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Abstract. The digital signature schemes that have been proposed so
far in the setting of the Supersingular Isogeny Diffie-Hellman scheme
(SIDH) were obtained by applying the Fiat-Shamir transform - and a
quantum-resistant analog, the Unruh transform - to an interactive iden-
tification protocol introduced by De Feo, Jao and Plût. The security of
the resulting schemes is therefore deduced from that of the base identi-
fication protocol.
In this paper, we revisit the proofs that have appeared in the literature
for the special soundness property of the aforementioned SIDH-based
identification protocol. All such proofs consider the same extraction al-
gorithm, which is claimed to always extract the witness for a statement
x when given two valid transcripts, with the same commitment and dif-
ferent challenges, relative to x itself. We show that this is not always the
case, with some explicit counterexamples. The general argument fails due
to some special cycles, which we call collisions, in supersingular isogeny
graphs. We provide some theoretical results on their existence, and dis-
cuss their impact on the security of the SIDH-based digital signatures.
Relying on the Generalised Riemann Hypothesis, we also introduce an
alternative extractor for which we rigorously prove the special soundness
property.

Keywords: Post-quantum Cryptography · Isogeny-based Cryptography
· Identification Protocol · Special Soundness · Supersingular Isogeny
Graph · Digital Signature

1 Introduction

While traditional Elliptic Curve Cryptography (ECC) relies on the Elliptic Curve
Discrete Logarithm Problem (ECDLP), which is easily solvable on a quantum
computer using Shor’s algorithm [Sho94], isogeny-based cryptography is a newer
field of elliptic-curve cryptosystems which rely on different assumptions — e.g.,
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the hardness of the CSSI problem [DFJP14] — that so far have resisted quantum
cryptanalysis. As a consequence, this field represents one of the options for post-
quantum cryptography. Nevertheless, isogeny-based cryptography is less studied
than traditional ECC, and has only recently received broad attention to scruti-
nise hardness assumptions and existing primitives, and build new ones based on
them.

The first isogeny-based cryptographic primitive was a Diffie-Hellman-like key
exchange usually named CRS — because it was independently designed by Cou-
veignes [Cou06] and Rostovtsev and Stolbunov [RS06] — based on the action
of ideal class groups on isomorphism classes of ordinary elliptic curves. Due to
the inefficiency of the CRS scheme and the subsequent subexponential attack by
Childs et al. [CJS14], supersingular elliptic curves were considered as a potential
replacement to ordinary ones. In 2006, Charles, Lauter and Goren [CLG09] intro-
duced a collision-resistant hash function based on supersingular isogeny graphs.
Subsequently, Jao, De Feo and Plût [DFJP14] constructed the Supersingular-
isogeny Diffie-Hellman scheme, named SIDH, featuring small key sizes and whose
security relies on a newly introduced isogeny problem, named SSDDH problem.
In [GPSBT16], Galbraith et al. showed that the key exchange SIDH is vul-
nerable to an adaptive attack when a party uses a static key, which led to the
introduction of the CCA-secure Key Encapsulation Mechanism SIKE [ACC+17].
SIKE is obtained from an encryption scheme which was proposed, together with
an identification protocol which we will denote by IDSIDH, in [DFJP14]. Both
cryptosystems are deduced from the SIDH scheme.

The only existing SIDH-based digital signatures [YAJ+17,GPS17] were ob-
tained by turning the aforementioned identification protocol IDSIDH

5 into a non-
interactive one via the Fiat-Shamir transform [FS86] or a quantum-resistant ana-
log, namely the Unruh transform [Unr15]. The UnForgeability against Chosen
Message Attack (UF-CMA) of such digital signature schemes is claimed under
the Honest-Verifier Zero-Knowledge (HVZK) and special soundness properties
of the base identification protocol IDSIDH.

Different proofs that IDSIDH enjoys special-soundness have been provided
[DFJP14,YAJ+17,GPS17]. All such proofs consider the same deterministic ex-
tractor - which we denote by ExSIDH - that, on input two valid transcripts relative
to a statement x, with the same commitment and different challenges, is claimed
to output the witness w for x.

In more details, let the cyclic secret isogeny φ : E0 −→ E1 of prime-power
degree ℓe11 be the witness w for the statement x = (E1, φ(P2), φ(Q2)), where E0

is a fixed supersingular elliptic curve, {P2, Q2} is a basis of the torsion subgroup
E0[ℓ

e2
2 ], with ℓ2 a prime different from ℓ1. The isogeny φ is uniquely identified by

its kernel ker(φ). Then, two valid transcripts relative to x, with the same pair of
curves (E2, E3) as commitment and different challenges, give knowledge of three
cyclic isogenies ϕ, ψ, ϕ′ satisfying the following conditions:

– ϕ : E0 −→ E2 and ϕ′ : E1 −→ E3 have degree ℓe22 ;

5 To be more precise, the protocol obtained by running multiple parallel executions of
IDSIDH.
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– ψ : E2 −→ E3 has the same degree ℓe11 of φ.

Hence, the isogeny ϕ̂′ ◦ ψ ◦ ϕ goes from E0 to E1, where ϕ̂′ denotes the dual
isogeny of ϕ′. The extractor ExSIDH is designed to output ker(ϕ̂′ ◦ψ ◦ϕ)∩E0[ℓ

e1
1 ]

as the witness w of x.
Our contribution. In this work, we first revisit the proofs for the special

soundness property of IDSIDH. In particular, we depict two scenarios where the
extractor ExSIDH, given two valid transcripts relative to a statement x, with the
same commitment and different challenges, produces an output which is not the
witness for x, i.e. ExSIDH fails in outputting the kernel defining the witness φ.
By providing some explicit examples, we demonstrate the concrete occurrence
of such scenarios, even for some of the parameter sets considered for SIKE.
Therefore, this invalidates the special-soundness proofs given in the literature,
which incorrectly assumed the kernel of ψ to be always of the form ϕ(ker(φ)).

In the first of the two exception scenarios, the cyclic isogeny ψ is completely
unrelated to φ, i.e. ker(ψ) ̸= ϕ(ker(φ)), despite being an ℓe11 -degree isogeny from

E2 to E3. In this case, ker(ϕ̂′ ◦ ψ ◦ ϕ) ∩ E0[ℓ
e1
1 ] determines an isogeny of degree

ℓe11 non-equivalent with φ (its image might not even be isomorphic to E1). In
the second scenario, the cyclic isogeny ψ corresponds to an isogeny φ′ rather
than to φ, i.e. ker(ψ) = ϕ(ker(φ′)) instead of being equal to ϕ(ker(φ)). The
isogeny φ′ is twinned with φ, meaning that, despite being non-equivalent with
φ, it goes from E0 to E1, has degree ℓ

e1
1 and the kernel ⟨R⟩ of ϕ is such that the

isogenies having kernels ⟨φ(R)⟩ and ⟨φ′(R)⟩ both go into the curve E3. In this

case, ker(ϕ̂′ ◦ψ ◦ϕ)∩E0[ℓ
e1
1 ] determines the isogeny φ′ instead of the isogeny φ.

Both scenarios exploit collisions in supersingular isogeny graphs, i.e. non-
equivalent cyclic isogenies with same degree, domain and codomain. In particu-
lar, in the first scenario the isogeny ψ forms a collision with the isogeny having
ϕ(ker(φ)) as kernel, while in the second scenario both the isogenies φ,φ′ and
those with kernels ⟨φ(R)⟩ , ⟨φ′(R)⟩ form a collision. In the second case, the two
collisions are tightly related, and for this reason we call them double collisions.
We will show that the second scenario is a special case of the first one, and
prove that the instances that make the extractor ExSIDH fail all fall within the
first scenario. As a consequence, studying the existence of collisions in isogeny
graphs appears to be of primary importance to determine the failure rate of the
extractor ExSIDH, and thus the security of IDSIDH and the SIDH-based digital
signatures.

The relevance of collisions in supersingular isogeny graphs has emerged also
in other cryptographic contexts. We can mention, for example, the adaptive
attacks against SIDH [GPSBT16] and the analysis of the claw-finding attack
against the isogeny-based CSSI problem [CLN+20], which is presumed to be
equivalent to the SSDDH problem underlying the security of SIDH [DFJP14].
However, such collisions are usually overlooked, as they are deemed unlikely to
exist.

In order to fill this gap, we conduct a rigorous analysis on the existence of
collisions in supersingular isogeny graphs. We consider any large prime p and
small prime ℓ, and we study the collisions formed by cyclic isogenies of degree
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ℓe — with e ∈ N — that occur in the supersingular isogeny graph Gp2(ℓ), whose
vertices are isomorphism classes of supersingular elliptic curves over Fp2 and
whose edges are isogenies of degree ℓ. We express the total number of such col-
lisions as a sum of modified Hurwitz class numbers, by relating it to traces of
Brandt matrices. We then obtain upper bounds for the total number of collisions
that we can have in Gp2(ℓ). This method, however, cannot yield any meaning-
ful lower bound, as it would involve getting a strong handle on the behaviour
of certain incomplete character sums. In fact, bounding incomplete character
sums is a very difficult problem in analytic number theory, and the best known
bounds [Bur62,Bur63,Bur86] are not tight enough for our purposes. Instead, we
introduce a statistical model to mimic the splitting behaviour of Legendre sym-
bols and estimate the modified Hurwitz class numbers. We then obtain heuristic
lower bounds for the number of collisions, under our statistical model.

The lower bounds we obtain prove that collisions do occur in isogeny graphs.
On the other hand, our upper bounds suggest that, under two assumptions on
the distribution of such collisions, their occurrence is too low to affect the security
of the digital signature schemes obtained from IDSIDH provided the verification
algorithm are modified in such a way to require λ different commitments for each
signature. In fact, when considering a signature forgery for a uniformly random
statement x, the probability that a collision between E2 and E3 exists for at
least λ−λ0 distinct commitments (E2, E3) — where λ is the security parameter
of the scheme and λ0 = log(λ) log(log(λ)) — is negligible.

As current knowledge on supersingular isogeny graphs makes it hard to for-
mally assess the two distributional assumptions that we make, we provide an
alternative argument to show that the SIDH-based digital signatures remain
secure despite the existence of inputs in which ExSIDH fails. In particular, we
design a new extractor NExSIDH which, on input two valid transcripts relative to
a statement x, with the same commitment and different challenges, produces an
output which is always the witness for x. The new extractor runs in expected
polynomial time under the Generalised Riemann Hypothesis and combines to-
gether slight variations of two algorithms presented in recent papers relative to
isogeny-based cryptography [Wes21, FKM21]. NExSIDH is similar to ExSIDH but
works over quaternion algebras to retrieve the witness whenever ExSIDH fails.

As a final contribution, we use our results on the occurrence of collisions
and one of the distributional assumptions to provide a formal proof for the
implicit assumptions made in the context of the adaptive attacks against SIDH
[GPSBT16] and the claw-finding algorithm for the CSSI problem [CLN+20].

Related Work. In a recent independent work [DFDGZ21], De Feo et al.
also dispute the existing proofs for the special soundness property of the SIDH-
based identification protocol IDSIDH. In particular, they show that two valid
transcripts with different challenges can be easily produced for a statement x for
which does not exist a corresponding witness. Consequently, not just ExSIDH, but
every extractor would fail in extracting the witness for x given such transcripts.
Therefore, they propose an amended version of IDSIDH at the cost of slightly
more computations and heavier bandwidth.
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We note that in the literature two similar notions of special soundness can be
found. In the first one, the extraction algorithm is required to extract a witness
given two valid transcripts relative to a statement x in the language, i.e. there
must exist a witness w for x [EK18,Fis05]. In the second one, the statement x
is not required to be in the language [ACK21,Unr17]. We note that the latter
definition includes the former as a special case. The main reason for considering
one notion instead of the other is the cryptographic application for which the
identification protocol is considered. For some applications, the first definition
is enough, and then there is no need to consider the more general definition.
For example, if the considered identification protocol is turned into a digital
signature scheme by applying the Fiat-Shamir transform, the first definition
(together with the HVZK property) is sufficient to prove the UF-CMA security
of the scheme.

As the counterexamples provided in [DFDGZ21] are for statements x not in
the language, they only invalidate the special soundness proofs when considering
the second definition and do not say anything about the security of the signature
schemes deduced from IDSIDH. Consequently, in order to construct digital signa-
tures, there would be no reason to consider the less efficient protocol proposed
in [DFDGZ21] instead of the original identification protocol.

It is only in this work that we show that ExSIDH does not provide special
soundness to the IDSIDH protocol even when considering the first definition. This
implies that the proofs of security of the signature schemes deduced from the
protocol needed the revision that we perform in this paper. The two arguments
we provide to prove the security of the existing SIDH-based signatures — the
small failure probability of ExSIDH and the new extractor NExSIDH — allow to
target optimisation efforts on them instead of shifting to signatures based on
the more costly variation of IDSIDH. In the light of this, we deem [DFDGZ21]
and this paper to be two complementary results, both helpful in assessing the
security of the SIDH-based identification protocol IDSIDH proposed in [DFJP14].

Roadmap. The rest of the paper is organised as follows. In Section 2, we
provide some preliminaries on identification schemes, isogenies, quaternion al-
gebras and algebraic number theory. In Section 3, we depict the two scenarios
in which the extractor ExSIDH fails and we provide some concrete counterex-
amples, even for some of the SIKE parameter sets. Section 4 discusses some
cryptographic implications of the presented counterexamples. In Section 5, we
provide a deterministic upper bound on the number of collisions in an isogeny
graph. We also determine heuristic lower bounds for the same quantity. Section
6 builds upon the presented bounds to show that, under two assumptions on the
distribution of collisions in supersingular isogeny graphs, the probability that
the transcripts within a forged digital signature lead to an extractor failure is
negligible. In Section 7 we introduce a new extraction algorithm NExSIDH which
extracts the witness of a statement x even in the cases that make ExSIDH fail.
Finally, in Section 8 we draw some conclusions.
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2 Preliminaries

2.1 Identification Protocols

Let X and Y be two sets whose sizes depend on a security parameter λ. Then
R ⊂ X × Y is a polynomially-computable binary relation on X × Y if, for any
(x,w) ∈ X × Y , whether (x,w) belongs to R can be checked in time poly(|x|). If
(x,w) ∈ R, we call w a witness for the statement x. The language corresponding
to R is LR = {x ∈ X | ∃ w ∈ Y : (x,w) ∈ R}. Hereafter, we omit R from the
subscript when the relation is clear from context.

An identification protocol ID for a polynomially-computable binary relation
R is a special type of public-coin three-move interactive protocol between a
prover and a verifier. Informally, a prover holding a pair (x,w) ∈ R can prove
to a verifier that they possess a valid witness w for x, without revealing any
information about w.

Definition 1 (Identification protocols). An identification protocol ID for
a binary relation R consists of three algorithms (P = (P1,P2),V), where V is
deterministic and we assume that P1 and P2 are probabilistic polynomial-time
(PPT) algorithms sharing states. We denote by ComSet, ChSet, and ResSet the
commitment space, challenge space, and response space, respectively. Then ID
has the following three-move flow:

– On input (x,w) ∈ R, the prover runs com ← P1(x,w) and sends the com-
mitment com to the verifier.

