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Abstract. In this paper, a method for searching correlations between
the binary stream of Linear Feedback Shift Register (LFSR) and the
keystream of SNOW-V and SNOW-Vi is presented based on the tech-
nique of approximation to composite functions. With the aid of the linear
relationship between the four taps of LFSR input into Finite State Ma-
chine (FSM) at three consecutive clocks, we present an automatic search
model based on the SAT/SMT technique and search out a series of linear
approximation trails with high correlation. By exhausting the interme-
diate masks, we find a binary linear approximation with a correlation
−2−47.76. Using such approximation, we propose a correlation attack on
SNOW-V with an expected time complexity 2246.53, a memory complex-
ity 2238.77 and 2237.5 keystream words generated by the same key and
Initial Vector (IV). For SNOW-Vi, we provide a binary linear approxi-
mation with the same correlation and mount a correlation attack with
the same complexity as that of SNOW-V. To the best of our knowledge,
this is the first known attack on full SNOW-V and SNOW-Vi, which is
better than the exhaustive key search with respect to time complexity.
The results indicate that neither SNOW-V nor SNOW-Vi can guaran-
tee the 256-bit security level if we ignore the design constraint that the
maximum length of keystream for a single pair of key and IV is less than
264.

Key words: SNOW-V · SNOW-Vi · Cryptanalysis · Linear Approxi-
mation · Automatic Search · Correlation Attack

1 Introduction

SNOW-V is a new member of the SNOW family stream ciphers following SNOW
1.0 [1], SNOW 2.0 [2] and SNOW 3G [3]. SNOW 3G, which is used as the core of
3G Partnership Project (3GPP) Confidentiality and Integrity Algorithms UEA2
& UIA2 for UMTS and LTE, enhances the security under the 128-bit key. In
2018, SNOW-V, which was proposed for a standard encryption scheme for 5G
mobile communication system by Ekdahl et al. [4], was announced to satisfy the
256-bit security level requirement from 3GPP with a 256-bit key and 128-bit
Initial Vector (IV). Lately, Ekdahl et al. [5] proposed SNOW-Vi as an extreme
performance variant of SNOW-V. Compared with SNOW 3G, the structure of
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SNOW-V and SNOW-Vi keeps the same, except that a couple of Linear Feedback
Shift Registers (LFSRs) are used to replace the original one, and the size of
registers increases from 32 bits to 128 bits so that the size of internal state rises
significantly. This makes SNOW-V and SNOW-Vi difficult to analyze.

Up to now, several security evaluations on various versions of SNOW-V and
SNOW-Vi have been published. Jiao et al. [7] proposed a byte-based guess and
determine attack on SNOW-V with a time complexity of 2406, using only seven
keystream words. At ToSC 2021, Gong and Zhang [8] performed a linear crypt-
analysis of SNOW-V and proposed correlation attacks against three reduced
variants. For the reduced variant SNOW-V�32,�8

, they mounted a fast corre-
lation attack with a time complexity 2377.01, a memory complexity 2363, and
2253.73 keystream outputs. Yang et al. [9] proposed a guess and determine attack
against the full SNOW-V with a time complexity of 2378, and a distinguishing
attack against the reduced variant SNOW-V⊕ with a complexity 2303. For the
initialization phase, Hoki et al. [10] investigated the security of the initialization
of SNOW-V at ACISP 2021, using Mixed-integer Linear Programming (MILP)
model to efficiently search for integral and differential characteristics. The re-
sulting distinguishing or key recovery attacks are applicable to SNOW-V with
reduced initialization rounds of five, out of the original 16 rounds. However,
none of these cryptanalysis efforts result in a valid attack against SNOW-V and
SNOW-Vi, which is faster than the exhaustive key search.

Our contributions. In this paper, we focus on the security levels of SNOW-V
and SNOW-Vi against correlation attack.

– The search for high correlation binary approximations is quite a challenge
in this cryptanalysis. We introduce a newly constructed composite function,
which helps to equivalently transform the linear approximation of the Finite
State Machine (FSM) part into that of the composition of several simple
functions. In this way, the correlation of a linear approximation trail can be
computed by multiplying those of sub-functions with no need to consider the
dependence between sub-functions, and the correlations of linear approxima-
tions based on three consecutive outputs of SNOW-V can be evaluated by
the linear approximation trails of the composite function.

– A series of automatic search models have been widely used to search linear
trails with high correlations of block ciphers, but just a few for stream ciphers
[11] as far as we know. As we have already converted the approximations of
FSM into those of a composite function, we can launch a wide range of
search for linear trails by taking advantage of automatic search techniques,
and approximate the accurate correlations with the correlations of linear
trails.

– With the aid of the linear relationship between the four taps of LFSR input
into FSM at three consecutive clocks, we present an automatic search model
based on SAT/SMT technique and search out a series of linear approximation
trails with high correlations. By exhausting the intermediate masks, we find
an accurate binary linear approximation with a correlation −2−47.76.
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– Using the approximation, we mount a correlation attack with an expected
time complexity 2246.53, a memory complexity 2238.77, and 2237.5 keystream
words, which can recover the internal state of SNOW-V at the clock pro-
ducing the first keystream word. For SNOW-Vi, we provide a linear approx-
imation with the same correlation, and mount a correlation attack with the
same complexity as that on SNOW-V.

As far as we know, it is the first attack with the time complexity less than that
of exhaustive attack on SNOW-V and SNOW-Vi (see Table 1).

Table 1. Summary of the attacks on SNOW-V and SNOW-Vi

Version Technique Round Time Data References

SNOW-V⊕ Distinguishing attack full 2303 2303 [9]

SNOW-Vσ0 Correlation attack full 2251.93 2103.83 [8]

SNOW-V�32,�8
Correlation attack full 2377.01 2253.73 [8]

SNOW-V

Differential attack 4 2153.97 226.96 [10]

Guess and Determine full 2512 7 [6]

Guess and Determine full 2406 7 [7]

Guess and Determine full 2378 8 [9]

Correlation attack full 2246.53 2237.5 Section 6

SNOW-Vi
Differential attack 4 2233.99 27.94 [10]

Correlation attack full 2246.53 2237.5 Section 7

Organization. Section 2 lists some notations and briefly introduces SNOW-V
and SNOW-Vi. Section 3 proposes the framework of our linear approximation
of SNOW-V. Section 4 describes the automatic search models used in this pa-
per in detail. Based on the results of automatic search, Section 5 evaluates the
complete correlation. Section 6 and 7 show the correlation attacks on SNOW-V
and SNOW-Vi, respectively. Section 8 concludes this paper.

2 Preliminaries

2.1 Notations and definitions

Henceforth, we fix some notations for convenience.

