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Abstract

The problem of solving a system of multivariate quadratic equations over a finite field
is known to be hard in general. However, there have been several algorithms of solving the
system of quadratic equations efficiently when the number of variables is sufficiently larger
than the number of equations (e.g., Kipnis et al., Eurocrypt 1999, Thomae-Wolf, PKC 2012,
Cheng et al., PQCrypto 2014 and Furue et al., PQCrypto 2021). In the present paper,
we propose a new algorithm which is available if the number of variables is smaller than
that required in the previously given algorithms. We also analyze the security of MAYO, a
variant of UOV, proposed in SAC 2021 and submitted to NIST’s standardization project of
additional digital signature schemes for Post-Quantum Cryptography.

Keywords. under-defined multivariate quadratic equations

1 Introduction

The MQ problem, the problem of solving a system of m multivariate quadratic polynomial
equations of n variables over a finite field, is known to be a hard problem [11, 9] and is important
for analyzing the security of multivariate public key cryptography (MPKC), which is a candidate
for post-quantum cryptography.

The standard approaches to solving the MQ problem are by using the Gröbner basis (GB)
algorithm, the XL algorithm and the hybrid approach, which is the combination of the exhaustive
search and the GB/XL algorithms (see, e.g., [8, 5, 4]). These approaches have been widely used
in the security analysis of MPKCs.

It is known that they are efficient especially for the over-defined systems (m ≫ n). On
the other hand, for under-defined systems (n ≫ m), there have been several works to reduce
the size of the systems by taking linear transforms of variables. In fact, Kipnis et al. [13]
proposed a polynomial-time algorithm to reduce the problem of solving under-defined systems
of quadratic equations with n ≥ m(m+1) over a finite field of even characteristic to the problem
of solving a system of linear equations. Later, its polynomial-time algorithm has been arranged
and improved by Courtois et al. [7], Miura et al. [14] and Cheng et al. [6].

While these algorithms will work in polynomial time, the required n is much larger than
m and then it is not realistic to use them in the practical analysis of MPKCs. Thomae-Wolf
[16] and Cheng et al. [6] proposed the algorithms to reduce the size of polynomial systems as
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arrangements of the algorithms given in [13] and [6], respectively. Although these algorithms do
not solve in polynomial-time, the required n is not much larger than m. In this sense, they are
more practical than the polynomial time algorithms given in [13, 7, 14, 6]. Recently, Furue et al.
[10] improved the Thomae-Wolf algorithm slightly by considering the parameters of exhaustive
search in the hybrid approach.

In the present paper, we propose a further improvement of the previously given algorithms
[16, 6, 10] for solving under-defined systems, which is available for smaller n. We also give
a security analysis of MAYO, a variant of UOV proposed in [2, 3] and submitted to NIST’s
standardization project of additional digital signature schemes for Post-Quantum Cryptography
[15], and check that its security with given parameters is less than expected.

2 MQ problem

Let q be a power of prime and Fq a finite field of order q. For integers n,m ≥ 1, denote by
F (x) = t(f1(x), . . . , fm(x)) a set of m quadratic polynomials of n variables x = t(x1, . . . , xn)
over Fq. We call the problem of solving the system {f1(x) = 0, . . . , fm(x) = 0} of m quadratic
equations of n variables the MQ problem and denote by MQ(q, n,m) the complexity of solving
m quadratic equations of n variables over Fq.

The Gröbner basis (GB) algorithm and the XL algorithm have been widely used to solve
systems of polynomial equations and these are deeply related to each other [1]. Denote by
GB(q, n,m) the complexity of the GB/XL algorithm for the system of m quadratic polynomials
of n variables over Fq. It is known that

GB(q, n,m) ≤ 3

(
n+ dreg
dreg

)2(n+ 2

2

)
(1)

if the system is semi-regular, where dreg is the degree of the regularity of the corresponding
polynomial system and is given as the smallest integer d > 0 such that the coefficient of td in

the expansion of (1−t2)m

(1−t)n+1 is not positive (see, e.g. [5]). This means that, if m is larger (n is

smaller), the degree dreg is smaller and then the complexity GB(q, n,m) is also smaller. It is
why the GB/XL algorithm is efficient for over-defined (m ≫ n) systems.

