13)

for any i ∈ {1, 2, . . . , n} and for any Xi0 ∈ F2, which has two solutions [0 . . . 0 0
i0
0 . . . 0]T and

[0 . . . 0 1
i0
0 . . . 0]T . Then, for c = [c1 c2 . . . cn]

T ∈ Fn
2 , the equation F (X1, X2, . . . , Xn) = c

has two solutions [0 . . . 0 0
i0
0 . . . 0]T and [0 . . . 0 1

i0
0 . . . 0]T , a contradiction. 2

Corollary 1 If an n-stage Galois NFSR with feedback F = [f1 f2 · · · fn]
T is nonsingular,

then for the binary variable Xi with any i ∈ {1, 2 . . . , n}, there exists a feedback function fji

with some ji ∈ {1, 2, . . . , n} such that the linear term Xi appears in fji(X1, X2, . . . , Xn).

In [17], it gave the following result. For the necessity of later statements, we list its proof
below as well.

Theorem 3 (Theorem 4 in [17]) If an n-stage Galois NFSR with feedback F = [f1 f2 . . . fn]
T

is nonsingular, then there exists at least one feedback function fi satisfies

fi(X1, . . . , Xn) = Xj ⊕ gi(X1, X2, . . . , Xj−1, Xj+1, . . . , Xn).

Proof. If the Galois NFSR is nonsingular, then for any pair of states (α1, α2, . . . , αj−1, 0, αj+1, . . . ,

αn) ∈ Fn
2 and (α1, α2, . . . , αj−1, 1, αj+1, . . . , αn) ∈ Fn

2 , their successors are distinct, which
means there exists at least one feedback function fi such that

fi(α1, α2, . . . , αj−1, 0, αj+1, . . . , αn) = fi(α1, α2, . . . , αj−1, 1, αj+1, . . . , αn)⊕ 1, (14)

where i may be relative to (α1, α2, . . . , αj−1, αj+1, . . . , αn).
The function fi can be written as:

fi(X1, . . . , Xn) = gi(X1, X2, . . . , Xj−1, Xj+1, . . . , Xn)Xj

⊕hi(X1, X2, . . . , Xj−1, Xj+1, . . . , Xn),
(15)
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Figure 3: State diagram of the Galois NFSR in Example 2.

where gi and hi are Boolean functions. We shall prove that gi = (X1, . . . , Xj−1, Xj+1, . . . , Xn) ≡

1. If gi(X1, X2, . . . , Xj−1, Xj+1, . . . , Xn) 6≡ 1, then there exists some (a1, a2, . . . , aj−1, aj+1, . . . , an) ∈

Fn−1
2 such that gi(a1, a2, . . . , aj−1, aj+1, . . . , an) = 0. Thus

fi(a1, a2, . . . , aj−1, 0, aj+1, . . . , an) = fi(a1, a2, . . . , aj−1, 1, aj+1, . . . , an), (16)

which is contrary with Equation (14). Hence, gi = (X1, X2, . . . , Xj−1, Xj+1, . . . , Xn) ≡ 1.

According to Equation (15), the result follows. 2

Actually, the following example shows that the result in Theorem 3 is not reasonable.

Example 2 Consider a 4-stage Galois NFSR with a feedback F = [f1 f2 f3 f4]
T satisfying

f1 = X1 ⊕X2 ⊕X1X3 ⊕X1X4 ⊕X3X4 ⊕X2X3X4 ⊕ 1,

f2 = X2 ⊕X1X3 ⊕X1X4 ⊕X2X3 ⊕X2X4 ⊕X3X4 ⊕ 1,

f3 = X1 ⊕X2 ⊕X3 ⊕X4 ⊕X1X2 ⊕X3X4 ⊕X1X3X4 ⊕X2X3X4,

f4 = X1 ⊕X2 ⊕X4 ⊕X1X2 ⊕X3X4 ⊕X1X3X4 ⊕X2X3X4.

From Figure 3, we can see that the state diagram of the Galois NFSR contains only cycles,
which means the Galois NFSR is nonsingular. However, all the feedback functions of this
Galois NFSR do not satisfy the result in Theorem 3. Therefore, the result in Theorem is not
reasonable.

Remark 2 In the proof of Theorem 3, the statement “where i may be relative to (α1, α2, . . . ,

αj−1, αj+1, . . . , αn)” implies that not all α = (α1, α2, . . . , αj−1, αj+1, . . . , αn) satisfy Equation
(14). For simplicity, we denote the set S = {α|α satisfies Equation (14)}. Unfortunately,
(a1, a2, . . . , aj−1, aj+1, . . . , an) in Equation (16) may not belong to S. Hence, the statement
of Equation (16) contrary with Equation (14) is not correct. Therefore, the proof of Theorem
3 is problematic. Nevertheless, we have given Theorem 2 and Corollary 1, which are similar
to Theorem 3 and are easily shown correct by Example 2.
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Theorem 4 If an n-stage Galois NFSR with feedback F = [f1 f2 . . . fn]
T is nonsingualr,

then the fk’s Hamming weight wt(fk) = 2n−1 for all k = 1, 2, . . . , n.

Proof. An n-stage Galois NFSR with feedback F = [f1 f2 . . . fn]
T is nonsingualr if and

only if F is inverse, which is equivalent to saying that the set S = {Y|Y = F (X),X ∈ Fn
2}

has 2n elements, which means S = Fn
2 and Y ∈ Fn

2 . Clearly, there are 2n−1 possible forms of
Y over Fn

2 whose i-th components are 1 for i = 1, 2, . . . , n.

