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Abstract

The increasing adoption of machine learning inference in
applications has led to a corresponding increase in concerns
surrounding the privacy guarantees offered by existing mech-
anisms for inference. Such concerns have motivated the con-
struction of efficient secure inference protocols that allow
parties to perform inference without revealing their sensitive
information. Recently, there has been a proliferation of such
proposals, rapidly improving efficiency. However, most of
these protocols assume that the client is semi-honest, that is,
the client does not deviate from the protocol; yet in practice,
clients are many, have varying incentives, and can behave
arbitrarily.

To demonstrate that a malicious client can completely break
the security of semi-honest protocols, we first develop a new
model-extraction attack against many state-of-the-art secure
inference protocols. Our attack enables a malicious client to
learn model weights with 22×–312× fewer queries than the
best black-box model-extraction attack [CJM20] and scales
to much deeper networks.

Motivated by the severity of our attack, we design and
implement MUSE, an efficient two-party secure inference
protocol resilient to malicious clients. MUSE introduces a
novel cryptographic protocol for conditional disclosure of
secrets to switch between authenticated additive secret shares
and garbled circuit labels, and an improved Beaver’s triple
generation procedure which is 8×–12.5× faster than existing
techniques.

These protocols allow MUSE to push a majority of its cryp-
tographic overhead into a preprocessing phase: compared to
the equivalent semi-honest protocol (which is close to state-of-
the-art), MUSE’s online phase is only 1.7×–2.2× slower and
uses 1.4× more communication. Overall, MUSE is 13.4×–
21× faster and uses 2×–3.6× less communication than exist-
ing secure inference protocols which defend against malicious
clients.

1 Introduction
The past few years have seen increasing deployment of neu-
ral network inference in popular applications such as image
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classification [Liu+17b] and voice assistants [Bar18]. How-
ever, the use of inference in such applications raises privacy
concerns: existing implementations either require clients to
send potentially sensitive data to remote servers for classifi-
cation, or require the model owner to store their proprietary
neural network model on the client’s device. Both of these
solutions are unsatisfactory: the former harms the privacy of
the client, while the latter can harm a business model or reveal
information about the training data and model weights.

To resolve this tension, the community has focused on
constructing specialized protocols for secure inference, as
we depict in Table 1. A secure inference protocol enables
users and model owners to interact so that the user obtains the
prediction result while ensuring that neither party learns any
other information about the user input or the model weights.
Many of these works implement these guarantees using secure
two-party computation [Gil+16; MZ17; HTG17; Liu+17a;
BEG18; Cho+18; San+18; JVC18; LJ19; Bou+18; RRK18;
Bal+19; Ria+19; Dat+19; Mis+20; Rat+20]. However, as we
can see from Table 1, all of these two-party works assume
that both the client and the server follow the protocol rules,
that is, they are semi-honest.

While it is common in the literature to assume a semi-
honest server, it is fundamentally less likely that all clients
will behave correctly. The server is hosted at a single service
provider, and existing cloud providers deploy competent in-
trusion detection systems, rigid access control, physical mea-
sures, and logging/tracking of the software installed [Goo17].
It is highly non-trivial to bypass these protections. Addition-
ally, if a service provider is caught acting maliciously, the
consequences may be dire due to public accountability.

In contrast, clients are many, run on a variety of setups
under the control of users, users have various motives, and
it suffices for only a single one of them to misbehave. The
incentives for a client to cheat are high: service providers
expend vast amounts of effort and money to accumulate data,
clean it, design model architectures, and to train the final
model. If a client wishes to obtain a similar model, it would
be much easier to steal the server’s than to try and train an
equivalent one; this makes model-extraction attacks attractive.

To illustrate the threat of a malicious client, in Section 2
we demonstrate a new model-extraction attack against semi-
honest secure inference protocols whereby a malicious client
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Figure 1: MUSE’s system setup. Some of MUSE’s clients may be
malicious.

can learn the server’s entire model in a number of infer-
ence queries linear in the number of parameters in a net-
work regardless of its depth. This attack outperforms the
best model-extraction attacks for plaintext inference by 22×–
312× [Jag+20; CJM20], and demonstrates that using semi-
honest secure inference protocols can significantly amplify a
malicious client’s ability to steal a model.

A natural approach to defend against such an amplifica-
tion is to leverage state-of-the-art generic secure computation
tools providing malicious security. This approach guaran-
tees that if either party acts maliciously, they will be caught
and the protocol aborted, preserving privacy. However, such
methods for achieving malicious security add a large over-
head due to the use of heavy cryptographic primitives (e.g.
zero-knowledge proofs [GMR89] or cut-and-choose [LB15;
Zhu+16]). In Section 6, we compare against such techniques.

To reduce this overhead, we propose MUSE, a secure infer-
ence protocol that works in the client-malicious threat model.
In this model, the server is presumed to behave semi-honestly,
but the client is allowed to deviate arbitrarily from the proto-

col description. As we will show in Section 6, working in this
model enables MUSE to achieve much better performance
than a fully malicious baseline.

Our contributions. To summarize, in this paper we make
the following contributions:
• We devise a novel model-extraction attack against secure

inference protocols that rely on additive secret sharing. This
attack allows a malicious client to perfectly extract all the
weights of a model with 22×–312× fewer queries than
the state-of-the-art [CJM20]. The complexity of our attack
depends only on the number of parameters, and not on other
factors like the depth of the network.

• We present MUSE
1, an efficient two-party cryptographic

inference protocol that is resilient to malicious clients. In de-
signing MUSE, we develop a novel protocol for conditional
disclosure of secrets to switch between authenticated addi-
tive secret shares and garbled circuit labels. Additionally,
we formulate new client-malicious techniques for triple
generation and input authentication in SPDZ-style MPC
frameworks which improve performance by up to 12.5×
and 37.8× respectively.

• Our implementation of MUSE is able to achieve an on-
line phase that is only 1.7×–2.2× slower and uses 1.4×
more communication than DELPHI [Mis+20], a recent pro-
tocol for semi-honest inference. When compared to fully-
malicious secure inference protocols, MUSE is 13.4×–21×
faster and uses 2×–3.5× less communication.

Remark 1.1. While MUSE’s online phase is competitive with
some of the best semi-honest protocols [Mis+20; Rat+20],
the communication cost of preprocessing is up to 10× higher
than in these semi-honest protocols. Hence, we view MUSE
as a first step in constructing secure inference protocols that

1MUSE is an acronym for Malicious-User Secure Inference
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achieve client-malicious security, and anticipate that future
works will rapidly lower this cost (the same has occurred
for semi-honest secure inference protocols). MUSE already
improves performance over current techniques for client-
malicious inference by 13.4×–21× (see Section 6.4).

We now give a high-level overview of our techniques.

1.1 Our attack
What can a malicious client do? We start off by examining
the power of malicious clients in secure inference protocols
that rely on secret sharing. We noticed that many protocols of
interest, such as [MZ17; JVC18; Liu+17a; Mis+20; Rat+20],
have a similar structure, and we exploit this structure in our
attack. The structure is as follows. These protocols “evaluate”
the neural network in a layer-by-layer fashion, so that at the
end of each layer, the client and the server both hold 2-out-of-
2 secret shares of the output of that layer. At the end of the
protocol, the server sends its share of the final output to the
client, who uses it to reconstruct the final output.

Our attack relies on the following crucial observation:
because the shares at the end of a layer are not authenti-
cated, a malicious client can additively malleate them with-
out detection. In more detail, let 〈m〉C be the client’s share,
and 〈m〉S be the server’s share of a message m ∈ F, so that
〈m〉C + 〈m〉S = m. Then, a malicious client can add an arbi-
trary shift r to a secret share to change the shared value from
m to m+ r. In Section 2, we show how one can leverage this
malleability to learn the model weights.

1.2 Our protocol
We now explain how MUSE protects against malicious client
attacks. We begin by describing our starting point: the semi-
honest secure inference protocol DELPHI [Mis+20].

Starting point: DELPHI. We design MUSE by following the
paradigm laid out in DELPHI [Mis+20]: since a convolutional
neural network consists of alternating linear and non-linear
layers, one should use subprotocols that are efficient for com-
puting each type of layer, and then translate the output of
one subprotocol to the input of the next. DELPHI instantiates
these subprotocols by using additive secret sharing to evalu-
ate linear layers, and garbled circuits to evaluate non-linear
layers.

Attempt 1: Preventing malleability via MACs. The key
insight in our attack in Sections 1.1 and 2 is that the client can
malleate shares without detection. To prevent this, one can
try to use standard techniques for authenticating the client’s
share via information-theoretic homomorphic message au-
thentication codes (MACs). This technique is employed by
the state-of-the-art protocols for malicious security [KPR18;
Che+20; Esc+20]. However, applying this technique directly
to DELPHI runs into problems. For example, when switching
between secret shares and garbled circuits, the server must
ensure that the labels obtained by the client correspond to

the authenticated secret share, and not to a different share.
Doing this in a straightforward manner entails checking the
share’s MAC inside the garbled circuit, which is expensive.
Furthermore, this check would need to be done in the online
phase, which is undesirable.

Attempt 2: Separating authentication from computation.
To remedy this, we make the following observation: garbled
circuits already achieve malicious security against garbled
circuit evaluators (clients in our setting). This means that,
if we had a specialized protocol that could output labels for
the client’s secret shares only if the corresponding MACs
were valid, then we could compose this protocol with the
garbled circuits to achieve an end-to-end client-malicious
secure inference protocol.