The hybrid approach [4] is the combination of the GB/XL algorithm and the exhaustive
search to optimize the complexity. When n = m, it is described as follows. Let k ≥ 0 be
an integer and choose u1, . . . , uk ∈ Fq randomly. After that, solve the system of m equations
{fl(x1, . . . , xm−k, u1, . . . , uk) = 0}1≤l≤m of m − k variables by the GB/XL algorithm. If there
exists a solution (x1, . . . , xm−k) = (y1, . . . , ym−k), (y1, . . . , ym−k, u1, . . . , uk) ∈ Fm

q is a solution
of the original system. If there does not exist, choose another (u1, . . . , uk) ∈ Fq and try it again.
Since the probability that it has a solution is considered to be about qk, the complexity of the
hybrid approach can be estimated by

MQ(q,m,m) = min
k≥0

qk ·GB(q,m− k,m). (2)

For under-defined systems (n > m), the parameter k is usually chosen to be k ≥ n−m and
the complexity of the hybrid approach is similar to the system with n = m. However, if n is
sufficiently larger than m, the system can be solved more efficiently. For example, the following
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four works proposed polynomial-time algorithms of solving under-defined systems.

Kipnis et al. [13] q: even n ≥ m(m+ 1)

Courtois et al. [7] q: any n ≥ 2m/7m(m+ 1)

Miura et al. [14] q: even n ≥ 1
2m(m+ 3)

Cheng et al. [6] q: any n ≥ 1
2m(m+ 1)

These algorithms require much larger n than m and are not considered to be effective for ana-
lyzing practical multivariate signature schemes. The following two works proposed algorithms
available for smaller n and with the complexity MQ(q,m−a,m−a), which is not in polynomial-
time but is smaller than MQ(q,m,m).

Thomae-Wolf [16] q: even n ≥ (a+ 1)m

Cheng et al. [6] q: any n ≥ (a+ 1)(m− 1
2a)

Recently, Furue et al. [10] improved Thomae-Wolf’s algorithm by considering the parameter k
of exhaustive search in the hybrid approach. It is available if q is even and

n ≥ (a+ 1)(m− k) + k,

and its complexity is

qk ·MQ(q,m− a− k,m− a). (3)

In the present paper, we propose a further improvement of the algorithms given above. Our
algorithm is available for any q and

n ≥ max
{
(a+ 1)(m− k − a+ 1), a(m− k)− (a− 1)2 + k

}
(4)

and its complexity is

qk ·
(
MQ(q,m− a− k,m− a) +MQ(q, a− 1, a− 1)

)
+ (m− a− k + 1) ·MQ(q, a, a). (5)

Note that, if a is small, its complexity is almost the same to (3) with the same a, k. In the
following table, we compare the required n for small a.

Table 1: Comparison of required n
a TW [16] C. [6] F. [10] This work

1 2m 2m− 1 2m− k 2m− 2k
2 3m 3m− 3 3m− 2k 3m− 3k − 3
3 4m 4m− 6 4m− 3k 4m− 4k − 8
4 5m 5m− 10 5m− 4k 5m− 5k − 15
5 6m 6m− 15 6m− 5k 6m− 6k − 24
...

...
...

...
...
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3 The approach of Furue et al.

We now describe the approach of Furue et al. [10] for even q, which consists of the following
three steps.

Step 1. Find an (n−m+ k)× (m− k) matrix M such that, for 1 ≤ l ≤ a,

f̄l(x) :=fl

((
Im−k

M In−m+k

)
x

)
=Kl(x

2
1, . . . , x

2
m−k) +

m−k∑
i=1

xi · Lli(xm−k+1, . . . , xn) +Ql(xm−k+1, . . . , xn)

=tx


∗

. . .

