Revisiting cryptanalysis on ChaCha from Crypto
2020 and Eurocrypt 2021

Sabyasachi Dey!, Chandan Dey?, Santanu Sarkar? and Willi Meier?

Abstract

ChaCha has been one of the prominent ARX designs of the last few years because of its use in several systems. The
cryptanalysis of ChaCha involves a differential attack which exploits the idea of Probabilistic Neutral Bits (PNBs). For a long
period, the single-bit distinguisher in this differential attack was found up to 3 rounds. At Crypto 2020, Beierle et. al. introduced
for the first time single bit distinguishers for 3.5 rounds, which contributed significantly in regaining the flow of research work
in this direction. This discovery became the primary factor behind the huge improvement in the key recovery attack complexity
in that work. This was followed by another work at Eurocrypt 2021, where a single bit distinguisher of 3.5-th round helped to
produce a 7-round distinguisher of ChaCha and a further improvement in key recovery.

In the first part of this paper, we provide the theoretical framework for the distinguisher given by Beierle et. al. We
mathematically derive the observed differential correlation for the particular position where the output difference is observed
at 3.5 rounds. Also, Beierle et. al. mentioned the issue of the availability of proper IVs to produce such distinguishers, and
pointed out that not all keys have such IVs available. Here we provide a theoretical insight of this issue.

Next we revisit the work of Coutinho et. al. (Eurocrypt 2021). Using Differential-Linear attacks against ChaCha, they claimed
distinguisher and key recovery with complexities 2%'8 and 2%28-5! respectively. We show that the differential correlation for 3.5
rounds is much smaller than the claim of Coutinho et. al. This makes the attack complexities much higher than their claim.

Index Terms

Stream Cipher, ChaCha, Correlation, Theoretical interpretation

I. INTRODUCTION

Symmetric key ciphers play an important role in secure communication. The ARX (Addition, Rotation and XOR) based
symmetric key ciphers are very popular because of their security and efficiency in software. Also, the algebraic degree of
round functions of ARX ciphers increases highly after some rounds. The Salsa20 is an ARX based stream cipher designed
by Bernstein in 2005 and Salsa20/12 was selected in eStream project as a finalist in software portfolio [5]. In this paper, we
will discuss the ARX-based stream cipher ChaCha, which is a variant of Salsa20. ChaCha was also designed by Bernstein in
early 2008 for high performance in software implementation. Google adopted ChaCha for symmetric encryption in TLS [13]].
ChaCha is also used as a pseudo-random number generator in different systems, for example, in any operating system running
Linux kernel 4.8 or newer [17]], [20]. Additionally, ChaCha is used in several applications, like WireGuard (VPN), Keepass
(password manager), and Veracrypt (disk encryption).

So it is necessary to do third-party analysis for a cipher with such extensive use, to understand its security level. There are
many crypatanalysis results available on reduced version of ChaCha till now. Security analysis has been done mainly using
differential cryptanalysis. Differential attack is a very popular statistical attack, the main idea of which is as follows: In the
initial state some difference is given in the input and we suppose after r rounds we get some biases in the output. Then we
say that this cipher is distinguishable up to r rounds and this bias is called forward bias.

Initially some attacks on this cipher were proposed in [9], [12], [21]. One of the most effective attack was proposed in [[L]
by introducing the Probabilistic Neutral Bits (PNBs) against the reduced round versions of Salsa20 and ChaCha with time
complexities 22° and 2248 respectively. In 2012, Shi et. al. [19] gave the concept of Column Chaining Distinguisher(CCD)
to further enhance the attack complexity of both Salsa20 and ChaCha. Later Maitra et. al. [[14] did some improvement on
the existing attack by the idea of chosen IV. Dey and Sarkar in [10] showed how to choose PNB for further enhancement of
previous works. At FSE 2017, Choudhuri and Maitra [2]] gave a technique to construct multiple bit distinguishers in the next
rounds and perform a differential-linear attack.

In [1]], a distinguisher was observed in the 3rd round of ChaCha. Using this distinguisher a key recovery attack was provided
for 7-round ChaCha using a meet-in-the-middle approach. After that, several works have added ideas in this approach and
reductions have been achieved in the complexity. But for a long period of more than ten years, no significant improvement
was made in finding a distinguisher in the next rounds. In this meet-in-the-middle attack approach, the attack can be improved
up to the next round in two possible ways, either by finding a distinguisher in the fourth round, or by improving the technique

I Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad, Jawahar Nagar, Hyderabad 500078, India
2Department of Mathematics, Indian Institute of Technology Madras, Sardar Patel Road, Chennai TN 600036, INDIA;

3University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Windisch, Switzerland

E-mail: sabya.ndp@gmail.com, c.dey.math95@ gmail.com, sarkar.santanu.birl @gmail.com, willimeier48 @ gmail.com

of coming back from the final round. The idea of Choudhuri and Maitra, provided a significant progress in creating multi-bit
distinguishers in the next rounds, but the source of this multi-bit distinguisher was a single bit distinguisher in third round
only. So, though this idea significantly improved the key recovery attack complexity for fewer rounds, for 7-round ChaCha
the improvement was not very significant. Up to 2020, there was no single bit distinguisher known for more than 3 rounds
of ChaCha. This is the reason why no major breakthrough was achieved in the key recovery. Finally, at Crypto 2020, a vital
contribution in this direction has been given by Beierle et. al. [4]. In their work they have found a single bit distinguisher
in the 3.5 rounds. The correlation observed for this distinguisher is very low compared to the known distinguishers in the
third round. But this extension by half a round resulted in a significant jump in the complexity reduction for 7 round ChaCha.
According to [4] the new time complexity has come down to 223986 from 223°22, For the 6-round version of ChaCha, this
work provided for the first time a partial key recovery attack with very low complexity 2774, As an impact of the discovery
of the 3.5 rounds distinguisher, an immediate further improvement in this direction came from Coutinho et. al., which will
appear at Eurocrypt 2021 [8]. They used the linear correlation of a single bit of 3.5 rounds to the XOR of 2 bits of the 4-th
rounds, thus found a 4-rounds distinguisher of 2 bits only. Using this they produced a key recovery attack of time complexity
2228:51 for 7 rounds of ChaCha.

A full mathematical explanation of the observed correlation is important for a theoretical foundation of the result. In this
paper, we have taken care of the theoretical side of the distinguisher. We derived mathematically the observed result for the
input-output pairs. Also, for the 3.5 rounds distinguisher, the authors of [4] mentioned about the minimization of the Hamming
weight of the difference matrix in the first round. But it has been also mentioned that such minimization of the Hamming
weight is not possible for any random key. Approximately 70% of the keys have been considered as weak keys for which such
IVs are available which minimizes the Hamming weight. The remaining keys they have considered as strong keys. Here, we
have also given a theoretical insight into this and figured out the reason behind this. Also, we reviewed the 3.5 rounds single
bit distinguisher of ChaCha from Eurocrypt 2021 paper by Coutinho et. al. [8]. We provided theoretical illustration of the
correlations at position (0,0) and (1,0) of 3.5 rounds ChaCha from [8]. Then we identified incompatibility between our result
and their experimental result. After that, we experimented with all the single bit distinguishers of 3.5 rounds ChaCha with a
sufficient number of random samples and found a mismatch between their and our results. If we use our 3.5 distinguisher at
position (5,0) to compute the key recovery attack complexity, it increases the time complexity over that of the Crypto 2020
paper [4]. Therefore the key recovery attack at Eurocrypt 2021 paper by Coutinho et. al. [§] has not improved the existing
work. Finally, the novelty of our work is that we have provided theoretical interpretation of experimentally obtained 3.5 rounds
distinguisher of ChaCha from Crypto 2020 paper [4]] and also, we have shown that the recently improved distinguisher and
key recovery attack complexities of Eurocrypt 2021 paper [8] are not accurate.

Roadmap: We organize the paper in the following manner: describes the structure of the cipher. In we
discuss some results related to correlation in mathematical operations, mainly addition. After that, in we provide
theoretical results related to the first round of the cipher. This involves the bit positions containing the differences after the
first round (corresponding to an input difference) and the issue of availability of IVs to produce the 3.5 round distinguisher.
After this, we move to the theoretical part of explaining the distinguisher. Here we observe that the distinguisher at 3.5 rounds
depends on the correlations of two positions (2,0) and (7, 0) at the third round. So, our entire analysis of this distinguisher has
been divided into two parts. discusses about the generation of correlation at (2, 0) step by step and analyzes
the same for (7,0). Then in we combine the two results to find the correlation value for the final distinguisher
and discuss the generation of multi-bit distinguishers in the 5-th round. In we discuss the correctness of the 3.5
rounds single bit distinguisher of ChaCha from the Eurocrypt 2021 paper [8]]. In this section, we have pointed out that there
is a huge gap between their obtained time complexity and the actual time complexity.

Notations: Here we give some notations which we have used throughout this paper.

o A general state of ChaCha consists of 32-bit numbers called ‘word’. A n-bit word is basically a concatenation of n bits.
In our paper, for convenience we use both tuple form and concatenation form to express a word. A n-bit word z is also
treated as an n-tuple vector from F5.

o @ denotes the bit-wise XOR and + denotes Addition modulo 2" and a << b is used for Left cyclic shift of word a by b
bits.

e We treat a n bit word as a n tuple vector and for a Boolean function f : Fy5 — [Fo we define correlation as:

Corf(2)] = 5 D peey (~1)7).
o [i] denotes the unit vector of F} whose 4-th bit is 1, i.e.,

[i]:(0,0,0,~~~, % 7"'70)'
i—th bit
o The sum of n unit vectors is denoted as [i1, 42, -+ ,in] = B}_ [ik]

o z[i]: i-th bit of word/vector x i.e, x = x[n — 1]z[n — 2] - - z[i] - - - 2[0] or z = (z[n — 1], z[n — 2],--- ,z[i], - -, x[0]).