– The verifier chooses a random challenge ch
$← ChSet, and sends ch to the

prover.
– Given ch, the prover runs resp ← P2(x,w, ch) and returns the response resp

to the verifier.
– The verifier runs V(x, com, ch, resp) and outputs 1 if they accept, 0 otherwise.

A transcript (x, com, ch, resp) ∈ X × ComSet× ChSet× ResSet of the protocol is
said to be valid (relative to x) in case V(x, com, ch, resp) outputs 1.

In the following, the statement x will be sometimes removed from transcripts
when it is clear from the context. We require the following three properties from
an identification protocol ID:

1. Correctness. All transcripts that are honestly generated must be valid.
More precisely, for all (x,w) ∈ R,

Pr

V(x, com, ch, resp) = 1

∣∣∣∣∣∣
com← P1(x,w),

ch
$← ChSet,

resp← P2(x,w, ch)

 = 1.

2. Honest-Verifier Zero-Knowledge (HVZK). The view of an honest ver-
ifier on a protocol run can be simulated, and thus an honest verifier learns
nothing on the secret witness. More formally, there exists a PPT simulator
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algorithm Sim that, on input a statement x ∈ L and challenge ch ∈ ChSet,
outputs a commitment com and response resp such that (x, com, ch, resp) is
a valid transcript. Moreover, the output distribution of Sim on input (x, ch)
is computationally indistinguishable from the distribution of those outputs
generated via an honest execution of ID conditioned on the verifier sampling
ch as the challenge.

The third property which is required is special soundness. Two slightly different
definitions of special soundness can be considered, which can be both found
in the literature. The only difference between the two is in the set where the
statement x lies.

3a. Special Soundness. There exists a polynomial-time extraction algorithm
Ex such that, given any two valid transcripts (x, com, ch, resp) and (x, com,
ch′, resp′) relative to the same statement x ∈ L, with the same commitment
com and two distinct challenges ch ̸= ch′, outputs w such that (x,w) ∈ R.

3b. Special Soundness (general). There exists a polynomial-time extrac-
tion algorithm Ex such that, given any two valid transcripts (x, com, ch, resp)
and (x, com, ch′, resp′) relative to the same statement x, with the same com-
mitment com and two distinct challenges ch ̸= ch′, outputs w such that
(x,w) ∈ R.

We note that, in order for Definition 3b to be verified, one should be able to
produce no more than one valid transcript relative to a statement not in the
language L. On the contrary, this limitation is not imposed by Definition 3a.
As Definition 3a is contained into Definition 3b, one could ask why choose the
former over the latter. The reason is that, depending on the targeted applica-
tion, the first definition might suffice. For example, it is very common to use
the Fiat-Shamir transform [FS86] to turn an identification protocol ID into a
digital signature. If the challenge set is not exponentially large in the security
parameter, one must run multiple parallel executions of the base identification
protocol to achieve a negligible soundness error. Then, when signing a message
m, the prover (which is now the signer) first produces a commitment com by
running P1 on a pair (x,w) ∈ R, with w acting as the secret key corresponding
to the verification key x. Instead of waiting for a challenge from the verifier, the
prover produces it by computing the image of a random function on the mes-
sage m and the commitment com. This allows the verifier to later replicate the
computation and check that the challenge has been honestly generated. Finally,
the signature consists of the commitment and the response to the commitment.
The HVZK property and the special soundness defined by Definition 3a of ID
are sufficient to prove the UF-CMA security of the resulting digital signature
scheme. In fact, the general reduction [AABN02] to prove the digital signature
secure retrieves a witness for a statement x by running an adversary against the
UF-CMA game as a sub-routine, and in particular by making it output two valid
transcripts relative to x. The reduction algorithm then executes the extractor
Ex on the two valid transcripts. Since the reduction is guaranteed to be given
x ∈ L as its challenge, Definition 3a suffices to argue that the reduction obtains
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the corresponding witness w. However, since this contradicts the hardness of
the language, we can conclude that no efficient adversary can break the UF-
CMA security. Therefore, in this case, it is not necessary to use the more general
definition of special soundness, and one can use Definition 3a instead, as the
possibility of producing more than one valid transcript relative to a statement
not in the language does not affect the reduction algorithm.

2.2 Supersingular Elliptic Curves, Isogenies, and Hardness
Assumptions

In this section we briefly recall some standard properties of isogenies between
elliptic curves over finite fields. We refer the interested reader to [Sil09] for a
detailed treatment of the topic.

Let Fq be a finite field, where q is a power of a prime p ≥ 5. Given two
elliptic curves E and E′ defined over Fq, an isogeny φ : E −→ E′ is a non-
constant regular rational map such that φ(0E) = 0E′ . Every isogeny φ can be
written in the form (F1(x)/F2(x), yG1(x)/G2(x)), where F1, F2, G1, G2 ∈ Fq[x]
(Fq being the algebraic closure of Fq), F1 is coprime with F2, and G1 is coprime
with G2. If the coefficients of the four polynomials are contained in Fqk , then φ
is said to be defined over Fqk , and E,E

′ are isogenous over Fqk . Tate’s theorem
states that E,E′ are isogenous over Fqk if and only if #E(Fqk) = #E′(Fqk).

An isomorphism is an isogeny that is invertible. An isogeny with the same do-
main and range is an endomorphism. The set End(E) of all endomorphisms of an
elliptic curve E together with the zero map form a ring under pointwise addition
and composition, called the endomorphism ring of E. If End(E) is commutative,
then E is said to be ordinary, supersingular otherwise. Every supersingular el-
liptic curve defined over an extension of Fp is isomorphic to an elliptic curve
defined over Fp2 .

The degree deg(φ) of an isogeny φ is the maximum in {deg(F1),deg(F2)}.
Two elliptic curves E and E′ are d-isogenous if there exists an isogeny φ : E −→
E′ of degree d, and in this case we say φ is a d-isogeny. Given a prime number
ℓ and a prime power q = pn with p ̸= ℓ, we denote by Gq(ℓ) the graph whose
vertices are Fq-isomorphism classes of supersingular elliptic curves defined over
Fq and whose edges are equivalence classes of ℓ-isogenies, where two isogenies
are equivalent if they have the same kernel. We say that two non-equivalent
ℓe-isogenies with cyclic kernels, isomorphic domains and isomorphic codomains
form a collision of length 2e in Gq(ℓ).

The composition of two isogenies of degrees d1 and d2, respectively, is an
isogeny of degree d1d2. Given an isogeny φ : E −→ E′, the dual φ̂ : E′ −→ E of
φ is an isogeny — defined on the same field and having the same degree d of φ—
such that φ◦ φ̂ = φ̂◦φ = [d]. If (d, p) = 1 and ker(φ) = ⟨T ⟩, given another point
R ∈ E such that {T,R} is a basis for E[d], we have ker(φ̂) = ⟨φ(R)⟩ [Vit19].

Each isogeny φ has a finite kernel and, for a separable isogeny φ (i.e. an
isogeny that induces a separable extension of function fields), it holds that
deg(φ) = #ker(φ). In the following we restrict our attention to separable iso-
genies. Vice versa, if H is a finite subgroup of an elliptic curve E, then there
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are a unique (modulo isomorphisms) elliptic curve E/H and a separable isogeny
ψ : E −→ E′ such that ker(ψ) = H. Both E/H and ψ can be computed with
complexity O(#H) using Velu’s formulas. When ker(φ) is a cyclic group, we say
that φ is a cyclic isogeny.

Given a natural number ℓ, we denote by E[ℓ] the ℓ-torsion subgroup {P ∈
E | [ℓ]P = 0E} of E. When ℓ and p are relatively prime, E[ℓ] ≃ (Z/ℓZ)×(Z/ℓZ).

Cryptographic schemes deduced from the SIDH paradigm [DFJP14] use
primes p = ℓe11 ℓ

e2
2 f ± 1, where e1, e2, f are natural numbers, ℓ1, ℓ2 are small

primes and ℓe11 ≈ ℓ
e2
2 . Under these hypotheses, every supersingular elliptic curve

defined over Fp2 is isomorphic, over Fp2 , to an elliptic curve E defined over Fp2

and such that E(Fp2) = (ℓe11 ℓ
e2
2 f)

2. As a consequence, E[ℓe11 ] and E[ℓe22 ] are both
contained in E(Fp2). We denote by pp the tuple (ℓ1, ℓ2, e1, e2, f, p, E0, P1, Q1, P2,
Q2) of public parameters for an SIDH-based scheme, where E0 is a fixed super-
singular elliptic curve defined over Fp2 with #E0(Fp2) = (ℓe11 ℓ

e2
2 f)

2, and {P1, Q1}
and {P2, Q2} are bases for E0[ℓ

e1
1 ] and E0[ℓ

e2
2 ], respectively.

Hardness Assumptions.We now present the hard problems which the security
of IDSIDH is based on. They are tailored to the SIDH paradigm, and therefore we
explicit their dependence on the tuple of SIDH parameters pp.

Problem 1 (Computational Supersingular Isogeny (CSSI) Problem, [DFJP14]).
Let φ : E0 −→ E1 be an isogeny whose kernel is ⟨[m1]P1 + [n1]Q1⟩, wherem1, n1
are uniformly sampled from Z/ℓe11 Z and are not both divisible by ℓ1. Given E1

and the values φ(P2), φ(Q2), the computational supersingular isogeny problem
CSSIpp requires to determine a generator of the subgroup ⟨[m1]P1 + [n1]Q1⟩.

The fastest algorithms to solve the above problem are based on the meet-in-
the-middle strategy, both for classical and quantum attacks. The best classical

attack has computational complexity Õ(ℓ
e1/2
1 ), and the best quantum attack has

computational complexity Õ(ℓ
e1/3
1 ) [DFJP14].

The next problem was originally formulated in [DFJP14] and it is believed
to be computationally infeasible as well.

Problem 2 (Decisional Supersingular Product (DSSP) Problem, [YAJ+17]). Let
φ : E0 −→ E1 be an isogeny of degree ℓe11 and kernel ⟨S⟩. Given (E2, E3, ψ) sam-
pled with probability 1/2 from one of the following distributions, the decisional
supersingular product problem DSSPpp requires to determine which distribution
it is from:

– choose a random point R ∈ E0[ℓ
e2
2 ] of order ℓe22 . Let ϕ : E0 −→ E2 and

ϕ′ : E1 −→ E3 be the isogenies with kernels ⟨R⟩ and ⟨φ(R)⟩, respectively.
Then let ψ : E1 −→ E2 be the isogeny having ⟨ϕ(S)⟩ as kernel, where
deg(ψ) = ℓe11 .

– choose E2 randomly among all the supersingular elliptic curves defined over
Fp2 having the same number of rational points as E0. Then, choose a random
point U ∈ E2 of order ℓe11 and compute the isogeny ψ : E2 −→ E3 having
⟨U⟩ as kernel.
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2.3 Quaternion Algebras and Brandt Matrices

A quaternion algebra B over a field K is a 4-dimensional central simple algebra
over K. Throughout this work, we restrict our attention to the case K = Q. Each
quaternion algebra B over Q admits a basis {1, i, j,k}, with ij = −ji = k and
i2 = a, j2 = b for some a, b ∈ Q×. Given a quaternion α = t+ xi+ yj+ zk ∈ B,
the canonical involution of α is defined as α := t − xi − yj − zk ∈ B. Via the
canonical involution, we can define the reduced trace of α as trd(α) := α+α = 2t
and the reduced norm of α as nrd(α) := αα = t2 − ax2 − by2 + abz2.

For the rest of this section, let p be a fixed prime. We define Bp := B ⊗Q
Qp as the quaternion algebra obtained by extending the scalars of B from Q
to Qp (the completion of Q with respect to the p-adic norm). We extend this
notation to include ∞ by setting B∞ := B ⊗Q R. It follows from Wedderburn’s
theorem that Bν — where ν is a place, i.e. a prime or ∞ — is either a division
ring or it isomorphic to the matrix algebra M2(Qν). In the first case we say
that B is ramified at ν. A quaternion algebra is uniquely determined, up to
isomorphisms, by the set of places ν at which it ramifies; this set has even
cardinality. Conversely, given any finite set of places of even cardinality, there is
a quaternion algebra which ramifies precisely at these places.

A fractional ideal I in a quaternion algebra B is a (free) Z-lattice of rank four,
and it is represented as I = α1Z+ α2Z+ α3Z+ α4Z for a basis {α1, α2, α3, α4}
of B. The norm of a fractional ideal is defined as n(I) = gcd({nrd(α) : α ∈ I}).
An order O in a quaternion algebra B is a subring of B that is also a fractional
ideal. Since all ideals we will work with are fractional, from now on we simply
call them ideals. For every ideal I in B, we can define the left order OL(I) :=
{β ∈ B : βI ⊂ I} and the right order OR(I) := {β ∈ B : Iβ ⊂ I}. Saying that I
is a left O-ideal means that O = OL(I), and saying it is a right O′-ideal means
that O′ = OR(I).

For the rest of this paper, we will only consider the quaternion algebra Bp,∞
over Q ramified at p and ∞, since the endomorphism ring of any supersingular
elliptic curve defined over Fp2 is isomorphic to a maximal order in Bp,∞. Two
ideals I, J in Bp,∞ are equivalent if there exists β ∈ B×

p,∞ such that J = Iβ.
Given a maximal order O in Bp,∞, the class group cl(O) = {I1, I2, ...} is the set
of representatives of the equivalence classes of the left O-ideals, where I1 = O by
convention. This set is finite, its cardinality n is called the class number of Bp,∞,
as it is the same for every maximal order O in Bp,∞. The set Γi := OR(Ii)

×/Z×

is finite, as it is a discrete subgroup of the compact Lie group (Bp,∞⊗R)×/R× ∼=
SO3(R); let wi be its cardinality.

We now introduce theta series and Brandt matrices; the main reference for
this part is [Gro87]. Let the inverse ideal of Ii be defined as I−1

i := {β ∈ Bp,∞ :

IiβIi ⊂ Ii}, and Mij := I−1
j Ii = {

∑N
k=1 akbk : N ∈ N, ak ∈ I−1

j , bk ∈ Ii}.
We define the reduced norm nrd(Mij) of Mij to be the unique positive rational
number such that all quotients nrd(a)/nrd(Mij), for a ∈Mij , are coprime inte-
gers. The definition of Brandt matrix B(m) :=

[
Bij(m)

]
1≤i,j≤n

, for m ∈ Z, is
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obtained from the following definition of theta series θij :

θij(τ) :=
1

2wj

∑
a∈Mij

q
nrd(a)

nrd(Mij) =
∑
m∈Z

Bij(m)qm,

where q := e2πiτ and τ ∈ {z ∈ C : Im(z) > 0}. We hereby list some properties
of Brandt matrices, which are proved in [Gro87, Proposition 2.7]:

1. Ifm ≥ 1, then Bij(m) ∈ N, and the sum of the entries in a row is independent
of the chosen row, i.e. for all 1 ≤ i ≤ n,

n∑
j=1

Bij(m) =
∑
d|m

gcd(d,p)=1

d.