Assume there exists a feedback function fi whose wt(fi) 6= 2n−1. Thus, wt(fi) = 2n−1±a,
where a = 1, 2, . . . , 2n−1. This is equivalent to saying that there are 2n−1 ± a possible forms
of Y over Fn

2 whose i-th components are 1, where a = 1, 2, . . . , 2n−1. It is a contradiction,
and the result follows. 2

Corollary 2 If an n-stage Galois NFSR with feedback F = [f1 f2 . . . fn]
T is nonsingular,

then the degree of fi for all i = 1, 2, . . . , n, is no more than n− 1.

Proof. According to Theorem 4 and the process of computing the algebraic normal form
of a Boolean function by its truth table, the result follows. 2

5 Equivalence of NFSRs

In this section, we study the equivalence between Galois NFSRs and Fibonacci ones.
According to Lemma 4, we know that if an n-stage Galois NFSR represented by a

linear system X(t + 1) = F (X(t)) with X = [X1 X2 · · · Xn]
T is equivalent to an n-

stage Fibonacci one, then for any i ∈ {1, 2, . . . , n}, Xi(t) can be uniquely expressed by
X1(t), X1(t + 1), . . . , X1(t + n − 1) for all t ∈ N. Moreover, as stated in [15], such a unique
expression of Xi(t) for any i ∈ {1, 2, . . . , n} and for all t ∈ N, can be derived from the non-
linear system represention X(t + 1) = F (X(t)) by equivalent transformations. Notably, in
Galois NFSR, X1(t) can always expressed by X1(t) for all t ∈ N. Based on this result, in the
following we obtain some necessary conditions for the Galois NFSRs equivalent to Fibonacci
ones, from the perspectives of their feedback functions.

Theorem 5 If an n-stage Galois NFSR with feedback F = [f1 f2 · · · fn]
T is equivalent to

an n-stage Fibonacci one, then for any i ∈ {2, 3, . . . , n}, the linear term Xi must appear in
the feedback F = [f1 f2 · · · fn]

T of the Galois NFSR.
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Proof. Assume there exists a linear term Xj with some j ∈ {2, . . . , n} does not appear
in the feedback function fi for any i ∈ {1, 2, . . . , n}. Since there is no division in binary field,
we cannot derive Xj(t) from any bit but the j-th bit feedback function of the Galois NFSR,
which can be described as

Xj(t+ 1) = fj(X1(t), X2(t), . . . , Xn(t)), t ∈ N. (17)

As this Galois NFSR is equivalent to a Fibonaaci one, then according to Lemma 4, there
exists a unique bijection h = [h1 h2 · · · hn]

T over Fn
2 such that

Xk(t) = hk(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)) (18)

for each k ∈ {1, 2, . . . , n} and for any t ∈ N. From Equations (17) and (18), we have

Xj(t+ 1) = gj(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)), t ∈ N,

for some Boolean function gj , which implies

Xj(t) = gj(X1(t− 1), X1(t), . . . , X1(t+ n− 2)), t ≥ 1,

contrary with Lemma 4. Hence, for any j ∈ {2, . . . , n}, the linear term Xj must appear in
the feedback F = [f1 f2 . . . fn]

T of the Galois NFSR. 2

Theorem 6 If an n-stage Galois NFSR with feedback F = [f1 f2 . . . fn]
T is equivalent to

an n-stage Fibonacci one, and some linear term Xi with i ∈ {2, . . . , n} appears in only one
feedback function fj with j ∈ {1, 2, . . . , n} of the Galois NFSR, then

fj(X1, X2, . . . , Xn) = Xi ⊕ hj(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn), j 6= i.

Proof. Note that

Xj(t+ 1) = fj(X1(t), X2(t), . . . , Xn(t))

= gj(X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t))Xi(t)

⊕hj(X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)), t ∈ N.

(19)

Then, we can claim gj(X1(t), X2(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)) ≡ 1. Otherwise, there
exists some t0 ∈ N such that

gj(X1(t0), X2(t0), . . . , Xi−1(t0), Xi+1(t0), . . . , Xn(t0)) = 0.
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Together taking into consideration Equation (19), we have

Xj(t0 + 1) = hj(X1(t0), X2(t0), . . . , Xi−1(t0), Xi+1(t0), . . . , Xn(t0)), t0 ∈ N,

which does not contain Xi(t0). As the linear term Xi only appears in fj and there is no
division in binary field, we cannot derive Xi(t0) from any bit but the i-th bit feedback
function of the Galois NFSR, which can be described as

Xi(t0 + 1) = fi(X1(t0), X2(t0), . . . , Xn(t0)), t0 ∈ N. (20)

As this Galois NFSR is equivalent to Fibonacci one, then according to Lemma 4, there exists
a unique bijection h = [h1 h2 · · · hn]

T over Fn
2 such that

Xk(t) = hk(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)) (21)

for each k ∈ {1, 2, . . . , n} and for any t ∈ N. From Equation (20) and (21), we have

Xi(t0 + 1) = gj(X1(t0), X1(t0 + 1), . . . , X1(t0 + n− 1)), t0 ∈ N,

for some Boolean function gj , which implies

Xi(t0) = gj(X1(t0 − 1), X1(t0), . . . , X1(t0 + n− 2)), t0 ≥ 1.

Thus, Xi(t0) cannot be expressed by X1(t0), X1(t0 + 1), . . . , X1(t0 + n − 1), contrary with
Lemma 4. Hence, we have

gj(X1(t), X2(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)) ≡ 1, t ∈ N,

which implies

Xj(t+ 1) = Xi(t)⊕ hj(X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)), t ∈ N.

The remaining is to prove j 6= i. We assume that j = i. Then the above Equation can be
of the form

Xi(t+ 1) = Xi(t)⊕ hi(X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)), t ∈ N.