Car[i]: The addition operation involves a carry at each bit. In an addition operation of two n-bit numbers ,y modulo
2™, considering all the n carry bits together as vector Car[i] denotes the i-th carry bit. Similarly, Car[i] is the same for
two n-bit numbers Z, y.

Equality function: For two n-bit vectors/words w and v, the equality function is defined as

1, fu=w,

cq(u,v) = {O, ifu#wv

x[ig,41]: For any word/vector x, this denotes the word/vector formed by the bits starting from x[i;] to z[is],

ie, if e = z[n — 1)zn — 2] - x[iz] - - - x[i1] - - - 2[0] where iy > .

then l‘[iz,il] = l‘[ig]m[ig — 1] .- .13[21]

x(i2,11) : For an n-bit vector/word x, x(ia,i1) denotes the n bits vector/word whose bits from 4; to i are same as
that of z[iz, ;] and all other bits are zero. This means, for z = z[n — 1|z[n — 2] - x[iz] - - x[i1] - - - 2[0], x(i2,91) =
00 - - - 0xfiz)z[iz — 1] -+ x[i1]0 - - 0.

|A| denotes the cardinality of a set A.

Pr denotes the probability. Suppose A is an event defined on z,y € F}, then Pr(A4) = |set of values (z) satisfying A|

|set of all possible values of (m,y)| ’
For a Boolean function f, if we consider the event f(x) = 0, then probability and correlation is related as follows:
Pr(f(x) = 0) = 1[1 + Cor[/]
For two bits x[i] and Z[i] the XOR-difference is denoted by Az[i] i.e, Azx[i] = z[i] ® Z[é]. In a differential attack, for a
chosen input difference, any initial state = generates an another initial state Z, where Az = x @ Z. Running the operations
of the cipher on both z,Z, if v,y is produced and for any chosen position ¢, Ay[i] is computed, then x — yli] is a
function. For this function we can compute Cor[Ay[i]] and we use 6,;) to denote it, i.e, 0,;; = Cor[Ayl]].
In a state matrix of ChaCha, position (p, ¢) means g¢-th bit of p-th word.
X)X’ X' : Usually, the state matrix at 7-th round is denoted by X ("), Here we have used this notation very occasionally,
in the cipher description and in linear correlation between 3.5 round and the 5-th round. In our proofs we avoided this
notation to avoid unnecessary cluttering. Rather, in each round we have gone for X, X', X" to denote initial state, middle
state (half round) and final state. However, in the statements of the results in [section V] [section V1| [section VII| we have
used only the X notation since the stage is obviously clear to the reader.

II. DESCRIPTION OF THE STRUCTURE OF CHACHA

A general state of ChaCha is of size 64 bytes or 512 bits, which is divided into 16 words, each of which is of 32 bits.
These words are framed in the form of a 4 x 4 matrix. In the initial matrix, which we denote by X (9, the 1st row consists
of 4 constant words ¢y = 0x61707865, c; = 023320646¢, co = 0x79622d32, c3 = 0x6b206574.

The second and third row consist of 8 key words kg, k1, - - , k7 and the fourth row consists of the two 32 bits nonce vg, v1
and two 32 bits counter %, t;. We have considered the nonce and the counter as I'Vs.

X(()z) sz) Xz(z) X?ES) co €1 C2 c3
x(0) — Xﬁi) X5(: Xé) Xé) _ ko ki1 ko ks
R e e
0 0 0 0 bt
x x9 x{ x{ o f1 Yo 1

The rows and columns are updated by an operation called quarter-round(QR) which operates on a 4 tuple (a,b,c,d) and
updates it as follows.

i.€,

a =a+b,

d = ((d®d) <« 16),
d=c+d,

V= (bad)<12),
a'=da +V,
d'=((d®d") «8),
C// — C/+d//7

b// — ((b/ @ c//) <<< 7).

OR(a,b,c,d) — (a”’, V", ", d")

This operation is applied on the 4 words of each column in the odd rounds and each diagonal in the even rounds. These rounds
are therefore called column rounds and diagonal rounds respectively. The order of choosing (a,b, ¢, d) for each column and
diagonal is from top to bottom i.e, more specifically for the column round or odd round it operates on the input state matrix
as follows

{QR(Xo, X4, X5, X12), QR(X1, X5, Xo, X13), QR (X2, X6, X10, X14), QR(X3, X7, X11, X15) }

and after that the state matrix is updated and for the diagonal round or even round it operates on the input sate matrix as
follows
{QR(XO7 X5a XIOa X15)) QR(X17 X67 X117 X12)7 QR(X2) X77 X87 X13)) QR(X?)? X47 X93 X14)}

and then the state matrix is updated. Also, later on in the paper we have used the term first half of the round and second half of
the round which means in the QR operation update of (a, b, ¢, d) to (a/,¥’,¢’,d") and update of (a’,V’,c’,d’) to (a”, 0", ", d")
respectively. Suppose after r rounds the updated state matrix is denoted by X ("),

Xér) X{r) Xér) XS(‘T)
X(,,.) _ XZET) X5(7") XéT’) X’gT)
ST R
X' Xyy Xy X
The output key-stream block Z is executed as Z = X(©) 4 X () for ChaCha20/R, where X (/) denotes the state after R
rounds. The quarter round(QR) operation is reversible which means if we know the values of (a”,b",¢”,d"), we can compute
the values of (a,b,c,d). Hence the rounds of ChaCha are also reversible. For more details description of ChaCha we refer
to [6].
In this paper, in every round, we have used the notation X, X', X" to denote initial, middle and final state. This means, X"
in r-th state becomes X in (r + 1)-th state.

III. SOME RESULTS ON THE DIFFERENTIAL AND LINEAR PROPERTIES OF MATHEMATICAL OPERATIONS

We start by stating the well-known Piling-up Lemma [15] in our notation which we use afterwards in several proofs.

Lemma 1
(Piling-up Lemma): Let Y;(1 < n) be n independent random variables such that Cor[Y;] = ¢;. Then Cor[Y1 ® Yo @ --- ®Y,,]

is H?:l €.

Next we discuss some properties on the correlation of the bits when two terms are added modulo 2". In this regard, we
introduce a n-tuple Car, which represents the carries of n positions in the addition operation. In the addition z = = + y,
Carl[i] denotes the i-th carry bit which is added to z[¢], y[i] to generate z[i]. So, z[i] = z[i] ® y[i] ® Car[i]. By Car we denote
the carry vector for z = x + g.

For z,y € FY, we define g[i] = y[i] V i € [1I,n — 1] NZ and §[0] = y[0] & 1. Now, considering all these vectors as
n-bit numbers, suppose z = x + y (mod 2") and Z = x + § (mod 2"). We define for any k£ € [0,n — 1| NZ, fr =
eq(Az(k,0), [k, k— 1,k —2,---,0]). Therefore fj is a Boolean function from F% x FJ to Fy. For any such fj we have the
following theorem:

Theorem 1

For any fj, : F§ x F5 — Fo as defined above:

1

Cor[fr] =1— T

Proof. We have 2" possible = and 2" possible y. So, (x,%) has 22" possible values. In the 0O-th bit, clearly, 2[0] # Z[0].
Therefore for all values of (z,y) this is true. So, eq(Az(0,0),[0]) = 1 for any (z,y). Therefore, for k = 0,

1 1
COI’[@q(AZ(07O)7 [O])} = ﬁ Z (_1>1 =—-1=1- 2167_1
(zy)eF2n

So, we prove it for k = 0. Now, z[1] # Z[1] if and only if the carry generated at the O-th bit of z and Z is different. Now,
this is possible iff 2[0] = 1, which is true for half of the possible values. In general, all the bits from O-th to the k-th bit

of z and z are different iff in all the bits the generated carry is different for z and Zz. This is possible if for all of the bits

2[0],z[1], (2], - , w[k — 1], z[i] # y[d], i.e., z[i] = y[i] & 1. This is true for a fraction 5 of all possible values of (z,y). So,
1 n— n n—
Cor[eq(Az(k,0), [k, k —1,---,0]))] = 2%[22 B =1 + (220 — 22k (-1)°]

1 2n—k 2n 2n—k
1 n n+1—k

— ﬁ[22 _ 22 +1]

1
=l-5

O

Next we generalise this idea further. Consider z,y same as above. But construct § as: for some integer r € [0,n — 1] N Z,
gli] = yli] Vi € [0,n — 1] NZ except i = r and §[r] = y[r] & 1. Then, for z,Z same as before we define f; as f] =
eq(Az(r+k,r),[r+k,r+k—1,r+k—2,---,r]). Then we have the following theorem.

Theorem 2
For any f, as defined above where k> 0 and 7 + k <n — 1, Cor[f]] =1 — 5.

Proof. Now, if Car[r] = Car[r] = 0, then this situation is analogous to , except for the fact that here the difference
is at the r-th bit. So, in similar manner as in [Theorem I} we have the result.
Now, if Car[r] = Car[r] = 1, then the carry difference would propagate to the next bit iff [r] = 0. In general, iff

z[r] = x[r+1] =--- = z[r+ k — 1] = 0, then the carry difference would propagate to the k-th bit. This is true for a fraction
% of all possible values of (z,y). So, again in similar manner as [Theorem 1| we have the same result. O

Corollary 1
Let x,y, § be n-bit numbers such that §[i] = y[i] Vi € [0,n —1]NZ except §[i] = y[i]®1 for i € [0,r —1]NZ. Then between
z=xz+yand Z =z + 7, Cor[eq(Az(r—l—k,r),[r+k,r+k—1,7‘—|—k—2,~-~ ,r)] zl—zk%l.