GF (2) the binary field

GF (2n) the n-dimensional extension field of GF (2)

⊕ the bitwise XOR operation

� the parallel of four additions modulo 232

� the parallel of four subtractions modulo 232

x̄ the NOT operation for a given bit x

wt(x) the Hamming weight of a Boolean vector x
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Given two binary vectors a = (an−1, an−2, ..., a0), b = (bn−1, bn−2, ..., b0), the

inner product is defined as a · b =
n−1
⊕
i=0

aibi.

Let x be an element of GF (216) and y = (ym−1, ym−2, ..., y0) be an m-
dimensional vector on the same field, the product of x and y is defined as x∗y =
(xym−1, xym−2, ..., xy0), where the product xyi is operated over GF (216).

The correlation of a binary random variable x is defined as

ρ(x) = Pr(x = 0)− Pr(x = 1),

and the absolute correlation of the binary random variable x is defined as |ρ(x)|.
For a vectorized Boolean function f : GF (2m) → GF (2n), the correlation

with the input mask α and the output mask β is calculated as

ρ(α→ β) =
1

2m

∑
x∈GF (2m)

(−1)α·x⊕β·f(x),

and we express the approximation process by α
f−−−−−→

ρ(α→β)
β. Especially, the corre-

lation of f(x, y) = x� y with the input mask α, β and output mask γ is denoted
by ρA(α, β → γ), and the correlation of f(x) = AESR(x, 0) with input mask α
and output mask β is denoted by ρE(α→ β).

We use the corresponding bold letter to denote the matrix of a linear trans-
formation, e.g., P (x) = Px for a linear transformation P and a column vector
x.

2.2 Description of SNOW-V and SNOW-Vi

SNOW-V. Like previous SNOW stream ciphers, SNOW-V consists of LFSR
part and FSM part. The LFSR part of SNOW-V is a circular structure consisting
of two LFSRs, and the size of each register in FSM part increases to 128 bits.
The overall schematic of SNOW-V algorithm is shown in Fig.1.

The two LFSRs are named LFSR-A and LFSR-B, both with a length of 16
and a cell size of 16 bits. The 32 cells are denoted as a15, ..., a0 and b15, ..., b0
respectively. The elements of LFSR-A are generated by the polynomial

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ GF (2)[x],

while the elements of LFSR-B are generated by

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ GF (2)[x].

The LFSR part is updated by

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α),

b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β),
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Fig. 1. The keystream generation phase of the SNOW-V stream cipher

in which α is a root of gA(x) and β is a root of gB(x). Two taps T1 and T2 at
clock t are given respectively by

T
(t)
1 = (b

(8t)
15 , b

(8t)
14 , ..., b

(8t)
8 ), T

(t)
2 = (a

(8t)
7 , a

(8t)
6 , ..., a

(8t)
0 ).

R1, R2, R3 are three 128-bit registers of FSM part, updated by

R
(t+1)
1 = σ(R

(t)
2 � (R

(t)
3 ⊕ T

(t)
2 )),

R
(t+1)
2 = AESR(R

(t)
1 , C1),

R
(t+1)
3 = AESR(R

(t)
2 , C2).

AESR(input, key) denotes the AES encryption round function, C1 and C2 are
zeros. σ is a byte-oriented permutation:

σ= [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],

and σ−1 = σ. The 128 bits keystream at clock t is given by:

z(t) = (R
(t)
1 � T

(t)
1 )⊕R(t)

2 .

For more details of SNOW-V, please refer to [4].
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SNOW-Vi. SNOW-Vi is an extreme performance variant of SNOW-V, and

eliminates the linear relationship between T1
(t−1), T1

(t), T
(t+1)
1 , T

(t)
2 . SNOW-Vi

is consistent with SNOW-V except that the two fields FA2 and FB2 have the
generating polynomials:

gA(x) = x16 + x14 + x11 + x9 + x6 + x5 + x3 + x2 + 1 ∈ F2[x],

gB(x) = x16 + x15 + x14 + x11 + x10 + x7 + x2 + x+ 1 ∈ F2[x],

and the LFSR part updates as follows:

a(t+16) = b(t) + αa(t) + a(t+7) mod gA(α),

b(t+16) = a(t) + βb(t) + b(t+8) mod gB(β).

Two taps T1 and T2 at clock t are given respectively as

T
(t)
1 = (b

(8t)
15 , b

(8t)
14 , · · · , b(8t)8 ), T

(t)
2 = (a

(8t)
15 , a

(8t)
14 , · · · , a(8t)8 ).

For more details of SNOW-Vi, please refer to [5].

3 Linear approximation of SNOW-V

Our motivation is to find biased binary approximations of SNOW-V which only
relate to the output words and LFSR states. For most stream ciphers, how to
evaluate the correlations of linear approximations based on consecutive outputs
is a difficult problem. In this section, we convert the linear approximations based
on three consecutive outputs of SNOW-V into those of a composite function
equivalently. Thus we can evaluate the correlations by the properties of Walsh
spectrum, and it is much clearer to investigate the linear approximations from
the point of view of composite functions.

SNOW-V employs two LFSRs making up a circular structure. There is a
straightforward observation [9] that the four taps at three consecutive clocks
satisfy

T
(t)
2 = T

(t+1)
1 ⊕ β ∗ T1(t−1) ⊕ β−1 ∗ T1(t) ⊕ (T1

(t−1) >> 48)⊕ (T1
(t) << 80),

and we also confirm it experimentally. The above equation can be rewritten as

L(T
(t−1)
1 , T

(t)
1 ) = T

(t+1)
1 ⊕ T (t)

2 ,

where L is a linear mapping recording the linear relationship above. We omit the

superscript of R
(t)
1 , R

(t)
2 , R

(t)
3 , and simplify them as R1, R2, R3. The keystream

outputs in three consecutive clocks can be expressed by

zt−1 = (T
(t−1)
1 � E−1(R2))⊕ E−1(R3),

zt = (T
(t)
1 �R1)⊕R2,

zt+1 = (T
(t+1)
1 � σ(R2 � (R3 ⊕ T (t)

2 )))⊕ E(R1).
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Let α, β, γ, l,m, n, h be 128-bit masks. We observe that the following equation
will show a nonzero correlation ρ when the masks take certain values:

(α, β, γ, l,m, n, h) · (zt−1, zt, zt+1, T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 )

= α · (E−1(R2) � T
(t−1)
1 )⊕ β ·R2 ⊕ γ · (σ(R2 � (R3 ⊕ T (t)

2 )) � T
(t+1)
1 )

⊕α · E−1(R3)⊕ β · (R1 � T
(t)
1 )⊕ γ · E(R1)

⊕l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2
ρ
= 0.

(1)

In order to make the linear approximation process more explicit and precise,
we divide it into several sub-steps by introducing 6 functions:

f1(x, y, z, u, v, w) = (x� v, y, z, u, L(z, u)⊕ v, w),

f2(x, y, z, u, v, w) = ((σ−1(x) � y)⊕ v, y, z, u, v, w),

f3(x, y, z, u, v, w) = (E−1(x), E−1(y), z, u, v, w),

f4(x, y, z, u, v, w) = (x, (y � z), u, v, w),

f5(x, y, z, u, v) = (x, y, z, u,E−1(v)),

f6(x, y, z, u, v) = (x, y, u, (z � v)).