In Section 5.1, we design exactly such a protocol for “condi-
tional disclosure of secrets” (CDS). Unfortunately, executing
our CDS protocol using existing frameworks for malicious
MPC [KPR18] proves to be extremely expensive. To address
this, in Section 5.3 we devise a number of techniques to im-
prove [KPR18] in the client-malicious setting, and use the
optimized framework to execute our CDS procedure. While
the resulting protocol is much more efficient than checking
MACs inside garbled circuits, it still imposes a significant
cost on the online phase.

Our final protocol. To remedy this, our final insight in
MUSE is that the secret shares and MACs that the client feeds
into the CDS protocol do not depend on the client’s input in
the online phase. This allows us to move the execution of the
CDS protocol entirely to the preprocessing phase, resulting
in an online phase that is almost identical to that of DELPHI.

To summarize, in order to defend against malicious clients
we first enforce authentication for the linear layers by using
homomorphic MACs, then ensure that the client only receives
garbled circuit labels corresponding to these authenticated
shares via a novel CDS protocol, then develop new techniques
for efficiently executing the CDS protocol, and finally move
all these protocols to the preprocessing phase. For details, see
Section 5.

2 Attacks on semi-honest inference protocols
We now describe how a malicious client can leverage the addi-
tive malleability of additive secret shares to learn the weights
of a server’s convolutional neural network in semi-honest se-
cure inference protocols that rely on additive secret sharing.
We begin in Section 2.1 by describing the kinds of protocols
that are vulnerable to our attack. Then, in Section 2.2, we pro-
vide a detailed overview of our attack. Finally, in Section 2.3,
we discuss the theoretical and empirical query complexity
achieved by our attack.

2.1 Attack threat model
Our attack recovers the weights of neural networks consisting
of alternating linear (that is, fully-connected or convolutional)
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and non-linear ReLU layers.2 Our attack works against semi-
honest secure inference protocols that have the following
properties:
• The protocol should evaluate the network iteratively by

applying subprotocols for evaluating linear and non-linear
layers.

• For each subprotocol, the input and output of the client and
the server should be secret shares of the actual layer input
and output, respectively.

• The client’s final output should be the plaintext output of
the final linear layer.

A number of two-party and multi-party secure inference proto-
cols have these properties [MZ17; Liu+17a; Ria+18; JVC18;
Cha+19; Mis+20; Rat+20].

Remark 2.1 (Other semi-honest protocols). Our attack does
not affect semi-honest secure inference protocols based on
fully-homomorphic encryption (FHE) [Gil+16; Cho+18;
BEG18; San+18; Dat+19] or garbled circuits (GC) [RRK18;
Bal+19; Ria+19]. However, this does not immunize these
protocols against other kinds of malicious client attacks:
• FHE-based protocols use noise flooding [Gen09a] to hide

the server’s model. This technique is inherently semi-honest
as it requires the pre-existing noise to be honestly bounded;
if this does not hold, the noise term can reveal information
about the server’s model despite noise flooding.

• GC-based protocols use oblivious transfer (OT) [Rab81]
to transfer labels for the client’s input. However, if this OT
is only semi-honest secure, a malicious client can attack it
to learn both labels for the same input wire, which breaks
the privacy guarantees of the garbled circuit, and leads to a
leak of the server’s model.

2.2 Attack strategy
Notation. LetNN be an `-layer network convolutional neural
network that classifies an image into one of m classes. That
is, NN consists of ` matrices M1, . . . ,M` so that NN(x) =
M`(ReLU(. . .M2(ReLU(M1(x))))) where M` ∈R

m×t and the
image of M` is Rm. We denote by NNi(x) the partial eval-
uation of NN up to the i-th linear layer. That is, NNi(x) :=
Mi(ReLU(. . .M2(ReLU(M1(x))))). Below we denote by e j
the j-th unit vector (the vector whose j-th entry is 1, and
other entries are 0). Finally, for simplicity of exposition, we
assume that biases are zero,3 and that the network contains
only fully-connected layers; for details on how to recover
convolutional layers, see Remark 2.2 and Appendix C.

Prelude. Our attack proceeds in a bottom-up fashion: the
client first recovers the parameters of the last linear layer
M` ∈ Rm×t , and then iteratively recovers previous layers. We

2Our attack also supports networks with average pooling layers, as these
are linear layers, but don’t contain any weights that need to be recovered

3One can handle a bias b in a linear layer L(x) = Mx+b by treating it as
a simply another column in the modified matrix M′ = M||b, so that the linear
layer becomes L(x) = M′ · (x||1).

describe the subroutine for recovering the last layer in Sec-
tion 2.2.1, and then describe our subroutine for recovering
intermediate layers in Section 2.2.2. In both subroutines, the
client sets its initial input to the network be the all-zero vector.

2.2.1 Recovering the last layer
At a high level, to recover M`, the client proceeds column-
by-column as follows: for each j ∈ [t], the client provides
as initial input the all-zero vector, and then honestly follows
the secure inference protocol until the `-th layer. At the `-th
layer, the client malleates its share of the input to M` so that it
becomes e j. This means that result M` · e j is the j-th column
of M`. We illustrate this graphically for the first column below.

x`−1︷︸︸︷[
0
0

] malleate

+e1−−−−−→

x′`−1︷︸︸︷[
1
0

]
query M`−−−−−→

M`︷ ︸︸ ︷[
−0.1 0.2
−1.1 1.2

][
1
0

]
=

first column of M`︷ ︸︸ ︷[
−0.1
−1.1

]

2.2.2 Recovering intermediate layers
The foregoing algorithm works for recovering the last layer
because the client can directly read off M` column-by-column
by “solving” a linear system. However, this approach does not
work as is for recovering the weights of intermediate linear
layers, as we now demonstrate by considering the case of
recovering the `−1-th linear layer M`−1. We then describe
how to resolve the issues that arise. (The case of the remaining
layers follows similarly).

Problem 1: Intervening ReLUs are lossy and non-linear.
ReLUs between M`−1 and M` disrupt the linearity of the
system, preventing the use of linear system solvers.

Solution 1: Force ReLUs to behave linearly. To resolve this
issue, we recall the fact that ReLU behaves like the identity
function on inputs that are positive. We use malleability to
exploit this property and force the remaining M`(ReLU(·))
computation to behave linearly, which means that we can once
again solve a linear system to learn information about M`−1.

In more detail, let 〈y`−2〉C be the client’s share after ap-
plying M`−1. The client malleates 〈y`−2〉C by setting it to
〈y′`−2〉C := 〈y`−2 +δ〉C, where δ is a constant vector whose
elements are all greater than the magnitude of the largest ele-
ment in y`−2.4 This forces all entries of y′`−2 to be positive,
which means ReLU acts like the identity function. Then, after
evaluating the ReLU and obtaining 〈x′`−1〉C, the client “un-
does” the malleation by subtracting δ. The following equation
provides a graphical illustration of this process.

M`−1︷ ︸︸ ︷[
−0.1 0.2
−1.1 1.2

][
1
0

]
=

y`−2︷ ︸︸ ︷[
−0.1
−1.1

] malleate

δ := 10−−−−−→

y′`−2︷ ︸︸ ︷[
9.9
8.9

]
ReLU−−−→

x′`−1︷ ︸︸ ︷[
9.9
8.9

]
unmalleate−−−−−−→

x`−1︷ ︸︸ ︷[
−0.1
−1.1

]

4Note that since model weights are usually small (in the range [−1,1]),
we can set δ to be a large value (say, ∼ 10) to ensure that all entries of y′`−2
are positive.
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Problem 2: Underconstrained linear system. While the
foregoing technique enables us to force the network to behave
like a linear function, we have no guarantees that the resulting
linear system is solvable. Indeed, neural networks necessarily
map a high-dimensional feature to a low-dimensional classifi-
cation, and so the resulting “linearized” neural network must
be lossy. The following figure illustrates this graphically:

M2︷ ︸︸ ︷[
1 3
2 4

]
·

M1︷ ︸︸ ︷[
a1 a2 a3
b1 b2 b3

]
=

M3︷ ︸︸ ︷[
a1 +3b1 a2 +3b2 a3 +3b3

2a1 +4b1 2a2 +4b2 2a3 +4b3

]

Here, M1 and M2 are the first and last layers of the network,
respectively. We have used the technique in Section 2.2.1 to
recover M2, and now must recover M1. If we try to do this
by querying M3, we get three (independent) equations for six
variables, which is insufficient:

M3e1 =

3a1 +6b1
0
0

 and M3e2 =

 0
3a2 +6b2

0

 and M3e3 =

 0
0

3a3 +6b3


Solution 2: Masking variables. The issue is that M3 does
contain sufficient information to recover M1, but querying it
naively loses that information. To resolve this, we use mal-
leability again: the client uses the intervening ReLUs to “zero”
out all but m entries of intermediate state, as follows:

M1 ·

1
1
0

=

[
a1 +a2
b1 +b2

] malleate

+ mask−−−−−→
[

a1 +a2 +δ

b1 +b2−δ

] ReLU +

unmalleate−−−−−−→
[

a1 +a2
0

]

Now, the client can obtain M2 · [a1 +a2,0], and can solve the
resulting equations to learn a1 and a2. It can then repeat this
process with different queries and “masks” to learn all of M1.

For a detailed description of our algorithm, see Appendix C.