Proof. This is a special case of Theorem [2] O

Now, in the quarter round function of ChaCha we see that an addition is followed by a XOR-cum-rotation and then another
addition operation occurs. Now, in the last two theorems we have got the idea that if the initial difference is at a single position
then what happens to the correlation of the bits of the sum (i.e., (z, Z)) after the addition. Now, the correlation values of the
sum moves to another word and then that updated word is used in the next addition operation. So, the scenario no is as follows:
we have addition between = + y and = + § where (y, %) is selected from a distribution which already follows the property
that Cor[eq(Az(r +k,r),r+kr+k—-1r+k—2,--- ,r])] =1 — 55=. For a formal representation, we construct a set of
values for (y, %) which would follow this correlation.

Let us fixed some 7, where r € [0, — 1]NZ. Then for any y € F% we define an n bit vector §*, where k € [0,n—r —1]NZ
such that

71 = { 1@y[z] ifi e [?“,r—Hc]ﬂZ
yli] otherwise.

Now, let us construct a set S, = {(y,7%) : y € F3} C F5 x F such that |Sy| = 5 |So| for k € [0,n — 7 — 2] N Z and
|Sn—r—2| = |Sn—r_1]- Let S = UZ;g_l Sk, where Sp, Sy, -+ Sp_r—1 are disjoint and so |S| = 2|Sy|. Then one can easily
verify that in the set .S

1
Cor[eq(Az(T+k,r),[r+k7r+k_ 1, ’r])] —1- =
holds.
Theorem 3
For S as defined above, let us define the function g; : Fy x .S — F} as

gk = Az[k]’ (k > 1)
where z =z +y, Z=x+y and x € Fy; y,y € S. Then

kE+1
9k

Corgy] =1 —

Proof. For convenience we assume that » = 0. Let us take set S = F§ x S and similarly, S; = F} x S;, where S and S;
defined as above. Also, | S| = 2" x 2|Sp| = 2"T1|Sy| and |S)| = 2" x |S;| = 27| Sy| for i € [0,n — 2] N Z. Now, consider

1 Al
COr[AZ[kH = mz(x,y,z})ES’(fl)A [k]

and for S},
1
Cor[Az[k]] = @E(I,y,gk)es;(—i)Az““].

Now in the proof of we see ACar[1] = 1 for exactly half of the cases. Now if ACar[l] = 1, without loss of
generality let us assume Car[l] = 0 and Car[l] = 1. Then ACar[2] = 1 iff z[1] =0 (as Ay[1l] = 1). Also, if ACar[l] =0
then ACar[2] = 1 iff z[1] = 1. So, both of these occur for exactly half of the cases. Therefore, ACar[2] = 1 for exactly half
of the cases. Thus we can proceed up to the k-th bit and so ACar[i] =1 for exactly half of the cases. Now, from (i + 1)-bit
onward the scenario becomes same as So, in S} we have Cor[Az[k}] =1 — 52— Therefore, in S’ we get

1
RED
Now for the set S;,US; ,U---US],_,, all the pairs (y,¢) have a difference up to the k-th bit. Therefore, in this set, ACar[k] = 0
for exactly half of the samples and Az[k] = 0 for exactly half of the samples. Therefore, in this set, Cor[Az[k]] = 0. So,

1 1
Cor[Az[k]] = @[Efz_ol(l - W) : \Sz/”
1 1)
= W[ZL—(}Q - W) - 2"]

Cor[Az[k]] =)81+ 1Sk U Sp g U=~ U S, 4]

T 9k—i—1

g (Mo (g ~ g
k+1
9k

Trep i 1 1)]

=1-

O

Next, for our convenience we introduce a notation §. For any vector pair x, Z; 0, represents Cor[Ax[i]]. Suppose all the
notations are same as in the last theorem. Then we have the following two theorems.

Theorem 4
Consider x,y, 7,9, 2,z such that z =z + v,z = T + ¢. If O, 0y[i], Ocar[) is known for some i, we can compute Ocgy[i41]
as follows:

1
Ocariitn) = § [6(i) + Oy + Ocaris (1 + Oz(iOypa)].

Proof. We consider two different cases, i.e., ACar[i] = 0 and ACar[i] = 1.

ACarli] =0 : We focus on the situation when Car[i] = Car[i] = 0. We divide the event of Car[i + 1] # Car[i + 1] in two
sub-cases, Ay[i] = 1 and Ay[i] = 0. If Ay[i] = 1, without loss of generality we assume that y[i] = 1,g[i] = 0. Then, the
carry difference would propagate to the next bit if and only if z[i] = 1. So, for this case the probability is

Pr(ACar[i+ 1] = 1, Ay[i] = 1]ACar[i] = 0) = Pr(z[i] = 1) - Pr(Ay[i] = 1)
11 1
=5 51 =0yu) = (1= Oyp)-
If Ay[i] = 0, then the carry difference would occur if and only if y[i] = g[¢i] = 1 and Az[i] = 1, whose probability is
Pr(ACar[i + 1] = 1, Ay[i] = 0|]ACar[i] = 0) = Pr(y[i] = g[i] = 1).Pr(Azx[i] = 1)
-

1
8(+ Oya) (1 = Oppi))-

We can obtain the same values for the case Car[i] = Car[i] = 1.
Therefore, for the case ACar[i] =0,

1 1
Pr(AC’ar[i + 1] = 1|ACCLT‘M = 0) = 1(1 — Hym) + g(l + Qy[i])(l — Gm[i])

1
=30 =0y = Oupi = Oy bagi)-

ACar[i] = 1 : Without loss of generality we assume that Car[i] = 1, Carli] = 0. Now, if z[i] = 1,#[i] = 0, then whatever
value y[i] and §[i] takes, Car[i 4+ 1] # Car[i + 1]. The probability of this is Pr(z[i] = 1,Z[i] = 0) = ;{1 — 6 M]. Secondly,
if z[i] = 0, 2[{] = 1, carry difference would occur if and only if Ay[i] = 1. Probability of this event is

Pr(ACarfi +1] = 1) = Pr(z}i] = 0,#[i] = 1) - Pr(Ay[i] = 1)
= (1 —=0.)- 1(1 — Oypip)-

For z[i] = Z[i] = 0, the carry difference occurs if y[i] = 1. Its probability is § (1 + 6,(;). Similarly, if z[i] = &[i] = 1, the
carry difference occurs if §[i] = 0. Probability is again §(1 + 6,;).

So, in this case, the total probability is the sum of these four cases which is

Pr(ACar[i + 1] = 1|ACar[i| =1) = é(5 — em[i] — (gy[i] + Gm[i]ey[i]).

Now, multiplying both the probabilities with the probability of their corresponding condition and then adding, we get:
Pr(ACar[i+ 1] =1)

= 31+ Ocarfy) - 53 = Oyt — Oafi) — OyfarOupi)) + 3(1 = Ocartiy) - §(5 — Oupi) — Oyfi) + Oafiry1)

= ?16[8 = 20,03 — 20y1i) + Ocary (=2 — 29wﬁﬂ)]

= 5[4 = Oapy = Oy — Ociarti (1 + OagiOy1))

=3 = 801 + 0y + Ocariy (1 + Ourfy)]-

So, Pr(ACar[i+ 1] =0) = 3 + %[sz + 0,11 + Ocari) (1 + 047 Gy[i])]' Therefore

1
eCar[iJrl] =7 [ez[z] + 9 + eCar [4] (1 + ew[z]e [z])]

O
Theorem 5
Considering all the notations same as above, 02[2’] can be computed as:
0:1i) = Ocar(i) - Oali) - Oypi)-
Proof. We know that z[i] = Car[i] & z[i] & y[i].
Suppose 21 [i] = z[i] ® y[i] a d 1[i] = z[i] @ yld]
Now Az [i] = 0 iff Az[i] = Ay[i] =0 or 1.
So,
1
921[1] —Q[Pr(Azl [Z] = 0) — 5]
1
=2[Pr(Azfi] = Ayli] = 0) + Pr(Az[i] = Ay[i]) = 1) — 5]
1 1 1
:2[1(1 + Oui) (L + Oypa)) + 1(1 — Oa1i)) (1 = Oypq)) — 5]
1

:5(2 + 2937[,;]93][,;]) -1

=Oa(i) Oy
Now, Az[i] = Az [i] ® ACar][i].
Hence, in a similar manner;
0.1 = Ocarii) * 0z = Ocar) * Ozl - Oyli)- 0

Next we state a lemma on the linear properties of subtraction modulo 2.
Lemma 2
Let z = 2 — y modulo 2" where all are n-bit numbers and z,y are randomly chosen. Then for any i € [1,n — 1] NZ,
1) Cor|z[i] ® z[i] ® y[i]] ® z[i — 1]] = —271,

2) Cor[z[i] @ zli] @ yli]] @ yli — 1]] =27L.

Proof. For this we use Lemma 2 of [4], According to that, if xz[i — 1] # y[i — 1], then z[i] = 1 @ z[i] @ y[i] & «[i — 1].
Therefore, for 1 possible pairs, Cor[z[i] & z[i] & y[i]] & z[i — 1]] = —1. For remaining 1 possible pairs, due to randomness
Cor|z[i] © x[i] @ y[i]] © z[i — 1]] = 0. Therefore the final value would be the average of —1 and 0, i.e. —271.

In a similar manner we can prove the other one. O

IV. ANALYSIS OF THE DIFFERENCE PROPAGATION IN THE FIRST ROUND

In the attack of [4] the authors finally give a 5-rounds multi-bit distinguisher. These 5 rounds of the cipher they have
decomposed into three parts:

E:EZOEmOEl

where E; consists of 1-st round, and E,,, consists of next 2.5 rounds and E5 consists of the remaining part. In the key recovery
attack, the distinguisher is observed for 3.5 rounds (E,, o E1). This distinguisher is exploited in two different ways to attack
6-rounds and 7 rounds, respectively. In 6 rounds ChaCha, in the E,, part the distinguisher is extended to 1.5 more rounds
by the help of linear cryptanalysis. Therefore, Fs o F,, o F; constructs a 5 rounds distinguisher. Then a key recovery F' is
done in the 6th round. In the 7-rounds ChaCha the E5 part is replaced by PNBs approach, where the 3.5 rounds distinguisher
(B o E7) is used to construct a meet-in-the-middle attack.