It is clear that the composite function

F (x, y, z, u, v, w) := (f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(x, y, z, u, v, w)

has 6-word input and 4-word output. In the following theorem, we equivalently
convert the approximation of FSM part of SNOW-V into that of the composite
function F .

Theorem 1. Assume that R1, R2, R3, T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 are independent and

uniform distributed. For the binary linear approximation of F

(γ, β, l,m, n, γ)
F−−→
ρF

(α, α, h, β),

which is under the masks defined by the same α, β, γ, l,m, n, h as in Equation
(1), we have ρ = ρF .

Proof. Set

(x, y, z, u, v, w) = (σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , E(R1)).

AsR1, R2, R3, T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 are independent and uniform distributed, x, y, z,

u, v, w are independent and uniform distributed as well. Recall that

L(T
(t−1)
1 , T

(t)
1 ) = T

(t+1)
1 ⊕ T (t)

2 ,

we have

F (x, y, z, u, v, w) = (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
2 , T

(t)
1 �R1).
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Thus, the equation of the linear approximation (γ, β, l,m, n, γ)
F−→ (α, α, h, β) is

(γ, β, l,m, n, γ) · (σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , E(R1))

⊕ (α, α, h, β) · (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
2 , T

(t)
1 �R1)

ρF
= 0.

(2)
As the linear approximation equations (1) and (2) are totally the same, it is
obvious that the correlation ρF of the above approximation is equal to ρ. �

By Theorem 1, we convert the problem of computing the correlation of Equa-
tion (1) into that of searching for linear approximations of F equivalently. In fact,
Theorem 1 also indicates a provable result of the correlations of binary approx-
imations based on three consecutive outputs of SNOW-V. The binary linear
approximations of F defined in Theorem 1 by the parameters α, β, γ, l,m, n, h
correspond one-to-one to those of Equation (1), which have the same correla-
tion. Thus, using the properties of Walsh spectrum of composite functions, we
can evaluate the approximations of SNOW-V by measuring the linear trails in-
stead of computing the correlations of approximations directly.

Notice that different choices of l,m, n, h lead to different forms of Equation
(1), i.e., different distinguishers when ρ 6= 0. From the linear relation

L(T
(t−1)
1 , T

(t)
1 ) = T

(t+1)
1 ⊕ T (t)

2 ,

we know that

l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 = 0,

when nL = hL = (l||m) holds, in which || represents the cascading operation.
Then Equation (1) shall become

(α, β, γ, l,m, n, h) · (zt−1, zt, zt+1, T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 )

= α · zt−1 ⊕ β · zt ⊕ γ · zt+1
ρ
= 0,

which contains only the output words zt−1, zt, zt+1, and indicates a distinguisher
for distinguishing attack; otherwise, when

l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 6= 0,

we will get a distinguisher for correlation attack which can be used to recover
the initial state of the LFSR.

In this paper, we focus on the search of distinguishers for correlation at-
tack. Denoting the intermediate masks as a, b, c, d, e, f, q respectively, the linear
approximation trail of F above can be described as

(γ, β, l,m, n, γ)
f1−−−−−−−−−−−−−−−−−−−−−→

dL=(e⊕l)||(f⊕m),ρA(a,n⊕d→γ)
(a, β, e, f, d, γ)

f2−−−−−−−−−−−−→
ρA(b⊕β,d⊕h→aσ)

(d⊕ h, b, e, f, h, γ)
f3−−−−−−−−−−−−−→

ρE(α→d⊕h)ρE(c→b)
(α, c, e, f, h, γ)

f4−−−−−−−→
ρA(e,c→α)

(α, α, f, h, γ)

f5−−−−−−→
ρE(q→γ)

(α, α, f, h, q)
f6−−−−−−−→

ρA(f,q→β)
(α, α, h, β),
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and its correlation can be evaluated as

ρ(a, b, c, d, q) =ρA(a, n⊕ d→ γ)ρA(b⊕ β, d⊕ h→ aσ)ρE(α→ d⊕ h)

ρE(c→ b)ρA(e, c→ α)ρE(q → γ)ρA(f, q → β),

with the constraint dL = (e⊕ l)||(f⊕m). This form of approximation enables us
to find linear trails with the assistance of automatic search technique. The de-
tailed reasoning process of intermediate masks is given in Appendix A, and there
is no need to consider the influence of e and f in later analysis, because they can
be generated linearly by d, l,m. According to the properties of Walsh spectrum
of composite functions, the accurate correlation of a binary linear approximation
with the input and output masks defined by parameters α, β, γ, l,m, n, h of F
should be computed by

c(α, β, γ, l,m, n, h) =
∑

a,b,c,d,q

ρ(a, b, c, d, q),

which means we can get the accurate correlation by exhausting the intermediate
masks a, b, c, d, q.

4 Automatic search of linear approximation trails of
SNOW-V

In this section, we model the problem of searching linear approximation trails
as STP-based automatic search programs. STP is an SMT solver which encodes
the constraints with CVC, SMT-LIB1 and SMT-LIB2 languages [12]. STP has
been used to analyze block ciphers [14], but for stream ciphers, there is no prece-
dent as far as we know. Since STP solver can model XOR operations easily, we
construct STP-based automatic search program for linear approximation trails
of SNOW-V. STP solver will return a solution that meets the conditions if there
is one. The model of the linear approximation above contains three substitu-
tion layers and four layers of addition modulo 232 operations as the nonlinear
part. Here we characterize the linear approximation in the way available for STP
solver. For convenience, signs of correlation values are temporarily ignored in the
process of characterization, and determined in the verification process.

8-bit S-box. We denote c(x, y) the correlation of an S-box with the input mask
x = (x7, x6, ..., x0) and output mask y = (y7, y6, ..., y0). Since the nonzero abso-
lute correlations of the S-box but 1 has 8 values, we split the linear correlation
table into multiple Boolean functions like in [13]. Here we construct 8 Boolean
functions:

fk(x, y) =

{
1, if |c(x, y)| = 4k/256;

0, if |c(x, y)| 6= 4k/256.
k = 1, 2, ..., 8

As the expressions longer than 256 characters are not supported by STP solver,
f(x, y) needs to be converted into a series of shorter constrains that are fully

9



satisfied. By inputting the truth tables, the software LogicFriday can directly
give the product-of-sum representation of a Boolean function. For example, the
Boolean function with 3 input bits and 1 output bit h(a0, a1, a2) = a0a1a2 ⊕
a0a1 ⊕ a2 has the product-of-sum representation

h(a0, a1, a2) = (a0|a1|a2)&(a0|ā1|a2)&(ā0|a1|a2).