2. If m and m′ are coprime, then B(mm′) = B(m)B(m′).
3. If ℓ ̸= p is a prime, then B(ℓk) = B(ℓk−1)B(ℓ)− ℓB(ℓk−2) for all k ≥ 2.
4. wjBij(m) = wiBji(m) for all m and for all 1 ≤ i, j ≤ n.

Recent advances in isogeny-based cryptography have put quaternion algebras
under the spotlight, due to their intimate connection with supersingular elliptic
curves via a correspondence of categories. The original result by Deuring [Deu41]
has been enriched by several later works, the last of which being [DFKL+20]. In
particular,

– any supersingular j-invariant (the j-invariant of any supersingular elliptic
curve) over Fp2 corresponds to a maximal order in the quaternion algebra
Bp,∞, and the set of supersingular j-invariants over Fp2 is in bijection with
the class group cl(O), for any maximal order O in Bp,∞;

– endomorphisms of a supersingular elliptic curve E over Fp2 correspond to
ideals of the form Oa in O ≃ End(E) for some a ∈ O;

– ℓ-isogenies from a supersingular elliptic curve E over Fp2 correspond to left
O-ideals of norm ℓ, where End(E) ≃ O, which are integral, i.e. are contained
in O; composition of isogenies corresponds to multiplication of ideals.

Given the further connection between quaternion algebras and Brandt ma-
trices, we can exploit the latter to study elliptic curves. First and foremost, let
us now introduce Hurwitz Class Numbers. Given an order O in an imaginary
quadratic extension of Q, let d be its (negative) discriminant, h(d) the size of
the class group cl(O) and u(d) := #(O×/Z×). Fix D > 0 and let O−D be the
order of discriminant −D. The Hurwitz Class Number H(D) is

H(D) =
∑

d·f2=−D

h(d)

u(d)
. (1)

and the modified Hurwitz Class Number Hp(D), for a prime p, is

Hp(D) :=


0 if p splits in O−D;
H(D) if p is inert in O−D;
1
2H(D) if p is ramified in O−D

but does not divide the conductor of O−D;
H(D

p2 ) if p divides the conductor of O−D;

(2)
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For D = 0, we set H(0) = −1/12 and Hp(0) :=
p−1
24 .

Note that Hp(D) ≤ H(D). This is trivially true for the first three cases of
(Equation (2)). When p divides the conductor of O−D, expanding the definition
of H(D

p2 ) shows that Hp(D) = H(D
p2 ) ≤ H(D). We conclude this section with

the following two results on Hurwitz class numbers.

Theorem 1. [Gro87, Prop. 1.9] For all integers m ≥ 0,

Tr(B(m)) =
∑
s∈Z

s2≤4m

Hp(4m− s2).

Theorem 2. [Hur85, §7] For all integers m ≥ 1,∑
s∈Z

s2≤4m

H(4m− s2) = 2
∑
d|m

d−
∑
d|m

min{d,m/d},

where the sum runs over the positive divisors of m.

3 The SIDH-based Identification Protocol and Its Special
Soundness

In their seminal work [DFJP14], Jao, De Feo, and Plût proposed an identifi-
cation scheme in the SIDH setting, which we will refer to as the SIDH-based
identification protocol IDSIDH. In this protocol, a prover proves to a verifier that,
for a given pair (E0, E1) of supersingular elliptic curves, it knows a cyclic isogeny
φ : E0 −→ E1 - having degree ℓe11 , where ℓ1 is a prime - without revealing any
information about the isogeny itself.

Later on, Galbraith et al. [GPS17] and Yoo et al. [YAJ+17] turned IDSIDH

into the first SIDH-based digital signature schemes by applying the Fiat-Shamir
transform [FS86] and the Unruh transform [Unr15], respectively. The Unruh
transform provides security in the quantum random oracle model, while the
Fiat-Shamir transform generally guarantees security only in the classical random
oracle model. The UF-CMA security of the resulting digital signatures is deduced
from both the HVZK and special soundness properties of IDSIDH. Proofs for
the special soundness property of this protocol are given in [DFJP14,YAJ+17,
GPS17], and all of them consider the same extractor, which we will denote by
ExSIDH in the following.

In this section, we detail two scenarios where the proposed extraction algo-
rithm ExSIDH fails to extract any meaningful witness for a statement x ∈ LR
when given two valid transcripts relative to x. The consequence of such failure
is that the unforgeability proofs of the signature schemes obtained by applying
either the Fiat-Shamir or Unruh transform on IDSIDH need to be reviewed. In
the following, we show some concrete examples of the two scenarios mentioned
above, even for some of the SIKE parameter sets.
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3.1 IDSIDH and ExSIDH

The public parameters of IDSIDH consist of a tuple pp = (ℓ1, ℓ2, e1, e2, f, p, E0, P1,
Q1, P2, Q2) where:

– ℓ1 and ℓ2 are two distinct small primes;
– e1, e2 are natural numbers such that ℓe11 ≈ ℓ

e2
2 ;

– f ∈ N is a small cofactor;
– p is a prime of the form ℓe11 ℓ

e2
2 f ± 1;

– E0 is a fixed supersingular elliptic curve defined over Fp2 ;
– {P1, Q1} and {P2, Q2} are two bases for E0[ℓ

e1
1 ] and E0[ℓ

e2
2 ], respectively.

The binary relationR for the identification protocol IDSIDH is contained inX×Y ,
where

X ={(E1, P
′, Q′) | E1 is a supersing. elliptic curve over Fp2 , E1[ℓ

e2
2 ] = ⟨P ′, Q′⟩}

Y ={φ | φ is a cyclic isogeny from E0 s.t. deg(φ) = ℓe11 }.

This relation is induced by the CSSI problem and is therefore defined as follows:

R = {((E1, P
′, Q′), φ) | φ : E0 −→ E1,deg(φ) = ℓe11 , φ(P2) = P ′, φ(Q2) = Q′}.

Here we note that each statement x ∈ LR admits a unique witness w (see [UJ18]).
IDSIDH is a binary-challenge identification protocol, i.e. ChSet = {0, 1}, which
constits of three algorithms ((P1,P2),V) defined as:

– com ← P1((E1, P
′, Q′), φ): on input ((E1, P

′, Q′), φ) ∈ R, it generates two
random integers m2, n2 in Z/ℓe22 Z, not both divisible by ℓ2, and computes
the point R = [m2]P2 + [n2]Q2 - of order ℓe22 - and the elliptic curves E2 =
E0/ ⟨R⟩ and E3 = E1/ ⟨[m2]P

′ + [n2]Q
′⟩. Then it outputs the commitment

com = (E2, E3).
– resp← P2((E1, P

′, Q′), φ, ch): if the challenge ch is equal to 0, the algorithm
sets resp to be the pair (m,n). Otherwise, given the point S — of order ℓe11
— generating ker(φ) and the isogeny ϕ : E0 −→ E2 with kernel generated
by R = [m2]P2 + [n2]Q2, it sets resp to be ϕ(S). It then returns resp.

– {0, 1} ∋ b ← V((E1, P
′, Q′), com, ch, resp): the deterministic verification al-

gorithm works as follows:
• if ch = 0, and thus resp = (m,n), it checks that m and n are not both
divisible by ℓ2, that E0/ ⟨[m]P2 + [n]Q2⟩ is isomorphic to E2, and that
E1/ ⟨[m]P ′ + [n]Q′⟩ is isomorphic to E3;

• if ch = 1, and thus resp = T , it checks that T ∈ E2 has order ℓe11 and
that E2/ ⟨T ⟩ is isomorphic to E3.

If the conditions are fulfilled, V outputs 1 (accept), otherwise it outputs 0
(reject).

Remark 1. We have given a description of IDSIDH in full generality. In particular,
we did not specify any conditions on ℓ1 and ℓ2, and E0 can be any supersingular
elliptic curve over Fp2 . This general setting will be considered until Section 7,
where stricter conditions will be posed for ℓ1, ℓ2 and E0. Such conditions reflect
the design choices which led to the different SIKE parameters sets.
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It is easy to show that IDSIDH is correct. We now prove that it satisfies the
Honest-Verifier Zero-Knowledge property by constructing a zero-knowledge sim-
ulator Sim as follows. On input (E1, P

′, Q′) ∈ LR and ch = 0, Sim chooses two
random integers m2, n2 in Z/ℓe22 Z, not both divisible by ℓ2, computes the point
R = [m2]P2 + [n2]Q2 of order ℓe22 , and outputs

(com = (E0/ ⟨R⟩ , E1/ ⟨[m2]P
′ + [n2]Q

′⟩), ch = 0, resp = (m2, n2)).

Simulated transcripts are distributed exactly as the real ones conditioned on
ch = 0. In order to simulate a transcript on input (E1, P

′, Q′) ∈ LR and ch = 1,
Sim chooses a random supersingular elliptic curve E2, defined over Fp2 and with
the same number of rational points as E0. Then it chooses a random cyclic
subgroup ⟨T ⟩ ⊂ E2[ℓ

e1
1 ] having order ℓe11 , and outputs

(com = (E2, E3 = E2/ ⟨T ⟩), ch = 1, resp = T ).

This is computationally indistinguishable from a valid transcript conditioned on
ch = 1, under the assumption that the DSSPpp problem (2) is hard.

In [DFJP14, YAJ+17, GPS17], the special soundness property of IDSIDH is
proven by considering the same extractor ExSIDH, defined as follows. Given two
valid transcripts (x, com, 0, (m,n)) and (x, com, 1, T ) - relative to the statement
x = (E1, P

′, Q′), and with the same commitment com = (E1, E2) and different

challenges - it outputs ker(ϕ̂′ ◦ ψ ◦ ϕ) ∩ E0[ℓ
e1
1 ]. Here ϕ is the isogeny from E0

with ⟨[m]P2 + [n]Q2⟩ as kernel, ψ is the isogeny from E2 with kernel ⟨T ⟩ and ϕ′
is the isogeny from E1 having ⟨[m]P ′ + [n]Q′⟩ as kernel.

Remark 2. Equivalently, the extractor ExSIDH can be defined to output ϕ̂(⟨T ⟩),
as in [DFJP14].

We note that, under the assumption that ⟨T ⟩ is equal to ϕ(ker(φ)) - where
φ is the only witness for x - ExSIDH extracts exactly ker(φ) (and so, equivalently,
φ). Despite this assumption being made in [DFJP14,YAJ+17,GPS17], it does
not appear to hold in general, as we show considering two different scenarios
detailed below.

3.2 Scenario 1 - Single Collision

Let x = (E1, P
′, Q′) be a statement in LR. Suppose there exists a point R =

[m2]P2 + [n2]Q2 of order ℓe22 such that E2 = E0/ ⟨R⟩ admits two distinct cyclic
subgroups, G and G̃ of order ℓe11 , that generate two isogenies ψ, ψ̃ both from
E2 to E3 = E1/ ⟨[m2]P

′ + [n2]Q
′⟩. The pair (ψ, ψ̃) forms a collision of length

e1 in the isogeny graph Gp2(ℓ1). Here we denote by T a generator of G̃, by ϕ
the isogeny from E0 with kernel ⟨R⟩ and by ϕ′ the isogeny from E1 with kernel
φ(R), where φ is the only witness for x. We also assume that G = ϕ(ker(φ)).

Given the commitment com = (E2, E3), both (x, com, ch = 0, (m2, n2)) and
(x, com, ch = 1, T ) are valid transcripts relative to x. On input such two tran-
scripts, ExSIDH extracts a cyclic subgroup of E0, having order ℓe11 , which defines
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E0 E1

E2 E3

E′

ψ

ψ̃

ϕ ϕ′

φ

φ̃

Fig. 1: Scenario 1.

an isogeny non-equivalent to the only witness φ for x. Therefore, ExSIDH fails in
extracting the witness for x. In order to better explain the above scenario and to
show that it can actually happen in practice, we provide a concrete occurrence
of it.

Example 1. Consider the prime p = (28)(35)− 1 and the irreducible polynomial
g = x2 + 62205x + 5 ∈ Fp[x]. Then Fp2 = Fp[x]/(g) and we denote by z a root
of g, which forms, together with the identity 1, a basis for Fp2 over Fp. Let
E0 be a supersingular elliptic curve with j-invariant equal to 22470. The two
points P2 = (7077z + 32228, 17988z + 60777), Q2 = (51235z + 37453, 42878z +
1379) form a basis for E0[3

5]. Let E1 be the image curve of the 28-isogeny φ
having ⟨33446z + 46615, 52617z + 4750⟩ as kernel, for which j(E1) = 37167z +
53117. We consider the tuple (E1, P

′ = (6505z + 32827, 20825z + 21686), Q′ =
(59525z + 48254, 52332z + 7163) as statement x. Then, for the curves E2 =
E0/ ⟨[161]P2 + [183]Q2⟩, E3 = E1/ ⟨[161]P ′ + [183]Q′⟩, there exist two distinct
cyclic isogenies ψ, ψ̃ : E2 −→ E3 of degree 28. The isogeny ψ is the one with
kernel equal to ϕ(ker(φ)), where ϕ is the isogeny with kernel ⟨[161]P2 + [183]Q2⟩.
On the other hand, ψ̃ has kernel generated by T = (52195z + 35063, 51186z +

33135), with T /∈ ϕ(ker(φ)). As a consequence, ϕ̂(⟨T ⟩) defines an isogeny φ̃ whose
image has j-invariant equal to 55144z + 45927, which is different from that of
E1. Therefore φ̃ differs from the witness φ for x.

To produce the above concrete example for Scenario 1, the following proce-
dure to perform an exhaustive search was used:

1. produce a prime p of the form ℓe11 ℓ
e2
2 f ± 1, so that ℓe11 ≈ ℓ

e2
2 ;

2. for each vertex j0 in the isogeny graph Gp2(ℓ2)
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(a) compute all the paths of length e2 (with no backtracking) and the cor-
responding arriving vertices;

(b) for each arriving vertex j2 compare all paths in the isogeny graph Gp2(ℓ1)
which originate from j2 and of length e1 (with no backtracking). An
occurrence of Scenario 1 is found whenever two paths end at the same
j-invariant j3, and they are distinct in at least one step.

3.3 Scenario 2 - Double Collisions

Let x = (E1, P
′, Q′) be a statement in LR. Suppose LR contains another state-

ment x̃, with x̃ ̸= x, with the same first component (modulo Fp2-isomorphisms).