Similar to the foregoing proof, we can get a contraction. Thus, we have j 6= i. 2
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Corollary 3 An n-stage (n−2)-terminal-bit Galois NFSR with feedback F = [f1 f2 · · · fn]T

be of the form
(a) fi = Xi+1, i = 1, 2, . . . , n− 2,

(b) fn−1 = fn−1(X1, X2, . . . , Xn),

(c) fn = fn(X1, X2, . . . , Xn),

(22)

is equivalent to an n-stage Fibonacci NFSR if and only if the feedback function fn−1 can be
written in the form

fn−1 = Xn ⊕ gn−1(X1, X2, . . . , Xn−1). (23)

Proof. Sufficiency: If (b) of Equation (22) can be written as Equation (23), we can easily
know that this Galois NFSR is a particular lower triangular Galois NFSR. Then according
to Lemma 5, this n-stage Galois NFSR is equivalent to an n-stage Fibonacci NFSR.

Necessity: From (a) in Equation (22), we can derive Xi(t) = X1(t + i − 1) for any
i ∈ {2, 3, . . . , n − 1}. As the linear term Xn does not appear in (a) of Equation (22), then
according to Theorems 5 and 6, the result follows. 2

Remark 3 Corollary 3 shows that an n-stage (n−2)-terminal-bit Galois NFSR is equivalent
an n-stage Fibonacci NFSR if and only if the n-stage (n− 2)-terminal-bit Galois NFSR is a
lower triangular Galois NFSR.

Lemma 6 Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n− 1. Let an n-stage Galois
NFSR with feedback F = [f1 f2 . . . fn]

T be of the form

(a) fi = Xi+1, i = 1, 2, . . . , τ,

(b) fτ+1 = gτ+1(X1, X2, . . . , Xn),

(c) fi = gi(X1, X2, . . . , Xi−1), i = τ + 2, τ + 3, . . . , n.

(24)

Then, Ωg ⊆ Ωf , where Ωg and Ωf are the sets of output sequences of the Galois NFSR and
an n-stage Fibonacci NFSR, respectively.

Proof. It follows from (a) in Equation (24) that Xi(t + 1) = Xi+1(t) for 1 ≤ i ≤ τ and
for any t ∈ N. Thus, we have

Xi(t) = X1(t+ i− 1), i = 1, 2, . . . , τ + 1, t ∈ N. (25)
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(c) in Equation (24) means

Xτ+2(t+ 1) = gτ+2(X1(t), X2(t), . . . , Xτ+1(t)),

Xτ+3(t+ 1) = gτ+3(X1(t), X2(t), . . . , Xτ+2(t)),

...

Xn(t+ 1) = gn(X1(t), X2(t), . . . , Xn−1(t)), t ∈ N.

(26)

Taking Equation (25) into the first equation of (26), we have Xτ+2(t+1) = gτ+2(X1(t), X1(t+

1), . . . , X1(t+ τ)). Thus,

Xτ+2(t) = gτ+2(X1(t− 1), X1(t), . . . , X1(t+ τ − 1)) (27)

for all t ≥ 1. Here t ≥ 1 is to ensure that the time of every parameter is nonnegative.
Taking Equations (25) and (27) into the second equation of (26), we have Xτ+3(t + 1) =

g̃τ+3(X1(t − 1), . . . , X1(t + τ)) for some Boolean function g̃τ+3 and for all t ≥ 1. Thus,
Xτ+3(t) = g̃τ+3(X1(t− 2), . . . , X1(t+ τ − 1)) for all t ≥ 2. Keeping similar substitutions, the
last equation of (26) can be rewritten as Xn(t) = g̃n(X1(t+ τ −n+1), . . . , X1(t+ τ − 1)) for
some Boolean function g̃n and for all t ≥ n− τ − 1. Therefore, we have

Xi(t) = g̃i(X1(t+ τ − i+ 1), . . . , X1(t+ τ − 1)) (28)

for some Boolean function g̃i with τ + 2 ≤ i ≤ n and for all t ≥ i − τ − 1. Together taking
into consideration (b) in Equation (24), we can infer that

Xτ+1(t+ 1) = gτ+1(X1(t), X2(t), . . . , Xn(t)), t ∈ N. (29)

Replacing X1(t), X2(t), . . . , Xn(t) in (29) by Equations (25) and (28), we get X1(t+ τ +1) =

g̃τ+1(X1(t+τ−n+1), . . . , X1(t+τ)) for some Boolean function g̃τ+1 and for all t ≥ n−τ−1.
Thus, X1(t) = g̃τ+1(X1(t− n), X1(t− n+1), . . . , X1(t− 1)) for all t ≥ n, which formulates a
recurrence relation of order n. According to Lemma 2, the proof is complete. 2

Remark 4 Neither the Galois NFSRs in Lemma 6 nor their π-equivalent ones belong to the
class of lower triangular Galois NFSRs in [11]. The reason is as follows.

The feedback function fτ+1 of the Galois NFSR in Lemma 6 is a function of n variables
that has no restriction. However, each feedback function fi of a lower triangular Galois NFSR
is a function with variable indices no greater than i+ 1. Thus, the Galois NFSR in Lemma
6 is clearly not contained in the class of lower triangular NFSRs.
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Table 1: The Output Sequences of length 8 of Two NFSRs in Example 3

Sequences of the Galois NFSR Sequences of the Fibonacci NFSR

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1
0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1
1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0
1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For a lower triangular Galois NFSR, only fn is a function of n variables without any
restriction. For the Galois NFSR in Lemma 6, fτ+1 is such a function. If a π-equivalent one
of the Galois NFSR in Lemma 6 belongs to the class of lower triangular Galois NFSRs, then
π(τ + 1) = n. Thus, for the permuted Galois NFSR, its feedback functions of the last n − τ

bits are related to the variable Xn, a contradiction. Therefore, the π-equivalent ones of the
Galois NFSR in Lemma 6 are not contained in the class of lower triangular Galois NFSRs.