Therefore our work focuses on the E,, o E; part, where the initial input difference is (AX () = X(©) g X (©)) provided in the
6-th bit of one of the IV words. Since the structure of ChaCha is symmetric with respect to all the columns, we take the case
for the IV word X73.

In the first round E, the IV is chosen in such a way that the Hamming weight of AX (1) (= X @ X (1) which is the difference
matrix after the first round) is minimum. In this case the differences are at positions {(1,2), (5,5), (5,29), (5,17),(5,9),
(9,30),(9,22), (9,10), (13, 30), (13,10) } after the 1-st round, as already mentioned in [4].

A. Analysis of the availability of 1Vs for minimum Hamming weight

In the paper [4] it has been mentioned that for approximately 70% of the keys there exist IVs which give minimum number

of differences (Hamming weight: 10) after the first round. Here we try to provide a theoretical explanation of why it is not
possible to avail IVs for all keys.
There are 4 addition operations in a round. To minimize the number of differences, it is necessary that in each of these
operations, the difference would not propagate to the next bit. This means, in the operation x + y, if the initial difference is
at ¢-th bit of y, then in the sum also the difference would be in the i-th bit only and would not propagate to the (i + 1)-th
bit. However, in the second (X} = X{ + X) operation, there is an initial difference at X,4[2]. Now, this difference would not
propagate to the next bit only if the carry difference is 0. This depends on the values of X and X after the first half.

Theorem 6
If the last three bits of X, i.e, X4[2,0] are 111, there is no IV which can produce the minimum number of differences.

Proof. Since the last three bits of Xy are 101, if the last three bits of X4 are 111, after the addition the last three digits of
X, become 100. Now, in the second half, whatever be the value of X4, since the last two bits of X are 0, no carry would
be generated from these bits. Now, since X([2] = 1 and X}[2] contains the difference, therefore in the sum there must be a
carry difference generated at this position which would propagate to the next bit. Therefore a minimum difference can not be
produced.

O

This theorem has been explained in The square boxes are the bit positions which contain a difference. Since
X{([2] = 1, the difference at X[2] propagates to Car[3].

Theorem 7
If the last three bits of X, i.e, X4[2,0] are 011, there always exists an IV which can produce the minimum number of
differences.

Proof. If the last three bits of X, are 011, after the first addition the last three bits of X, become 000. Since the last 3 bits
are 0, in the second half whatever be the value of X4, there is no carry produced in any of these bits. So the carry differences
for X{, and X' are zero at the second bit. So IV would be available. O

This theorem has been explained in Since X}[2] = 0, the difference at X}[2] is unable to propagate to Car[3].
So Car[3] does not contain a difference.

For all the remaining possible values for four bits of X4 we can not say for sure whether there exists an IV generating
minimum difference, because in these cases the carry difference propagation also depends on the corresponding values of X}.
X is generated at the fourth step of the first half. So, it is difficult to put conditions on the initial matrix to control X}.

In [Table I} we provide the percentage of weak keys available for each possible value for the last four bits of Xj.

Carry: (0 0 0)
~

X4 (1 1 0 0)

X (o xm CXRI] xm xo)

H

Sum : (D D)

Fig. 1: Difference Propagation in the X = X{, + X operation in the second half for the case of [Theorem 6

bits which contain a difference)

Camy: (- cal 0 0 0)
X (eoxBo0 0 o)
xio (0 xp KR xmo xo)
@

sum (- u)

Fig. 2: Difference Propagation in the X = X{, + X operation in the second half for the case of [Theorem 7

bits which contains difference)

V. ANALYZING THE PATH FOR THE CORRELATION AT (2,0)

([] denotes the

([] denotes the

In this section we analyze the propagation of difference which results in the correlation at (2,0) after the third round. This
section contains the results up to the first half of the third round. To derive our results, we use the theorems of Section The
initial conditions of the results do not accurately fit into the criteria to apply the theorems. But the difference do make any
impact on the result. In such scenario we use the relevant theorem, ignoring the negligible difference. For example, Theorem [2]
requires difference at exactly 1 bit of y. But in our results we arrive at scenarios where there are differences in more than 1
bit, but the positions are far from each other, therefore have negligible influence on each other. In such scenario we apply the

theorem.

TABLE I: Percentage of weak keys for different possible values of the last 3 bits of Xy

Values

0 1

2

3

4

5

6

Percentage of weak keys

64% | 7%

86%

100%

87%

5%

63%

7
0%

A. Second round

Result 1
In the cell X¢ we have the correlation values for the following 4 bit positions.

I. Cor[AXg[3]] =
II. Cor[AXs[4]] =
. Cor[AXg[0]] ~
IV. Cor[AXg[20]] =

i
27
O

Proof. 1) In the first half of the second round, in the diagonal (X1, Xg, X11, X12), the first operation is X| = X; + Xg.
Since initially there is a difference in X;[2], we can apply M [Theorem 2| here. Therefore, puttlng z=Xyand r =2 in
| we have after the first half, Cor[eq (AX], 2+ Kk, 14k, k,- })] =1- 5.
Then, in the next operation X1, = (X12 @ X{) <« 16, these Cor values go to X2 and move 16 bits rightward. In
the second half, in operation X{;, = (X{, ® X{') <« 8, these move to the right further by 8 bits. Therefore by total
16 + 8 = 24 bits rotation, we have in the second round, Cor[eq(AX{,, [26 + k,25 + k, k +24,- -+ ,26])] = 1 — 5.
Now, in the next step, the same addition X7} = X1, + X, occurs. Here, since initially there is no influence of difference
yet at the corresponding bits of X/,, we can apply to find the Cor[AX7Y,[26 + k]]. Applying for
k = 2,3 respectively, we get Cor[AX7[28]] = %, Cor[AX]|[29]] = 3. Therefore, in the next XOR with X4 and rotation
by 7 bits, we get the results.

2) As mentioned in the first part, after the operation X{, = (X2 ® X{) << 16 we have Cor[eq(AX{,, [18+k,17+k, 16+

k,---,18])] =1 — 5. In the immediate next addition X{; = X11 + X{,, we can apply So, we get in X7,
Cor[AX],[18 + k]| = 1 — L.
We are particularly interested in k& = 7, which gives us the value 0.94. In the second half, X7, is again updated to
X1, = X{; + X{,. However, by this time the respective bits of X/, gets rotated during the update to X1, and the present
bits of X/, at those positions does not have difference, which results no change in the correlation values of X1, [25] from
X1{1[25]. This X7, is XOR-ed with X{ and rotated by 7 bits. So, X}, receives the same value of correlation with rotation
by 7 bits. So, X[25 + 7] = X{/[0] (since we compute in modulo 232), which has Cor[A X[[0])] = 0.94.

3) In the addition X{ = X1+ Xg, the difference of (1,2) propagates to the next bits. By Corollary [we have Cor[AX{[4])] =
3 and Cor[AX{[5])] = 2. In the second half, in the XOR with X{, and rotation, we get Cor[AX7,[13])] = 0.75 and
Cor[A XY, [)] = 0.5. In the next operation X1, = X|; + X{,, by [Theorem 4| we find out that in this addition,
Ocarpiz) = $1(1+05) +1x (1+ 0.5)] = 0.75. Therefore, by [Theorem 5|, in the updated X7}, Cor[AX{;[13])] =
0.75 x 1 x 0 75 ~ 0.56. This value comes to X [20] in the next XOR and rotation.

O

Result 2
At the end of the second round, we observe the following result in Xq4 : Cor[AX 4[4]] ~ 0.91.

Proof. At the end of the first round, there is a difference at (9, 10). In the second round first half, in the operation X§ = Xo+X14
this difference propagates to the left side by 2| Therefore Cor[AX)[10 + k]| =1 — 5+
After that in the next operation X} = (X4 ©Xy) K 12, this values comes to X}[22+k]’s. In particular, we look for k = 4,5,6,
which gives: Cor[AX}[26]] =1 — 55 ~ 0.88, Cor[AX}[27]] = 1 — 57 ~ 0.94 and Cor[AX}[28]] =1 — 55 ~ 0.97.

In the second half of the second round the following operation takes place. X4§ = X/ + X}. X} does not have any difference
at positions 27 and 26 up to 1.5 round, i.e Cor[AX}[26]] = Cor[AX}[27]] = 1. For X, we use the results just obtained. So,

using at first we find

Ocar(2r) = [9X’ 26) + 0x126) + Ocariz)[1 + 0x1(26)0x4 26)]]
:1[0.88 +14+1x[1+0.88x1]]
=0.94.
Then,

Ocar[es) = [9X 127t Oxyp27) + Ocarpen [T+ Ox512710x;1271]]
:1[0.94 140.94 % [140.94 x 1]]

~0.94.

After that, using [Theorem 5| we have Cor[AX4[28]] =1 x 0.97 x 0.94 ~ 0.91. In the next XOR with X7, this value comes
to X1,[4] by rotation. O

The framework of this proof has been shown in

car[26] car[27 car[28]
26]; ; Ox;27) Ox;28) e Ox7128) — Ox7,14)
X4 [26]

X4 [27] Ox;28)

Fig. 3: Framework for the proof of Result

Result 3
We observe the following result in X710 : Cor[AX14[20]] ~ 0.47.

Proof. In the first round (5,9) has a difference. In the first step of the second round X; = Xy + X5, this difference comes to

X/ and propagates by m [Theorem 2} In the next operation X15 =(Xi5® XO) < 16, these values come to X5, being rotated

by 16 bits. So, Corleq(AX/- [25 + k,24 + k,23 + k,---,25])] =1 — Qk . In the next addition with X7, these come to

X/, using In particular, for k = 6, we get Cor[AX{O[?)l]] — 18 ~ 0.9. This comes to X}[11] in the next

XOR and rotation.