Thus, the Boolean function h(a0, a1, a2) has essential conditions
a0|a1|a2 = 0⇒ h(a0, a1, a2) = 0,

a0|ã1|a2 = 0⇒ h(a0, a1, a2) = 0,

ã0|a1|a2 = 0⇒ h(a0, a1, a2) = 0.

In the same way, fk(x, y) can be converted into a series of logical conditions.
With the constraint

f1(x, y)|f2(x, y)|...|f8(x, y) = x0|x1|...|x7|y0|y1|...|y7

added, we have the observation that fk(x, y) = 1 if and only if |c(x, y)| = 4k/256.
STP solver does not support the floating-point data type, so we replace the
absolute correlation of the i-th S-box |c(i)(x, y)| with [14]

S(i) = −
⌊
10tlog2|c(i)(x, y)|

⌋
=

8∑
k=1

⌊
10tf

(i)
k (x, y)log2(256/4k)

⌋
,

in which t is the precision parameter. Thus we get the absolute correlation of an
S-box being accurate to t decimal places.

Addition modulo 232. Wallén [15] proposed a recursive method to efficiently
compute the correlation with given input and output masks. Then the result
was improved by Schulte-Geers [16]. Denoting the output mask as u, the input
masks as v, w, the i-th bit of Boolean vector x as xi, the constraints to obtain a
valid linear approximation shall be expressed as

zn−1 = 0,

zj = zj+1 ⊕ uj+1 ⊕ vj+1 ⊕ wj+1(0 ≤ j < n− 1),

zi ≥ ui ⊕ vi(0 ≤ i < n),

zi ≥ ui ⊕ wi,

in which z is a dummy variable. The correlation of the linear approximation is
not zero if and only if z satisfies the constraints, and is given by ρA(v, w → u) =

(−1)
(u⊕v)·(u⊕w)

2−wt(z) when it is not zero. In order to keep consistent with the
accuracy of the correlation of S-boxes, we replace the absolute correlation of the

j-th modular addition 2−wt(z
(j)) with Z(j) = 10twt(z(j)) as well.
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Objective function. As there are 48 S-boxes and 16 modular additions taking

part in the linear approximation, a trail can be evaluated by
48∑
i=1

S(i) +
16∑
j=1

Z(j).

A solution returned by the STP solver satisfying the constraint

48∑
i=1

S(i) +

16∑
j=1

Z(j) < l

represents a trail with the absolute correlation higher than 2−10
−tl.

The sign. After STP solver returns a linear approximation trail that satisfies
all constraints, we verify the trail and determine its sign.

Finding more trails. As mentioned in Section 3, the correlation of a binary
linear approximation of SNOW-V can be computed as

c(α, β, γ, l,m, n, h) =
∑

a,b,c,d,q

ρ(a, b, c, d, q).

Assuming that the trail (α0, β0, γ0, l0,m0, n0, h0, a0, b0, c0, d0, q0) has been found,
we can keep searching for other new solutions by introducing the additional
constraints:

α = α0, β = β0, γ = γ0, l = l0,m = m0, n = n0, h = h0,

(a⊕ a0)|(b⊕ b0)|(c⊕ c0)|(d⊕ d0)|(q ⊕ q0) 6= 0.

Different solutions can be generated one by one in this way, and the binary cor-
relation gradually approaches its real value by summing up the correlations of
linear trails.

We build the automatic search program for the linear approximation above.
Labeling different trails with different subscripts, the best result we have found
is

α1 = l1 = c1 = 0xc, 0, 0, 0

β1 = m1 = 0x80, 0, 0, 0

γ1 = h1 = b1 = 0x81ec5a80, 0, 0, 0

n1 = 0x81ec5a00, 0, 0, 0

a1 = 0xc1000000, 0, 0, 0

q1 = 0xa0, 0, 0, 0

d1 = 0, 0, 0, 0.

with the correlation 2−48 (The symbol ’0’ denotes 32-bit 0, and the leftmost
32-bit word is the most significant word hereafter), meanwhile we also focus on

11



another trail
α2 = l2 = c2 = 0xd, 0, 0, 0

β2 = m2 = 0x40, 0, 0, 0

γ2 = h2 = b2 = 0x81ec5a80, 0, 0, 0

n2 = 0x81ec5a00, 0, 0, 0

a2 = 0xc1000000, 0, 0, 0

q2 = 0x60, 0, 0, 0

d2 = 0, 0, 0, 0.

with the correlation −2−49.063.
From the expression of ρ(a, b, c, d, q) in Section 3, we can see that the common

features of both trails are that there is only one active S-box in each substitu-
tion layer, and only one active 32-bit word in each layer of addition modulo
232. Besides, we can see that masks of the two trails are similar. In fact, all of
the linear approximation trails we found with high correlations have masks of
the same form above. Although these trails can approximate the corresponding
linear approximations to some extent, we still want to evaluate the accurate
correlations.

5 Evaluating the accurate correlations for a special type
of binary linear approximations

Based on the trails we have searched out, we try to get accurate values of some
high correlations. In this section, indeterminate nonzero 8-bit bytes in 128-bit
masks are denoted as ∗. Since all the trails we have searched out with absolute
correlation higher than 2−50 are of the form

α = l = 0x000000∗, 0, 0, 0
β = m = 0x000000∗, 0, 0, 0
γ = h = 0x81ec5a80, 0, 0, 0

n = 0x81ec5a00, 0, 0, 0,

and the accurate correlation of a binary linear approximation should be

c(α, β, γ, l,m, n, h) =
∑

a,b,c,d,q

ρ(a, b, c, d, q).

Thus, we evaluate the accurate correlations of linear trails with parameters

α = l = 0x000000X, 0, 0, 0

β = m = 0x000000Y, 0, 0, 0

γ = h = 0x81ec5a80, 0, 0, 0

n = 0x81ec5a00, 0, 0, 0,

by exhausting the intermediate masks a, b, c, d, q for given 8-bit words X and Y .
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Mask c and q. Due to the properties of the linear approximation of modular
addition, the most significant nonzero bit of an input mask must be in the same
position as that of the output mask. Therefore, there is a straightforward ob-
servation that c and e have the form (0x000000∗, 0, 0, 0), i.e., c and e are zeros
except for their 12-th bytes, with the assumption α = (0x000000X, 0, 0, 0) and
ρA(c, e → α) 6= 0. In a similar way, we can deduce q = (0x000000∗, 0, 0, 0) by
β = (0x000000Y, 0, 0, 0) and ρA(f, q → β) 6= 0, and so as f . Hence we only need
to exhaust at most 255 values of c and q respectively.

Mask d. As l, m, e, f are zeros except for their 12-th bytes, from the linear
relation dL = (e⊕ l)||(f ⊕m) we can get

dL = (0x000000∗, 0, 0, 0, 0x000000∗, 0, 0, 0).