Remark 2.2 (recovering convolutional layers). To recover
the kernel of a convolutional linear layer, we can reuse the
foregoing ideas, but must change how we malleate the input to
the target layer: we instead sample a random input and query
the kernel via linearly independent columns of (the im2col
transform of) this input. See Appendix C for details. Note that
for simplicity of exposition, our description in Appendix C
assumes that the number of channels and number of filters in
each convolutional layer are both 1, and that the number of
parameters in the kernel is less than the number of classes;
these restrictions are easy to lift by adapting the masking
techniques from above.

2.3 Efficiency and evaluation
Efficiency. Given a neural network where the i-th linear
layer has dimension mi × ti, and the number of classes is
m` = m, the foregoing algorithm learns the model parameters
in just ∑

`
i=1d

mi
m e · ti queries. Furthermore, the complexity of

our attack depends only on the number of parameters, and

not on other factors such as the depth.5 (This is not the case
for other model-extraction attacks, which fail when extracting
deep models that have few parameters.)

Evaluation. In Table 2, we compare our work to the state-
of-the-art prior work on model extraction [CJM20], which
does not rely on the existence of a secure inference protocol
(and hence does not exploit properties of such protocols). Our
experiments match the query complexity derived above.

network
dimensions

# params # queries speedup

us [CJM20]

FC-only networks

784-128-1 100,480 100,480 221.5 29.5×
784-32-1 25,120 25,120 219.2 24×
10-10-10-1 210 210 216 312×
10-20-20-1 620 620 217.1 226.5×
40-20-10-10-1 1,110 1,110 221.5 205×
80-40-20-1 4,020 4,020 217.1 92×
80×5-40-20-1 29,620 29,620 — n/a
1000-500-1 500,500 500,500 — n/a
1000-500-10 505,000 50,500 — n/a
2000×2-1000-100 6,100,000 61,000 — n/a
1000×2-40×8-20-10 1,052,200 105,220 — n/a

networks with convolutions

32× (3,3)-P-100-10 158,088 15,809 — n/a

Table 2: Query complexity of our attack vs. that of [CJM20]. The
notation l-m-n-. . . indicates a series of fully-connected layers of
dimension l ×m, m× n, and so on, while 32× (3,3) indicates a
convolutional layer consisting of 32 3×3 filters, and P indicates a
2×2 average pooling layer.

3 Threat model and privacy goals
In our system, there are two parties: the client and the service
provider (or server). The server holds a neural network model,
and the client holds some data that it wants classified by the
server’s model. To achieve this goal, the two parties interact
via a protocol for secure inference. This protocol takes as
input the server’s model and the client’s data, and computes
the classification so that neither party learns any information
except this final classification. Below we clarify the security
guarantees we aim for when designing our secure inference
protocol MUSE.

3.1 Threat model
There are two standard notions of security for multiparty
computation: security against semi-honest adversaries, and
security against malicious adversaries. A semi-honest adver-
sary follows the protocol perfectly but inspects messages it
receives to learn information about other parties’ inputs. A

5Note that any implementation of our attack will have to contend with
errors due to limited floating point precision, but our experiments did not
encounter such failures.
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malicious adversary, on the other hand, may arbitrarily deviate
from the protocol.

We design MUSE for a new threat model called “security
against malicious clients” or client-malicious security. In this
setting, either a malicious adversary corrupts the client, or a
semi-honest adversary corrupts the server. 6

3.2 Privacy goals
MUSE’s goal is to enable the client to learn at most the fol-
lowing information: the architecture of the neural network,
and the result of the inference; all other information about
the client’s private inputs and the parameters of the server’s
neural network model should be hidden. Concretely, we aim
to achieve a strong simulation-based definition of security as
follows:

Definition 3.1. A protocol Π between a server and a client
is said to securely compute a function f against a malicious
client and semi-honest server if it satisfies the following prop-
erties:

• Correctness. For any server’s input y and client’s input x,
the probability that at the end of the protocol, the client
outputs f (y,x) is 1.

• Semi-Honest Server Security. For any server S that follows
the protocol, there exists a simulator SimS such that for any
input y of the server and x of the client, we have:

viewS(y,x)≈c SimS(y)

In other words, SimS is able to generate a view of the semi-
honest server without knowing the client’s private input.

• Malicious Client Security. For any malicious client C (that
might deviate arbitrarily from the protocol specification),
there exists a simulator SimC such that for any input y of
the server, we have:

viewC(y)≈c Sim
f (y,·)
C

In other words, the SimC is able to generate the view of a
malicious client with only access to an ideal functionality
that accepts a client’s input and outputs the result of the
function f . This modeling is used in cryptographic liter-
ature to capture the cases where a malicious client may
substitute its actual input with any other input of its choice.

Definition 3.2. We say that Π is a secure inference protocol
against malicious clients and semi-honest servers if it securely
computes NN(·, ·) with the server input being M and the client
input being x.

Like most prior work, MUSE does not hide information
that is revealed by the result of the prediction. See Section 7.1
for a discussion of attacks that leverage this information, as
well as potential mitigations.

6One can generalize this threat model to n parties by considering two fixed
subsets of parties: one of which can be corrupted by a malicious adversary,
and the other which can be corrupted by a semi-honest adversary

4 Building blocks
MUSE uses the following cryptographic building blocks.

Garbling Scheme. A garbling scheme [Yao86; BHR12] is
a tuple of algorithms GS= (Garble,Eval) with the following
syntax:
• Garble(1λ,C,{labi,0, labi,1}i∈[n])→ C̃. On input the secu-

rity parameter, a boolean circuit C (with n input wires)
and a set of labels {labi,0, labi,1}i∈[n], Garble outputs a gar-
bled circuit C̃. Here labi,b represents assigning the value
b ∈ {0,1} to the i-th input wire.

• Eval(C̃,{labi,xi
}i∈[n])→ y. On input a garbled circuit C̃ and

labels {labi,xi
}i∈[n] corresponding to an input x ∈ {0,1}n,

Eval outputs a string y =C(X).
We provide a formal definition in Appendix A.1, and briefly

describe here the key properties satisfied by garbling schemes.
First, GS must be correct: the output of Eval must equal C(x).
Second, it must be private: given C̃ and {labi,xi

}, the evaluator
should not learn anything about C or x except the size of |C|
(denoted by 1|C|) and the output C(x).

Leveled Fully Homomorphic public-key encryption.
A leveled fully-homomorphic encryption scheme HE =
(KeyGen,Enc,Dec,Eval) [Reg09; FV12] is a public key en-
cryption scheme that additionally supports homomorphically
evaluating any depth-D arithmetic circuit on encrypted mes-
sages. Formally, HE satisfies the following syntax and prop-
erties:
• KeyGen(1λ) → (pk,sk): On input a security parameter,
KeyGen outputs a public key pk and a secret key sk.

• Enc(pk,m)→ c: On input the public key pk and a message
m, the encryption algorithm Enc outputs a ciphertext c. We
assume that the message space is Zp for some prime p.

• Dec(sk,c)→ m: On input a secret key sk and a ciphertext
c, the decryption algorithm Dec outputs a message m.

• Eval(pk,c1,c2, f )→ c′: On input a public key pk, cipher-
texts c1 and c2 encrypting m1 and m2 respectively, and a
depth-D arithmetic circuit f , Eval outputs a new ciphertext
c′.

Besides the standard correctness and semantic security prop-
erties, we require HE to satisfy the following properties:
• Homomorphism. If c1 := Enc(pk,m1), c2 := Enc(pk,m2),

and c := Eval(pk,c1,c2, f ), then Dec(sk,c) = f (m1,m2).
• Function privacy. Given a ciphertext c, no attacker can tell

what homomorphic operations led to c.
See Appendix A.2 for more formal definitions.

Additive secret sharing. Let p be a prime. A 2-of-2 additive
secret sharing of x ∈Zp is a pair (〈x〉1,〈x〉2) = (x−r,r)∈Z2

p
for a random r ∈Zp such that x = 〈x〉1+〈x〉2. Additive secret
sharing is perfectly hiding, i.e., given a share 〈x〉1 or 〈x〉2, the
value x is perfectly hidden.

Message authentication codes. A message authenti-
cation code (MAC) is a tuple of algorithms MAC =
(KeyGen,Tag,Verify) with the following syntax:
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• KeyGen(1λ)→α: On input the security parameter,KeyGen
outputs a MAC key α.

• Tag(α,m)→ σ: On input a key α and message m, Tag
outputs a tag σ and a secret state st.

• Verify(α,st,m,σ)→{0,1}: On input a key α, secret state
st, message m and tag σ, Verify outputs 0 or 1.

We require MAC to satisfy the following properties:
• Correctness. For any message m, α← KeyGen(1λ), and
(σ,st)← Tag(α,m), Verify(α,st,m,σ) = 1.

• One-time Security. Given a valid message-tag pair, no ad-
versary can forge a different, valid message-tag pair.

See Appendix A.3 for formal definitions. In this work, we
will use the following construction of MACs:
1. The message space is Zn

p for some pn ≥ 2λ.
2. KeyGen samples a uniform element α← Zp.
3. Tag(α,m) outputs σ = 〈α ·m〉1 and st= 〈α ·m〉2.
4. Verify(α,st,m,σ) checks if σ+ st= α ·m.
We prove the one-time security of this scheme in Lemma A.1.

Beaver’s multiplicative triples. A multiplication triple is
a triple (a,b,c) ∈ Z3

p such that ab = c. A triple generation
procedure is a two-party protocol that outputs secret shares
of a triple (a,b,c) to two parties.