On the other hand, Cor[AX([16]] =1 — J5 ~ 0.984. This comes to Cor[AX}[12]].

Again, Cor[AX([12]] = 0.75 and Cor[AX([11]] = 0.5 by the same reason. From these two, we get by applying

and that after the second round, Cor[AX{/[12]] = 0.68 and Cor[AX//[11]] = 0.46. Therefore, in the next XOR

with X{, and rotation by 8 bits, we get Cor[AX7;[20]] = 0.68, Cor[AX/[19]] = 0.46.

On the other hand, Cor[AX/,[20]] = 0.97, Cor[AX/,[19]] = 0.94. After that the addition X/, = X/, + X5 occurs. Using

we can find for the propagation difference at the 20-th bit

1
[

Ocar[20] =1 Ox7 19y + 0x7,119) + Ocarpio)(1 + Ox; 19) Ox,5019))]

1
=7[0.94+0.46 + (1 +0.94 x 0.46)]

2.83
=——~0.71.
4

Then, applying [Theorem 5| we get Cor[AX[([20]] = 0.71 x 0.68 x 0.97 &~ 0.47. O

B. First half of the third round

Result 4
After the first half of the third round, Cor[AX;[0]] ~ 0.08.

Proof. In the first step of the third round, X, is updated by the operation X} = X5 + Xg. We have observed in [I| that
Cor[AXg[3]] = % and Cor[AX4[4]] = 1. Since the corresponding bits of X, are not yet influenced by the difference,
Cor[AX,[3]] = Cor[AX,[4]] =1

We apply here and use 0¢q, (3 = 1. Therefore,

1
Ocaria) ==[0x413) + 0xa03) + Ocar(s) (1 + Ox4[310x203))]
4

1.1 1
1+[1+=1

=1l H 1+]

T4'4 4

_5

=3

Therefore, using [Theorem 5| we have,

Cor[AX5[4]] =0car() - Oxg14] - Ox, 4

IV S

_85 X 5 %

=16~ 0.31.
Then a XOR operation between X} and X4 and a rotation by 16 bits take place. So, X}[4] and X14[4] generates X7,[20].
Applying with 0,4 = 0.31 and 0,4 = 0.91, we have Cor[AX7],[20]] = 0.29.
In the Addition operation between X1o and X1,, applying we get Cor[AX/,[20]] = 0.29 x 0.47 ~ 0.14. X1, is
XOR-ed with X¢ and rotated by 12 bits. So, by [Theorem 5| Cor[AXg[0]] = Ox,20) - 07, [20) = 0.56 x 0.14 = 0.08.

O

VI. ANALYZING THE PATH FOR THE CORRELATION AT (7,0)

Same as the last section, here we discuss the results up to 2.5 rounds which generates the correlation at (7,0) at the end of
the third round.

A. Second round

Result 5
After the second round,
I. COI’[AXll[lSH =~ 0.5,
II. Cor[AX7;[25]] =~ 0.94,
II. Cor[AX;1[24]] ~ 0.88.

Proof. After the first round (1,2) has a difference. Now, in the addition X| = X; 4+ X in the second round, this difference
propagates by E} Therefore, for 7 = 2 in Corollary [I| Corleq(AX{,[5,4,3,--+,2])] = 1 — 5-+. Next, in the operation
X3 = (X12 ® X1) <« 8, this value comes to AX;o and gets rotated by 8 bits. Therefore, Corleq(AX7,,[10 + £,9 +
k,---,10])] =1 — z . In the next addition, X{, = X11 + X{,, using we get that for k = 3,r = 10

1+3 1

Cor[AX11[138]]=1— — = —.

01‘[11 []] 23 2
For the second and third, we know that initially (1,2) contains a difference. In the first addition it propagates toward right
by In the update of X2, all these get rotated by 16 bits. Then in the addition X|; = X1; + X{,, these come to
X1;. Here, by we get the results for the 24-th and 25-th bit. The values remain same in the addition of the second
half since the other component has correlation 1. O

Result 6
We have the following results for X5 at the end of the second round:
I. Cor[AX5[1]] = 0.77,
II. Cor[AX;5[29]] =~ 0.86,
II. Cor[AX;5[21]] ~ 0.86,
IV. Cor[AX5[20]] = 0.74.

Proof. (5,9) has a difference after the first round. In the second half it comes to (5,21) after rotation by 12 bits. Another
difference at (5,29) comes to (0,29) in the first addition, then to (15,13) in the operation X5 = (X15 ® X{;) << 16. In the
next addition and then XOR, it comes to X{[25]. So, after 1.5 rounds, both AX.[25] and AX{[21] are 0. In the next addition
X(§ = XL + X, these differences come to the same bits of X{j. The difference at X//[21] propagates to 25-th bit, for which
we get using Corollary [I] Cor[AX{/[25]] ~ %, which becomes negative because of the difference already at the 25-th bit.

Similarly, in the first half addition X} = X5 + X, the initial difference at (5,5) and (5, 9), together results in Cor[AX([9]] =
—3 in the first half. Next XOR with X/, and rotation by 16 bits result in Cor[AX{;[25]] ~ — . After this, in the operation

Xi5 = (X15 © X¢) << 8, using we get
49
Cor[AX[5[1]] = Cor[AX{;[25]] - Cor[AX{[25]] ~ o1~ 0.77.

In the first addition of the second round, i.e, X{; = Xy + X5, the initial difference at (5,17) propagates by Corollary
Therefore, here for r = 17 Cor[AX(, (17 + k,16 + k,--- ,17)] = 1 — 5. In the second half, in the operation X{; =

(X5 ® X{/) < 8, these values come to X", getting rotated by 8 bits. So, Cor[AX{s, (25 +k,24 +k,--- ,25)] =1 — .
For k = 4, we achieve the result.

In exactly similar way, the difference at (5, 9) results in the same value for Cor[A X/ [21]] and 0.74 for Cor[AX7;[20]]. Note
here that the difference between (15,29) and (15, 21) is 8 bits, which is same as the difference between (5,17) and (5,9). O

Result 7
For X3, the following values are observed after the second round:
I. Cor[AX3[29]] ~ 0.98,
II. Cor[AX3[21]] =~ 0.97,
II. Cor[AX3[20]] =~ 0.94.

Proof. (9,10) has a difference after the first round. In the operation X{ = (Xg¢ + X7,) this difference stays at the same
position. Then, in the operation X = (X4 ® X§) <« 12, this difference comes to X[22]. Then in the addition X4 = X} + X
it comes to X4[22] and propagates. By Corollary |1} for r = 22,k = 7, we have Cor[AXY[29]] = 1 — 71+ ~ 0.98. In the
second one, a similar reason is valid. O

Result 8
In the word X7, we have the following values:

I. Cor[AX7[17]] ~ 0.83,

II. Cor[AX~[16]] ~ 0.67,
OI. Cor[AX7[13]] ~ —0.56,
IV. Cor[AX[29]] = —0.92.

Proof. The initial difference at (13,10) and (13, 30) after the first round shifts to (13,14) and (13, 26) respectively when X3
is updated in the first half of the second round. Then it gets added with Xg. Therefore, the difference at (13,14) comes to
X4[14] and propagates by Corollary [1| Then it is XOR-ed with X7 and rotated by 12 bits. So, the differences at X}[14 + k]
shift to X%[26 + k]. Then, it the second half it is added with X%, which gives the values of Cor[A X} [26 + k]| by
Then, in the update of X715, these values come to X{5 by getting rotated by 8 bits. Therefore, Cor[AX{5[2 + k]] can be given
by However, the difference at (13,2) is neutralised by the initial difference at (13, 26) that we already mentioned.
For the rest, the values follow the theorem. We find Cor[AX{5[8]], Cor[AX{5[9]], Cor[AX;5[10]] using this. Then we use them
to find Cor[AX{[9]] and Cor[AX{[10]] as 0.9 and 0.94 respectively, which is the next addition operation X§ = X§ + X{5
On the other hand, the same difference at (13, 26) in the first half, when added with X, produces a difference in X§[26] which
propagates by Corollary [1| These values of Cor[AX/[26+ k]| come to X7[6-+ k] in the next operation X7 = (X7 D X]) <« 12.
In particular, we use the values Cor[AX/[9]] ~ 0.88 and Cor[AXZ[10]] ~ 0.74 along with the previously found values
Cor[AX{[9]] and Cor[AX[[10]] to get the results by O

B. First half of the third round

Here, we obtain the correlation values for some particular bits of three words from the column containing X7, i.e., X11, X7
and X 15-

Result 9
After 2.5 rounds, we have the following result for X5 :

L COI’[AX15[17H =~ 0.67,
II. Cor[AX;5[25]] =~ 0.9.

Proof. In the third round we have the operation X5 = X3 + X7. At the end of the second round, Cor[AX7[1]] = I, which

comes to X} in this addition. So, Cor[AX}[1]] = I. In the next XOR, using we get
7

Cor[AX;[17]] = Cor[AX;5[1]] - Cor[AX}[1]] = 0.77 x g~ 0.67.

Similarly we can prove the other one also. O

Result 10
For X;; we have the correlation values for the two following bits as follow:

I. Cor[AX;[5]] = 0.71,

II. Cor[AX71[25]] =~ 0.66.

Proof. In the first half of the third round the following XOR and rotation take place.
X5 = (X158 X3) < 16

Here, from Result [7] and [6] using we can compute that
Cor[AX;[5]] =Cor[AX}[21]] - Cor[AX;5[21]]
=0.97 x 0.86 ~ 0.83.

and similarly Cor[AX/;[4]] = 0.94 x 0.74 ~ 0.70. After that, an addition between X;; and X{; takes place. Since the
corresponding bits of X7; have negligible influence of difference yet, so using these results, by Theorem 4| we get

1
Ocar(s) :Z[l +0.70+1 x (1+1 x 0.70)]

1 1
=7 [1.70 4+ 1.70] = - x 3.40 ~ 0.85.