In other words, suppose there exist two distinct cyclic subgroups H and H̃ of
order ℓe11 in E0 such that j(E0/H) = j(E0/H̃). We denote by φ and φ̃ the
isogenies having kernels H and H̃, respectively. We further assume there exists
a point R = [m2]P2 + [n2]Q2 ∈ E0 of order ℓe22 such that E1/ ⟨φ(R)⟩ has the
same j-invariant of E1/ ⟨φ̃(R)⟩. We denote by ϕ′ and ϕ̃′ the isogenies having
⟨φ(R)⟩ and ⟨φ̃(R)⟩ as kernels, respectively. The pairs (φ, φ̃) and (ϕ′, ϕ̃′) form
two collisions (of length e1 and e2, respectively) in the isogeny graphs Gp2(ℓ1)
and Gp2(ℓ2), respectively. Since the second collision originates from the same
point R ∈ E0, the two collisions have a tight link. For this reason we call double
collision of length (e1, e2) in (Gp2(ℓ1),Gp2(ℓ2)) a pair of collisions of this form.
Given the commitment com = (E2 = E0/ ⟨R⟩ , E3 = E1/ ⟨φ(R)⟩, the two tran-
scripts (x, com, ch = 0, (m2, n2)) and (x, com, ch = 1, ϕ(S̃)) — where S̃ generates
H̃ — are both valid transcripts relative to x. However, on input such transcripts,
ExSIDH extracts the witness w̃ for x̃, rather than the witness for x. As a side note,
we can use ϕ to push forward the kernels of φ and φ̃ and obtain the isogenies
ψ and ψ̃, which form a collision of length e1 in Gp2(ℓ1). Below, we provide a
concrete counterexample for this scenario as well.

E0 E1

E2 E3

ψ

ψ̃

ϕ ϕ′ϕ̃′

φ

φ̃

Fig. 2: Scenario 2.
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Example 2. Let p = (28)(53) + 1, and g = x2 + 7 ∈ Fp[x] be an irreducible
polynomial. We denote by z a root of g, and therefore {1, z} is a basis over Fp

of the extension field Fp2 = Fp[z]/(g). Let E0 be a supersingular elliptic curve
over Fp2 such that j(E0) = 80630z + 38195. The two distinct cyclic subgroups
of order 28 of E0

H = ⟨(174423z + 15317, 139167z + 27752)⟩
H̃ = ⟨(279804z + 121600, 104494z + 307794)⟩ ,

determine the two isogenies φ : E0 −→ E1 = E0/H and φ̃ : E0 −→ Ẽ1 = E0/H̃
such that j(E1) = j(Ẽ1) = 255209z + 212204. The point R = (290744z +
184866, 22597z + 44859) ∈ E0 - having order 35 - is such that E1/ ⟨φ(R)⟩ and
Ẽ1/ ⟨φ̃(R)⟩ have the same j-invariant.

Remark 3. The second scenario we described above is actually a special case
of the first scenario, where E1 is isomorphic to E′ over Fp2 (see Figure 1).
Nevertheless, we decided to treat it separately as it allows for an alternative
procedure to construct concrete examples where ExSIDH fails in outputting the
correct witness. This alternative procedure is detailed in the following lines.

The procedure we followed to produce examples where Scenario 2 occurs relies
on two main parts. The first one consists in an exhaustive search for collisions
of length e1 in Gp2(ℓ1), and proceeds as follows:

1. produce a prime p of the form ℓe11 ℓ
e2
2 f ± 1, so that ℓe11 ≈ ℓ

e2
2 ;

2. for each vertex j0 in the isogeny graph Gp2(ℓ1)
(a) compare all paths of length e1 (with no backtracking) originating from

the vertex j0;
(b) a collision is found whenever two paths end at the same j-invariant

(which we refer to as colliding j-invariant), and they are distinct in at
least one step.

After a colliding j-invariant j1 is found for a starting vertex j0, the second part
of the procedure takes the two colliding paths (which correspond to the isogenies
φ and φ̃, respectively) and continues by

– constructing a supersingular elliptic curve E0, defined over Fp2 , having j0 as
j-invariant;

– for any R ∈ E0[ℓ
e2
2 ] of order ℓe22 , comparing all pairs of paths of length e2

in Gp2(ℓ2) determined by the points φ(R) and φ̃(R). A collision is found
whenever the arriving j-invariant is the same for both paths in a pair. This
second collision, together with the one produced in the first part, form a
double collision.

When the two colliding paths found in the second part of the procedure are equal
at each step, we call the whole double collision a Florence flask ; when they differ
in at least one step, we call the double collision a lemniscate.
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j0 j1 j3 j0 j1 j3

Fig. 3: A Florence flask (on the left) and a lemniscate (on the right). We stress
that two non-equal colliding paths differ in at least one step, and not necessarily
in all of them as one might deduce from the above figures.

We ran some experiments by considering primes p of the form ℓe11 ℓ
e2
2 ± 1 of

small size, always setting ℓ1 = 2 and ℓ2 = 3. The results are summarized in
Table 1, where we list the number of vertices of Gp2(2) from which at least a
collision of length e1 originates, the total number of collisions of length e1 in
the graph Gp2(2), and the total number of double collisions of length (e1, e2) in
(Gp2(2),Gp2(3)) (distinguishing between lemniscates and Florence Flasks). The
exhaustive search conducted in both parts of the above procedure becomes very
expensive already with 12-bit primes and thus, from p = 2591 on, we restricted
our analysis to a random subset of vertices. The results show that, except for
p = 1297, for each prime p we considered and for each vertex j in Gp2(2) (or
in the randomly-selected subgraph) exhibits at least one collision of length e1
originating from j.

p e1 e2 +1/-1
Initial j-invariants

with collisions
Collisions Lemniscates

Florence
flasks

431 4 3 -1 37/37 183 134 286

433 4 3 +1 36/36 213 229 152

863 5 3 -1 73/73 681 246 316

1297 4 4 +1 97/108 194 127 231

2591 5 4 -1 25/25 121 44 44

2593 5 4 +1 25/25 112 77 85

15551 6 5 -1 25/25 76 16 84

62207 8 3 -1 20/20 280 14 405

Table 1: A summary of the number of collisions and double collisions for the
considered primes p.

3.4 Scenario 1 and SIKE Parameter Sets

One might object that the concrete examples provided in the previous subsec-
tions only occurred because of the small sizes of the considered isogeny graphs.
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In order to argue that we cannot exclude the presence of similar examples also
in supersingular isogeny graphs of cryptographic size, we focus on Scenario 1
for the largest SIKE paramater set, called SIKEp751. This name reflects the
fact that the underlying prime p751 = 23723239 − 1 has bit-length equal to 751.
As we detail in Appendix A, the supersingular isogeny graph G(p751)2(3) admits
two collisions of length 239, whose starting vertex is the (isomorphism class of
the) supersingular elliptic curve chosen as starting curve for SIKEp751. As the
defining equation of this curve is y2 = x3+6x2+x, such curve is usually denoted
by E6.

Consider one of the two collisions, and call H and H̃ the distinct kernels
of the two colliding isogenies ψ and ψ̃, respectively. Let E3 be the image curve
(modulo isomorphisms) of the two isogenies. An example of Scenario 1 can then
be constructed as follows. A cyclic subgroup K ⊂ E6 of order 2372 is randomly
sampled, and the image curve of the isogeny ϕ having K as kernel is denoted
by E0. Then, the obtained curve E0 is set as the starting curve of the public
parameters for IDSIDH. Let φ : E0 −→ E1 be the isogeny with kernel ϕ(H). By
fixing bases {P1, Q1}, {P2, Q2} for E0[3

239] and E0[2
372] respectively, (E1, P

′ =
φ(P2), Q

′ = φ(Q2)) and φ are a statement-witness pair (x,w) for IDSIDH with
public parameters

pp = (ℓ1 = 3, ℓ2 = 2, e1 = 239, e2 = 372, f = 1, p751, E0, P1, Q1, P2, Q2).

Let R generate the kernel of the dual isogeny of ϕ, with m2, n2 ∈ Z/2372Z such
that R = [m2]P2 + [n2]Q2, and let T generate H̃ = ker(ψ̃). By setting com =
(E6, E3), the two transcripts (x, com, ch = 0, (m2, n2)) and (x, com, ch = 1, T )
are both valid relative to x, and are an example of Scenario 1.

E0 E1

E6 E3

ψ

ψ̃

ϕ ϕ′

φ

Fig. 4: An example of Scenario 1 from a collision originating from E6 (we denote
by ϕ the dual isogeny of ϕ).

Remark 4. The constructed example could be deemed as an invalid example of
Scenario 1 for SIKEp751, as the initial curve E0 is not the one prescribed by
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SIKEp751. However, if we considered the same parameter set and let the initial
curve not necessarily be E6, this example would be perfectly acceptable. More-
over, we note that constructing an example of Scenario 1 requires a collision of
length 239 in the graph G(p751)2(3) (or of length 372 in the graph G(p751)2(2)). It
appears that the only way to compute such a collision is to exploit the knowledge
of the endomorphism ring of the starting curve (as done in Appendix B by ex-
tending the procedure, based on quaternion algebras, presented in [OAT20]). As
a consequence, it seems prohibitive to obtain a collision starting from a random
vertex E1. We believe that considering a starting curve for IDSIDH other than E6

does not diminish the cryptographic relevance of the constructed example.

4 Security Implications of the Two Exception Scenarios

In [DFDGZ21], De Feo et al. analyse the SIDH-based identification protocol
IDSIDH and the extractor ExSIDH. They show that two valid transcripts relative
to a statement x /∈ LR can be easily produced. This means that IDSIDH does
not enjoy special soundness as defined in Definition 3b. Therefore, they propose
a modified version of IDSIDH, which they prove to achieve special soundness. In
such modification, P1 appends to a commitment (E2, E3) also the images —
through the isogeny ψ : E2 −→ E3 — of a basis of E2[ℓ

e2
2 ]. Such points are then

involved in the verification phase for both possible challenges. Therefore, the
proposed modification is less efficient in terms of computation and bandwidth
with respect to the original identification scheme IDSIDH.

The counterexamples provided in [DFDGZ21] do not affect the existing proofs
for the special soundness property of IDSIDH when considering Definition 3a. As
discussed in Section 2.1, such definition can be safely considered when turning
an identification protocol into a digital signature scheme using the Fiat-Shamir
transform. As a consequence, according to the special soundness proofs provided
in [DFJP14,YAJ+17,GPS17], IDSIDH could still be taken as a building block to
construct Fiat-Shamir SIDH-based digital signature schemes. Moreover, not only
could one use IDSIDH, but this would be the preferable choice, given the lower
efficiency of the modified scheme presented in [DFDGZ21].

However, the two exception scenarios and concrete examples described in the
previous section show, for the first time, that ExSIDH does not provide special
soundness to IDSIDH, even when considering Definition 3a. We wonder how this
weakness affects the security of the SIDH-based digital signatures. In order to
answer this question, we demonstrate in the following Theorem 3 that Scenario
1 detailed in the previous section (which admits Scenario 2 as a special sub-case)
is the only one that makes the extractor ExSIDH fail. Then, in Section 5, we will
determine the probability of such a scenario occurring.

This probability relies on counting the number of single collisions of given
length e in the graph Gp2(ℓ), which is interesting in its own right within the theory
of isogeny graphs. Next, in Section 6.1 we will exploit the obtained results on
the existence of single collisions to show that, under two general assumptions
on the distribution of such collisions, for a uniformly random statement x, the
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probability that a single collision between E2 and E3 exists for at least λ − λ0
different commitments (E2, E3) — where λ is the security parameter of the
scheme and λ0 = log λ log(log λ) — is negligible. In light of this, the security
proofs for the SIDH-based digital signatures remain reliable despite the existence
of inputs in which ExSIDH fails, provided the verification algorithm are modified
in such a way to require λ different commitments for each signature.

However, current knowledge on supersingular isogeny graphs makes it hard
to formally assess the two distributional assumptions we introduce. To further
corroborate the security of the SIDH-based digital signatures, we provide an
alternative extractor NExSIDH, which runs in expected polynomial time under
the Generalised Riemann Hypothesis. On input two valid transcripts relative
to a statement x, with the same commitment and different challenges, the new
extractor always outputs the witness for x. We will detail NExSIDH in Section 7.

Theorem 3. Given a statement x = (E1, P
′, Q′) ∈ LR and a commitment

com = (E2, E3), if t1 = (x, com, ch = 0, (m,n)) and t2 = (x, com, ch = 1, T )
are valid transcripts relative to x that make ExSIDH fail, then they form an in-
stance of Scenario 1.

Proof. Let ϕ : E0 −→ E2 be the isogeny with kernel ⟨[m]P2 + [n]Q2⟩, where
E0[ℓ

e2
2 ] = ⟨P2, Q2⟩. Since x belongs to the language LR, there exists a cyclic ℓe11 -

isogeny φ : E0 −→ E1 such that φ(P2) = P ′ and φ(P2) = Q′. Therefore, for any
valid transcript t1 = (x, com, ch = 0, (m,n)), the transcript t′2 = (x, com, ch =
1, ϕ(ker(φ)) is also valid. If T = ϕ(ker(φ)) (i.e. t2 = t′2) the extractor ExSIDH does
not fail on input t1 and t2. Thus, T must be different from ϕ(ker(φ), and the
two cyclic ℓe11 -isogenies ψ,ψ′ : E2 −→ E3 having T and ϕ(ker(φ) as respective
kernels form a collision of length e1 in Gp2(ℓ1). In other words, t1 and t2 are an
instance of Scenario 1.

5 Quantitative Study of Cycles in Isogeny Graphs

As detailed in Section 3.2 and in Section 3.3, there are cases in which the exis-
tence of collisions in supersingular isogeny graphs poses a problem to the success
of the extractor ExSIDH previously considered to prove the special soundness prop-
erty of the SIDH-based identification protocol IDSIDH. We are therefore interested
in quantifying these collisions. Our approach builds upon the techniques used
in [Gha21], but here a different kind of collisions is considered. Furthermore, we
deepen the analysis in order to provide heuristic lower bounds in addition to
deterministic upper bounds.

In the rest of the section, p will be a large prime, ℓ a small one (usually 2 or
3) and we will denote by Gp2(ℓ) the supersingular isogeny graph whose vertices
correspond to supersingular elliptic curves over Fp2 — modulo isomorphisms
over Fp2 — and edges correspond to isogenies of degree ℓ (up to equivalence).

We begin by formally stating the problem we focus our attention on, which
is related to the existence of single collisions.
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Problem 3. Fix primes ℓ < p, and let E0 be a uniformly random supersingular
elliptic curve (i.e. a vertex) in the graph Gp2(ℓ). Given e ∈ N, determine the
expected number of single collisions of length e in Gp2(ℓ) starting from E0.

We will be able to provide an upper bound for the expectation the above problem
requires to compute. Finding a good lower bound, on the other hand, appears
to be beyond the reach of current analytic number theory, as it would involve
bounds on incomplete character sums [IK04, Chap. 12] that are tighter than
both known and conjectured results.