This system of linear equations can be confirmed that the unique solution of d
is (0, 0, 0, 0). The detailed proof is shown in Appendix B.

Mask b and a. By ρE(c → b) 6= 0 and c = (0x000000∗, 0, 0, 0), we know that
bP = (0x000000∗, 0, 0, 0), where P is the binary matrix of the linear transfor-
mation of AES round function. So there are 255 values for b to traverse as well.
a is constrained by both ρA(a, n⊕ d→ γ) 6= 0 and ρA(b⊕ β, d⊕ h→ σTa) 6= 0.
The first constraint means that the least significant three 32-bit words of a are
zeros while the second indicates that the least significant three 32-bit words of
σTa are zeros. Since the 15-th byte is the unique fixed point of σ among the 4
most significant bytes, we have a = (0x ∗ 000000, 0, 0, 0).

Thus, we only need to exhaust 4 bytes to get all the trails with nonzero
correlation and reach the accurate correlation of the linear approximation by
summing them up when α, β, γ, l,m, n, h are chosen as above. We could also
traverse X and Y to find the optimal approximation of this type. The time
complexity is far less than 248, for most of the cases shall break halfway. Based
on the two trails shown in Section 4, we compute the correlations and get

c(α1, β1, γ1, l1,m1, n1, h1) = 2−48.06, c(α2, β2, γ2, l2,m2, n2, h2) = −2−47.76.

The second one is the optimal approximation of this type, and we can see an
interesting aggregation effect: the absolute correlation of the first approximation
is lower than the second while the first trail has a higher absolute correlation.
For both approximations, there are more trails with negative correlations in the
exhaustion process. So the correlation of the first trail 2−48 is offset by a large
number of negative correlations, resulting in a lower sum 2−48.06, while the ab-
solute correlation of the second trail 2−49.06 increases to 2−47.76 by summing the
correlations up.

The involved codes can be found at: https://github.com/acaofsas/SNOW-V.
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6 A correlation attack on SNOW-V

Based on the generic method of fast correlation attack given in [17], we present
a correlation attack on SNOW-V using the linear approximation with the cor-
relation c = −2−47.76 given in Section 5, and give a more detailed analysis of
success probability and complexity.

6.1 General description of the presented correlation attack on
SNOW-V

We call the state of LFSR that produces the first keystream word as the initial
state of LFSR. Our aim is to recover the initial state of LFSR. By the result
above, we have

α · zt−1 ⊕ β · zt ⊕ γ · zt+1 ⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2
c
= 0.

We assume that u = (u511, u510, · · · , u0) and û = (û511, û510, · · · , û0) are the
initial state and guessed initial state respectively. Since the output of LFSR at
clock t can always be expressed as a linear combination of the initial state, i.e.,

there always exists a Γt ∈ {0, 1}512 such that Γt · u = l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n ·
T

(t+1)
1 ⊕ h · T (t)

2 , we can construct a distinguisher with the form

φt(û) =α · zt−1 ⊕ β · zt ⊕ γ · zt+1 ⊕ Γt · û
=α · zt−1 ⊕ β · zt ⊕ γ · zt+1

⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 ⊕ Γt · (u⊕ û).

φt(û) will show the correlation c = −2−47.76 when û = u, otherwise φt(û) is
uniform distributed. With this analysis, we recover the initial LFSR state in two
steps.

Preprocessing stage: Let the most significant B bits of binary vector x =
(x511, x510, · · · , x0) be xh = (x511, x510, · · · , x512−B), the least significant 512−
B bits be xl = (x511−B , x510−B , · · · , x0) and the number of keystream words
produced by a pair of key and IV be N . For 1 ≤ i1, i2 ≤ N , we have

(Γi1 ⊕ Γi2) · u = (Γhi1 ⊕ Γ
h
i2) · uh ⊕ (Γ li1 ⊕ Γ

l
i2) · ul.

If Γ li1 = Γ li2 , the equation above is converted into (Γi1⊕Γi2) ·u = (Γhi1⊕Γ
h
i2

) ·uh.
As the event φi1(u) = 0 is independent of the event φi2(u) = 0 and p(φi1(u) =
0) = p(φi2(u) = 0) = 1

2 + 1
2c, we have p(φi1(u) ⊕ φi2(u) = 0) = 1

2 + 1
2c

2, i.e.,
ρ = c2. Thus we can get a parity check equation of B bits of the initial state u

α · (zi1−1 ⊕ zi2−1)⊕ β · (zi1 ⊕ zi2)⊕ γ · (zi1+1 ⊕ zi2+1)⊕ (Γhi1 ⊕ Γ
h
i2) · uhc

2

= 0,

if Γ li1 = Γ li2 holds. Since the probability p(Γ li1 = Γ li2) = 2−(512−B), the ex-

pected number of parity check equations with Γ li1 = Γ li2 among C2
N pairs of Γi is
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M = C2
N2−(512−B) ≈ 2−(513−B)N2. Thus we can find 2−(513−B)N2 parity check

equations in preprocessing stage on average.

Processing stage: Among the M parity check equations we denote the j -th
equation (α, β, γ)·Zj⊕δj ·uh = 0, where Zj = (zi1−1⊕zi2−1, zi1⊕zi2 , zi1+1⊕zi2+1)

and δj = (Γhi1 ⊕Γ
h
i2

). For each guessed B bits ûh ∈ {0, 1}B of the initial state u,
we evaluate the parity checks, then get

T (ûh) =

M∑
j=1

(−1)
(α,β,γ)·Zj⊕δj ·ûh

,

and predict the û that maximizes T (ûh) as the correct one. For the remaining
512−B bits, the above process can be repeated when the first B bits are known.
Thus, all the initial 512 bits of the LFSR can be recovered.

6.2 Success probability and complexity

For linear attacks, we recall the relationship between the probability of success
and the number of check equations below:

Definition 1. [18] If a B-bit key is attacked and the right key is ranked r-th
among all 2B candidates, a = B − log2r is called the advantage provided by the
attack.

In this paper we refer to the advantage defined by Definition 1 as gain.

Lemma 1. [18] Let ps be the probability that a linear attack on a B-bit subkey,
with a linear approximation of probability p = 1

2 + 1
2ρ and M known parity check

equations, delivers an a-bit or higher gain. Under the assuming that the linear
approximation’s probability to hold is independent for each guessed key and its
probability is equal to 1/2 for all wrong keys, we have for sufficiently large B
and M that

ps = Φ

(
2
√
M

∣∣∣∣p− 1

2

∣∣∣∣− Φ−1(1− 2−a−1)

)
,

where Φ(x) = 1√
2π

∫ x
−∞ e−

t2

2 dt is the distribution function of the standard nor-

mal distribution.