Therefore, using we get: Cor[AX{,[5]] =0.85 x 1 x 0.83 ~ 0.71.
Then, in the same operation X{; = X711+ X15. We use the fact that after the second round, Cor[A X1[25]] ~ 0.94, Cor[AX1[24]] ~
0.88 (Result [5) and Cor[AX;5[25]] ~ 0.88 (Result[9) after 2.5 rounds. Therefore, we apply first on the 24-th bit

and then to get the result. O

Result 11
After 2.5 rounds, Cor[AX7[25]] ~ 0.21.

Proof. After the second round, Cor[AX3[29]] ~ 0.98 (Result [7). Now, after its addition with X, by we
have Cor[AX4[29]] = 0.98 x (—0.92) = —0.9 (Result [8). Then, in the XOR with X;5 and rotation by 16 bits, we get
Cor[AX{;[13]] = 0.82 x (—0.9) ~ —0.74 (using Lemma [I). Now, we know from Result [5] that Cor[AX;[13]] = 0.5. So,
when X is added with X;;, we have Cor[AX/,[13]] = 0.5 x (—0.74) = —0.37. After this, a XOR between X7{; and X7
takes place and it is rotated by 12 bits. From Result (8] we know that Cor[AX;[13]] = —0.56. Therefore, in X,, we have
Cor[AX%[25]] = (—0.56) x (—0.37) ~ 0.21. 0

VII. ANALYSIS OF THE 3-RD AND 3.5-TH ROUND

In the 2.5 round, in the sum X4 = X} + X7, Cor[AX/[17]] can be found to be 0.64 using [Theorem 4| and [Theorem 35|
Similarly it can be found that after 2.5 round Cor[AX}[17]] = 0.5. Therefore, in the sum X4} = X! + X/ at the second half
of the third round, by we get that Cor[AX7[17]] = 0.64 x 0.5 = 0.32. Then, it is XOR-ed with X7, which gives
that

Cor[AX{5[25]] = Cor[AX{[17]] - Cor[AX;[25]] = 0.32 x 0.67 ~ 0.21 (Result [9).
Then, in the addition with X7, we have
Cor[AX],[25]] = Cor[AX/,[25]] - Cor|AX],[25]] = 0.66 x 0.21 = 0.14.

In the next XOR with X7 and rotation by 7 bits, from Result [11{ we get by Cor[AX'[0]] = 0.2 x 0.14 = 0.03.
Similarly, in the second half of 3rd round, X is updated by addition with X¢. We know from 4 Cor[AX¢[0]] = 0.08. This

value comes to X5[0] after this addition since X3[0] was negligibly influenced by the difference before this. Now, in the fourth

round first half, we have X} = X5 4+ X7. Since we are interested in the 0-th bit, we don’t worry about carry difference. So,

Cor[AX}[0]] = Cor[AX5[0]] - Cor[AX7[0]] = 0.08 x 0.03 &~ 0.0024 ~ 257,

According to [4], the experimentally observed value is 2783, In other words, among all possible states, for approximately
%[1 +2783] = 0.5016 fraction of states gives equal value at position (2,0) for X and X after 3.5 rounds. According to our
theoretical analysis this fraction is 0.5012, which matches up to 3 decimal places with the experiment.

A. Extension to multi-bit distinguisher of the 5-th round

In [4], a linear trail between the single bit distinguisher of 3.5 rounds and two different multi-bit distinguishers of the 5-th
round has been used. This linear relation has correlation 2~'. Here we explain this linear trail in 3 steps.

1) 3.5 round to 4-th round
X>[0] is updated as X%'[0] = X4[0] @ X4[0] (since least significant bit).
Again, from X7 = (X}, ® X{') << 7 we have
X7 (7] = X7[0] & X{[0]
ie, X1[0] = XV[0] & XZ[7).
Therefore, X4[0] = X5 [0] ® X{[0] & XZ[7].
2) 4 round to 4.5-th round
In this column-round each of the three bits X5[0], Xs[0] and X7[7] of 4-th round in terms of bits of 4.5 round we now

express in terms of bits of 4.5 round.
From, X} = X5 + X7 we get in similar manner as before:

X5[0] = Xo[0] @ X5[0]
= X([12] ® X1,[0] ® X5[0] (since X = (X¢ ® X10) < 12)
From, X, = (X7 ® X1{;) <« 12 we get X7[7] = X4[19] & X|,[7].
From, X} = Xg + X/, we get Xg[0] = X§[0] & X{5[0].
Therefore, we have
X5[0] & X3[0] @ X-[7] = X5[0] & X§[12] & X1,[0] & X[0] & X15[0] & X5[19] & X1,[7].

3) 4.5 round to 5-th round
In a similar manner as before,

X5[0] = X5[0] @ Xg[0]
= X5 [0] & Xg[7] & X1p[0].

From, X¢ = (X§® X{[)) < 7 we get X3[12] = X§[19] @ X1,[12].

From, X1, — X7y + X1} we get X{o[0] = X7o[0] & X7, [0].

From, X7 = X/ + X{| we get X/[19] = X7[26] & X{,[19].

From, X{ = X§ + X[, we get X§[0] = X{[0] ® X15[0].

From, X5 = (X132 @ Xp) < 8 we get X12[0] = X12[8] & X,[0].

Now only for the expression X{;[7], we can’t directly write it as linear sum of 5-th round elements since X1} = X{5 + X1,
involves carry from the previous term.

Here we use Lemma [2| We have, X1, = X7}, — X/%.. From Lemma [2| we have

Cor(X1,[7) ® X1, [7] & X{5[7] & X{,[6]) = —27"
Cor(X1,[7), X11[7] @ X15[7] ® X{5[6]) = 27

We denote ¢, ¢, ¢" as follows:
o ¢ =X;5[0] © X§[12] & X1[0] & Xg[0] & X15[0] & X7[19] & X7, 7],
o« 91 = X3[0] & X§[7] & X15[0] & X§[19] & X1o[12] & X715 [0] & X7, [0] & X7[26] & X1, [19] & Xg[0] & X15[0] & X12[8] &
Xo[0] & X1 [7] ® X{5[7] © X1, [6],
o ¢ = X5[0] & X¢[7] & X15[0] & X§[19] & X1[12] © X15[0] & X14[0] & X7[26] & X1, [19] & X{[0] & X15[0] & X12[8] @
Xo[0] & X11[7] & X{5[7] & X75[6].

Thus
271 ifi=1
12 Y __
Cor(¢' © ¢;) = { 271 ifi=2.
Therefore,
‘ 271 ifi=1
3.5 " —
Cor(X;°[0)® ¢;) = { 2-1 if5=2.

This linear relation between single bit of 3.5-th round and multi-bit of 5-th round, combined with the distinguisher of 3.5
round, gives a distinguisher of the 5-th round.

VIII. REVISITING THE ATTACK OF EUROCRYPT 2021 PAPER

At Eurocrypt 2021 Coutinho et al. [§] improved the key recovery attack for 7 round ChaCha with complexity 2228-°! and

also gave a distinguisher attack for 7 round ChaCha with complexity 22!®. For key recovery attack they used the Probabilistic
Neutral Bits technique which is an old idea from [1]]. They found a 3.5 rounds differential distinguisher at (5, 0) by experimental
approach which they have used for both key recovery and distinguisher attack. They extended the 3.5 rounds differential
distinguisher to 7 rounds using linear approximation and they unveiled the reason of linear approximation by both theoretical and
computational results. In their theoretical proofs of the linear approximations they used two probabilistic equations and Piling
up lemma to approximate the nonlinear operations. For more details of their theoretical explanation of linear approximation
we refer to [8]].

The IV’s are chosen in such a way that the Hamming weight of the output difference is minimized. They have chosen the IV in
the third column of the state matrix and the input difference was given at (14, 6). This input difference influences the following
bit positions (2,2), (6,5), (6,29), (6,17), (6,9), (10, 30), (10, 22), (10, 10), (14, 13), (14, 10) on average with probability 275
after the first round which has been shown in [4].

Distinguishing Attack Procedure: Now we discuss how to compute differential-linear correlation and corresponding distin-
gulsher com%)lexny Suppose the differential state matrix is denoted by AX (") = X" @ X, the differential of a word as
AX) and the differential of j-th bit of i-th word as AX] (r) [1=X (7)[16 X; 70 [7]- Consider the state matrix
X) and X X after 7 rounds and suppose the linear combinations of bits of X (") and X X (") is denoted by o = 691 j Xi(r) [7]

and o' =P, ; XZ- H respectively. Then Ao = P, ; A l()[] denotes the linear combination of differentials. Now

Pr(Ac = 0|AX () = 1(1 +€)

where € is the differential correlation.

Finally, it is possible to extend the differential distinguisher to few more rounds (R > r) using linear cryptanalysis by finding
relations between initial state matrix and state matrix after R rounds. For that we take the linear combinations of bits after
R(> r) rounds which are denoted as p = P, ; XZ-(R)['] and p' = @, ; X()[j]. Therefore, Ap = A@ ()[], which is
computed similarly as above. The linear correlation is denoted by ¢ and is defined by Pr(c = p) = (1 + el) Our target is to
find the differential-linear correlation €* such that Pr(Ap = 0|/AX () = (1 + €*). Therefore, we can compute the ¢* using
the following probabilistic relations (for simplification AX(? is omitted). Now

- 1
Pr(Ac = Ap) =Pr(c =p) -Pr(c' =p') +Pr(c =p)-Pr(c’ =p') = 5(1 +€7),
where p = p @ 1 and others are similarly follows. Then,
— 1
Pr(Ap =0) =Pr(Ac =0) - Pr(Ac = Ap) + Pr(Ac = 1) - Pr (Ao = Ap) = 5(1 + €€}).