Given two points in E0[ℓ
e], we will consider them equivalent w.r.t. ∼ if they

generate the same torsion subgroup, i.e. if they generate equivalent isogenies.
Let E0[ℓ

e]max denote the classes of points of maximal order in E0[ℓ
e]/∼. We can

rephrase the above statement as follows: compute the expected number of points
PA, PB in different classes of E0[ℓ

e]max such that E0/⟨PA⟩ ∼= E0/⟨PB⟩.
Let CE0

(ℓ2e) denote the number of endomorphisms with no backtracking (i.e.
with cyclic kernel) of degree ℓ2e originating from E0 in Gp2(ℓ). Let also Collℓe(E0)
be the cardinality of the set of single collisions (f, g) in Gp2(ℓ) of length e and
starting at E0. Following the above discussion, we see that Collℓe(E0) is the
cardinality of the set{
(PA, PB) ∈ (E0[ℓ

e]max)
2
:
E0

⟨PA⟩
∼=

E0

⟨PB⟩
, PA ̸∼ PB

}/
((PA, PB) ∼ (PB , PA)) .

Remark 5. In the above formula, we mod out by the equivalence relation ∼
because we regard (f, g) and (g, f) as the same single collision. Note that k
isogenies between E and E′ would be counted as

(
k
2

)
single collisions.

Let n be the number of vertices in the graph Gp2(ℓ) and {E(i)}i=1,...,n be
representatives of the vertices of Gp2(ℓ). By definition, to obtain CE(i)

(ℓ2e), we

need to subtract from Bii(ℓ
2e) — the entry of the Brandt matrix corresponding

to all endomorphisms of E(i) of degree ℓ
2e — the number of endomorphisms of

E(i) of degree ℓ2e with non-cyclic kernel, i.e. isogenies corresponding to paths
with backtracking. This number is simply equal to Bii(ℓ

2e−2). Indeed, since
composing an isogeny of degree ℓ with its dual gives the scalar isogeny [ℓ], an
endomorphism of E(i) of degree ℓ2e with backtracking can be written as [ℓ] ◦ f
for an endomorphism f of E(i) of degree ℓ

2e−2. Thus,

n∑
i=1

CE(i)
(ℓ2e) =

1

2

n∑
i=1

(
Bii(ℓ

2e)−Bii(ℓ
2e−2)

)
=

1

2
Tr
(
B(ℓ2e)

)
− 1

2
Tr
(
B(ℓ2e−2)

)
=

1

2

∑
s2≤4ℓ2e

Hp(4ℓ
2e − s2)− 1

2

∑
s2≤4ℓ2e−2

Hp(4ℓ
2e−2 − s2).

(3)

Note that we divided by 2 because every endomorphism on the graph Gp2(ℓ)
corresponds to a path that can be taken in both directions. In addition, Hp(0)
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appears in both sums, so we can cancel it out. Hence,

n∑
i=1

CE(i)
(ℓ2e) =

1

2

∑
s2<4ℓ2e

Hp(4ℓ
2e − s2)− 1

2

∑
s2<4ℓ2e−2

Hp(4ℓ
2e−2 − s2). (4)

Remark 6. As an aside, note that the above number
∑n

i=1 CE(i)
(ℓ2e) is not the

total number of cycles (closed paths, with no backtracking) of length 2e in Gp2(ℓ),
as we are over-counting each cycle in the above sum. If we wanted to count the
exact total number of cycles of length 2e in Gp2(ℓ) we would have to divide by
2e to get 1

2e

∑n
i=1 CE(i)

.

We now relate the number of endomorphisms with no backtracking CE0
(ℓ2e)

to the desired number of single collisions Collℓe(E0). This allows us to turn our
attention to estimating CE0

(ℓ2e).

Lemma 1. It is possible to bound the number Collℓe(E0) using CE(ℓ
2e) as fol-

lows

CE0
(ℓ2e) ≤ Collℓe(E0) ≤ CE0

(ℓ2e) +

e−1∑
r=1

CE0
(ℓ2r)(ℓ− 1)ℓe−1−r. (5)

Proof. The first inequality is clear since, by definition, every single collision also
constitutes an endomorphism with no backtracking. However, there are some
endomorphisms with backtracking that still constitute single collisions as in Fig-
ure 5. The single collisions that form endomorphisms with backtracking can be

E

E′

E′′

a

g

b

h

c

d

i

e
f

Fig. 5: Two paths (“abcdef” and “aghief”) that constitute an endomorphism
(“abcdeffeihga”) with backtracking and also a single collision.

decomposed into two parts: a first part that is an endomorphism without back-
tracking (“abcdihga” in Figure 5) and second part at the end that constitutes
the backtracking (“effe” in Figure 5).

Therefore, to take the endomorphisms with backtracking into account when
counting single collisions, we simply need to count all endomorphisms without
backtracking of different possible degrees CE0(ℓ

2r), for some r ∈ {1, ..., e − 1},
and add an extra factor of (ℓ−1)ℓe−1−r, which is an upper bound on the number
of ways we can draw a path of length e− r from an elliptic curve E′′ to another
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one E′ without backtracking, as in Figure 5 where r = 4. Note that this takes
into account the fact that the curve E′′ already has two edges coming into it:
this is why we have (ℓ− 1)ℓe−1−r instead of simply ℓe−r.

In order to compute the bounds in (5) using Equation (4), by definition of
Hp, one would need to determine the average splitting behaviour of 4ℓ2e − s2
in Fp. One option when computing upper bounds (as in Section 5.1) for the
number of collisions is to use the fact that 0 ≤ Hp(D) ≤ H(D). Unfortunately,
using this same fact to find lower bounds would only give us a meaningless lower
bound: zero. To remedy this issue, the deterministic splitting of 4ℓ2e − s2 in
Fp is replaced by a random Bernoulli process in Section 5.2. In particular, the

Legendre symbols
(

4ℓ2e−s2

p

)
are modelled as Bernoulli random variables. This

does not give an exact value for
∑n

i=1 CE(i)
(ℓ2e), but rather an estimate for it.

5.1 Upper Bounds

We hereby prove an upper bound for the number of endomorphisms in Gp2(ℓ) of
degree ℓ2e and without backtracking, which will allow us to bound the number
of single collisions of length e in the same graph.

Lemma 2. The following upper bound holds:

n∑
i=1

CE(i)
(ℓ2e) ≤ ℓ2e+1

ℓ− 1
.

Proof. From equation (4), we have

n∑
i=1

CE(i)
(ℓ2e) =

1

2

∑
s2<4ℓ2e

Hp(4ℓ
2e − s2)− 1

2

∑
s2<4ℓ2e−2

Hp(4ℓ
2e−2 − s2)

(♢)

≤ 1

2

∑
s2<4ℓ2e

Hp(4ℓ
2e − s2)

(♡)

≤ 1

2

∑
s2<4ℓ2e

H(4ℓ2e − s2)

=
1

2

∑
s2≤4ℓ2e

H(4ℓ2e − s2)−H(0)

=
1

2

2
∑
d|ℓ2e

d−
∑
d|ℓ2e

min

(
d,
ℓ2e

d

)+
1

12

=

2e∑
i=0

ℓi −
e−1∑
i=0

ℓi − 1

2
ℓe +

1

12

=
ℓ2e+1 − ℓe

ℓ− 1
− 1

2
ℓe +

1

12
.

(6)
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Thus,
n∑

i=1

CE(i)
(ℓ2e) ≤ ℓ2e+1

ℓ− 1
∈ O(ℓ2e).

Remark 7. The only places were we use an upper bound instead of an equality
in (6) are (♢) and (♡). At (♢), we drop a term which is O(ℓ2e−2). At (♡), we
bound Hp(D) above by H(D). The definition of Hp(D) depends on the splitting
behaviour of p. It is thus reasonable to expect that Hp(D) is equal to zero half of
the time and to H(D) the other half, which would mean that H(D) = 2Hp(D)
on average; we discuss this issue further in Section 5.2. Therefore, one can expect
the R.H.S. of (♡) to be, on average, twice as big as the L.H.S.

We now make use of the bound we have obtained in Lemma 2 to give an
estimate for the number of single collisions that are expected in a graph.

Theorem 4. The number of single collisions of length e in the graph Gp2(ℓ) is
bounded above as follows:

n∑
i=1

Collℓe(E(i)) ≤
ℓ2e(ℓ+ 1)

ℓ− 1
. (7)

Proof. By Lemma 2, we know that for all r ∈ N,
n∑

i=1

CE(i)
(ℓ2r) ≤ ℓ2r+1

ℓ− 1
.

Combining this with Lemma 1, we obtain

n∑
i=1

Collℓe(E(i)) ≤
n∑

i=1

CE(i)
(ℓ2e) +

e−1∑
r=1

n∑
i=1

CE(i)
(ℓ2r)(ℓ− 1)ℓe−1−r

≤ ℓ2e+1

ℓ− 1
+ ℓe

e−1∑
r=1

ℓr

=
ℓ2e+1 + ℓ2e − ℓe+1

ℓ− 1

≤ ℓ2e(ℓ+ 1)

ℓ− 1
.

Corollary 1. The expected number of single collisions of length e starting at a
uniformly random vertex E of Gp2(ℓ) is bounded above as follows:

EE [Collℓe(E)] :=
1

n

n∑
i=1

Collℓe(E(i)) ≤
ℓ2e(ℓ+ 1)

n(ℓ− 1)
. (8)

Consequently, if p ≈ ℓ2e, the expectation EE [Collℓe(E)] is O(1).

Now that we have computed an upper bound, we turn our attention to finding
a lower bound.
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5.2 Lower Bounds

Let us fix a prime ℓ and pick an arbitrary prime p such that p ≈ ℓ2e for some
e ∈ N. We want to show that EE [Collℓe(E)] is non negligible. By Lemma 1,
we only need to focus on CE(ℓ

2e) in order to bound Collℓe(E). Estimating the
expected value of CE(ℓ

2e) requires the computation of
∑

s2<4ℓ2e Hp(4ℓ
2e−s2), in

light of Equation (4). The difficulty lies in relating the sums of modified Hurwitz
class numbers Hp(·) to the sums of Hurwitz class numbers H(·). As noted in
Remark 7, our hypothesis is that the actual value of

∑
s2<4ℓ2e Hp(4ℓ

2e − s2) is
roughly 1

2

∑
s2<4ℓ2e H(4ℓ2e − s2). However, we cannot prove this as it involves

sums of Legendre symbols, and the best bounds for incomplete character sums
that are known (based on the bounds of Burgess in [Bur62,Bur63,Bur86]) are
far from being tight enough for what we need.

What we will do instead, in order to estimate Collℓe(E), is to model the

behaviour of the Legendre symbol
(

4ℓ2e−s2

p

)
with Bernoulli random variables.

Let

εp(D) :=


0 if p splits in O−D;
1 if p is inert in O−D;
1
2 if p is ramified in O−D

but does not divide the conductor of O−D;

(9)

so that
Hp(4ℓ

2e − s2) = εp(4ℓ
2e − s2)H(4ℓ2e − s2), (10)

for all 4ℓ2e > s2. Note that in Equation (9) we excluded the last case of the
definition of modified Hurwitz Class Numbers in (Equation (2)), which is when
p divides the conductor of Os2−4ℓ2e , because this case simply does not happen.
Indeed, let f denote the conductor of O−D for D := 4ℓ2e − s2 with 4ℓ2e > s2

and −d its fundamental discriminant. Then f =
√

D
d < 2ℓe < p. Hence, p cannot

divide the conductor f.
In the next lemma, we replace εp(4ℓ

2e−s2) with Bernoulli random variables,
in order to get estimates on Hp and thus on EE [Collℓe(E)]. Let X0, X1, ..., X2ℓe

be i.i.d. Bern(1/2) random variables with values in {0, 1} and set

H∗(4ℓ2e − s2) = Xs ·H(4ℓ2e − s2), (11)

for all s = 0, 1, ..., 2ℓe. Our goal is for H∗ to mimic Hp for all s2 < 4ℓ2e. Now
that we have replaced the deterministic (but hard to pin down) behaviour of
Hp(4ℓ

2e−s2) by a probabilistic function H∗(4ℓ2e−s2), we can make probabilistic
statements about it.

Lemma 3. We have the following expectation

E

 ∑
s2≤4ℓ2e

H∗(4ℓ2e − s2)

 =
ℓ2e+1 − ℓe

ℓ− 1
− 1

2
ℓe.
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Proof. We can easily compute

E

 ∑
s2≤4ℓ2e

H∗(4ℓ2e − s2)

 =
∑

s2≤4ℓ2e

H(4ℓ2e − s2)E[Xs]

=

2e∑
i=0

ℓi − 1

2

2e∑
i=0

min{ℓi, ℓ2e−i}

=
ℓ2e+1 − ℓe

ℓ− 1
− 1

2
ℓe.

(12)

The next proposition investigates how much the sum
∑

s2≤4ℓ2e H
∗(4ℓ2e −

s2) can deviate from its expectation, obtained in Lemma 3. We make use of
concentration inequalities, such as Hoeffding’s bound (see Proposition 2.5 in
[Wai19])6.

Proposition 1. Let µ := E
[∑

s2≤4ℓ2e H
∗(4ℓ2e − s2)

]
. Given ε > 0, the follow-

ing inequality holds

P

(∣∣∣∣∣
∑

s2≤4ℓ2e H
∗(4ℓ2e − s2)
µ

− 1

∣∣∣∣∣ ≤ ε
)
≥ 1− exp

(
−ε2/2

)
. (13)

Proof. Let ε > 0. Using Hoeffding’s bound, we can rewrite the probability as
below:

P

(∣∣∣∣∣
∑

s2≤4ℓ2e H
∗(4ℓ2e − s2)
µ

− 1

∣∣∣∣∣ ≤ ε
)

= P

∣∣∣∣∣∣
∑

s2≤4ℓ2e

H(4ℓ2e − s2)Xs − µ

∣∣∣∣∣∣ ≤ εµ


≥ 1− exp

(
− 2ε2µ2∑

s2≤4ℓ2e H(4ℓ2e − s2)2

)

(♣)
> 1− exp

− 2ε2µ2(∑
s2≤4ℓ2e H(4ℓ2e − s2)

)2


= 1− exp
(
−ε2/2

)
.

This shows the quantity
∑

s2≤4ℓ2e H
∗(4ℓ2e − s2) is close to

µ =
1

2

∑
s2≤4ℓ2e

H(4ℓ2e − s2) ≈ p (14)

6 There exists a version of the central limit theorem — for a triangular array of random
variables — that allows for the setup we are in. However, this version requires the
Lyapunov or Lindeberg condition, which is not obvious to prove (see Remark 8).
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(see Lemma 3) with a positive probability. For example, when ε is equal to
0.5,

∑
s2≤4ℓ2e H

∗(4ℓ2e − s2) is between 0.5µ and 1.5µ with probability ≥ 11%.
Therefore, Proposition 1 provides more evidence to the fact that we can estimate∑

s2≤4ℓ2e Hp(4ℓ
2e − s2) with µ = 1

2

∑
s2≤4ℓ2e H(4ℓ2e − s2).

Remark 8. The bound in Proposition 1 appears not to be tight. In fact, us-
ing Markov’s inequality instead of Hoeffding’s inequality gives slightly better
bounds for certain values of ε (but slightly worse bounds for other values of ε).