Corollary 1. [18] With the assumptions of Lemma 1,

M =
1

ρ2
(
Φ−1(ps) + Φ−1(1− 2−a−1)

)2
parity check equations are needed in a linear attack to accomplish an a-bit gain
with a success probability of ps.
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By the results of [19], we use the formula Φ−1(1 − λ)
λ→0+

≈
√
−2 lnλ to ap-

proximate Φ−1(1−2−a−1). Hence, we have M ≈ 1
ρ2

(
Φ−1(ps) +

√
2(a+ 1) ln 2

)2
for sufficiently large a.

The complexity can be evaluated as follows. In the preprocessing stage, we
evaluate and store each Γi ∈ {0, 1}512 for 1 ≤ i ≤ N . Then we sort Γi according
to the value of Γ li such that Γ li1 = Γ li2 holds for any i1 and i2 in the same set.
Thus we can construct a series of parity check equations which is only related to
the most significant B bits of initial state. The time complexity of preprocessing
stage is O(N) +O(N log2N), and memory complexity is O(N).

In the processing stage, T (ûh) is computed for each guessed ûh ∈ {0, 1}B
by evaluating M parity check equations. When B > logM , denoting the most
significant dlogMe bits of δj and ûh as δh1j and ûh1, the least significant B −
dlogMe bits as δh2j and ûh2 respectively, we can accelerate the process using fast
Walsh transformation by

T (ûh) =

M∑
j=1

(−1)
(α,β,γ)·Zj⊕δj ·ûh

=
∑

ζ∈{0,1}dlog Me

∑
j,δh1

j =ζ

(−1)
(α,β,γ)·Zj · (−1)

δh1
j ·û

h1

· (−1)
δh2
j ·û

h2

=
∑

ζ∈{0,1}dlog Me

∑
j,δh1

j =ζ

(−1)
(α,β,γ)·Zj · (−1)

δh2
j ·û

h2

· (−1)
ζ·ûh1

=
∑

ζ∈{0,1}dlog Me

(−1)
ζ·ûh1 ∑

j,δh1
j =ζ

(−1)
(α,β,γ)·Zj · (−1)

δh2
j ·û

h2

=
∑

ζ∈{0,1}dlog Me

(−1)
ζ·ûh1

gûh2(ζ),

where gûh2(ζ) =
∑

j,δh1
j =ζ

(−1)
(α,β,γ)·Zj⊕δh2

j ·û
h2

.

For each guessed ûh2 ∈ {0, 1}B−dlogMe and ζ ∈ {0, 1}dlogMe, we compute

gûh2(ζ) and get T (ûh) =
∑

ζ∈{0,1}dlog Me
(−1)

ζ·ûh1

gûh2(ζ) by calculating the Walsh

transform of gûh2(ζ). This process can be done with a time complexity

2B−dlogMe(M + dlogMe 2dlogMe) ≈ 2B(1 + dlogMe)

and a memory complexity O(2B). By Corollary 1, we have

M =
1

ρ2
(
Φ−1(ps) + Φ−1(1− 2−B−1)

)2
when the correct uh is predicted as the top ranked, i.e., a = B. Therefore, we can
work out M with fixed ps and B, then compute N by M ≈ 2−(513−B)N2. Finally,
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the values which minimize the time complexity N(logN + 1) + 2B(1 + dlogMe)
shall be taken to determine the total complexity.

We test different choices for ps and B and find that M ≈ 2200 and N ≈ 2237.5

under ps = 0.999992 and B = 238, which makes the total complexity lowest.
The time complexity of the preprocessing stage is 2245.40, the memory complex-
ity is 2237.5. In the processing stage the time complexity is 2245.65, the memory
complexity is 2238. Thus, the attack can be done with the total time complexity
2246.53, memory complexity 2238.77 and 2237.5 keystream words given.

After the first 238 bits in the initial state of the LFSR be recovered, one can
recover the rest 274 bits of LFSR in the same way. Denoting the most significant
238 bits of binary vector x as x(238) = (x511, x510, ..., x274), the following B′

bits as xh
′

= (x273, ..., x274−B′) and the least significant 274 − B′ bits as xl
′

=
(x273−B′ , ..., x0) respectively, for 1 < i1, i2 < N ′ we have

(Γi1⊕Γi2)·u = (Γ
(238)
i1

⊕Γ (238)
i2

)·u(238)⊕(Γ
(h′)
i1
⊕Γ (h′)

i2
)·u(h

′)⊕(Γ
(l′)
i1
⊕Γ (l′)

i2
)·u(l

′).

As the most significant 238 bits are known, we can get M ′ ≈ 2−(275−B)N ′
2

par-
ity check equations when Γ l

′

i1
= Γ l

′

i2
holds. By Corollary 1, when ps = 0.999992

and B′ = 199, we have M ′ ≈ 2200 and N ′ ≈ 2138, which indicates a much lower
time complexity of 2206.66, and lower data and memory complexities than that of
the recovery of the first 238 bits. The remaining 75 bits can be exhausted directly.

It is easy to see that with the recovery of the LFSR state in encryption stage,
one can recover the three memories R1, R2 and R3 in encryption stage with a

time complexity not more than 2128. In fact, as z(t) = (R
(t)
1 � T

(t)
1 ) ⊕ R(t)

2 , the

state R
(t)
2 , R

(t+1)
1 , R

(t+1)
2 and R

(t+1)
3 shall be recovered as soon as R

(t)
1 is guessed.

Thus the initial states are recovered, i.e., we can predict the keystream word at
any clock. There remains an open problem of how to recover the original key of
SNOW-V effectively if one has recovered the initial states in encryption stage,
which is worth being explored in the future.

7 A correlation attack on SNOW-Vi

Using the same method, in this section we launch a correlation attack on SNOW-
Vi in a similar way.

7.1 Linear approximation of SNOW-Vi

In WiSec 2021, Ekdahl et al. [5] proposed SNOW-Vi. Besides the field and update

transformation of the LFSR, the tap T
(t)
2 = (a

(8t)
7 , a

(8t)
6 , · · · , a(8t)0 ) of SNOW-V

was changed to T
(t)
2 = (a

(8t)
15 , a

(8t)
14 , · · · , a(8t)8 ) as well. We have experimentally

confirmed that, regarding every bit in four taps T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 and T

(t)
2 as
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the coefficient vector of the initial state, the 512× 512 binary matrix composed

of these vectors is full rank, i.e., T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 and T

(t)
2 do not have linear

relationship any more. Thus, we modify the six functions to be

f1(x, y, z, t, u, v, w) = ((x� u), y, z, t, v, w),

f2(x, y, z, u, v, w) = ((σ−1(x) � y)⊕ v, y, z, u, w),

f3(x, y, z, u, v) = (E−1(x), E−1(y), z, u, v),

f4(x, y, z, u, v) = (x, (y � z), u, v),

f5(x, y, z, u) = (x, y, z, E−1(u)),

f6(x, y, z, u) = (x, y, (z � u)).

The composite function becomes

F (x, y, z, t, u, v, w) = (f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(x, y, z, t, u, v, w),

with 7 input words and 3 output words. Using the same method and symbols as

in Section 3, we consider the linear approximation (γ, β, l,m, n, h, γ)
F−→ (α, α, β).