Authenticated secret shares. For any prime p, an element
x ∈ Zp, and a MAC key δ ∈ Zp an authenticated share of x
is a tuple (ε, [[x]]1, [[x]]2) := (ε,(〈x〉1,〈δ · x〉1),(〈x〉2,〈δ · x〉2)).
An authenticated share naturally supports local evaluation of
addition and multiplication by public constants, as well as
addition with another authenticated share. To multiply two
authenticated shares, one needs to use multiplication triples.
For simplicity of exposition, in the rest of the paper we omit
ε, as it is merely used for bookkeeping when adding public
constants.

Zero-knowledge proofs. Let R be any NP relation. A
zero-knowledge proof for R is a protocol between a prover
P and a verifier V that both have a common input x, where P
tries to convince V that it “knows” a secret witness w such
that (x,w) ∈ R . At the end of the protocol, V should have
learnt no additional information about w. We want our zero-
knowledge proof system to satisfy the standard definitions
of completeness, soundness, proof of knowledge, and zero-
knowledge. See Appendix A.4 for formal definitions of these
properties.

5 The MUSE protocol
In this section, we describe MUSE, our secure inference pro-
tocol that is secure against a malicious client and a semi-
honest server. Like the DELPHI protocol (see Fig. 2) [Mis+20],
MUSE’s protocol consists of two phases: an offline prepro-
cessing phase, and an online inference phase. The offline pre-
processing phase is independent of the client’s input (which
regularly changes), but assumes that the server’s model is
static; if this model changes, then both parties have to re-
run the preprocessing phase. After preprocessing, during the

Preprocessing phase. During preprocessing, the client and the
server pre-compute data for the online execution. This phase can
be executed independently of the input values, i.e., DELPHI can
run this phase before either party’s input is known. Preprocessed
data can only be used for a single inference.

1. Linear correlations generator: The client and server interact
with a functionality that, for each i ∈ [`], outputs to them
secret shares of Miri, where ri is a random masking vector.

2. Preprocessing for ReLUs: The server constructs a garbled
circuit C̃ for a circuit C computing ReLU. It sends C̃ to the
client and then uses OT to send to the client the input wires
corresponding to ri+1 and Mi · ri− si.

Online phase. The online phase is divided into two stages:
1. Preamble: On input x, the client sends x− r1 to the server.

The server and the client now hold an additive secret sharing
of x.

2. Layer evaluation: Let xi be the result of evaluating the first
(i−1) layers of the neural network on x. At the beginning of
the i-th layer, the client holds ri, and the server holds xi− ri,
which means that they possess secret shares of xi.
• Linear layer: The server computes Mi · (xi− ri), which

means that the client and the server hold an additive secret
sharing of Mixi.

• ReLU layer: After the linear layer, the client and server
hold secret shares of Mixi. The server sends to the client
the labels corresponding to its secrete share, and the client
then evaluates the GC to obtain a secret share of the ReLU
output.

Figure 2: High-level overview of the DELPHI protocol [Mis+20].

online inference phase, the client provides its input to our
specialized secure two-party computation protocol, and even-
tually learns the inference result. Below, we expand on the
high level overview in Section 1.2 and provide a detailed
description of both phases of our protocol.
Notation. The server holds a model M consisting of ` linear
layers M1, . . . ,M` and the client holds an input vector x ∈ Zn

p.
We use NN(M,x) to denote the output of the neural network
when the server’s input is M and the client’s input is x. We
assume that the algorithm computing NN is public and is
known to both the client and the server.

5.1 Preprocessing phase
In the preprocessing phase, the client and the server pre-
compute data that can be used during the online execution.
This phase is independent of the client’s input values, and can
be run before the client’s input is known. However, this phase
cannot be reused and has to be run once for each client input.

5.1.1 Intuition
As explained in Section 1.2, MUSE follows the approach
of DELPHI, and uses different cryptographic primitives to
produce preprocessed material for linear and non-linear layers.
Below we describe these primitives at a high level.
Linear layers. Like in DELPHI, our goal is to produce shares
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Figure 3: MUSE preprocessing phase.

Figure 4: MUSE online phase.

of Mr for a linear layer M. This enables us to efficiently
compute linear layer operations in the online phase. Unlike
DELPHI, we additionally need to prevent tampering by ma-
licious clients. To this end, we extend the linear correlations
generator (CG) used in DELPHI (see Fig. 2) to additionally
support authentication. We formalize this via functionality
FACG for generating authenticated correlations. See Fig. 11
for a formal description.

To construct a protocol ΠACG that realizes FACG, we ex-
tend the techniques based on the leveled fully-homomorphic
encryption used in DELPHI to additionally authenticate and
secret share the relevant ciphertexts (see Fig. 5). We also re-
quire the client to provide zero-knowledge proofs that assert
that their input ciphertexts are well-formed.

Non-linear layers. Like in DELPHI, we use garbled circuits
to efficiently evaluate ReLUs. However, unlike DELPHI, we
can no longer use oblivious transfer to send garbled labels to
the client, because we have no way to check that the input to

the oblivious transfer corresponds to the output from FACG.
Instead we introduce a functionality which conditionally out-
puts these labels if the inputs match the output of FACG. We
call this functionality Conditional Disclosure of Secrets, and
denote it by FCDS.

To construct a protocol ΠCDS that realizes FCDS, we have
two options: use 2PC protocols specialized for boolean com-
putation, or 2PC protocols specialized for arithmetic compu-
tation. Indeed, because this operation fundamentally reasons
about boolean values, it would seem reasonable to use a pro-
tocol like garbled circuits. However, checking validity of the
client’s input requires modular multiplications, which are ex-
tremely expensive when expressed as boolean circuits. Since
even the simplest neural networks oftentimes have thousands
of activations, the resulting communication and computation
cost is unacceptable.

Instead, we implement this functionality via MPC for arith-
metic circuits, as modular multiplication is cheap here. How-
ever, now the boolean operations are expensive. To overcome
this, we take further advantage of the client-malicious setting
to improve the MPC protocol we use to securely execute the
arithmetic circuit, as we describe in Section 5.3.

By designing efficient protocols for FACG and FCDS, MUSE
achieves client-malicious security with an online phase de-
sign identical to that of the semi-honest DELPHI protocol. In
our implementation, there are a few differences we detail in
Remarks 5.2 and 5.3.

5.1.2 Protocol
We now present the full protocol for the preprocessing phase
of MUSE (see Fig. 3 for a graphical overview).
1. For every i∈ [`], denote ni,mi as the input and output sizes

of the i-th linear layer respectively. The client samples a
random layer input mask ri← Zni

p and the server samples
a random layer output mask si ← Zmi

p . Additionally, the
server samples random MAC keys αi,βi← Zp.

2. Authenticated correlations generator: The client and
server invoke functionality FACG with the client input
{ri}i∈[`], and with server input {si,Mi,αi,βi}i∈[`]. For each
i ∈ [`], the client obtains {Mi(ri)− si}i∈[`] along with
{〈βi · ri〉1,〈αi(Mi(ri)− si〉)1} whereas the server receives
{〈βi · ri〉2,〈αi(Mi(ri)− si〉)2}. In Fig. 11 we describe the
ideal functionality in more detail, and give a protocol for
achieving it in Fig. 5.

3. For each i ∈ [`], let inpi := (Mi(ri)− si,ri+1) denote the
client’s input to the i-th non-linear layer and |inpi| denote
its size in bits. The server chooses a set of random garbled
circuit input labels {labC

i,k,0, lab
C
i,k,1}k∈[|inpi|].

4. Conditional disclosure of secrets: For each i ∈ [`], the
client and the server invoke functionality FCDS on the
client’s input inpi and the MAC shares received from FACG.
If the client honestly inputs the correct shares, the function-
ality outputs the garbled input labels {labC

i,k,inpi
}k∈[|inpi|]

corresponding to inpi to the client. In Fig. 12, we describe
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the ideal functionality in more detail, and give a protocol
for securely computing this functionality in Fig. 6.

5. For each i ∈ [`], the server chooses random labels
{labS

i,k,0, lab
S
i,k,1}k∈[|inpi|] for its input to the ith non-linear

layer.7

6. Offline garbling: For each i ∈ [`], the server gar-
bles the circuit Ci (described in Fig. 7) using
{labC

i,k,0, lab
C
i,k,1, lab

S
i,k,0, lab

S
i,k,1}k∈[|inpi|] as the input labels

to obtain the garbled circuit C̃i. It chooses a key ki ←
{0,1}λ and sends H(ki)⊕ C̃i to the client where H is a
random oracle.

5.2 Online phase
The online phase is divided into two stages: the preamble and
the layer evaluation. (See Fig. 4 for a graphical overview.)

5.2.1 Preamble
The client sends (x− r1) to the server.

5.2.2 Layer evaluation
At the beginning of evaluating the i-th layer, the client holds
ri and the server holds xi− ri where xi is the vector obtained
by evaluating the first (i−1) layers of the neural network on
input x (with x1 = x). This invariant will be maintained for
each layer. We now describe the protocol for evaluating the
i-th layer, which consists of linear functions and activation
functions:

Linear layer. The server computes Mi(xi− ri)+ si which
ensures that the client and server hold an additive secret share
of Mixi.

Non-linear layer. After the linear layer, the server holds
Mi(xi− ri)+ si and the client holds Miri− si. The parties
evaluate the non-linear garbled circuit layer as follows:
1. The server chooses a random masking vector s′i+1 and

sends the labels from the set {labS
i,k,0, lab

S
i,k,1}k∈[|inpi|] cor-

responding to its input Mi(xi − ri) + si and s′i+1 to the
client along with the key ki.