Furthermore, in step (♣) of the proof, we bound
∑

s2≤4ℓ2e H(4ℓ2e−s2)2

(
∑

s2≤4ℓ2e H(4ℓ2e−s2))
2 above by

1. However, this quantity tends to zero as p goes to infinity. Indeed, by Equa-
tion (14), we only need to explain why

∑
s2≤4ℓ2e H(4ℓ2e−s2)2 is in o(p2) = o(ℓ4e).

We prove that in Appendix B.

Our goal is to give a lower bound for the number
∑n

i=1 Collℓe(E(i)) of single
collisions of length e in Gp2(ℓ), using the Bernoulli model, as in Equation (11).
To do so, we turn our attention to bounding the number of endomorphisms∑n

i=1 CE(i)
(ℓ2e) of degree ℓ2e from below (see Lemma 1). Let us define

C ∗(ℓ2e) :=
1

2

∑
s2<4ℓ2e

H∗(4ℓ2e − s2)− 1

2

∑
s2<4ℓ2e−2

H∗(4ℓ2e−2 − s2) (15)

which should approximate the total number of endomorphisms
∑n

i=1 CEi
(ℓ2e)

expressed in (Equation (4)). As in (Equation (12)), we can compute

E
[
C ∗(ℓ2e)

]
=

1

2
E

[ ∑
s2<4ℓ2e

H∗(4ℓ2e − s2)

]
− 1

2
E

[ ∑
s2<4ℓ2e−2

H∗(4ℓ2e−2 − s2)

]

=
1

4

∑
s2<4ℓ2e

H(4ℓ2e − s2)− 1

4

∑
s2<4ℓ2e−2

H(4ℓ2e−2 − s2)

=
1

4

∑
s2≤4ℓ2e

H(4ℓ2e − s2)− 1

4

∑
s2≤4ℓ2e−2

H(4ℓ2e−2 − s2)

=
1

2

(
ℓ2e+1 − ℓe

ℓ− 1
− 1

2
ℓe
)
− 1

2

(
ℓ2e−1 − ℓe−1

ℓ− 1
− 1

2
ℓe−1

)
=

1

4
ℓe−1(ℓ+ 1)(2ℓe − 1).

We summarize the above results with the following theorem.

Theorem 5. Using the Bernoulli model introduced in Equation (11), the ex-
pected number of single collisions of length e in any given supersingular isogeny
graph Gp2(ℓ) is bounded below by 1

4ℓ
e−1(ℓ+1)(2ℓe− 1). In particular, this model

predicts the expected number of single collisions of length e starting at a uni-
formly random vertex in Gp2(ℓ) to be bounded below by 1

4nℓ
e−1(ℓ + 1)(2ℓe − 1),

which is Ω(1).
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6 Security of the SIDH-based Digital Signatures

The goal of this Section is twofold. We will start by studying the single collisions
occurring between two fixed vertices in the graph Gp2(ℓ). Thereafter we will,
under some mild assumptions, study the probability of having more collisions
than a certain value between a subset of vertices of Gp2(ℓ). This is directly
related to the failure rate of the extractor ExSIDH. Secondly, as an application,
we provide a formal justification to a claim made in the literature about the
unlikely existence of certain collisions.

6.1 The failure rate of ExSIDH

When bounding the expected number of collisions in Section 5, we considered a
uniformly random vertex as the starting point, and allowed the image curve to
be any vertex on the graph. However, one can also consider the expected number
of collisions between a fixed vertex and a uniformly random vertex of the graph.
This drastically changes the order of magnitude of the expectation, as proved in
the following Theorem 6. Such result relies on the assumption that the collisions
of length e in Gp2(ℓ) are evenly distributed among the vertices of the graph. In
particular, for any vertex E ∈ Gp2(ℓ), this would mean that:

Collℓe(E) =
1

n

n∑
i=1

Collℓe(E(i)). (16)

By considering Theorem 4, we obtain the following reformulation.

Assumption 1 Single collisions of length e in Gp2(ℓ) are evenly distributed
among the vertices of the graph, i.e. for any E ∈ Gp2(ℓ),

Collℓe(E) ≤ 1

n

ℓ2e(ℓ+ 1)

ℓ− 1
. (17)

Let Dℓ(E; e) be the set of distinct elliptic curves that are connected to a vertex
E via a path of length e without backtracking in Gp2(ℓ). Let also Collℓe(E2, E3)
denote the number of single collisions of length e between E2, E3 ∈ Gp2(ℓ).

Theorem 6. Let E2 ∈ Gp2(ℓ) and E3 ∈ Dℓ(E2; e). Then, under Assumption 1,
when n = #Gp2(ℓ) ≈ ℓ2e, we have

EE3 [Collℓe(E2, E3)] ∈ O(1/
√
p).

Proof. Denote by mE2 the cardinality of Dℓ(E2; e). Let mE2 = ℓe + ℓe−1 be
the number of non-equivalent cyclic isogenies of degree ℓe starting from E2. By

Assumption 1, mE2 −mE2 ≤ 1
n

ℓ2e(ℓ+1)
ℓ−1 . The expectation of Collℓe(E2, E3) over
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E3 ∈ Dℓ(E2; e) can be bounded above as follows:

EE3
[Collℓe(E2, E3)] :=

1

mE2

∑
E3∈Dℓ(E2;e)

Collℓe(E2, E3)

=
1

mE2

Collℓe(E2)

≤ 1

mE2

1

n

ℓ2e(ℓ+ 1)

ℓ− 1

≤ 1

ℓe + ℓe−1 − 1
n

ℓ2e(ℓ+1)
ℓ−1

1

n

ℓ2e(ℓ+ 1)

ℓ− 1

=
ℓ2e

nℓe−1(ℓ− 1)− ℓ2e
.

(18)

Therefore, when n ≈ ℓ2e, we conclude that EE3
[Collℓe(E2, E3)] ∈ O(1/

√
p)

We recall that in the sigma protocol IDSIDH, once E0 and E2 are fixed, the
curves E3 and E1 uniquely determine each other. This allows us to define the
following random variable on E1 in terms of the corresponding E3:

χE2(E1) := 1[∃ collision from E2 to E3].

To assess the security of a digital signature Π deduced from IDSIDH by ap-
plying the Fiat-Shamir transform (or a quantum-secure variant), we focus on
bounding PE1(

∑
E2∈Dℓ2

(E0;e2)
χE2

(E1) ≥ λ − λ0), where λ = Θ(log(p)) is the

security parameter and λ0 = log(λ) log(log(λ)). In the following lines we ex-
plain our motivation, and our reasoning holds provided that the verification
algorithms of the digital signatures are slightly modified in order to accept as
valid only signatures with distinct commitments. This does not introduce any
significant modification, as honest signers would consider different commitments
with overwhelming probability.

In the usual security reduction, which is given in the Random Oracle Model,
an adversary A in the UF-CMA game for Π is run as a subroutine by an ad-
versary B against the CSSI problem. As such, A receives as input a triplet
x = (E1, P

′, Q′), where E1 is the image of an ℓe11 -isogeny φ : E0 −→ E1 having
⟨[m1]P1 + [n1]Q1⟩ as kernel — for uniformly random m1, n1 ∈ Z/ℓe11 Z not both
divisible by ℓ1 — and P ′ = φ(P2), Q

′ = φ(Q2). Here, we recall that {P1, Q1}
and {P2, Q2} are bases of E0[ℓ

e1
1 ] and E0[ℓ

e2
2 ], respectively. Let σ be a valid

forgery produced by A. Then σ = (com, ch, resp) where com = (com1, . . . , comλ),
resp = (resp1, . . . , respλ) and ch = (ch1, . . . , chλ) ∈ {0, 1}λ is the output of the
Random Oracle on input the signed message m and com. We note that, for each
i ∈ {1, . . . , λ}, (x, comi, chi, respi) is a valid transcript relative to x.

We denote by T the number of the transcripts within σ that were obtained
by guessing the corresponding challenges, i.e. without exploiting any knowledge
of the witness w for x. In other words, these transcripts were constructed by
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guessing T zero entries of ch. Then T ∈ O(log(λ)), since A is a polynomial-
time adversary whose advantage in non-negligible. The adversary is then run

a second time in order to obtain a second forgery σ′ = (com, ch
′
, resp′). With

some probability, the Hamming distance between ch and ch
′
is non-zero. The

transcripts corresponding to one of the positions where ch and ch
′
differ make

ExSIDH extract the solution of the CSSI problem, unless the two transcripts form
an instance of Scenario 1, i.e. there is a collision between E2 and E3, where
com = (E2, E3) is the common commitment of the two transcripts.

In Theorem 7, we prove that PE1
(
∑

E2∈Dℓ2
(E0;e2)

χE2
(E1) ≥ λ−λ0) is negligi-

ble when λ0 = log(λ) log(log(λ)). In other words, out of the λ pairs of transcripts,
with overwhelming probability, at most λ − λ0 make the extractor ExSIDH fail.
Therefore, the reduction will extract the witness w from the two forgeries σ, σ′

with overwhelming probability, since at least λ0− T good commitments that al-
low to extract the exact witness will exist. In fact, λ0 ∈ ω(log(λ)) and therefore
λ0 − T is larger than 0 for any large enough lambda.

Remark 9. The security argument described above remains valid if the function
λ0 is replaced by any other function in ω(log λ) for which Theorem 7 still holds.

Let χ̄(E1) :=
∑

E2∈Dℓ2
(E0;e2)

χE2
(E1) be the number of commitments for the

statement (E1, φ(P ), φ(Q)) forming an instance of Scenario 1.

Theorem 7. Let p = ℓe11 ℓ
e2
2 f ± 1 a prime (with ℓ1, ℓ2 small primes, and f ∈ N

a small factor coprime to ℓ1 and ℓ2) such that ℓe11 ≈ ℓe22 , λ ∈ Θ(log(p)) and
λ0 = log(λ) log(log(λ)). If the random variables {χE2

: E2 ∈ Dℓ2(E0; e2)} are
independent then, under Assumption 1, the quantity PE1

(χ̄ ≥ λ− λ0) is negli-
gible.

Proof. Let mE2 ,mE1 be the number of curves in Dℓ2(E0, e2),Dℓ1(E0, e1) re-
spectively. Given E2 ∈ Dℓ2(E0, e2), we define αE2 := #{E1 ∈ Dℓ1(E0, e1) :

χE2(E1) = 1}, and α := maxE2{αE2}. We have that α ≤ 1
n

ℓ
2e1
1 (ℓ1+1)
ℓ1−1 ∈ O(1) by

Assumption 1. We can write

PE1
(χ̄ ≥ λ− λ0) = PE1

(
eχ̄ ≥ eλ−λ0

)
(†)
≤ e−(λ−λ0)EE1

[
eχ̄
]

= e−λ+λ0EE1

[
exp

(∑
E2

χE2

)]

= e−λ+λ0EE1

[∏
E2

exp (χE2
)

]
(‡)
= e−λ+λ0

∏
E2

EE1
[exp (χE2

)]
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= e−λ+λ0

∏
E2

1

mE1

∑
E1

eχE2
(E1)

(19)

= e−λ+λ0

∏
E2

1

mE1

(αE2
e+ (mE1

− αE2
))

≤ e−λ+λ0

∏
E2

(
1 +

α

mE1

(e− 1)

)

= e−λ+λ0

(
1 +

α

mE1

(e− 1)

)mE2

.

In Equation (19), we used Markov’s inequality at (†), and the independence of the
χE2

’s at (‡). Now recall that by hypothesis, mE1
,mE2

∈ Θ(
√
p), λ ∈ Θ(log(p))

and λ0 = log(λ) log(log(λ)). We get that

PE1 (χ̄ ≥ λ− λ0) ∈ O
(
log(p)log(log(log(p)))

p

)

because limp→∞

(
1 + α√

p (e− 1)
)√p

= eα(e−1) < ∞. Thus, PE1
(χ̄ ≥ λ− λ0) is

negligible.

In Theorem 7, the assumption that the random variables {χE2
: E2 ∈

Dℓ2(E0; e2)} are independent can be replaced by a better tailored assumption,
defined as follows.

Assumption 2 Fix E0 and E1 in Gp2(ℓ), then∑
E2∈Dℓ2

(E0;e2)

Collℓe11 (E2, E3) ≤
1

#Dℓ1(E0; e1)

∑
E′

1∈Dℓ1
(E0;e1)

E2∈Dℓ2
(E0;e2)

Collℓe11 (E2, E
′
3), (20)

where E′
3 on the right hand side is the elliptic curve corresponding to E′

1 as in
the IDSIDH protocol.

Assumption 2 combined with Theorem 6 (which works under Assumption 1)
tells us that there is a bound b ∈ O(1) such that

∑
E2

Collℓe(E2, E3) ≤ b. Note
that b does not depend on E3 (or equivalently on E1).

Theorem 8. Under Assumption 1 and Assumption 2, PE1
(χ̄ ≥ λ− λ0) is neg-

ligible.

Proof. As in the proof of Theorem 7, let mE2 ,mE1 be the number of curves
in Dℓ2(E0, e2),Dℓ1(E0, e1) respectively. Let also αE2

= #{E1 ∈ Dℓ1(E0, e1) :

χE2
(E1) = 1}, and α = maxE2

{αE2
}. We know that α ≤ 1

n
ℓ
2e1
1 (ℓ1+1)
ℓ1−1 ∈ O(1) by
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Assumption 1. We can write

PE1
(χ̄ ≥ λ− λ0) = PE1

(
eχ̄ ≥ eλ−λ0

)
(†)
≤ e−λ+λ0E

[
eχ̄
]

= e−λ+λ0E

exp
 ∑

E2∈Dℓ2
(E0,e2)

χE2


= e−λeλ0E

 ∏
E2∈Dℓ2

(E0,e2)

exp (χE2
)

 .
(21)

Fix a labeling {E(1)
2 , E

(2)
2 , ..., E

(mE2
)

2 } and {E(1)
1 , E

(2)
1 , ..., E

(mE1
)

2 } of the ele-
ments in Dℓ2(E0, e2) and Dℓ1(E0, e1) respectively. Consider the matrices A =

[aij ]i,j :=
[
χ
E

(i)
2
(E

(j)
1 )
]
i,j

and B := [etaij ]i,j . Then, αE
(i)
2

=
∑κ1

j=1 aij . The ma-

trix A has entries in {0, 1} and has less than α ∈ O(1) occurrences of the value
1 on each row. Let β

E
(j)
1

:=
∑κ2

i=1 aij and β := maxj{βE(j)
1
}. Assumptions 1 and

2 tell us that β ∈ O(1).
Going back to (21), we see that

PE1
(χ̄ ≥ λ− λ0) ≤ e−λeλ0E

 ∏
E2∈Dℓ2

(E0,e2)

exp (χE2
)


= e−λeλ0

1

mE1

∑
E1∈Dℓ1

(E0,e1)

∏
E2∈Dℓ2

(E0,e2)

exp (χE2
) .