∗
∗

∗ ∗n−m+k

x+ (linear polynomial of x),

where Kl, Lli are linear polynomials and Ql is a quadratic polynomial.

Step 2. Choose u1, . . . , un−m+k ∈ Fq such that

Lli(u1, . . . , un−m+k) = 0

for 1 ≤ l ≤ a and 1 ≤ i ≤ m− k.

Step 3. Solve the system{
f̄l(x1, . . . , xm−k, u1, . . . , un−m+k) = 0

}
1≤l≤m

(6)

of m equations of m− k variables (x1, . . . , xm−k). If there exists a solution of (6), output(
Im−k

−M In−m+k

)
t(x1, . . . , xm−k, u1, . . . , un−m+k)

as a solution of {fl(x) = 0}1≤l≤m. If not, go back to Step 2 and choose another (u1, . . . , un−m+k).

In Step 1, to find a matrix M , fix the first column of M to be zero and fix the second column
of M such that the coefficients of x1x2 in the quadratic polynomials f̄1(x), . . . , f̄a(x) are zero.
Next fix the third column of M such that the coefficients of x1x3, x2x3 are zero. Similarly, fix
the columns of M in turn and finally fix the (m − k)-th column such that the coefficients of
x1xm−k, . . . , xm−k−1xm−k are zero. Note that, to fix the i-th column, we need to solve a system
of a(i − 1) equations of n −m + k variables and then the condition n ≥ (a + 1)(m − k) − a is
required in Step 1.

In Step 2, we need to solve a(m−k) equations of n−m+k variables. Remark that, since the
probability that the system (6) in Step 3 has a solution is considered to be about q−k, we need
additional k parameters in this step. Then the condition n ≥ (a+ 1)(m− k) + k is required.

In Step 3, the first a equations in (6) are linear equations

Kl(x
2
1, . . . , x

2
m−k) = (const.), (7)

of x21, . . . , x
2
m−k, and the remaining m − a equations are quadratic equations of x1, . . . , xm−k.

Since, by taking q/2 power, we can transform the equations in (7) into linear equations of



Under-determined multivariate quadratic equations 5

x1, . . . , xm−k [16, 10]. This means that the problem of solving the system (6) can be reduced to
the problem of solving the system of m−a equations of m−a−k variables. Since the probability
that such a system has a solution is considered to be about q−k, we need to repeat Step 2 and 3
at most about qk times. We thus conclude that the condition n ≥ (a+1)(m− k)+ k is required
in this approach and the complexity is qk ·MQ(q, a− k, a).

4 Proposed algorithm

In this section, we describe our new algorithm.

Step 1. Find an (n−m+ a+ k − 1)× (m− a− k + 1) matrix M1 such that, for 1 ≤ l ≤ a,

f̃l(x) :=fl

((
Im−a−k+1

M1 In−m+a+k−1

)
x

)
=

m−a−k+1∑
i=1

xi · L̃li(xm−a−k+2, . . . , xn) + Q̃l(xm−a−k+2, . . . , xn)

=tx

 0m−a−k+1 ∗ ∗
∗ ∗a−1 ∗
∗ ∗ ∗n−m+k

x+ (linear polynomial of x),

where L̃li is a linear polynomial and Q̃l is a quadratic polynomial.

Step 2. Find an (n−m+ k)× (a− 1) matrix M2 such that, for 1 ≤ l ≤ a− 1,

f̄l(x) :=f̃l

((
Im−a−k+1

Ia−1

M2 In−m+k

)
x

)

=Pl(xm−a−k+2, . . . , xm−k) +

m−k∑
i=1

xi · Lli(xm−k+1, . . . , xn) +Ql(xm−k+1, . . . , xn)

=tx

 0m−a−k+1 0 ∗
0 ∗a−1 ∗
∗ ∗ ∗n−m+k

x+ (linear polynomial of x),

where Lli is a linear polynomial and Pl, Ql are quadratic polynomials.