Therefore, the obtained differential-linear correlation is €* = ee? and the corresponding distinguisher complexity will be

O(=). It is well known that we require O(#) random samples when we like to distinguish between two events, one
1

happens with probability p and the other one happens with probability p(1 + ¢), where ¢ is small.

At Eurocrypt 2021 paper [8] the authors have presented several 3.5 rounds differential correlations of ChaCha for single
output bit and these are listed in Table 3 of [8]]. For these 3.5 rounds differential distinguisher they have used the idea
that after one round the Hamming weight of the differential is minimized. They have given the input difference at (14, 6)
and experimentally obtained the differential correlation for the output difference at (5,0) after 3.5 rounds. Then the linear
correlation has been found out between the bit (5,0) after 3.5 rounds and some bits after 6 rounds and 7 rounds respectively
to give better differential-linear distingushers of 6 rounds and 7 rounds ChaCha than existing works. They have found out the
distinguisher complexity using the above discussed method and the corresponding complexities for 6 rounds is 27 and for 7
rounds is 2218,

Key recovery attack procedure: Till now all the key recovery attacks against reduced round ChaCha have been presented
using the probabilistic neutral bits (PNBs) approach which was introduced in [1]. Now we describe a glimpse of PNBs on
key recovery attack albeit this is a fully experimental approach. We give an input difference at any desired bit X;[j] of the
initial state matrix X (?) and obtain the new matrix X(?). Our target is to obtain some correlation of output difference at some
particular bit or combination of bits of the output matrix at some 7-th round. We can compute Pr(Ac = 0|AX;[j]© = 1)
and suppose this value is % (1 + ¢), where € is the differential correlation of the output difference. We can also find out the

2
differential correlation in backward direction from final state matrix of ChaCha as the rounds of ChaCha are reversible.

Notion of PNB: The idea of PNBs was introduced in [1]]. Later on this idea was reviewed by Maitra et al. [14] to come up
with an improved attack. Now, we discuss the idea of Probabilistic Neutral Bits or PNBs in a nutshell and for detail description
we refer to [1]], [[14].

In the key recovery attack the attacker’s target is to lessen the complexity of searching 256 bits of the secret key. Here we
try to divide the set of key bits K into two disjoint subsets /1 and K5 such that K = K; U K5. The subset K7 contains the
significant key bits that means the key bits in K7 has high impact on the output generated by the key stream generator and
the non significant key bits are in the subset K5 i.e, the key bits that have low impact on the output. More precisely, we try
to find the set of key bits K5 such that if we change the values of the key bits corresponding to the set Ko then the output
will change with low correlation. Therefore for the remaining key bits which are belongs to K, we select these key bits with
random values and use a distinguisher to find the correct key bits corresponding to the set K. In this similar way we will
find the non significant bits also. This idea will help us to find the significant key bits with reducing the number of guessing
which is less than 2256, Actually, later the non significant bits are the PNBs and the significant bits are the non PNBs.

To search PNBs, we have to decide a threshold probability %(1 +7). Then for details procedure to identify the PNBs we refer
to [1lI, [14]. Therefore after identifying the set of PNBs the entire set of key bits is partitioned into two disjoint subsets, one
is the set of PNBs and another one is the set of non PNBs. We assume the cardinality of these sets are m and n respectively,
where m + n = 256.

Actual attack after PNBs construction: Now, in the actual attack, the attacker’s target is to search the values of the non-PNBs,
without any knowledge of the correct values of PNBs. Since flipping the PNBs have impact on the output with low probability,
he select a random value for each PNB and set it to that fixed value. The attacker’s target is to find the correct secret key with
complexity less than exhaustive search. In this case, the idea of PNBs assists the attacker to reduce the key search complexity.
If the number of elements in the set of PNBs is m, then the cardinality of non-PNBs set will be n = 256 — m.

Complexity Estimation: Here we discuss how to evaluate the complexity given by [1] in details. Since there are m PNBs,
which have low impact on the output. Therefore, our target is to identify the correct n PNBs to recover the full secret key.
For n non PNBs there are 2™ possible choices of random values. Out of these many choices, there will be one correct and the
remaining 2 — 1 choices will be incorrect. Now we use hypothesis testing to detect the error probability of correct choice.
For this we assume the null hypothesis H, such that the choice is the incorrect one. Therefore the 2" — 1 choices satisfy the
the null hypothesis and only one choice will be left that satisfy the alternative hypothesis #; and this one choice is the correct
one. There are two possible errors which can happen. The errors are as follows:

1) The choice is correct one i.e, it satisfies ;. But we are unable to identify it. This error is called error of non detection
and the corresponding probability is denoted by P;.

2) Sometimes the choice is incorrect i.e, it satisfies H. But it appears with high correlation and then this invalid choice is
taken as correct one. This error is called false-alarm and the corresponding probability is denoted as Py.

Therefore our target will be optimize the errors. For that we have to attain bound on these error probabilities. So, the authors
of [1]] evaluated the number of samples N using a result of Neyman- Pearson decision theory to attain bound on these
probabilities. The number of samples is given by

. (Wmh—(e-ea)?){

€€

where ¢ is the correlation in forward direction and ¢, is the correlation in the backward direction, where all PNB bits are fixed to
zero and non-PNB bits are fixed to the correct ones. These many samples are evaluated to attain the bound of P; = 1.3 x 1073
and the bound of Py by 27 %. Therefore, depending on these bounds, the time complexity of the attack will be

2" (N +2"Pg) = 2" - N + 2207,

At Eurocrypt paper [[8] the authors have reported 3.5 rounds differential correlation which they have found out in experimental
approach. In the key recovery attack they extended this 3.5 rounds differential distinguisher at (5,0) to 4 rounds with linear
correlation one and the corresponding linear relation is X3°[0] = X2[7] ® X{,[0] which directly follows from the QR
operations. Also, their reported 4 rounds differential-linear correlation is e = 0.0000002489 which is the correlation in the
forward direction. Also, using the threshold v = 0.35 they have provided 108 PNBs and they have found out the correlation in
the backward direction which is ¢, = 0.000169. Also, they have written that the parameter « the attacker can choose. Using
these values they have computed N = 27! and the corresponding time complexity is 22231 As in [4], they have repeated
this attack 2° times on average. Thus, the final attack has data complexity of 280-°! and time complexity 222851,

We have checked using their obtained values of ¢ and ¢, that the value of N and time complexity will be optimal when
a = 37.56. So, the actual data complexity of their attack will be 275-64+5 = 280-64 [p this case the time complexity will be
2223.68 Qo the final time complexity will be 222868,

. €
Output Difference Euroctypt 2021 [8‘ J‘ O
AXES[0 0.000307 0.0000321964
AXP5[0 0.000124 0.0000014749
AX5[0 0.000017 0.0000001928
AX3Z:5[0 0.000016 0.0000024272
AXZS[0 0.0000002489 0.000000018

TABLE II: Comparison of experimentally found 3.5 rounds differential correlation

A. Theoretical Interpretation and Experimental Results

We were trying to analyse theoretically the differential distinguisher of Eurocrypt 2021 paper [8] for 3.5 rounds ChaCha
which they found out by fully experimental approach. At that time we have found out some mismatch between our theoretical
results and their experimental results. Theoretical demonstration of the correlation for the bit position (0, 0) has been presented
in the following.

As the number of rounds increases, the values of the correlation decreases. So, to find or verify a small correlation in higher
round, we have to perform the simulation for high margin. Therefore, we also provide a mathematical explanation in support
of our claim where we express the 3.5 rounds bit in form of 3 rounds bits. We try to provide a mathematical explanation which
would help the reader to understand why the claimed bias at Eurocrypt 2021 paper [8] of the position (0,0) is not correct. In
the update function of (0,0) we have

X300 = xP (0] + xP0].

Now, in such scenario, we generally use to find the correlation of X|; (35) from the known correlations of X5 (s)[O] and
X 5(3)[] But is based on the assumption of the independence of the correlations of the two i.e, Cor[AX, é)[0]] given

AX [] = 0 is same as Cor[AX [O]] given AX (3)[0] = 1. For high correlation values this assumption of independence
does not deviate the theoretical result much from the experiment. But here since the correlation is very small, for an accurate
computatlon we don’t take the assumption of 1ndependence Rather we deal with the two conditions AXg (3) [0] = 1 and
AX [| = 0 separately. We have, given AXr [| =0, Cor[Xég) [0]] = 0. 006304 and given AX(?’)[0] =1, Cor[Xé‘n’) [0]] =
0.006262. We take the probability approach to compute the correlation of AX)[0],
Pr(AXS?[0] = 0) = Pr(AX V0] & AXP[0] = 0)
=Pr(AXP[0] = AXP[0] = 0) + Pr(AX V(0] = AXP[0] = 1)
=Pr(AXP[0] = 0) - Pr(AP[0] =0 | AXP[0] = 0)+
Pr(AX{V[0] = 1) - Pr(AF[0] = 1 | AX{V[0] = 1)

= (0.500287 x 0.503152) + (1 — 0.500287) x (1 — 0.503131)
~ 0.5000123.

Therefore the correlation is approximately 0.0000246. By experiment we find this value to be approximately 0.0000328,
(Table TI). Though there is a difference between this mathematically obtained result from the third round correlations and the
full experimental result, both of them show that the correlation claimed by [8] for this position is incorrect.