(22)

The quantity
∑

E1

∏
E2

exp (χE2
) is simply the sum of the products of all the

entries of each row of B.
Assume for now that α

E
(i)
2

= 1∀i, i.e. the matrix A has entries in {0, 1}
and has exactly one 1 on each row. Then the quantity

∑
E1

∏
E2

exp (χE2
) is

maximized exactly when all the 1’s line up on one column (and is minimized
when all the 1’s of each row lie on different columns). However, we can have at
most β occurrences of 1’s on each column. So,

∑
E1

∏
E2

exp (χE2
) is maximized

if we have β occurrences of 1’s on as many columns as possible (i.e. ⌊mE2
/β⌋

columns). This also means that the remaining mE1
−⌊mE2

/β⌋ columns of A are
full of zeroes. Thus, we have

∑
E1

∏
E2

exp (χE2) ≤ eβmE2/β +mE1 −mE2/β.
So we can go back to (22) and write

PE1
(χ̄ ≥ λ− λ0) ≤ e−λeλ0

1

mE1

∑
E1

∏
E2

exp (χE2)

≤ e−λeλ0
1

mE1

(eβ
mE2

β
+mE1

− mE2

β
).

We thus obtain that PE1
(χ̄ ≥ λ− λ0) is negligible because 1

mE1
(eβ

mE2

β +mE1
−

mE2

β ) ∈ O(1), λ0 = log(λ) log(log(λ)) and e−λ ∈ O(1/p).
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Finally, if we remove the assumption that α
E

(i)
2

= 1 ∀i, we obtain

∑
E1

∏
E2

exp (χE2) ≤ e−λeλ0
α

mE1

(
eβ
mE2

β
+mE1

− mE2

β

)
.

And as α ∈ O(1), PE1 (χ̄ ≥ λ− λ0) is still negligible.

6.2 Collisions in isogeny-based cryptography

Under Assumption 1, we will now provide a formal justification to the fact that
collisions in supersingular isogeny graphs occur with a negligible probability. In
the analysis of claw-finding algorithms for the CSSI problem in [CLN+20], the
focus is on finding a cyclic ℓe11 -isogeny φ between two given vertices, E0 and E1,
of Gp2(ℓ1). In [CLN+20, Sec. 2.2] it is claimed that, once an elliptic curve E′

and two cyclic ℓ
e1/2
1 -isogenies f1 : E0 −→ E′ and g1 : E1 −→ E′ are found, the

composition ĝ1 ◦ f1 would return φ. This argument holds because the authors
assume that there exists a unique cyclic ℓe11 -isogeny between E0 and E1. By
regarding E1 as a uniformly random curve in the set Dℓ1(E0; e1), Theorem 6
formally proves that there is no lack of generality in considering a collision-free
definition of the CSSI problem as in [CLN+20].

Similarly in [GPSBT16, Sec. 3.1], it is implicitly assumed that if two curves
EB/G1 and EB/G2 are isomorphic, with G1 and G2 cyclic subgroups of order ℓ

e1
1

in EB [ℓ
e1
1 ], then G1 must be equal to G2. In other words, if two cyclic isogenies

of the same degree start at the same curve and have the same image, then they
are equivalent. This is exactly the argument we have put under the spotlight
in this work. Since, in the above assumption, EB is a fixed vertex of the graph
Gp2(ℓ1), while EB/G1 is a uniformly random curve among those connected to
EB by a cyclic ℓe11 -isogeny, we can again exploit Theorem 6 to affirm that the
probability that EB/G2

∼= EB/G1 with G1 ̸= G2 is negligible.

7 A New Extractor

Under the two assumptions made in Section 6.1 on supersingular isogeny graphs,
the extractor ExSIDH can still be exploited to prove the security of the SIDH-based
digital signatures despite it granting no special soundness to IDSIDH because of
the counterexamples described in Section 3. However, one could still prove the
special soundness of IDSIDH by relying on alternative extractors unaffected by
such counterexamples. In this section we present a new extractor NExSIDH which
makes the identification protocol IDSIDH satisfy Definition 3a. The new extractor
initially operates as ExSIDH, but then deviates from it in checking if the extracted
isogeny is the correct witness. By Theorem 3, the latter happens only if the two
valid transcripts in input form an instance of Scenario 1 (see Section 3.2). The
core idea behind NExSIDH is to overcome this problem by shrinking the long
isogeny ρ = ϕ̂′ ◦ ψ ◦ ϕ : E0 −→ E1, determined by the input, into the correct
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witness. The resize of ρ is based on two algorithms recently presented in the con-
text of isogeny-based cryptography. The first one, due to Wesolowski [Wes21],
reduces the problem of computing the maximal order of a given supersingular
elliptic curve to the problem of computing an ℓe-isogeny between two super-
singular elliptic curves over Fp2 for some integer e ∈ N and a prime ℓ coprime
with p. The second one, due to Fouotsa et al. [FKM21], computes an isogeny
between two supersingular curves of known endomorphism rings from torsion
point information.

Since variants of both algorithms are employed for NExSIDH, we briefly recall
the original algorithms, we motivate the need for and present the two variants,
and we combine them in the design of the new extractor NExSIDH.

Remark 10. The many algorithms in this section work in similar settings, and
nevertheless present some crucial differences in parameter choices. In particular,
the reader might wonder when E0 has to be intended as a specific elliptic curve,
and when it can be any supersingular elliptic curve. In Section 7.1, the curve
E0 is a specific elliptic curve whose defining equation depends on whether p ≡ 3
mod 4, p ≡ 1 mod 8 or p ≡ 5 mod 8. In each of the three cases, one picks
a special maximal order Õ in Bp,∞ according to [Wes21, Lemma 2.3], and the

corresponding curve Ẽ is then computed according to [Wes21, Lemma 2.5]. For
example, Ẽ : y2 = x3 + x when p ≡ 3 mod 4. In Section 7.2 the setting remains
the same, thus Algorithm 1 works with Ẽ. In Section 7.3 we extend an algorithm
from Fouotsa et al. [FKM21], for which E0 can be any supersingular elliptic curve
connected to Ẽ by an isogeny of suitable smooth degree. In Section 7.4 we shift
our attention to concrete instantiations of IDSIDH. In this case, the fixed starting
curve E0 is set to be that defined by y2 = x3 + 6x2 + x, which is the only curve
non-isomorphic and 2-isogenous to Ẽ.

7.1 Wesolowski’s algorithm and its building blocks

Given a supersingular elliptic curve E over Fp2 , Algorithm 3 in [Wes21] reduces
the problem of computing a maximal order O ≃ End(E) in Bp,∞ to the problem
of computing a path between two vertices in Gp2(ℓ). The new extractor NExSIDH

will make use of Algorithm 1, a variation of Wesolowski’s result, to determine a
maximal order isomorphic to End(E1) given a smooth-degree isogeny from Ẽ to
a non-isomorphic curve E1.

In order to better explain the modification to Algorithm 3 in [Wes21] that
we propose, we briefly recall its main building blocks.

The first one is an algorithm from Galbraith et al. [GPS17, Algorithm 2]
that allows to translate an ideal to its matching isogeny under the Deuring
correspondence, provided it originates from a curve whose endomorphism ring
is isomorphic to Õ. We denote such algorithm by IdealToIsogeny.

Lemma 4. [GPS17, Lemma 5] On input a left Õ-ideal I of norm N =
∏

i ℓ
ei
i ,

the IdealToIsogeny algorithm outputs its corresponding isogeny φI : Ẽ −→ E
in running time that is polynomial in log p and maxi{ℓeii } under the Generalised
Riemann Hypothesis.
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The second building block is an algorithm, denoted by IsogenyToIdeal in
the following, that does the opposite of IdealToIsogeny, i.e. it computes the
ideal corresponding to an isogeny of composite degree under the Deuring corre-
spondence.

Lemma 5. [Wes21, Lemma 7.1] On input an isogeny φ : Ẽ −→ E of composite
degree

∏
i ℓ

ei
i , the algorithm IsogenyToIdeal outputs the corresponding left Õ-

ideal Iφ in running time that is polynomial in log p and maxi{ℓeii } under the
Generalised Riemann Hypothesis.

The third algorithm, which we will denote by EquivIdealc, computes an
equivalent ideal to a given one such that it satisfies some constraints on the
norm. The algorithm results from [Wes21, Theorem 6.4], which we recall here
below.

Theorem 9. [Wes21, Theorem 6.4] There exists an integer c ∈ N and an algo-
rithm EquivIdealc such that, on input a left Õ-ideal I, it outputs an equivalent
ideal of (log p)c-powersmooth norm. The algorithm runs in expected polynomial
time in log p and log n(I) under the Generalised Riemann Hypothesis.

7.2 Computing maximal orders from composite isogenies

Given Õ ⊂ Bp,∞, Ẽ over Fp2 , and any other supersingular elliptic curve E∗
over Fp2 , Wesolowski [Wes21, Algorithm 3] reduces the problem of computing a

maximal order O∗ ≃ End(E∗) to the one of computing a path from Ẽ to E∗ in
Gp2(ℓ), for a prime ℓ different from p.

In our specific use-case, given a composite-degree isogeny ω = η ◦ ρ ◦ ν :
Ẽ −→ E∗, NExSIDH needs to compute a maximal order of Bp,∞ isomorphic to

End(E∗). Here, ν is an isogeny from Ẽ to E0 (where E0 is the fixed starting

curve considered for IDSIDH), ρ = ϕ̂′ ◦ ψ ◦ ϕ : E0 −→ E1, and η : E1 −→ E∗ has
degree ℓt1 (for some t which does not depend on the characteristic p of the base
field). To this end, we extend Wesolowski’s algorithm [Wes21, Algorithm 3] to
allow the input isogeny to have composite degree. As we argue in the proof of
Theorem 10, our modification does not alter the correctness nor the efficiency
of the algorithm.

Theorem 10. Algorithm 1 is correct and runs in expected polynomial time in
log p under the Generalised Riemann Hypothesis.

Proof. The first iteration of the outer for-loop corresponds exactly to the ap-
plication of [Wes21, Algorithm 3] to ω1. When we compose the isogeny ω2,1

with (the new) ψ0, one of small degree ℓ2 and the other of (log p)c-powersmooth
degree, we do not change the complexity of IsogenyToIdeal, which still runs
in polynomial time in log p (Lemma 5). Its output is still (log p)c-powersmooth,
and thus EquivIdealc and IdealToIsogeny still run in polynomial time in log p
(Theorem 9 and Lemma 4). Correctness and efficiency of the remaining steps
necessary to “exhaust” ω2 follow directly from Wesolowski’s result. Repeating



Collisions in SSI Graphs and the SIDH-based Id. Protocol 37

Algorithm 1 Compute a maximal order from a composite-degree isogeny.

Require: An isogeny ω : Ẽ −→ E∗ of composite degree
∏n

i=1 ℓ
ei
i , the ℓi not all

necessarily distinct, with maxi{ℓi} and
∑

i ei polynomial in log p.
Ensure: A basis of O∗ ≃ End(E∗).
1: let ω = ωn ◦ · · · ◦ ω2 ◦ ω1, with deg(ωi) = ℓeii ;
2: let ψ0 : Ẽ −→ Ẽ be the identity isogeny on Ẽ;
3: let c ∈ N as per Theorem 9;
4: for i = 1, 2, . . . , n do
5: let ωi = ωi,ei ◦ ωi,ei−1 ◦ · · · ◦ ωi,1 with deg(ωi,j) = ℓi;
6: for j = 1, 2, . . . , ei do
7: Ii,j ←− IsogenyToIdeal(ωi,j ◦ ψj−1);
8: Ji,j ←− EquivIdealc(Ii,j) of (log p)

c-powersmooth norm;
9: ψj ←− IdealToIsogeny(Ji,j);
10: end for
11: ψ0 ←− ψei ;
12: end for
13: O∗ ←− OR(Jn,en);
14: return a basis of O∗.

the same argument for all the remaining components ωi of ω concludes the proof
of correctness.

We are now left to prove the efficiency of the algorithm as a whole. By hy-
pothesis,

∑
i ei is polynomial in log p, and thus the whole algorithm is polynomial

in log p.

7.3 Extending Foutsa et al.’s algorithm

On input a long isogeny ρ : E0 −→ E1 and ν : Ẽ −→ E0, NExSIDH first computes
a set H = {E1,i |i = 1, . . . , k} of elliptic curves close to E1 (as we will explain
below). It then iterates our extension of Wesolowski’s algorithm, and finally
applies an algorithm recently introduced by Fouotsa et al. [FKM21] to determine
the witness φ.

The latter algorithm takes as input two supersingular elliptic curves E,E′

over Fp2 of known endomorphism rings and corresponding maximal orders O ≃
End(E) andO′ ≃ End(E′). LetN1, N2 ∈ N be two coprime integers, φ : E −→ E′

an N1-isogeny and φ(P ), φ(Q) the images of a basis {P,Q} of the N2-torsion
subgroup E[N2]. If the shortest isogeny between E and E′ has degree d > 16N1

N2
,

Algorithm 3 from [FKM21] - which we rename IsogenyFromTorsion - can re-
cover φ from E,E′,O,O′, φ(P ), φ(Q) with complexity polynomial in log p under
the Generalised Riemann Hypothesis.

Given the condition on d, one needs to rule out the existence of any isogeny
between E and E′ of degree up to 16N1

N2
in order to ensure a successful applica-

tion of IsogenyFromTorsion. In the specific context of NExSIDH, the goal is to
compute the secret isogeny φ : E0 −→ E1 of degree N1 by knowing its behaviour
on the N2-torsion points. Despite N1 = ℓe11 ≈ N2 = ℓe22 by design of IDSIDH, the
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approximation might hide a discrepancy between the two values N1 and N2, as
it happens when considering the SIKE parameter sets 7. Therefore, if the new
extractor applied IsogenyFromTorsion directly to φ, it would fail with a certain
probability.

Our idea to remove any failure probability of IsogenyFromTorsion when
used within NExSIDH is to brute-force a small portion of the secret isogeny and
apply IsogenyFromTorsion to recover the remaining part. In details, let t be

the smallest integer such that
16N ′

1

N2
= 16N1

ℓt1N2
< 1, where N ′

1 := N1/ℓ
t
1. Then

φ can be factored as φ = η̂ ◦ φ′, where η̂ is an isogeny of degree ℓt1. If η̂ is
correctly guessed, φ′ can be computed with IsogenyFromTorsion without any
failure probability. In fact, φ′ would have degree N ′ = N1

ℓt1
with 16N ′

N2
< 1. The

correct η̂ is guessed by computing all ℓt1-isogenies from E1, which explains why
the dual of η appears in the factorisation of φ. The algorithm iterated by NExSIDH

is depicted in Algorithm 2.

Remark 11. The guessing strategy implies running IsogenyFromTorsion on two
elliptic curves which might not be connected by any isogeny of the prescribed
degree N ′

1. This scenario is not considered in the original formulation of the al-
gorithm, which implicitly fails whenever this hypothesis is not met. More specif-
ically, one of the steps in IsogenyFromTorsion consists in solving a system of
linear equations to express the secret isogeny in terms of a basis of Hom(E0, E1,i),
which is the 4-rank lattice of all isogenies from E0 to E1,i (see [FKM21, Algo-
rithm 2] for more details). For all but the correct η, the algorithm will be unable
to find the unique solution to the system, whose construction is not affected by
the lack of any isogeny of degree N ′

1. For this reason, we modify the output space
of IsogenyFromTorsion, setting the output to ⊥ whenever the algorithm fails
in solving the system of linear equations.