2. The client uses ki to unmask H(ki)⊕C̃i to obtain C̃i. The
client evaluates the garbled circuit C̃i using its input labels
obtained in the preprocessing phase and labels obtained
from the server in the online phase. The client decodes the
output labels and sends xi+1− ri+1 + s′i+1 along with the
hash of the output labels to the server.

3. The server checks if the hash computation is correct and
recovers xi+1− ri+1.

Output phase. The server sends s′`+1 to the client and the
client unmasks the output of the garbled circuit using this to
learn the output of the inference y.

Theorem 5.1. Assuming the security of garbled circuits and
the protocols for securely computing FACG (see Lemma B.1)

7We slightly abuse the notation and use |inpi| to also denote the size of
the server input to the garbled circuit.

Protocol ΠACG

1. Both parties engage in a two-party computation protocol
with security against malicious clients and semi-honest
servers to generate (pk,sk) for HE. The client learns pk
and sk whereas the server only learns pk.

2. The client sends {Enc(pk,ri)}i∈[`] to the server along with
a zero-knowledge proof of well-formedness of the cipher-
text. The server verifies this proof before continuing.

3. For every i ∈ [`],
(a) The server homomorphically computes

Enc(pk,Mi(ri) − si), Enc(pk,αi(Mi(ri) − si)),
and Enc(pk,βi · ri).

(b) The server randomly samples 〈αi(Mi(ri)− si)〉2 and
〈βi · ri〉2, homomorphically creates additive shares
of the MAC values, and sends (Enc(pk,Mi(ri)−
si),Enc(pk,〈αi(Mi(ri)−si)〉1),Enc(pk,〈βi ·ri〉1)) to
the client.

(c) The client decrypts the above ciphertexts and obtains
(Mi(ri)− si), 〈αi(Mi(ri)− si)〉1, and 〈βi · ri〉1. The
server holds 〈αi(Mi(ri)− si)〉2 and 〈βi · ri〉2.

Figure 5: Our construction of an authenticated correlations genera-
tor (ACG).

Protocol ΠCDS

Denote the bit decomposition of inpi = (Mi(ri)− si,ri+1) as
{bi

k}k∈[|inpi|].
1. The client and server input securely compute the follow-

ing function fCDS using a secure two-party computation
protocol against malicious clients and semi-honest servers:
(a) The client’s input consists of

({bi
k}k∈[|inpi|],〈αi(Mi(ri)− si)〉1,〈βi+1 · ri+1〉1) and

the server’s input consists of (αi,βi+1,〈αi(Mi(ri)−
si)〉2,〈βi+1 · ri+1〉2,{lab

C
i,k,0, lab

C
i,k,1}k∈[|inpi|]) for

some i ∈ [`−1].
(b) Denote gk = labC

i,k,0 − (labC
i,k,0 − labC

i,k,1) · b
i
k. Addi-

tively secret share gk into (〈gk〉1,〈gk〉2).
(c) Reconstruct Mi(ri)− si and ri+1 from {bi

k}k∈[|inpi|].

(d) Sample random vectors c1← Z|ri+1|
p ,c2← Z|ri+1|

p

(e) Denote ρ = αi(c
T
1 ·Mi(ri)− si)− cT

1 · (〈αi(Mi(ri)−
si)〉1 + 〈αi(Mi(ri)− si)〉2) and σ = βi+1(c

T
2 · ri+1)−

cT
2 · (〈βi+1 · ri+1〉1 + 〈βi+1 · ri+1〉2).

(f) Output ρ, σ, {〈gk〉2}k∈[|inpi|] to the server and
{〈gk〉1}k∈[|inpi|] to the client.

2. If either of them are non-zero, the server aborts the proto-
col. Else, it sends {〈gk〉2}k∈[|inpi|] to the client. The client
reconstructs {gk}k∈[|inpi|] and outputs it.

Figure 6: Our protocol for conditional disclosure of secrets.

Server’s input: Mi(xi− ri)+ si,s
′
i+1.

Client’s input: ri+1, Mi(ri)− si
1. Compute Mi(xi) = Mi(xi− ri)+ si +Mi(ri)− si).
2. Compute ReLU(Mi(xi)) to obtain xi+1.
3. Output xi+1− ri+1 + s′i+1.

Figure 7: Description of circuit Ci.
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and FCDS (see Lemma B.3), the protocol described above is
a private inference protocol against malicious clients and
semi-honest servers (see Definition 3.2) in the random oracle
model.

Correctness follows from inspection; we prove security in
Appendix B.4.

Remark 5.2 (ACG for subsequent linear layers). Many net-
work architectures contain consecutive linear layers between
two ReLU activations. For simplicity of exposition, we have
composed these linear layers in our protocol description. How-
ever, doing so in the actual implementation would be ineffi-
cient since our homomorphic algorithms are highly special-
ized for specific layer types. As a result, in practice ΠACG
must be modified so that on consecutive linear layers the
client only receives MAC shares of the layer output on the fi-
nal linear layer in the sequence. In the online phase, the client
additionally sends MAC shares of their input on intermediate
linear layers since they are not checked inside of the CDS.

Remark 5.3 (Checking client CDS inputs). fCDS must check
that the client’s bit decomposition is correct. That is, it must
check that the claimed bit decomposition (a) consists of
boolean values, (b) corresponds to an integer with value less
than p. For efficiency reasons, we perform only the first check
in the preprocessing phase, and move the second check to our
garbled circuits in the online phase.

Remark 5.4 (Fixed-point arithmetic in finite fields). Neural
networks work over the real numbers, but our cryptographic
protocols work over finite prime fields. To emulate real arith-
metic, we rely on fixed-point arithmetic. However, to maintain
precision, one needs to occasionally truncate intermediate val-
ues to ensure that the result does not wrap around the field.

In DELPHI, both parties perform truncation directly on their
local secret shares following the technique of [MZ17] which
correctly truncates the shared value with a small, additional
error. While this error does not greatly impact accuracy, it
is unacceptable in the client-malicious setting as it would
invalidate the MAC of the share. As a result, MUSE must
perform truncation directly on the shared value using a secure
MPC. We perform this truncation for free within our garbled
circuits by always returning zero labels for the upper bits of
the ReLU output.

5.3 An efficient protocol for computing fCDS
To securely compute the function fCDS, MUSE adapts
the state-of-the-art arithmetic MPC framework Overdrive
[KPR18] (which achieves malicious security) to the simpler
client-malicious 2PC setting. Doing so results in great effi-
ciency improvements, as we now explain.8

8While the protocol of [Che+20] offers better performance than Overdrive,
at the time of writing the source code for it was unavailable, and so we could
not build upon it. Our optimizations in this section apply also to the [Che+20]
protocol, so it is plausible that in the future MUSE could instead rely on it.

The heaviest cryptographic costs when using Overdrive for
fCDS are due to (a) MAC key generation, (b) triples generation,
and (c) authentication of secret client and server inputs. We
now describe how we optimize all of these procedures in the
client-malicious setting.

MAC key generation. In Overdrive, a MAC key must be
secret-shared among the parties, since any party may be ma-
licious and could use knowledge of the key to cheat. In the
client-malicious setting, the server will never cheat so they
can simply generate and hold the MAC key themselves.

Triples generation. In order to generate multiplication
triples in Overdrive, all parties must generate ciphertexts of
their shares, prove knowledge of these ciphertexts in zero-
knowledge, homomorphically compute a triple from the ci-
phertexts, and run a distributed decryption algorithm so all
parties receive a share of the result. Note that the distributed
decryption allows a malicious adversary to inject an authenti-
cated additive shift, so parties must “sacrifice” a triple in order
to ensure correctness [Dam+12], which harms performance.

In the client-malicious setting, we can avoid distributed
decryption, triple sacrifice, and a number of zero-knowledge
proofs by taking advantage of the fact that the server knows
the MAC key. In particular, we devise the following efficient
protocol: the client sends the encryption of their shares di-
rectly to the server (along with a zero-knowledge proof of
plaintext knowledge). The server homomorphically computes
the shares of the triple, and returns it to the client. Since the
server performs the computation, correctness is guaranteed
and no distributed decryption or triple sacrifice is necessary.
We provide benchmarks of our optimized generation in Sec-
tion 6.5. See Fig. 17 for a full description of ΠTriple.

Input authentication. Overdrive [KPR18] optimizes the
input sharing method of [Dam+12], by assuming that the
encryption scheme they employ achieves linear-targeted mal-
leability (LTM) [Bit+13]. The LTM assumption for an encryp-
tion scheme informally states that only affine transformations
can be computed on ciphertexts. This assumption is non-
falsifiable, and, when applied to the encryption schemes used
in Overdrive, has received insufficient scrutiny.

In our protocol, we avoid relying on this strong assumption
by observing that the majority of secret inputs originate with
the server, and because the server holds the MAC keys, it can
easily authenticate its inputs without cryptography. In more
detail, the protocol proceeds as follows.
• The server shares their inputs by producing a random au-

thenticated share of their input using the MAC key and
sends it to the client.

• The client shares their input by following the same method-
ology as [Dam+12]. Note that generating random authenti-
cated shares can be implemented using our triple generation
procedure from above, thus inheriting the same speedups.