Taking 7 independent and uniform distributed words as the input variables:

(x, y, z, t, u, v, w)

= (σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 , E(R1)),

we have

F (x, y, z, t, u, v, w) = (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
1 �R1).

Then the equation of the linear approximation (γ, β, l,m, n, h, γ)
F−→ (α, α, β) is

(γ, β, l,m, n, h, γ)

·(σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 , E(R1))

⊕(α, α, β) · (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
1 �R1)

= α · zt−1 ⊕ β · zt ⊕ γ · zt+1 ⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2
ρ′

= 0.

The linear approximation above can be expressed as

(γ, β, l,m, n, h, γ)
f1−−−−−−−→

ρA(a,n→γ)
(a, β, l,m, h, γ)

f2−−−−−−−−−−→
ρA(b⊕β,h→aσ)

(h, b, l,m, γ)

f3−−−−−−−−−−−−→
ρE(α→h)ρE(c→b)

(α, c, l,m, γ)
f4−−−−−−−→

ρA(l,c→α)
(α, α,m, γ)

f5−−−−−−→
ρE(q→γ)

(α, α,m, q)

f6−−−−−−−→
ρA(m,q→β)

(α, α, β),

and the correlation of a linear trail can be computed as

ρ′(a, b, c, q) =ρA(a, n→ γ)ρA(b⊕ β, h→ aσ)ρE(α→ h)ρE(c→ b)

ρA(l, c→ α)ρE(q → γ)ρA(m, q → β),

where a, b, c, q are the intermediate masks.
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7.2 Compared with the linear approximation of SNOW-V

The correlation of a linear trail of SNOW-V is

ρ(a, b, c, d, q) =ρA(a, n⊕ d→ γ)ρA(b⊕ β, d⊕ h→ aσ)ρE(α→ d⊕ h)ρE(c→ b)

ρA(e, c→ α)ρE(q → γ)ρA(f, q → β).

Since d = 0, e = l, f = m holds for the type of linear trails in Section 5, the
expression can be reduced to

ρ(a, b, c, 0, q) =ρA(a, n→ γ)ρA(b⊕ β, h→ aσ)ρE(α→ h)ρE(c→ b)

ρA(l, c→ α)ρE(q → γ)ρA(m, q → β),

which is the same as the correlation ρ′(a, b, c, q) of SNOW-Vi. Hence, we have
the straightforward observation.

Proposition 1. For any trail of the linear approximation process of SNOW-Vi
above, the linear trail of SNOW-V determined by the same parameters

(α, β, γ, l,m, n, h, a, b, c, q)

with d = 0 has the same correlation as that of SNOW-Vi, i.e.,

ρ(a, b, c, 0, q) = ρ′(a, b, c, q).

Proposition 1 indicates that the linear approximation trails of SNOW-Vi
correspond one-to-one to the trails with d = 0 of SNOW-V, and the set consisting
of all linear trails of SNOW-Vi is a subset of that of SNOW-V. Therefore, the
results of SNOW-V in this paper are also appropriate for SNOW-Vi. We could
approximate SNOW-Vi with the same correlation −2−47.76 of SNOW-V under

α = l = 0xd, 0, 0, 0

β = m = 0x40, 0, 0, 0

γ = h = 0x81ec5a80, 0, 0, 0

n = 0x81ec5a00, 0, 0, 0.

Similarly, the correlation attack presented in Section 5 with time complexity
2246.53, memory complexity 2238.77 and 2237.5 words given is effective for SNOW-
Vi as well.

8 Conclusion

In this paper, we study the linear approximation of the nonlinear functions of
SNOW-V and SNOW-Vi by the composite function technique. By the Walsh
spectrum theorem of composite function, we propose a method for searching
linear trails with high correlation of SNOW-V and SNOW-Vi in a wide range.
As the automatic search technique is available for this framework, the search
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efficiency has been significantly improved. Based on the results searched out, we
manage to evaluate the accurate correlation of a special type of binary linear
approximations. For SNOW-V, we find a binary linear approximation with cor-
relation −2−47.76, substantially improving the results in the design document.
Using the linear approximation we launch a correlation attack with a time com-
plexity 2246.53, a memory complexity 2238.77 and 2237.5 keystream words given.
For SNOW-Vi, the binary linear approximation is also valid, and the correla-
tion attack on SNOW-V is effective for SNOW-Vi as well. The results of this
paper show that SNOW-V and SNOW-Vi can be attacked with complexity less
than key exhaustion when we ignore the design constraint that the maximum of
keystream length with a single pair of key and IV is 264.
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A Detailed reasoning process of intermediate masks

Based on the linear approximation of F in Section 3, we analyze the intermediate
masks in the case that the input and output masks are fixed as (γ, β, l,m, n, γ)
and (α, α, h, β) respectively. We denote ξij the mask of the j-th output of fi and
ρi the correlation of fi. Then the linear approximation equation of f1 is

γ · x⊕ β · y ⊕ l · z ⊕m · u⊕ n · v ⊕ γ · w,
ρ1
= ξ11 · (x� v)⊕ ξ12 · y ⊕ ξ13 · z ⊕ ξ14 · u⊕ ξ15 · L(z, u)⊕ ξ15 · v ⊕ ξ16 · w,

(3)

which is equivalent to

(β ⊕ ξ12) · y ⊕ (γ ⊕ ξ16) · w ⊕ [ξ15 · L(z, u)⊕ (l ⊕ ξ13) · z ⊕ (ξ14 ⊕m) · u]

⊕ [ξ11 · (x� v)⊕ γ · x⊕ (n⊕ ξ15) · v]
ρ1
= 0.

With the assumption that ρ1 6= 0, we have ξ12 = β, ξ16 = γ. Denoting ξ11 = a, ξ13 =
e, ξ14 = f, ξ15 = d, we have dL = (e⊕ l)||(f ⊕m) by

d · L(z, u) = dL(z||u)T = (e⊕ l) · z ⊕ (f ⊕m) · u,

and (3) is equivalent to γ · xρ1= a · (x � v) ⊕ (n ⊕ d) · v, which is the linear
approximation a, n⊕ d→ γ of the addition modulo 232. Thus the correlation of
(3) is ρ1 = ρA(a, n⊕ d→ γ).

For f2, we have

a · x⊕ β · y ⊕ e · z ⊕ f · u⊕ d · v ⊕ γ · w
= ξ21 · (σ−1(x) � y)⊕ ξ21 · v ⊕ ξ22 · y ⊕ ξ23 · z ⊕ ξ24 · u⊕ ξ25 · v ⊕ ξ26 · w,

(4)
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which is equivalent to

[ξ21 · (σ−1(x) � y)⊕ a · x⊕ (β ⊕ ξ22) · y]⊕ (e⊕ ξ23) · z ⊕ (ξ24 ⊕ f) · u
⊕ (ξ21 ⊕ ξ25 ⊕ d) · v ⊕ (ξ26 ⊕ γ) · wρ2= 0.