Keeping this knowledge in mind we have experimented with all other distinguishers which are listed in with
sufficient number of random samples. For this computation we have used the CPU Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz, the OS is 64-bit Ubuntu-20.04. To achieve the required correlation we have run the programs parallelly using GCC
compiler version 9.3.0 and for random number generation we have used drand48() function in the programs. We need O

random samples to distinguish between two events, one with probability p and the other with probability p(1 + ¢), where g is
small. We have computed the correlations at output difference positions (0,0), (1,0), (12,0), (13,0) for 3.5 rounds ChaCha
with random samples 2*2. So in these cases we are using 20722310, 338519 83932 and 59235 samples and these should give
success probability around 100%, 100%, 100% and 100% respectively. But our experimental results do not match with their
experimental results. We have listed a comparison of the experimentally obtained differential correlations in the Also,
note that the actual correlations are lower than our reported correlations and we do not have sufficient computational power to
achieve the actual correlations. But the correlations reported at Eurocrypt 2021 for 3.5 rounds ChaCha are not accurate which
we have verified.

We have used 247 ~ 238 random samples to verify the correlation at position (5,0) of 3.5 rounds ChaCha but we got a lower
correlation value than thelr claim. In this case, we have seen that when the number of random samples increases the correlation
decreases. The major change in the paper [8]] compared to the previous existing best result in [4] is that in the 3.5 rounds it uses
an output difference position in the second row instead of first row of the state matrix (as in Crypto paper [4]). This approach
is definitely interesting because the words in the second row are updated much later than in the first row. Therefore, it has a

larger number of PNBs when one comes back from the 7-th round. This is also evident from the fact that they used 108 PNBs
in there key recovery attack whereas in [4] the authors used only 74 PNBs. However, the forward 3.5 rounds correlations
that they claimed in [8] are not accurate. As a result, we see that their attack does not actually improve the complexity
of [4]. Rather according to our calculation, the distinguisher and key recovery time complexities are as follows. To calculate
the linear correlation we have used the computational results 6-10 of [8 page 19 & page 21] which are 0.00867 ~ 276-85,
0.0416 ~ 27459, 0.0278 ~ 27519, 0.000398 ~ 271129 0.000047 ~ 271438 and the corresponding linear correlation is
€ = 2(~6.85-4.59-5.19-11.29-14.38) _ 9—42.3 Then ysing our obtained differential correlation ¢ = 0.000000018 = 22573 we
get the differential-linear correlation for 7 rounds ChaCha which is € - e7 = 27110-33, This gives us a distinguisher for 7 rounds
of ChaCha with complexity 2220-66+5 — 222566 (here the procedure has to be repeated 2° times on average as in [8]). Using
247 random values, we can claim with confidence 85% that the mentioned correlation for 3.5 rounds at position (5,0) in [8] is
not correct and the actual value is much smaller than 0.0000002489. However, more experimental values are required to find
the accurate value of e.

Using our obtained forward correlation € = 0.000000018 and their obtained backward correlation €, = 0.000169 and 108
PNBs we get the data complexity N = 2829 for optimal o = 29.93 and the time complexity will be 2231:%4, Then for the
key recovery attack the final data and time complexities are 287-%9 and 2236-94 respectively (since the procedure has to be
repeated 2° times on average as in [4], [8]). This time complexity is higher than the existing complexity 223°-%6 of Crypto
2020 paper [4]]. Since for € = 0.000000018, 5 = 2°245 > 247 it seems we do not get actual € using 2*7 data. Actual € could
be much smaller than 0.000000018 and attack complexity could be much higher than 2236:04,

IX. CONCLUSION

We analysed the newly found 3.5 rounds single bit distinguisher in [4] which has a great impact on the key recovery attack
of ChaCha. Also, we revisited the recently improved key recovery attack of 7 rounds ChaCha from Eurocrypt 2021 [8] and
showed that their obtained 3.5 rounds single bit distinguishers are not accurate. The single bit distinguisher at position (5, 0)
has huge influence on the 7 rounds distinguisher and key recovery attack time complexities. Finally, we can conclude that the
best key recovery attack till now has been given by Beierle et. al. at Crypto 2020 [4] with time complexity 223986, In general,
theoretical analysis of such differential-linear attacks against ARX standards are not very frequent. In fact, the researches in
these areas are mostly done by treating the cipher like a black box and obtaining results experimentally. But the works in
this direction in the last few years have shown the importance of studying the various operations mathematically. Moreover,
these studies are not only useful to one cipher, but can be also helpful to cryptanalyse other ARX ciphers such as Sparkle [3]]
permutation based authenticated cipher and hash function which is a finalist in the NIST lightweight competition [18]]. Also,
there are other ARX based designs such as the MAC algorithm Chaskey [[16l], block cipher Sparx [11]] etc. Therefore, we
believe that more importance should be given on mathematical studies of the ciphers for theoretical justification about security
analysis.

Acknowledgement. We would like to thank Prof. Murilo Coutinho. He confirmed us via personal communication that they
found out the error in their code and now they do not find a significant bias for X, X5 or X5 using 2°2 samples.

REFERENCES

[1] J. P. Aumasson, S. Fischer, S. Khazaei, W. Meier and C. Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. FSE 2008,
LNCS 5086, pp. 470-488, 2008.

[2] A. R. Choudhuri and S. Maitra. Significantly Improved Multi-bit Differentials for Reduced Round Salsa and ChaCha. IACR Trans. Symmetric Cryptol
2016(2) pp. 261-287, 2016. Available at http://eprint.iacr.org/2016/1034.

[3] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J.n GroBschédl, L. Perrin, A. Udovenko, V. Velichkov and Q. Wang. Schwaemm and Esch: Lightweight
Authenticated Encryption and Hashing using the Sparkle Permutation Family, 2019. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/sparkle- spec-round2.pdf|

[4] C. Beierle, G. Leander, Y. Todo. Improved differential-linear attacks with applications to ARX ciphers. In: Annual International Cryptology Conference.
pp. 329-358. Springer (2020).

[5] D. J. Bernstein. Salsa20 specification. eSSTREAM Project algorithm description, http://www.ecrypt.eu.org/stream/salsa20pf.html, 2005.

[6] D. J Bernstein. ChaCha, a variant of Salsa20. In Workshop Record of SASC, volume 8, 2008.

[7] TANIX. Chacha usage and deployment. jhttps://ianix.com/pub/chacha-deployment.html, 2020. Accessed: 2020-01-13.

[8] M. Coutinho and T. C. Souza Neto: Improved Linear Approximations to ARXCiphers and Attacks Against ChaCha. 2021. https://eprint.iacr.org/2021/
224.pdf

[9] P. Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. IACR 2005. http://eprint.iacr.org/2005/375\

[10] S. Dey and S. Sarkar. Improved analysis for reduced round Salsa and ChaCha. Discrete Applied Mathematics 227(2017) pp. 58-69, 2017.

[11] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. GroBschédl and A. Biryukov. Design Strategies for ARX with Provable Bounds: Sparx and LAX. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT I, volume 10031 of Lecture Notes in Computer Science, pages 484-513, 2016.

[12] S. Fischer, W. Meier, C. Berbain, J. F. Biasse. Non-randomness in eSTREAM Candidates Salsa20 and TSC-4. Indocrypt 2006, LNCS 4329, pp. 2-16,
2006.

[13] A. Langley, W Chang, Nikos Mavrogiannopoulos, Joachim Stromberg-son, and Simon Josefsson. Chacha20-poly1305 cipher suites for transportlayer
security (tls).RFC 7905, (10), 2016.

[14] S. Maitra. Chosen IV Cryptanalysis on Reduced Round ChaCha and Salsa. Discrete Applied Mathematics, volume 208, pp. 88-97, 2016.

[15] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of
of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, pages 386-397, 1993.

http://eprint.iacr.org/2016/1034
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
http://www.ecrypt.eu.org/stream/salsa20pf.html
https://ianix.com/pub/chacha-deployment.html
https://eprint.iacr.org/2021/224.pdf
https://eprint.iacr.org/2021/224.pdf
http://eprint.iacr.org/2005/375

20

[16] N. Mouha, B. Mennink, A.V. Herrewege, D. Watanabe, B. Preneel, I. Verbauwhede. Chaskey: An efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A.M. (eds.) SAC 2014, Revised Selected Papers. LNCS, vol. 8781, pp. 306-323. Springer (2014)

[17] S. Muller. Documentation and analysis of the linux ran-domnumbergenerator-federalofficeforinformationsecu-rity (germany’s),2019. https://www.bsi.
bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6BOF8D7795B80FSEADA3DB3DB3E4043B.1_
c1d360?__blob=publicationFile&v=19.

[18] National Institute of Standards and Technology. Lightweight Cryptography (LWC) Standardization project, 2019. https://csrc.nist.gov/projects/
lightweight-cryptography.

[19] Z. Shi, B. Zhang, D. Feng, W. Wu. Improved Key Recovery Attacks on Reduced-Round Salsa20 and ChaCha. ICISC 2012, LNCS 7839, pp. 337-351.

[20] L. Torvalds. Linux kernel source tree, 2016. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
818e607b57c94ade9824dad63a96c2eabb2 1baf3l

[21] Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki and H. Nakashima. Differential Cryptanalysis of Salsa20/8. SASC 2007.
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://csrc.nist.gov/projects/ lightweight-cryptography
https://csrc.nist.gov/projects/ lightweight-cryptography
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
:

	Introduction
	Description of the structure of ChaCha
	Some results on the differential and linear properties of mathematical operations
	Analysis of the difference propagation in the first round
	Analysis of the availability of IVs for minimum Hamming weight

	Analyzing the path for the correlation at (2,0)
	Second round
	First half of the third round

	Analyzing the path for the correlation at (7,0)
	Second round
	First half of the third round

	Analysis of the 3-rd and 3.5-th round
	Extension to multi-bit distinguisher of the 5-th round
	3.5 round to 4-th round
	4 round to 4.5-th round
	4.5 round to 5-th round

	 Revisiting the attack of Eurocrypt 2021 paper
	Theoretical Interpretation and Experimental Results

	Conclusion
	References