Example 3 Consider a 4-stage 2-terminal-bit Galois NFSR given by Equation (24), whose
feedback F = [f1 f2 f3 f4]

T satisfies f1 = X2, f2 = X3, f3 = X1X2 ⊕ X3X4, f4 =

X1 ⊕ X2 ⊕ X3. Similar to the substitution in the Proof of Lemma 6, we can easily get
X1(t) = X1(t− 3)X1(t− 2)⊕X1(t− 1)X1(t− 4)⊕X1(t− 1)X1(t− 3)⊕X1(t− 1)X1(t− 2),
which formulates a recurrence relation of order 4. In other words, each output sequence
of this Galois NFSR can be generated by a 4-stage Fibonacci NFSR with feedback function
f = X2X3 ⊕ X1X4 ⊕ X2X4 ⊕ X3X4. There are totally 12 and 16 output sequences of the
Galois NFSR and the Fibonacci NFSR, respectively. For simplicity, Table 1 lists their output
sequences of length 8. We observe that the set of output sequences of the Galois NFSR is a
subset of, but not equal to, the set of the output sequences of the Fibonacci NFSR.

Remark 5 Example 3 shows that the Galois NFSRs with terminal bits satisfying Equation
(24) may not be equivalent to Fibonacci ones. Actually, the existence of a recurrence relation
of order n only implies their sets of output sequences satisfying Ωg ⊆ Ωf , but does not
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guarantee Ωg = Ωf .

In the following, we give a necessary and sufficient condition for the equivalence between
Galois NFSRs with terminal bits and Fibonacci ones.

Proposition 1 Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n − 1. An n-stage
τ -terminal-bit Galois NFSR represented by System X(t + 1) = F (X(t)) with state X ∈ Fn

2

is equivalent to an n-stage Fibonacci NFSR represented by System Y(t + 1) = H(Y(t))

with state Y ∈ Fn
2 , if and only if there exists a bijective mapping φ : X 7→ Y such that

φ(F (X)) = H(φ(X)) and

diag(1 1 · · · 1︸ ︷︷ ︸
τ+1

0 · · · 0)φ(X) = diag(1 1 · · · 1︸ ︷︷ ︸
τ+1

0 · · · 0)X (30)

for all X ∈ Fn
2 , where diag(·) denotes a diagonal matrix with diagonal elements of 1 and 0.

Proof. Necessity: Clearly, for each X ∈ Fn
2 , there exists an edge from state X to state

F (X) in the state diagram of the Galois NFSR. Similarly, for each Y ∈ Fn
2 , there exists an

edge from state Y to state H(Y) in the state diagram of the Fibonacci NFSR. If a Galois
NFSR is equivalent to a Fibonacci NFSR, then according to Lemma 1, their state diagrams
are isomorphic, which is equivalent to that there exists a bijective mapping φ : X 7→ Y such
that

φ(F (X)) = H(Y) = H(φ(X)) for each X ∈ Fn
2 . (31)

Let
F = [f1 f2 . . . fn]

T , (32)

H = [h1 h2 . . . hn]
T , (33)

φ = [φ1 φ2 . . . φn]
T . (34)

Moreover, we let X = [X1 X2 . . . Xn]
T and Y = [Y1 Y2 . . . Yn]

T . Since F is the state
transition function of the n-stage τ -terminal-bit Galois NFSR with τ satisfying 1 ≤ τ ≤ n−1,
we have

fi(X) = Xi+1, i = 1, 2, . . . , τ. (35)

Similarly, as H is the state transition function of the Fibonacci NFSR, we havehi(Y) = Yi+1, i = 1, 2, . . . , n− 1,

hn(Y) = f(Y1, Y2, . . . , Yn),
(36)
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where f is the feedback function of the Fibonacci NFSR. Since the output of an NFSR is the
content of the first bit, and the first τ bits of the Fibonacci NFSR and its equivalent Galois
NFSR are involved only shifts, we can deduce that each state X and its correspondingly
transformed state Y have the same first τ components, which means

φi(X) = Xi, i = 1, 2, . . . , τ. (37)

From Equations (32), (35) and (37), we have

φ(F (X)) = φ(f1(X), f2(X), . . . , fn(X)) = φ(X2, . . . , Xτ+1, fτ+1(X), . . . , fn(X))

= [φ1(X2, . . . , Xτ+1, fτ+1(X) · · · fn(X)), . . . , φn(X2, . . . , Xτ+1, fτ+1(X), . . . , fn(X))]T

= [X2 · · · Xτ Xτ+1 φτ+1(X2, . . . , Xτ+1, fτ+1(X), . . . , fn(X)) · · ·

φn(X2, . . . , Xτ+1, fτ+1(X), . . . , fn(X))]T

(38)
for all X ∈ Fn

2 . Similarly, according to Equations (33)-(34) and (36)-(37), we have

H(φ(X)) = H(φ1(X), φ2(X), . . . , φn(X))

= [h1(φ1(X), φ2(X), . . . , φn(X)) · · · hn(φ1(X), φ2(X), . . . , φn(X))]T

= [φ2(X) · · · φn(X) f(φ1(X), φ2(X), . . . , φn(X))]T

= [X2 · · · Xτ φτ+1(X) · · · φn(X) f(X1, . . . , Xτ , φτ+1(X), . . . , φn(X))]T

(39)

for all X ∈ Fn
2 . Based on Equations (31), (38) and (39), we can deduce that φτ+1(X) = Xτ+1

for all X ∈ Fn
2 . Hence, φi(X) = Xi for all i = 1, 2, . . . , τ + 1 and for all X ∈ Fn