By ρ2 6= 0 we know that ξ23 = e, ξ24 = f, ξ26 = γ,ξ21 = d ⊕ ξ25 . Denoting ξ22 = b,
then (4) is equivalent to ξ21 ·(σ−1(x)�y)⊕a·x⊕(β⊕ξ22)·y = 0. Let X = σ−1(x),
then the above equation can be converted to

a · σ(X) = (aσ) ·Xρ2
= (β ⊕ b) · y ⊕ ξ21 · (X � y),

which is the linear approximation β⊕b, d⊕ξ25 → aσ of the addition modulo 232,
hence ρ2 = ρA(β ⊕ b, d⊕ ξ25 → aσ).

For f3, the following equation holds

(d⊕ ξ25) · x⊕ b · y ⊕ e · z ⊕ f · u⊕ ξ25 · v ⊕ γ · w
ρ3
= ξ31 · E−1(x)⊕ ξ32 · E−1(y)⊕ ξ33 · z ⊕ ξ34 · u⊕ ξ35 · v ⊕ ξ36 · w.

(5)

It is equivalent to

[ξ31 · E−1(x)⊕ (d⊕ ξ25) · x]⊕ [ξ32 · E−1(y)⊕ b · y]⊕ (ξ33 ⊕ e) · z ⊕ (ξ34 ⊕ f) · u
⊕ (ξ35 ⊕ ξ25) · v ⊕ (ξ36 ⊕ γ) · wρ3= 0.

By ρ3 6= 0 we know that ξ33 = e, ξ34 = f, ξ35 = ξ25 , ξ
3
6 = γ. Let ξ32 = c, then (5) is

equivalent to [ξ31 · E−1(x) ⊕ (d ⊕ ξ25) · x] ⊕ [ξ32 · E−1(y) ⊕ b · y]
ρ3
= 0, which is the

two linear approximations ξ31
AES→ d ⊕ ξ25 and c

AES→ b of AES round function, so
we have ρ3 = ρE(ξ31 → d⊕ ξ25)ρE(c→ b).

For f4, we have

ξ31 ·x⊕c ·y⊕e ·z⊕f ·u⊕ξ25 ·v⊕γ ·w
ρ4
= ξ41 ·x⊕ξ42 ·(y�z)⊕ξ43 ·u⊕ξ44 ·v⊕ξ45 ·w, (6)

which is equivalent to

(ξ31 ⊕ ξ41) ·x⊕ [ξ42 · (y�z)⊕ c ·y⊕e ·z]⊕ (f ⊕ ξ43) ·u⊕ (ξ25 ⊕ ξ44) ·v⊕ (γ⊕ ξ45) ·wρ4= 0.

By ρ4 6= 0 we know that ξ41 = ξ31 , ξ
4
3 = f, ξ44 = ξ25 , ξ

4
5 = γ, and we can rewrite the

above equation as ξ42 · (y� z)
ρ4
= c · y⊕ e · z, which is the approximation c, e→ ξ42

of addition modulo 232. Obviously ρ4 = ρA(c, e→ ξ42).
For f5, the approximation equation is

ξ31 ·x⊕ ξ42 · y⊕ f · z⊕ ξ25 ·u⊕γ · v
ρ5
= ξ51 ·x⊕ ξ52 · y⊕ ξ53 · z⊕ ξ54 ·u⊕ ξ55 ·E−1(v), (7)

which is equivalent to

(ξ31 ⊕ ξ51) · x⊕ (ξ42 ⊕ ξ52) · y ⊕ (f ⊕ ξ53) · z ⊕ (ξ25 ⊕ ξ54) · u⊕ [ξ55 ·E−1(v)⊕ γ · v]
ρ5
= 0.

By ρ5 6= 0 we know that ξ51 = ξ31 , ξ
5
2 = ξ42 , ξ

5
3 = f, ξ54 = ξ25 . Denoting ξ55 = q, then

(7) can be reduced to q · E−1(v) ⊕ γ · vρ5= 0, which is the linear approximation

q
AES→ γ of AES round function, so ρ5 = ρE(q → γ).
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For f6, we have

ξ31 · x⊕ ξ42 · y ⊕ f · z ⊕ ξ25 · u⊕ q · v
ρ6
=α · x⊕ α · y ⊕ h · u⊕ β · (z � v). (8)

By ρ6 6= 0 we know that ξ31 = ξ42 = α, ξ25 = h, and (8) can be simplified to

β · (z�v)⊕f ·z⊕q ·vρ6= 0, which is the linear approximation f, q → β of addition
modulo 232. So we have ρ6 = ρA(f, q → β).

Thus, the linear approximation trail of F can be described as

(γ, β, l,m, n, γ)
f1−−−−−−−−−−−−−−−−−−−−−→

dL=(e⊕l)||(f⊕m),ρA(a,n⊕d→γ)
(a, β, e, f, d, γ)

f2−−−−−−−−−−−−→
ρA(b⊕β,d⊕h→aσ)

(d⊕ h, b, e, f, h, γ)
f3−−−−−−−−−−−−−→

ρE(α→d⊕h)ρE(c→b)
(α, c, e, f, h, γ)

f4−−−−−−−→
ρA(e,c→α)

(α, α, f, h, γ)

f5−−−−−−→
ρE(q→γ)

(α, α, f, h, q)
f6−−−−−−−→

ρA(f,q→β)
(α, α, h, β).

B The proof of d = (0, 0, 0, 0) under
dL = (0x000000∗, 0, 0, 0, 0x000000∗, 0, 0, 0)

Here we denote 128-bit vector d = (d7, d6, ..., d0) in which di ∈ GF (216), and β
the binary matrix form of β ∈ GF (216). By the relation

L(x, y) = β ∗ x⊕ β−1 ∗ y ⊕ (x >> 48)⊕ (y << 80),

we have

d · L(x, y) = d · β ∗ x⊕ d · β−1 ∗ y ⊕ d · (x >> 48)⊕ d · (y << 80)

= d · β ∗ x⊕ d · β−1 ∗ y ⊕ [(d << 48) · x]⊕ [(d >> 80) · y],

which is equivalent to

dL = (d7β ⊕ d4, ..., d3β ⊕ d0, d2β, ..., d0β,
d7β

−1, ..., d3β
−1, d2β

−1 ⊕ d7, ..., d0β−1 ⊕ d5).

Recall
dL = (0x000000∗, 0, 0, 0, 0x000000∗, 0, 0, 0),

we can observe that

d2β = d1β = d0β = d7β
−1 = d5β

−1 = d4β
−1 = d3β

−1 = d1β
−1 ⊕ d6 = 0.

As β is invertible, we can get d = (0, 0, 0, 0).
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