We benchmark these techniques in Section 6.5. See Fig. 14
for a full description of ΠInputAuth.
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MNIST CIFAR-10
system threads time (s) comm. (GB) time (s) comm. (GB)

Pr
ep

ro
ce

ss
in

g L
in

ea
r CG DELPHI 1 3.93 0.03 36.21 0.05

ACG MUSE 1 4.74 0.04 40.78 0.07

N
on

-l
in

ea
r

Garbling DELPHI 2 1.81 0.18 19.31 2.95
Garbling MUSE 2 4.34 0.51 62.19 7.45

OT DELPHI 8 1.67 0.02 5.2 0.35
CDS Triple Gen. MUSE 6 7.32 2.66 112.51 44.36
CDS Input Auth. MUSE 2 4.10 0.43 59.579 7.00
CDS Evaluation MUSE 2 2.17 0.53 31.34 8.79

O
nl

in
e Online DELPHI 8 0.48 0.01 3.74 0.16

Online MUSE 8 0.80 0.01 8.37 0.23

Table 3: Latency and communication cost of the individual components of MUSE and DELPHI.
See Section 6.2 for more information on the network architectures and number of threads used.

6 Evaluation
We divide the evaluation into three sections which answer the
following questions:
• Section 6.3: What are the latency and communication costs

of MUSE’s individual components when performing infer-
ence and how do they compare to the semi-honest DELPHI?

• Section 6.4: How does MUSE compare to other inference
protocols secure against malicious clients?

• Section 6.5: How do our client-malicious Overdrive sub-
protocols compare to standard Overdrive?

6.1 System implementation
We implemented MUSE in Rust and C++. We use the SEAL
homomorphic encryption library [Sea] to implement HE, the
fancy-garbling library9 to implement garbled circuits, and
MP-SPDZ10 [Kel20] to implement zero-knowledge proofs.
MUSE achieves 128 bits of computational security, and 40
bits of statistical security. Our implementation is available
online at https://github.com/mc2-project/muse.

6.2 Evaluation setup
All experiments were carried out on AWS c5.9xlarge in-
stances possessing an Intel Xeon 8000 series CPU at 3.6GHz.
The client and server instances were located in the us-west-1
(Northern California) and us-west-2 (Oregon) regions re-
spectively with 21ms round-trip latency. The client and server
executions used 8 threads each. We evaluate MUSE on the
following datasets and network architectures:
1. MNIST is a standardized dataset consisting of (28× 28)

greyscale images of the digits 0–9. The training set con-
tains 60,000 images, while the test set has 10,000 images.
Our experiments use the 2-layer CNN architecture speci-
fied in MiniONN [Liu+17a] with average pooling in place
of max pooling.

2. CIFAR-10 is a standardized dataset consisting of (32×
32) RGB images separated into 10 classes. The training

9https://github.com/GaloisInc/fancy-garbling/
10https://github.com/data61/MP-SPDZ

set contains 50,000 images, while the test set has 10,000
images. Our experiments use the 7-layer CNN architecture
specified in MiniONN [Liu+17a].

In our experiments, MUSE runs all of its various prepro-
cessing components in parallel using a work-stealing thread-
pool with 8 threads. For simplicity, in Table 3 we provide
microbenchmarks for each component using a static thread al-
location that closely reflects the allocation used during actual
execution.

Baselines. Since there are no specialized protocols for
client-malicious secure inference, we chose to use generic
MPC frameworks as our baselines to compare MUSE against:
maliciously-secure Overdrive [KPR18] and Overdrive with
our client-malicious optimizations. We used MP-SDPZ’s im-
plementation of the maliciously-secure Overdrive protocol,
and estimated the total runtime and communication costs
of client-malicious Overdrive using microbenchmarks from
MUSE’s triple generation, MUSE’s input authentication, and
MP-SPDZ.

Additionally, we use microbenchmarks in Table 3 to demon-
strate the concrete costs of strengthening each individual com-
ponent of MUSE from semi-honest to client-malicious secu-
rity. As a semi-honest baseline, we chose to compare against
DELPHI and not against the more recent work [Rat+20] which
offers better performance because (1) this work uses different
techniques for both linear and non-linear layers, which would
make isolating the cost of upgrading security difficult, and
(2) it is unclear how to upgrade their semi-honest protocols
to achieve client-malicious security in an efficient way.

6.3 Microbenchmarks

In Table 3 we compare microbenchmarks for MUSE and DEL-
PHI on the MNIST and CIFAR-10 networks using a simi-
lar number of threads to demonstrate the concrete costs of
strengthening each component of DELPHI to client-malicious
security.
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Figure 8: Comparison of execution times between MUSE, Overdrive, and client-malicious Overdrive
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Figure 9: Comparison of communication cost between MUSE, Overdrive, and client-malicious Overdrive

6.3.1 Preprocessing phase
The primary difference between MUSE and DELPHI occurs
in the preprocessing phase.
Linear layers. As discussed in Section 5.1, the primary
difference in how DELPHI and MUSE preprocess linear layers
lies in the fact that the former uses a plain correlations gen-
erator (CG), while MUSE use an authenticated correlations
generator (ACG). Because the ACG requires additional ho-
momorphic operations and zero-knowledge proofs, we should
expect MUSE to be slightly slower than DELPHI and require
slightly more communication. In Table 3 we observe that this
is precisely the case.
Non-linear layers. To preprocess the non-linear layers in
DELPHI, the server garbles a circuit corresponding to ReLU
and sends to the client. The two parties than engage in an
oblivious transfer whereby the client learns the garbled labels
corresponding to their input.

In MUSE, a number of modifications to this procedure must
be made. First, MUSE cannot use simple oblivious transfer
and must opt for the much more expensive CDS protocol to
ensure the client receives the correct garbled labels. Second,
as detailed in Remark 5.3, MUSE pushes some checks from
the CDS to the online garbled circuits which roughly doubles
the number of AND gates in the circuit.

As a result, we should expect a 2×–3× increase in latency
and communication for the garbling in MUSE when compared
to DELPHI, and a much higher cost for the CDS compared to
oblivious transfer. Table 3 validates these hypotheses.

6.3.2 Online phase
MUSE retains the same structure for the online phase, but has
a few small additions. For subsequent linear layers, MUSE
requires the client to send additional MAC shares (see Re-
mark 5.2). For non-linear layers, MUSE requires an extra hash
key to be sent, and the circuit being evaluated is roughly twice
the size as the one in DELPHI (see Remark 5.3).

As a result, we should expect the garbled circuit evaluation
time to be the only significant difference in online runtime
between MUSE and DELPHI, and for MUSE to have slightly
higher communication. In Table 3, we see that the difference
in online runtime is 1.7×–2.2× and the communication dif-
ference is approximately 1.4×.

In conclusion, MUSE’s overhead when compared to DEL-
PHI is minimal in every component except the CDS. MUSE’s
online phase outperforms all prior two-party semi-honest
works listed in Table 1 besides DELPHI, CrypTFlow2
[Rat+20], and XONN [Ria+19].

6.4 Full system comparisons
Fig. 8 and Fig. 9 demonstrate how MUSE performs against ma-
licious Overdrive and client-malicious Overdrive. Note that
our client-malicious optimizations for Overdrive don’t affect
the online phase which is why we exclude client-malicious
Overdrive in the online figures.

In summary, MUSE’s preprocessing is 13.4×–21× faster
and reduces communication by 2×–3.6× compared to stan-
dard Overdrive. For client-malicious Overdrive, MUSE’s pre-
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processing phase is 6.4×–7× faster. For the smaller MNIST
network, the communication cost of MUSE is slightly higher
than that of client-malicious Overdrive (due to a constant
overhead from the garbled circuits), but our techniques scale
better and achieve a 1.4× reduction for the larger CIFAR-10
network.

For the online phase, we observe a 7.8×–8.6× latency
improvement and 3.4×–4.6× communication improvement
when comparing MUSE to Overdrive.

6.5 Improvements to Overdrive
In this section we demonstrate the effectiveness of our op-
timizations to Overdrive in the client-malicious setting. In
particular, we show that in client-malicious Overdrive without
the LTM assumption:
• Triple generation is significantly more efficient.
• Client input authentication is slightly more efficient.
• Server input authentication is significantly more efficient.
These improvements are of independent interest and can easily
be extended to support more parties.

Triple generation. In Fig. 10 we benchmark the genera-
tion of triples on a variable number of threads. In summary,
client-malicious Overdrive achieves a 8×–12.5× latency im-
provement and 1.7× communication reduction (the latter is
not shown in the graph) over standard Overdrive.

Input authentication. In Table 4 we show benchmarks for
input authentication for the client and server. Our protocol
for client inputs achieves a 1.6× speed improvement with-
out the LTM assumption, but increases communication by
3.6×. We observe a 37.8× improvement in latency and 4.5×
improvement in communication for server inputs.

7 Related work

7.1 Model extraction attacks
A number of recent works extract convolutional neural net-
works (CNNs) [Tra+16; Mil+19; Jag+20; RK20; CJM20]
given oracle access to a neural network. Unlike our attack,
these works do not exploit properties of any secure inference
protocol (and indeed do not rely on the existence of these),
but require a much larger number of queries. We compare
against the state-of-the-art attack [CJM20] in Section 2.3.

Mitigations. While MUSE protects against our attack, it
does not defend against attacks that leverage only the predic-
tion result. Mitigations fall into two camps: those that inspect
prediction queries [Kes+18; Juu+19], and those that try to
instead modify the network to make it resilient to extraction
[Tra+16; Lee+19]. While the latter kind of defense can be ap-
plied independently of secure inference, adapting the first kind
of defense to work with secure inference protocols is tricky,
because it requires inspecting the client’s queries, which can
violate privacy guarantees.
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Figure 10: Triple Generation amortized on a batch of 10,000,000
triples over a 44 bit prime field with 40 bit statistical security.