2 , which is
equivalent to Equation (30) for all X ∈ Fn

2 .
Sufficiency: If there exists a bijective mapping φ : X 7→ Y such that φ(F (X)) = H(φ(X)),

then according to the necessity proof, the state diagrams of the Galois NFSR and the Fi-
bonacci NFSR are isomorphic. Moreover, if the bijection φ satisfies Equation (30) for all
X ∈ Fn

2 , then
φi(X) = Xi, i = 1, 2, . . . , τ + 1, X ∈ Fn

2 . (40)

Thus, each state and its correspondingly transformed state have the same first τ + 1 compo-
nents, and thereby the Galois NFSR is equivalent to the Fibonacci NFSR. In the following,
we need to prove that the Galois NFSR has the terminal bit τ .
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By Equations (32)-(34), (36) and (40), we have

H(φ(X)) = H(φ1(X), φ2(X), . . . , φn(X))

= [h1(φ1(X), φ2(X), . . . , φn(X)) · · · hn(φ1(X), φ2(X), . . . , φn(X))]T

= [φ2(X) · · · φn(X) f(φ1(X), φ2(X), . . . , φn−1(X))]T

= [X2 · · · Xτ+1 φτ+2(X) · · · φn(X) f(φ1(X), φ2(X), . . . , φn−1(X))]T

and

φ(F (X)) = φ(f1(X), . . . , fn(X)) = [f1(X) · · · fτ+1(X) φτ+2(F (X)) · · · φn(F (X))]T

for all X ∈ Fn
2 . Together taking into consideration φ(F (X)) = H(φ(X)) for all X ∈ Fn

2 , we
can infer that fi(X) = Xi+1 for all i = 1, 2, . . . , τ and for all X ∈ Fn

2 . Thus, the Galois NFSR
has the terminal bit τ . 2

Lemma 7 An n-stage Galois NFSR and its state diagram is one-to-one correspondent.

Proof. If an n-stage Galois NFSR is given, which means its feedback F = [f1 f2 . . . fn]
T

is fixed, then its state diagram is, clearly, uniquely determined. Conversely, if a state diagram
with 2n nodes is given, then for any given state X = [X1 X2 . . . Xn]

T , its successor
Y = [Y1 Y2 . . . Yn]

T is uniquely determined. It means the feedback F = [f1 f2 . . . fn]
T

of the Galois NFSR satisfies F (X) = Y, i.e., fi(X) = Yi, for all i = 1, 2, . . . , n. Note that
for the given state X, it has totally 2n possible values. Thus, for each i ∈ {1, 2, . . . , n},
there are totally 2n equations satisfying fi(X) = Yi and X takes all 2n possible values. This
means that for each i ∈ {1, 2, . . . , n}, the truth table of fi is uniquely determined by the sate
diagram, and therefore the algebraic normal form of fi is uniquely determined. Thus, the
Galois NFSR is uniquely determined. 2

Theorem 7 Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n−1. For any given n-stage
Fibonacci NFSR, there are (2n−τ−1!)2

τ+1
n-stage τ -terminal-bit Galois NFSR equivalent to

the Fibonacci NFSR.

Proof. Let the n-stage Fibonacci NFSR be represented by System Y(t+ 1) = H(Y(t))

with state Y ∈ Fn
2 , and its n-stage τ -terminal-bit equivalent Galois NFSR be represented

by System X(t + 1) = F (X(t)) with state X ∈ Fn
2 . According to Proposition 1, the n-stage

τ -terminal-bit Galois NFSR is equivalent to the given n-stage Fibonacci NFSR, if and only
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if there exists a bijective mapping φ : X 7→ Y such that φ(F (X)) = H(φ(X)) and Equation
(30) holds for all X ∈ Fn

2 .
Equation (30) means that the state X = [X1 X2 . . . Xn]

T and its transformed state
Y = [Y1 Y2 . . . Yn]

T satisfy Xi = Yi for all i = 1, 2, . . . , τ + 1. Hence, for any given state
X, [Y1 Y2 . . . Yτ+1]

T = [X1 X2 . . . Xτ+1]
T is fixed. Clearly, there are 2τ+1 possible forms

of [X1 X2 . . . Xτ+1]
T . Without loss of generality, say [X1 X2 . . . Xτ+1]

T = [ 0 . . . 0︸ ︷︷ ︸
τ+1

]T .

Then, there are 2n−τ−1 possible forms of [ 0 . . . 0︸ ︷︷ ︸
τ+1

Xτ+2 . . . Xn]
T , and there are 2n−τ−1

possible forms of [ 0 . . . 0︸ ︷︷ ︸
τ+1

Yτ+2 . . . Yn]
T as well. Thereby, there are 2n−τ−1! possible forms

of the bijection φ : [ 0 . . . 0︸ ︷︷ ︸
τ+1

Xτ+2 . . . Xn]
T → [ 0 . . . 0︸ ︷︷ ︸

τ+1

Yτ+2 . . . Yn]
T . Therefore,

we can deduce that there are totally (2n−τ−1!)2
τ+1 possible forms of the bijection φ : X =

[X1 X2 . . . Xn]
T 7→ Y = [Y1 Y2 . . . Yn]

T such that φ(F (X)) = H(φ(X)) and Equation
(30) holds for all X ∈ Fn

2 .
Different bijective mappings φs result in different state diagrams of equivalent Galois

NFSRs, and according to Lemma 7, different state diagrams result in different Galois NFSRs.
Therefore, there are (2n−τ−1!)2

τ+1
n-stage τ -terminal-bit equivalent Galois NFSRs. 2

Example 4 A 3-stage Fibonacci NFSR with a feedback function f = X1 ⊕X2X3 ⊕X2 ⊕ 1

generates the output sequence 01110100 which has the period 8. There are totally 16 3-
stage 1-terminal-bit Galois NFSRs equivalent to this Fibonacci NFSR. Actually, they are all
lower triangular Galois NFSRs. Table 2 in Appendix gives their feedback functions, in which
each first-bit feedback function satisfies f1 = X2. Figure 7 in Appendix gives their state
diagrams, which are isomorphic; moreover, their corresponding sates have the same first two
components. All of these are consistent with the results in Theorems 5, 7 and Corollary 3.