Step 3. Choose u1, . . . , un−m+k ∈ Fq such that

Lli(u1, . . . , un−m+k) = 0

for 1 ≤ l ≤ a− 1 and 1 ≤ i ≤ m− a− k + 1.

Step 4. Solve the system{
f̄l(x1, . . . , xm−k, u1, . . . , un−m+k) = 0

}
1≤l≤a−1

(8)

of a− 1 quadratic equations of a− 1 variables (xm−a−k+2, . . . , xm−k). Let (v1, . . . , va−1) be its
solution.
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Step 5. Solve the system{
f̄l(x1, . . . , xm−a−k+1, v1, . . . , va−1, u1, . . . , un−m+k) = 0

}
a≤l≤m

(9)

of m− a+ 1 equations of m− a− k + 1 variables (x1, . . . , xm−a−k+1). If there exists a solution

of (9), output
(

Im−a−k+1
M11 Ia−1
M12 M2 In−m+k

)−1
t(x1, . . . , xm−a−k+1, v1, . . . , va−1, u1, . . . , un−m+k) as

a solution of the original system {fl(x) = 0}1≤l≤m, where M11,M12 are given by M1 =
(
M11
M12

)
. If

not, go back to Step 3 and choose another (u1, . . . , un−m+k).

In Step 1, fix the first column of M1 such that the coefficients of x21 in f̃1(x), . . . , f̃a(x) are
zero. Next fix the second column of M1 such that the coefficients of x1x2, x

2
2 are zero. Similarly,

fix the columns ofM in turn and finally fix the (m−a−k+1)-th column such that the coefficients
of x1xm−a−k+1, . . . , x

2
m−a−k+1 are zero. Note that, to fix the i-th column of M1, we need to solve

a system of a quadratic equations and a(i− 1) linear equations of n−m+ a+ k − 1 variables.
This means that this step requires the condition n ≥ (a+1)(m− a− k+1) and the complexity
(m− a− k + 1) ·MQ(q, a, a).

In Step 2, fix the first column of M2 such that the coefficients of x1xm−a−k+2, . . . ,
xm−a−k+1xm−a−k+2 in f̄1(x), . . . , f̄a−1(x) are zero. Next fix the second column of M2 such that
the coefficients of x1xm−a−k+3, . . . , xm−a−k+1xm−a−k+3 are zero. Similarly, fix the columns ofM2

in turn and finally fix the (a−1)-th column such that the coefficients of x1xm−k, . . . , xm−a−k+1xm−k

are zero. Note that, to fix the i-th column ofM2, we need to solve a system of (a−1)(m−a−k+1)
linear equations of n − m + k variables. This means that this step requires the condition
n ≥ a(m− k)− (a− 1)2.

In Step 3, we need to solve (a−1)(m−a−k+1) linear equations of n−m+k variables. Remark
that, since the probability that the system (9) in Step 5 has a solution is considered to be about
q−k, we need additional k parameters in this step. Then the condition n ≥ a(m−k)−(a−1)2+k
is required.

In Step 4, we solve the system (8) of a− 1 quadratic equations of a− 1 variables. Then the
complexity of this step is MQ(q, a− 1, a− 1).

In Step 5, we solve the system (9) of m− a+1 equations and m− a− k+1 variables. Since
the equation f̄a = 0 in the system (9) is linear and the others are quadratic, the complexity of
solving (9) is MQ(q,m− a− k,m− a). Since the probability that such a system has a solution
is considered to be about q−k, we need to repeat Step 3-5 at most about qk times. We thus
conclude that our new approach requires the condition

n ≥ max{(a+ 1)(m− k − a+ 1), a(m− k)− (a− 1)2 + k}

and the complexity is

(m− a− k + 1) ·MQ(q, a, a) + qk · (MQ(q, a− 1, a− 1) +MQ(q,m− a− k,m− a)) .