Client Inputs Server Inputs
Threat Model time (s) comm. (MB) time (s) comm. (MB)

Malicious 12.11 90 12.11 90
Client-mal. 7.406 320 0.32 20

Table 4: Input Authentication on 1,000,000 inputs over a 44 bit
prime field with 40 bit statistical security using a single thread.

Relies on the LTM Assumption.

7.2 Secure inference protocols
A number of recent works have attempted to design special-
ized protocols for performing secure inference. These pro-
tocols achieve efficiency by combining secure computation
techniques such as homomorphic encryption [Gen09b], Yao’s
garbled circuits [Yao86], and homomorphic secret sharing
[Boy+17] with various modifications such as approximating
ReLU activations with low-degree polynomials or binariz-
ing (quantizing to one bit of accuracy) network weights. See
Table 1 for a high-level overview of these protocols.

While these works have improved on latency and communi-
cation costs by orders of magnitude, all of the two-party pro-
tocols in Table 1 assume a semi-honest adversary. Currently-
existing maliciously-secure inference protocols generally fall
into the following categories: 3PC-based protocols, generic
MPC frameworks, TEE-based protocols, and GC-based proto-
cols. In the remainder of the section we discuss each of these
categories:

3PC-based protocols. Recent works have explored how the
addition of a third party can greatly improve efficiency for
secure machine learning applications [MZ17; Ria+18; MR18;
WGC19; Wag+21; Kum+20]. Many of these protocols also
allow for easy extensions to handle malicious adversaries
[MR18; WGC19; Wag+21]. These extensions are made possi-
ble by the fact that these works assume only one of the parties
is corrupted. In other words, these works consider honest ma-
jority malicious security. On the other hand, MUSE addresses
the fundamentally more difficult problem of a dishonest ma-
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jority. While having three non-colluding parties is convenient
from a protocol design perspective, in practice, it is difficult
to setup such a third party running in a separate trust domain
out of the control of the server or client.

Chameleon [Ria+18] proposed a slightly weaker threat
model where a semi-honest third server assists in the prepro-
cessing phase but is not needed for the online phase. If such
a setup is feasible, MUSE could naturally take advantage of
this threat model by having the semi-honest third server assist
in triple generation for the CDS protocol. This augmentation
improves latency and bandwidth of MUSE’s preprocessing
phase by roughly 3×.

TEE-based protocols. Generally speaking, TEE-based pro-
tocols [TB19; Top+18; Han+18; App19] provide better effi-
ciency than protocols relying on purely cryptographic tech-
niques. However, this improved efficiency comes at the cost
of a weaker threat model that requires trust in hardware ven-
dors and the implementation of the enclave. Indeed, the past
few years have seen a number of powerful side-channel at-
tacks [Bra+17; HCP17; Göt+17; MIE17; Sch+17; Wan+17;
Van+18] against popular enclaves like Intel SGX and ARM
TrustZone.

Generic frameworks. Maliciously-secure MPC frameworks
exist for computing arithmetic circuits [Dam+12; KPR18;
Che+20], binary circuits [Kat+18], and mixed circuits [RW19;
Esc+20; MR18]. Before MUSE, these were the only existing
cryptographic mechanisms for two-party client-malicious se-
cure inference. While [Che+20] is the most efficient of these
for inference, an implementation was not available at the time
of writing so we compared against [KPR18] in Section 6.4.
From the results of Section 6.4 and the experiments provided
in [Che+20], we can roughly estimate that the preprocessing
communication of [Che+20] is similar to MUSE, but MUSE
is superior on all other accounts.

GC-based protocols. DeepSecure [RRK18], the protocol
of Ball et al. [Bal+19], and XONN [Ria+19], all use circuit
garbling schemes to implement constant-round secure infer-
ence protocols. While DeepSecure supports general neural
networks, the protocol of [Bal+19] operates on discretized
neural networks, which have integer weights, while XONN
is optimized for binarized neural networks [CBD15], which
have boolean weights. These quantized networks allow for im-
proved performance by avoiding computing expensive fixed-
point multiplication in favor of integer multiplication or binary
XNOR gates.

While neural network inference is commonly performed
on quantized networks [Kri18], in practice quantization is
never done below 8-bits since inference accuracy begins to
suffer [Ban+18]. To combat this accuracy drop, XONN in-
creases the number of neurons in its linear layers, gaining
increased accuracy at the cost of a slower evaluation time.
While this technique appears to work well for the datasets
XONN evaluates, additional techniques are needed to scale

to more difficult datasets like Imagenet as the current best-
known quantization techniques for Imagenet requires 2 bit
weights and 4 bit activations [Don+19]. Consequently, it is
our opinion that it is still important to focus on supporting se-
cure inference for general neural networks even though BNNs
appear promising.

Any GC-based protocol can be upgraded to malicious se-
curity through a combination of cut-and-choose techniques
[Zhu+16] and malicious OT-extension [KOS15], and client-
malicious security for the evaluator by using malicious OT-
extension. Thus, it would follow that all of these GC-based in-
ference protocols can be transformed into malicious and fixed-
subset malicious protocols. Note that DeepSecure would pro-
vide server-malicious security since the client garbles the
circuit. XONN uses a specialized protocol to evaluate the first
layer of the network since the client’s input is an un-quantized
integer. In order for these malicious/client-malicious transfor-
mations to work, XONN would need to evaluate this layer
within the more-expensive garbled circuit, instead of their op-
timized protocol. Furthermore, an implementation of XONN
was not available at the time of writing, so we could not
benchmark a client-malicious version of their protocol on our
experimental setup. Finally, MUSE’s online speed is already
superior to the semi-honest versions of DeepSecure and the
protocol of [Bal+19].

8 Conclusion
In this paper, we introduce a novel model-extraction attack
against many semi-honest secure inference protocols which
outperforms existing attacks by orders of magnitude. In re-
sponse, we design and implement MUSE, an efficient two-
party secure inference protocol resilient to malicious clients.
MUSE achieves online performance close to existing semi-
honest protocols, and greatly outperforms alternate solutions
for client-malicious secure inference. As part of MUSE’s de-
sign, we introduce a novel cryptographic protocol for con-
ditional disclosure of secrets and improved procedures for
generic MPC in the client-malicious setting. We hope that
MUSE is a first step towards achieving practical two-party
secure inference in a strong threat model.
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A Security properties of our building blocks
Let λ denote the security parameter. For a finite set S, we
denote x← S as the process of sampling x uniformly from
the set S. We say that a function µ : N→ [0,1] is negligible
if for every polynomial p(·), there exists λ0 such that for all
λ > λ0, µ(λ)< 1/p(λ). We denote an unspecified negligible
function with negl and an unspecified polynomial with poly.
We say that two distribution ensembles X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are computationally indistinguishable (denoted
by X ≈c Y ) if for every polynomial time distinguisher D, there
exists a negligible function µ(·) such that for every λ, we have
|Pr[D(Xλ) = 1]−Pr[D(Yλ) = 1]| ≤ µ(λ).

A.1 Garbling scheme
We would like a garbling scheme GS to satisfy two properties:
correctness and security.

• Correctness: The correctness requirement says that the
string y output by the Eval algorithm is same as C(x) with
probability 1.

• Security: The security requirement says that given C̃ and
{labi,xi

}, the evaluator does not learn anything about C or

x except the size of the circuit C (denoted by 1|C|) and
the output C(x). Specifically, we require the existence of a
simulator SimGS such that for any adversary A ,

Pr[ExptGS(A ,GS) = 1]≤ 1/2+negl(λ)

where ExptGS is defined below.

(C,x,{labi,xi
}i∈[n])← A(1λ)

labi,1−xi
←{0,1}λ for i ∈ [n]
b←{0,1}

If b = 0 : C̃← GS.Garble(1λ,C,{labi,0, labi,1}i∈[n])

Else, C̃← SimGS(1
λ,1|C|,C(x),{labi,xi

}i∈[n])

b′← A(C̃)

Output 1 iff b = b′

The above requirement where A chooses the labels corre-
sponding to its input is stronger than the standard definition
where in both the labels for each input wire are chosen uni-
formly. However, we note that the existing constructions of
garbled circuits (such as the one described in [LP09]) satisfies
this stronger definition.

A.2 Linearly homomorphic public key encryp-
tion

We require a linear homomorphic public key encryption to
satisfy the following properties:
• Correctness. With probability 1, the output of the de-

cryption algorithm Dec on input sk and a ciphertext c =
Enc(pk,m) is equal to m. Here, the probability is over the
random coins of KeyGen and Enc algorithms.

• Homomorphic Evaluation Correctness. With probability 1,
the output of the decryption algorithm Dec on input sk and
a ciphertext c′ = Eval(pk,Enc(pk,m1),Enc(pk,m2),L) is
equal to L(m1,m2). Here, the probability is over the random
coins of KeyGen and Enc algorithms.

• Semantic Security. For any two messages m,m′ ∈ Zp, we
require

{pk,Enc(pk,m)} ≈c {pk,Enc(pk,m
′)}

where the two distributions are over the random choice of
pk and the random coins of the encryption algorithm.