Theorem 8 Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n− 1. An n-stage Galois
NFSR is equivalent to an n-stage Fibonacci NFSR if its feedback F = [f1 f2 . . . fn]

T satisfies

(a) fi = Xi+1, i = 1, 2, . . . , τ,

(b) fτ+1 = Xn ⊕ gτ+1(X1, X2, . . . , Xn−1),

(c) fτ+2 = X1 ⊕ gτ+1(X2, . . . , Xτ+1),

(d) fi = Xi−1 ⊕ gi(X1, X2, . . . , Xi−2), i = τ + 3, τ + 4, . . . , n.

(41)

Proof. Because of the Galois NFSR whose feedback satisfies Equation (41) is a particular
Galois NFSR whose feedback satisfies Equation (24), then according to the proof of Lemma
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6, we know that there exists a recurrence relation of order n describing each output sequence
of the i-th bit Xi with i ∈ {1, 2, . . . , n}. In the following, we prove that the Galois NFSR is
nonsingular.

A Galois NFSR is nonsingular, if and only if its feedback F is bijection. Hence, we only
need to prove that for any a = [a1 a2 . . . an]

T ∈ Fn
2 , the equation F (X1, X2, . . . , Xn) = a

has a unique solution [X1 X2 . . . Xn]
T ∈ Fn

2 . Consider the solution of the following system
derived from Equation (41) by setting fi = ai for all i = 1, 2, . . . , n:

a1 = X2,

...

aτ = Xτ+1,

aτ+1 = Xn ⊕ gτ+1(X1, X2, . . . , Xn−1),

aτ+2 = X1 ⊕ gτ+2(X2, . . . , Xτ+1),

aτ+3 = Xτ+2 ⊕ gτ+3(X1, X2, . . . , Xτ+1),

...

an−1 = Xn−2 ⊕ gn−1(X1, X2 . . . , Xn−3),

an = Xn−1 ⊕ gn(X1, X2 . . . , Xn−2).

(42)

First, it can be seen that Xis for 2 ≤ i ≤ τ +1 are determined by the first τ equations. Then,
we can determine the value of X1 from the (τ + 2)-th equation of (42). Based on these, we
can determine each Xi with i ∈ {τ + 2, τ + 3, . . . , n− 1} according to the equations from the
(τ +3)-th to the n-th of Equation (42). Finally, Xn is determined by the (τ +1)-th equation
under the condition that all X1, X2, . . . , Xn−1 have been determined. Thus, the Galois NFSR
is nonsingular. Then, according to Lemma 3, the result follows. 2

Example 5 Consider a 4-stage 1-terminal-bit Galois NFSR given by Equation (41), whose
feedback F = [f1 f2 f3 f4]

T satisfies f1 = X2, f2 = X4 ⊕X1 ⊕X2X3, f3 = X1 ⊕X2, f4 =

X3 ⊕ X1X2. In fact, this 4-stage Galois NFSR is equivalent to a 4-stage Fibonacci NFSR
with feedback function f = X1 ⊕X2 ⊕X3 ⊕X2X3 ⊕X2X4 ⊕X3X4. Figure 4(a) and Figure
4(b), respectively, show their state diagrams. We can easily see that each NFSR has one
all-zero sequence and one 15-period sequence of 010100110111100. So, the Galois NFSR and
the Fibonacci NFSR are indeed equivalent, consistent with our result in Theorem 8.
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0100 1010 0111 1011 0011! 0101 1110 1000

0000

0110111111001101100100100001

(a) State diagram of the Galois NFSR in Example 5.

1,1, . . . ,1)

0,0, . . . ,0)

0101 1010 0100 1001 0011! 0110 1101! 1011!

0000

0111!1111!1110!1100!1000!0001!0010!

(b) State diagram of the Fibonacci NFSR in Example 5.

Figure 4: State diagrams of the Galois NFSR and the Fibonacci NFSR in Example 5.

0001 0110 1100 1001 0111 0011 1010 0100 00001000

1110

1101

1111

0101

1011 0010

Figure 5: State diagram of the Galois NFSR in Example 6.

In [13], it discovered that the set of output sequences of the last bit of Galois NFSR(called
Type-IV), is equal to the set of output sequences of Fibonacci NFSR. The feedback F =

[f1 f2 · · · fn]
T of the Type-IV Galois NFSR satisfies

(a) fi = Xi+1 ⊕ gi(Xi+2, Xi+3, . . . , Xn), i = 1, 2, . . . , n− 2,

(b) fn−1 = Xn,

(c) fn = X1 ⊕ gn(X1, X2, . . . , Xn).

(43)

Actually, the result about Type-IV Galois NFSRs equivalent to Fibonacci ones in [13] is not
reasonable, which can be shown by the following example.

Example 6 Consider a 4-stage Galois NFSR given by Equation (43), whose feedback F =

[f1 f2 f3 f4]
T satisfies f1 = X2 ⊕X3X4, f2 = X3 ⊕X4, f3 = X4, f4 = X1 ⊕X1X3 ⊕X2X4.