Theorem 11. Assume that the set H of 2t-isogenies from E1 can be computed
in polynomial time in log p. Then Algorithm 2 is correct and runs in expected
polynomial time in log p, when t does not depend on p and under the Generalised
Riemann Hypothesis.

Proof. Correctness and efficiency of Step 1. follow directly from Theorem 10.
For each guess η, the algorithm computes the image E∗ = E1/ ker(η), the max-
imal order O∗ ≃ End(E∗) and the images φ′(P ) and φ′(Q). E∗ is obtained by
applying Vélu’s formulae, and O∗ using Algorithm 1. Since φ(P ) = η̂ ◦ φ′(P ),
then η ◦φ(P ) = η ◦ η̂ ◦φ′(P ) = [ℓt1]φ

′(P ). We can thus compute φ′(P ) = [(ℓt1)
−1

mod N2] η(φ(P )), and φ
′(Q) in a similar fashion. These images can be computed

for each η ∈ H, but only the correct one will ensure that the output of step 8 is
not ⊥. The only η leading to a proper solution will be the correct guess, and we
can then reconstruct φ = η̂ ◦ φ′.

7 For the parameter sets SIKEp434, SIKEp503, SIKEp610 and SIKEp751, ⌊ 16N1
N2
⌋ is

35, 64, 9 and 1790 respectively.
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Algorithm 2 Compute an isogeny from torsion points and maximal orders.

Require: A balanced prime p = N1N2f ± 1 = ℓe11 ℓ
e2
2 f ± 1; two supersingular elliptic

curves E0, E1 over Fp2 ; an isogeny ν : Ẽ −→ E0 of degree
∏n′

i=1 ℓ
′e′i
i with maxi{ℓ′i}

and
∑

i e
′
i polynomial in log p; the images φ(P ), φ(Q) of a basis {P,Q} of the

N2-torsion subgroup E0[N2]; an isogeny ρ : E0 −→ E1 of degree
∏n

i=1 ℓ
ei
i with

maxi{ℓi} and
∑

i ei polynomial in log p.
Ensure: The N1-isogeny φ : E0 −→ E1.
1: O0 ←− Algorithm 1 (ν);
2: let t be the smallest integer s.t. (16N1)/(ℓ

t
1N2) < 1

3: let H denote the set of 2t-isogenies from E1;
4: for each η ∈ H do
5: let E∗ = E1/ ker(η);
6: O∗ ←− Algorithm 1 (η ◦ ρ ◦ ν);
7: let φ′(P ) = [(ℓt1)

−1 mod N2] η(φ(P ));
8: let φ′(Q) = [(ℓt1)

−1 mod N2] η(φ(Q));
9: φ′ ←−IsogenyFromTorsion(E0, E∗,O0,O∗, φ

′(P ), φ′(Q));
10: if φ′ ̸= ⊥ then
11: break
12: end if
13: end for
14: return φ = η̂ ◦ φ′.

7.4 The new extractor

We conclude this section by giving a detailed description of the new extractor
NExSIDH in Algorithm 3 and arguing its efficiency.

Theorem 12. Algorithm 3 is correct and runs in expected polynomial time in
log p under the Generalised Riemann Hypothesis.

Proof. The correctness follows from that of Algorithm 2, and from Theorem 3.
For the efficiency of the algorithm, we focus on line 7 and on SIDH/SIKE sets
of parameters. Therein, the starting elliptic curve E0 is 2-isogenous to Ẽ. In
addition, the primes ℓ1, ℓ2 are small constants (tipically 2 and 3) for efficiency
reasons, thus independent on p; as such, they satisfy the conditions on the ℓi’s
of Algorithm 2. The degree of ρ is either ℓ2e11 ℓe22 or ℓe11 ℓ

2e2
2 , which are both

approximately p3/2. Therefore, also the condition on the ei’s is met. The ℓe11 -
torsion subgroup of E0 is defined over Fp2 for efficiency reasons, so is E1[ℓ

t
1], and

thus Theorem 11 holds. In fact, t (defined in Section 7.3) does not depend on p.
The latter can be assumed without loss of generality as SIDH and SIKE (and
then IDSIDH) work over balanced primes of the form p = N1N2f±1 = ℓe11 ℓ

e2
2 f±1

with f small natural number. It is therefore reasonable to translate the balance
condition to a formal statement of this fashion: there exists a constant t ≤ 15
such that (16N1)/(ℓ

t
1N2) < 1.
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Algorithm 3 The knowledge extractor NExSIDH

Require: A statement x = (E1, φ(P ), φ(Q)), two valid transcripts (x, com, 0, (m,n))
and (x, com, 1, T ) relative to the statement x, on the same commitment com =
(E2, E3) and distinct challenges.

Ensure: The ℓe11 -isogeny witness φ : E0 −→ E1.
1: let ϕ : E0 −→ E2 be the isogeny of kernel ⟨mP + nQ⟩ (where ⟨P,Q⟩ = E0[ℓ

e2
2 ]);

2: let ψ : E2 −→ E3 be the isogeny of kernel ⟨T ⟩;
3: let ϕ′ : E1 −→ E3 be the isogeny of kernel ⟨mφ(P ) + nφ(Q)⟩;
4: let φ : E0 −→ E1 be the isogeny of kernel ker(ϕ̂′ ◦ ψ ◦ ϕ) ∩ E0[ℓ

e1
1 ];

5: if j(E1) ̸= j(E1) ∨ φ(P ) ̸= φ(P ) ∨ φ(Q) ̸= φ(Q) then
6: φ←− Algorithm 2 (E0, E1, η, φ(P ), φ(Q), ϕ̂′ ◦ ψ ◦ ϕ);
7: end if ;
8: return φ

E0Ẽ E1

E2 E3

E∗

E1,1

E1,2

...

...

E1,k

ν

ν̂

ψ

ϕ ϕ′

φ′ η

Fig. 6: The new extractor NExSIDH.



Collisions in SSI Graphs and the SIDH-based Id. Protocol 41

8 Conclusion

In this paper, we have disputed the validity of the existing proofs for the special
soundness property of the SIDH-based identification protocol IDSIDH. In addition
to providing concrete examples for two scenarios where the extraction algorithm
ExSIDH — considered by existing proofs — fails, we have also carefully studied
the number of collisions that occur in supersingular isogeny graphs. Our analy-
sis shows that the special cycles that make ExSIDH fail do exist in supersingular
isogeny graphs. However, if we assume that such cycles are evenly distributed
over the vertex set, their existence does not affect the security of the SIDH-based
digital signatures, provided the verification algorithms are modified in such a way
to require λ different commitments for each signature. Our calculations are gen-
eral and can be exploited in other contexts within isogeny-based cryptography.
We leave for future work to further improve the bounds we provided on the
number of collisions and to assess the assumptions on their distribution, as do-
ing so would require developing new number theoretic tools. Furthermore, we
have introduced a new extraction algorithm NExSIDH which makes IDSIDH en-
joy the special soundness property under the Generalised Riemann Hypothesis.
This further corroborate our conclusion that the security proofs of the digital
signature schemes deduced from IDSIDH are reliable.
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Appendix A

In order to produce an example of Scenario 1 (see Section 3.2) for the largest
set of SIKE parameters, namely SIKEp751, we relied on the approach adopted
by Onuki, Aikawa and Takagi [OAT20] to determine endomorphisms of pre-
scribed degree in supersingular isogeny graphs for SIKE parameters. We sketch
the aforementioned approach in the following.

1. Since the prime p in each SIKE parameter set is congruent to 15 modulo
16, the explicit description of the endomorphism ring of E0 : y2 = x3 + x
is known. There exists a 2-isogeny that maps E0 to the curve E6 : y2 =
x3 + 6x2 + x, while the others map to E0 itself. Lemma 1 of [OAT20] gives
an explicit description of End(E6) via the maximal order O6 isomorphic to
End(E6). In particular, any endomorphism of E6 corresponds to a quaternion

in O6 ⊂ Bp,∞ =
(

−1,−p
Q

)
that can be written as

α = a+ 2bi+ c
1 + j

2
+ d

i+ k

4
, (23)

with a, b, c, d ∈ Z (not all divisible by ℓ). Recall that {1, i, j,k} is the canon-
ical base for Bp,∞ such that i2 = −1, j2 = −p, ij = k = −ji.

2. In order to find a quaternion of norm ℓn, where ℓn ∈ {ℓ2e11 , ℓ2e22 }, the following
norm equation is obtained by equating the norm of the right-hand side of
Equation (23) to ℓn:

ℓn =
1

16

(
(4a+ 2c)2 + (8b+ d)2 + (4c2 + d2)p

)
. (24)

By rearranging Equation (24) and replacing A = 4a + 2c and B = 8b + d,
the equation is reduced to the following Diophantine equation

16ℓn − (4c2 + d2)p = A2 +B2 (25)

with c and d not both 0.

In [OAT20], the authors applied the above approach on the first two SIKE param-
eter sets only, namely SIKEp434 (where e1 = 216 and e2 = 137) and SIKEp503
(where e1 = 250 and e2 = 159). The results for these two cases show that there
exists only one endomorphism of degree 3274 and no endomorphisms of degree
2432 when considering SIKEp434, and no endomorphisms of degrees 2500 or 3318

for SIKEp503. The authors could not apply their approach to SIKEp610 and
SIKEp751 in [OAT20].

In this paper, we fill the gap by investigating the two remaining parameter
sets. Our code was run on a laptop mounting a Coffee Lake 2.2 GHz Intel i7
processor and 12GB of RAM. The results of our tests show that for SIKEp610
(where e1 = 305 and e2 = 192) there exists no endomorphism of degree 2610 nor
3384. For SIKEp751 (where e1 = 372 and e2 = 239), there is no endomorphism
of degree 2744, but there are two endomorphisms of degree 3478. These two
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endomorphisms determine two pairs of colliding isogenies of degree 3239, which
we now present.

Let e1 = 372, e2 = 239 and p751 = 2e1 · 3e2 − 1. Let η be a primitive element
of Fp2 with minimal polynomial x2 + 1. Given the E6[3

e2 ] torsion basis

P2 = (841279105546461804686499115213762297740963469565458990324532197

170119753830282998639717315851968048398639566308956083752260055190

571572196659210785187081691561179878799936982967086297460371869267

0686443942112872900406556630231, 2328323397749860472782995125935431

844906025806061286315561848048094118981177935779374110739971558302

443669052376824243054704744119836366858126425102589256068192209923

162999484308658507773457580251501832576844559003321891810286),

Q2 = (543635210060763384014311798206759072587043797232568742989135095

933754649063203361494382901183312364485658937300398819709525956057

438717298931212333675539072301651530293091043813638718115191619543

5348724485391563520300737082912, 2746820619380504327658456470360576

392116084162139873044543253936888674469970698562051629959917582270

795051329607070975611602221797732105304217318783757571295486447343

909940158935181461281254155392827518984003577096842656338942 · η),

the following points K1 and K2 generate two distinct cyclic isogenies whose
images have j-invariant j:

K1 = 193262648327552634362057829832895638371956375167641154459552249

805508664589936678565722236003305074981600179788901 · P2 + 398140788

120904530736166185630489084280010975246499905086708128521669460981

86605100596807373336819941831934627498 ·Q2,

K2 = 883152691005298701476350449004891666528834642174726130546931940

786972410641216900983358627043999654855326427935366 · P2 + 398140788

120904530736166185630489084280010975246499905086708128521669460981

86605100596807373336819941831934627503 ·Q2,

j = 367483248146527741437037734499498054316896144749783289195959484

898077051895599992095468628645832990369395943292206321372511169167

415557171412324682700995229079865594462515800975577276460889605379

4594261659270555052100494910843 · η + 215919277837304995784124378975

633208239639309170229661310740256289784137733921030657739288868481

580729538629166826205051988346315263539811782455761790282875866683

5268236598416221199421331461598376727469282977978450603737325459.
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The other colliding isogenies have kernels generated by H1 and H2 respec-
tively, and both their images have j-invariant equal to j′:

H1 = 19326264832755263436205782983289563837195637516764115445955224

9805508664589936678565722236003305074981600179788901 · P2 + 1036601

26052076088276479166027473839647278991981771729449781337774031412

9132966974448484055673967909895094673096769 ·Q2,

H2 = 88315269100529870147635044900489166652883464217472613054693194

0786972410641216900983358627043999654855326427935366 · P2 + 1036601

26052076088276479166027473839647278991981771729449781337774031412

9132966974448484055673967909895094673096764 ·Q2,

j′ = 667988526030402783860739089287182477825842819805123827815659483

007390842172647892554819661010273680993059377869677698866009222030

236698267892091364176119952617805089545375532460262696634387887318

5640825191720946820565156665988 · η + 215919277837304995784124378975

633208239639309170229661310740256289784137733921030657739288868481

580729538629166826205051988346315263539811782455761790282875866683

5268236598416221199421331461598376727469282977978450603737325459.

Appendix B

Lemma 6. In the context of Remark 4,
∑

s2≤4ℓ2e H(4ℓ2e − s2)2 is in o(ℓ4e).

Proof. Let ε > 0. By the Brauer-Siegel theorem [Bra47], there exists cε > 0 such
that h(−d) < cεd

ε+1/2.
Let Ns be the number of square divisors of 4ℓ2e − s2 and N := maxs2≤4ℓ2e Ns.
Then, we can write

∑
s2≤4ℓ2e

H(4ℓ2e − s2)2 =
∑

s2≤4ℓ2e

 ∑
d·f2=4ℓ2e−s2

h(−d)
u(d)

2

≤
∑

s2≤4ℓ2e

 ∑
d·f2=4ℓ2e−s2

cεd
ε+1/2

2

≤ c2ε
∑

s2≤4ℓ2e

(
N · (4ℓ2e)ε+1/2

)2
≤ c2ε

∑
s2≤4ℓ2e

N 2 · (4ℓ2e)1+2ε

≤ c2ε · 4ℓe · N 2 · (4ℓ2e)1+2ε

= kε · N 2 · (ℓe)3+4ε,
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where kε := 161+εc2ε. So, taking ε =
1
8

lim

∑
s2≤4ℓ2e H(4ℓ2e − s2)2

ℓ4e
≤ lim

k 1
8
· N 2 · (ℓe)3.5

ℓ4e

≤ k 1
8
lim
N 2

ℓe/2
.

(26)

But now, it is known that the number of divisors of α is in o(αδ) for all δ > 0,
i.e. for all δ > 0,

lim
#{divisors of α}

αδ
= 0.

Thus,

lim
Ns

4ℓ2eδ
= 0,∀δ > 0. (27)

Whence, going back to (26), and taking δ = 1/4 in (27), we get

lim

∑
s2≤4ℓ2e H(4ℓ2e − s2)2

ℓ4e
= 0.

In other words,
∑

s2≤4ℓ2e H(4ℓ2e − s2)2 is in o(ℓ4e).
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