5 Security of MAYO

MAYO proposed by Beullen in 2021 [2] is a variant of UOV with small keys. In the parameters
selected in [2], the numbers of variables are more than ten times of the numbers of polynomials,
and then the security against the algorithms for under-defined systems should be studied quite
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carefully. Table 2 describes the selected parameters (q, n,m) in [2] and the security against
the direct attack with the Thomae-Wolf approach, the Kipnis-Shamir attack, the reconciliation
attack and the intersection attack. In this section, we study and compare the security of MAYO
in the table above against the approaches of Thomae-Wolf [16], Cheng et al. [6], Furue et al. [10]
and the proposed approach described in §4 under the assumption that the systems of equations
to be solved are semi-regular and that the complexity of the GB/XL algorithm is as given in
(1).

Table 2: Selected parameters of MAYO in [2]
No. (q, n,m) Security (bits)

1 (16, 924, 67) 143
2 (16, 938, 68) 146
3 (16, 1666, 99) 207
4 (16, 1980, 102) 207
5 (16, 2470, 132) 273
6 (16, 2489, 132) 273

We first study the first parameter (q, n,m) = (16, 924, 67). We see that a = 12 satisfies the
condition of the approach of Thomae-Wolf [16] and then one can solve such a system of quadratic
equations with the complexity MQ(16, 55, 55) ≒ 2143. For the approach of Cheng et al. [6],
a = 14 satisfies the condition and then one can solve with the complexity MQ(16, 53, 53) ≒ 2138.
Furthermore, (a, k) = (16, 15) satisfies the condition of the approach of Furue et al. [10] and
then the complexity of its approach is 1615 ·MQ(16, 36, 51) ≒ 2135.

In our approach, (a, k) = (26, 8) satisfies the condition and then the complexity is 34 ·
MQ(16, 26, 26)+168 · (MQ(16, 25, 25) +MQ(16, 33, 41)) ≒ 2110. Table 3 summarizes the security
(bits) against the corresponding approaches. It shows that our new approach will reduce the
security of MAYO against the direct attack by more than 30 bits.

Table 3: Security (bits) of MAYO in [2]
No. T-W [16] C. [6] F. [10] This work

1 143 138 135 110
2 146 140 137 113
3 207 201 197 170
4 207 201 197 162
5 273 265 262 237
6 273 267 262 234

Recently, new parameter sets of MAYO [3] was proposed as a first round candidate of NIST’s
standardization project of additional digital signature schemes for Post-Quantum Cryptography
[15]. Table 4 summarizes the parameter sets and the security of MAYO given in [3]. In this
table, “Security” is the minimum of their security bits described in Table 5.1 of [3] against
Kipnis-Shamir’s attack, the reconciliation attack, the intersection attack, the direct attack with
the approach of Furue et al. [10] and the claw finding attack. This shows that our approach will
reduce the security of MAYO1 (and MAYO3, MAYO5 slightly).
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Table 4: New parameter sets of MAYO in [3]
(q, n,m) Security This work

MAYO1 (16, 594, 64) 143 126
MAYO2 (16, 304, 64) 143 151
MAYO3 (16, 1000, 96) 207 200
MAYO5 (16, 1596, 128) 272 263

6 Conclusion

In this paper, we propose a new algorithm to solve an under-defined system of multivariate
quadratic equations over a finite field. The number of variables required in our approach is
less than those in the previous works. This means that the condition for solving under-defined
systems is relaxed, and then the parameters should be chosen more carefully than before when
building a multivariate signature scheme with under-defined systems.

Acknowledgment. The author would like to thank the anonymous reviewer(s) for the journal
version [12] of this paper. He was supported by JSPS Grant-in-Aid for Scientific Research (C)
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