From Figure 5, we can see that the sequence 100111000 can be generated from initial state
[0 0 0 1] and initial state [1 1 0 1]. Thus, this Galois NFSR is not equivalent to Fibonacci
NFSR. Therefore, the result about Type-IV Galois NFSRs in [13] is not reasonable.

Proposition 2 A Type-IV Galois NFSR in [13] is equivalent to a Fibonacci NFSR if and
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only if its feedback functions satisfy

(a) fi = Xi+1 ⊕ gi(Xi+2, Xi+3, . . . , Xn), i = 1, 2, . . . , n− 2,

(b) fn−1 = Xn,

(c) fn = X1 ⊕ gn(X2, . . . , Xn).

(44)

Poof. Similar to the poof of Lemma 6 and Theorem 8, we can prove the result holds. 2

Remark 6 The π-equivalent NFSRs of Galois ones in Lemma 2 belong to the class of Galois
NFSRs in Theorem 8, where the permutation π : (1, 2, 3, . . . , n− 2, n− 1, n) → (n, n− 1, n−

2 . . . 3, 1, 2). We show the transformation process below.

fn = X1 ⊕ gn(X2, X3, . . . , Xn), f1 = X2,

fn−1 = Xn, f2 = Xn ⊕ g2(X1, X2, . . . , Xn−1),

fn−2 = Xn−1 ⊕ gn−2(Xn), f3 = X2 ⊕ g3(X1),

fn−3 = Xn−2 ⊕ gn−3(Xn−1, Xn), f4 = X3 ⊕ g4(X1, X2),
... π

=====⇒
...

f3 = X4 ⊕ g3(X5, X6, . . . , Xn), fn−2 = Xn−3 ⊕ gn−2(X1, X2, . . . , Xn−4),

f2 = X3 ⊕ g2(X4, X5, . . . , Xn), fn−1 = Xn−2 ⊕ gn−1(X1, X2, . . . , Xn−3),

f1 = X2 ⊕ g1(X3, X4, . . . , Xn), fn = Xn−1 ⊕ gn−1(X1, X2, . . . , Xn−2).

(45)
Clearly, the permuted Galois NFSR in the right column of Equation (45) is an n-stage 1-
terminal-bit Galois NFSR in Theorem 8. Therefore, the π-equivalent NFSRs of Galois ones
in Proposition 2 belong to the class of Galois NFSRs in Theorem 8.

Theorem 9 Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n− 1. An n-stage Galois
NFSR is equivalent to an n-stage Fibonacci NFSR if its feedback F = [f1 f2 . . . fn]

T satisfies

(a) fi = Xi+1, i = 1, 2, . . . , τ,

(b) fτ+1 = X1 ⊕ gτ+1(X2, . . . , Xτ+1)⊕ hn,

(c) fi = Xi+1 ⊕ gi(X1, X2, . . . , Xτ+1, hn), i = τ + 2, τ + 3, . . . , n− 1

(d) fn = gn(X2, . . . , Xτ+1)⊕ hn,

(46)

where hn = Xτ+2 ⊕ h̃(X1, X2, . . . , Xτ+1, Xτ+3, . . . , Xn).

Proof. We use the notations in Theorem 1. Then, based on Equation (7) and (46), we can
easily get that Xjτ+1 = X1, Xjn = Xτ+2 and Xji = Xi+1 for all i = {τ + 2, τ + 2, . . . , n− 1}.

24



Thus, the Galois NFSR whose feedback satisfies Equation (46) is a particular Galois NFSR
whose feedback satisfies Equation (7), then according to the proof of Theorem 1, we know
that this Galois NFSR is nonsingular.

In the following, we prove that there exists a recurrence relation of order n describing
each output sequence of the i-th bit Xi with i ∈ {1, 2, . . . , n}. Similar to the proof of Lemma
6, we have

Xi(t) = X1(t+ i− 1), i = 1, 2, . . . , τ + 1, t ∈ N. (47)

Notably, hn is relative to the variables X1, X2, . . . , Xn, which change with time instant t. For
the statement ease, we denote hn as hn(t) in the sequel. Thus, from (b) in Equation (46), we
can obtain

Xτ+1(t+ 1) = X1(t)⊕ gτ+1(X2(t), X3(t), . . . , Xτ+1(t))⊕ hn(t), t ∈ N. (48)

Taking Equation (47) into (48), we have

hn(t) = h̃n(t)(X1(t), X1(t+ 1), . . . , X1(t+ τ + 1)), t ∈ N. (49)

(c) and (d) mean that

Xτ+2(t+ 1) = Xτ+3(t)⊕ gτ+2(X1(t), X2(t), . . . , Xτ+1(t), hn(t)),

Xτ+3(t+ 1) = Xτ+4(t)⊕ gτ+3(X1(t), X2(t), . . . , Xτ+1(t), hn(t)),

...

Xn−1(t+ 1) = Xn(t)⊕ gn−1(X1(t), X2(t), . . . , Xτ+1(t), hn(t)),

Xn(t+ 1) = gn(X1(t), X2(t), . . . , Xτ+1(t))⊕ hn(t), t ∈ N.

(50)

Taking Equations (47) and (48) into the last equation of (50), we have Xn(t+1) = g̃n(X1(t), X1(t+

1), . . . , X1(t+τ+1)) for some Boolean functions g̃n and for all t ∈ N. Thus, Xn(t) = g̃n(X1(t−

1), X1(t+ 1), . . . , X1(t+ τ)) for all t ≥ 1. Keeping similar substitutions, the first equation of
(50) can be rewritten as Xτ+2(t) = g̃τ+2(X1(t+ τ − n+ 1), X1(t+ τ − n+ 2), . . . , X1(t+ τ))

for some Boolean function g̃τ+2 and for all t ≥ n− τ − 1. Therefore, we have

Xi(t) = g̃i(X1(t− n+ i− 1), X1(t+ n− i), . . . , X1(t+ τ)) (51)

for some Boolean function g̃i with τ + 2 ≤ i ≤ n and for all t ≥ n − i + 1. Taking hn =

Xτ+2 ⊕ h̃(X1, X2, . . . , Xτ+1, Xτ+3, . . . , Xn) into (48), we can infer that

Xτ+1(t+ 1) = X1(t)⊕ gτ+1(X2(t), X3(t), . . . , Xτ+1(t))⊕

Xτ+2(t)⊕ h̃(X1(t), X2(t), . . . , Xτ+1(t), Xτ+3(t), . . . , Xn(t)), t ∈ N.
(52)
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0

(a) State diagram of the Galois NFSR in Example 7.

1,1, . . . , 1

0,0, . . . , 0

(b) State diagram of the Fibonacci NFSR in Example 7.

Figure 6: State diagrams of the Galois NFSR and the Fibonacci NFSR in Example 7.

Replacing X1(t), X2(t), . . . , Xn(t) in (52) by Equations (47) and (51), we get X1(t+ τ +1) =

g̃τ+1(X1(t+ τ −n+1), X1(t+ τ −n+2), . . . , X1(t+ τ)) for some Boolean function g̃τ+1 and
for all t ≥ n− τ −1. Thus, X1(t) = g̃τ+1(X1(t−n), X1(t−n+1), . . . , X1(t−1)) for all t ≥ n,
which formulates a recurrence relation of order n. Then according to Lemma 3, the result
follows. 2

Example 7 Consider a 4-stage 1-terminal-bit Galois NFSR given by Equation (46), whose
feedback F = [f1 f2 f3 f4]

T satisfies f1 = X2, f2 = X1 ⊕ X2 ⊕ X3 ⊕ X1X2X4, f3 =

X4⊕X1X2X3⊕X1X2X4, f4 = X3⊕X1X2X4. In fact, this 4-stage Galois NFSR is equivalent
to a 4-stage Fibonacci NFSR with feedback function f = X1 ⊕ X2 ⊕ X4. Figure 6(a) and
Figure 6(b), respectively, show their state diagrams. We can easily see that each NFSR has
one all-zero and all-one sequence, one 2-period sequence of 01, two 3-period sequences of 011
and 001, one 6-period sequence of 110001. So, the Galois NFSR and the Fibonacci NFSR
are indeed equivalent, consistent with our result in Theorem 9.

Remark 7 Similar to Remark 4, we can know that neither the Galois NFSRs in Theorem
8(resp. Theorem 9) nor their π-equivalent ones belong to lower triangular Galois NFSRs.
Moreover, from Equations (41) and (46), we can know that the Galois NFSRs in Theorems
8 and 9 are not covered by each other. So, the Galois NFSRs with terminal bits in Theorems
8 and 9 are actually two new types of Galois NFSRs which are nonsingular and equivalent to
Fibonacci ones.
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6 Conclusion

This paper first considered the nonsingularity of Galois NFSRs. Some necessary/sufficient
conditions were presented. The paper then concentrated on the equivalence between Galois
NFSRs and Fibonacci ones. It gave some necessary conditions for Galois NFSRs that are
equivalent to Fibonacci ones, from the perspectives of their feedback functions. Is also enu-
merated the Galois NFSRs with terminal bits equivalent to a given Fibonacci one. Moreover,
it provided two new types of nonsingular Galois NFSRs with terminal bits that are equivalent
to Fibonacci NFSRs. In future work, it is interesting to find new necessary and/or sufficient
conditions for the nonsingularity of Galois NFSRs, and find new types of Galois NFSRs with
terminal bits that are equivalent to Fibonacci ones.

Appendix

Table 2: The Feedback Functions of 3-stage 1-terminal-bit Galois NFSR in Example 4

Number f2 f3

1 X3 ⊕X1X2 ⊕X2 X1 ⊕X1X2 ⊕X3 ⊕ 1

2 X3 ⊕X1X2 X1 ⊕X2 ⊕ 1

3 X3 ⊕X1X2 ⊕X1 X1 ⊕ 1

4 X3 ⊕X1X2 ⊕X1 ⊕X2 ⊕ 1 X1X2 ⊕X2 ⊕X3 ⊕ 1

5 X3 ⊕X2 X1 ⊕X2X3 ⊕X2 ⊕X3 ⊕ 1

6 X3 ⊕X1 ⊕X2 X1X2 ⊕X2X3 ⊕X3 ⊕ 1

7 X3 ⊕X1 ⊕X2 X1 ⊕X1X2 ⊕X2X3 ⊕X2

8 X3 ⊕X1 X1 ⊕X1X2 ⊕X2X3 ⊕ 1

9 X3 ⊕X1 ⊕X2 ⊕ 1 X1X2 ⊕X2X3 ⊕X2 ⊕X3 ⊕ 1

10 X3 ⊕X2 ⊕ 1 X1 ⊕X2X3 ⊕X3 ⊕ 1

11 X3 ⊕X1X2 ⊕X2 ⊕X1 X1X2 ⊕X3 ⊕X2 ⊕ 1

12 X3 ⊕X1X2 ⊕ 1 X1 ⊕X2

13 X3 ⊕X1X2 ⊕X1 ⊕ 1 X1

14 X3 ⊕X1X2 ⊕X2 ⊕ 1 X1 ⊕X1X2 ⊕X3 ⊕ 1

15 X3 ⊕ 1 X1 ⊕X2X3

16 X3 X1 ⊕X2X3 ⊕X2 ⊕ 1
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Figure 7: State diagrams of the 3-stage 1-terminal-bit Galois NFSR in Example 4
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