• Function Privacy. There exists a simulator SimFP such that
for every polynomial time adversary A and every linear
function L, we have:

Pr[ExptFP(A ,HE,L) = 1]≤ 1/2+negl(λ)

where ExptFP is defined below.
1. (pk,sk)← KeyGen(1λ;r).
2. (m1,r1),(m2,r2)← A(pk,sk).
3. ci← Enc(pk,mi;ri) for i ∈ {1,2}.
4. b←{0,1}.
5. If b = 0 : c′← Eval(pk,c1,c2,L).
6. Else, c′← SimFP(pk,(m1,r1),(m2,r2)).
7. b′← A(c′).
8. Output 1 iff b = b′.

A.3 Message authentication codes
We want the MAC scheme to satisfy the following two prop-
erties:

• Correctness. For any message m, we want the probabil-
ity that Verify(α,st,m,σ) = 1 is 1 for α← KeyGen(1λ),
(σ,st)← Tag(α,m).

• One-time Security. For any message m and for any adversary
A , we have:

Pr[ExptMAC(A ,m,MAC) = 1]≤ negl(λ)

where ExptMAC is defined below.

α← KeyGen(1λ)
(σ,st)← Tag(α,m)

(m′,σ′)← A(m,σ)

Output 1 iff (m′,σ′) 6= (m,σ)∧Verify(α,st,m′,σ′) = 1.

Lemma A.1. The scheme described in Section 4 is a one-time
secure MAC.

Proof. The correctness is easy to observe. Assume for the
sake of contradiction that adversary A produces a (m′,σ′)
such that (m′,σ′) 6= (m,σ)∧Verify(α,st,m′,σ′) = 1. This
means that σ

′+ st = α ·m′. By definition of Tag, it follows
that σ+ st= α ·m. Subtracting these two equations, we get
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α(m−m′) = σ−σ
′. If m = m′, then this equation is satis-

fied only if σ = σ
′ which contradicts (m′,σ′) 6= (m,σ). Else,

we get α = (σi−σ
′
i)/(mi−m′i) for some i ∈ [n] such that

mi 6= m′i and the probability that α satisfies this equation is
1/p≤ 2−λ.

A.4 Zero-knowledge proofs
We want our zero-knowledge proof system to satisfy the fol-
lowing properties:
• Completeness. For any x ∈ L, the prover always convinces

the verifier.
• Soundness. For any x 6∈ L, the verifier rejects with over-

whelming probability.
• Proof of Knowledge. For every polynomial time malicious

prover P∗, there exists an extractor Ext such that for any
statement x, if the verifier accepts the proof on interaction
with the prover P∗ with probability at least 1/poly(λ) then
there exists a negligible function µ such that Pr[Ext(x) =
w∧ (x,w) ∈ L]≥ 1/poly(λ)−µ(λ).

• Zero-Knowledge: For any x ∈ L and any polynomial time
malicious verifier V ∗, there exists a simulator SimZK such
that the transcript of the interaction between the honest P
and V ∗ is computationally indistinguishable to the transcript
generated by SimZK.

B Security proofs
Recall the formal definition of a protocol that is secure against
malicious clients and semi-honest server provided in Defini-
tion 3.1. We first prove security of the various components of
MUSE before proving security of the entire protocol.

B.1 ACG
Lemma B.1. Assuming a secure two-party computation pro-
tocol against malicious clients and semi-honest servers for
KeyGen, a leveled fully-homomorphic encryption scheme
(see Section 4) and a zero-knowledge proof system for well-
formedness of ciphertexts (see Section 4), the protocol de-
scribed in Fig. 5 securely computes FACG against malicious
clients and semi-honest servers.

Proof. The correctness follows from observation and we now
prove semi-honest server security and then show security
against malicious clients.

Semi-Honest server security. The simulator SimS samples
(pk,sk)←HE.KeyGen(1λ). It then runs the simulator for the
semi-honest server in the two-party computation protocol that
generates the public-key, secret-key pair for the homomor-
phic encryption scheme. When this simulator access the ideal
functionality, SimS provides pk as the output. For each i ∈ [`],
SimS sends {HE.Enc(pk,0)}i∈[`] and with a simulated proof
of well-formedness of ciphertexts. We now show the indistin-
guishability of the real view from the simulated view using a
hybrid argument.

• Hyb1 : This corresponds to the real execution of the proto-
col.

• Hyb2 : In this hybrid, we use the simulator for the semi-
honest server in the two-party computation protocol for
generating the public key, secret key pair. When this simu-
lator queries its ideal functionality, we sample a (pk,sk)←
HE.KeyGen(1λ) and give pk to it. This hybrid is computa-
tionally indistinguishable to Hyb1 from the security of this
protocol.

• Hyb3 : In this hybrid, we start using the simulator for the
zero-knowledge proofs of plaintext knowledge. This hy-
brid is indistinguishable to the previous one from the zero-
knowledge property of these proof systems.

• Hyb4 : In this hybrid, we switch from sending
HE.Enc(pk,ri) for each i ∈ [`] to sending HE.Enc(pk,0).
This hybrid is indistinguishable from the previous one
from the semantic security of the homomorphic encryption.
Note that view of server in Hyb4 is identical to the output
of SimS.

Malicious Client Security. SimC samples a (pk,sk) ←
HE.KeyGen(1λ). SimC runs the simulator for the malicious
client in the two-party computation protocol that generates the
public-key, secret-key pair for the homomorphic encryption
scheme. When this simulator access the ideal functionality,
SimC provides (pk,sk) as the output. On receiving the cipher-
text {HE.Enc(pk,ri)}i∈[`] and the proof of plaintext knowl-
edge from the client, SimC first checks if the proof is valid. If
yes, SimC then runs the knowledge extractor Ext on the cipher-
text and the proof to extract ri and the randomness used for
generating the ciphertext encrypting ri for each i ∈ [`]. SimC
queries the ideal functionality FACG on input ri and obtains
(Mi(ri)− si,〈αi(Mi(ri)− si)〉1,〈βi · ri〉1). It then runs SimFP

on the output (Mi(ri)− si,〈αi(Mi(ri)− si)〉1,〈βi ·ri〉1) along
with ri and the randomness used to generate the ciphertext
and obtains the simulated ciphertexts. It sends the simulated
ciphertexts to the client.

We now show the view of the malicious client in the real
protocol is computationally indistinguishable to the view gen-
erated by SimC via a hybrid argument.

• Hyb1 : This corresponds to the view of the malicious client
in the real execution of the protocol.

• Hyb2 : In this hybrid, we use the simulator for the malicious
client in the two-party computation protocol for KeyGen.
When this simulator queries its ideal functionality, we sam-
ple a (pk,sk)← HE.KeyGen(1λ) and give (pk,sk) to it.
This hybrid is computationally indistinguishable to Hyb1
from the security of this protocol.

• Hyb3 : In this hybrid, the server checks if the zero-
knowledge proofs are valid and in that case, it uses the
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extractor Ext to extract ri and the randomness used for gen-
erating the ciphertext encrypting ri for each i ∈ [`]. Since
the verifier in a non-interactive zk proof is deterministic,
it follows from the proof of knowledge property that the
extractor Ext succeeds in extracting a witness except with
negligible probability.

• Hyb4 : In this hybrid, we use the simulator for the func-
tion privacy of the homomorphic encryption in generating
HE.Enc(pk,Mi(ri) − si), HE.Enc(pk,〈αi(Mi(ri) − si)〉1)
and HE.Enc(pk,〈βi · ri〉1) for each i ∈ [`]. This hybrid is
computationally indistinguishable to the previous hybrid
from the function privacy of the HE scheme. Note that view
of the client in Hyb4 is identical to the view generated by
SimC.

B.2 MPC Engine
Lemma B.2. Assuming a secure two-party computation pro-
tocol against malicious clients and semi-honest servers for
KeyGen, a leveled fully-homomorphic encryption scheme
which supports depth-1 arithmetic circuits (see Section 4)
and a zero-knowledge proof system for NP (see Section 4),
the protocol described in Fig. 17 securely computes FTriple
against malicious clients and semi-honest servers.

Proof. We now prove semi-honest server security and then
show security against malicious clients.

Semi-Honest server security. The simulator SimS samples
(pk,sk)← HE.KeyGen(1λ). It then runs the simulator for
the semi-honest server in the two-party computation pro-
tocol that generates the public-key, secret-key pair for the
homomorphic encryption scheme. When this simulator ac-
cess the ideal functionality, SimS provides pk as the output.
SimS sends {HE.Enc(pk,0)}i∈[3] and with a simulated proof
of well-formedness of ciphertexts. We now show the indistin-
guishability of the real view from the simulated view using a
hybrid argument.

• Hyb1 : This corresponds to the real execution of the proto-
col.

• Hyb2 : In this hybrid, we use the simulator for the semi-
honest server in the two-party computation protocol for
generating the public key, secret key pair. When this simu-
lator queries its ideal functionality, we sample a (pk,sk)←
HE.KeyGen(1λ) and give pk to it. This hybrid is computa-
tionally indistinguishable to Hyb1 from the security of this
protocol.

• Hyb3 : In this hybrid, we start using the simulator for the
zero-knowledge proofs of well-formedness of ciphertexts.
This hybrid is indistinguishable to the previous one from
the zero-knowledge property of these proof systems.

• Hyb4 : In this hybrid, we switch from send-
ing HE.Enc(pk,a1),Enc(pk,b1) to sending
{HE.Enc(pk,0)}i∈[2]. This hybrid is indistinguish-
able from the previous one from the semantic security of
the homomorphic encryption. Note that view of server in
Hyb4 is identical to the output of SimS.

Malicious Client Security. SimC samples a (pk,sk) ←
HE.KeyGen(1λ). SimC runs the simulator for the malicious
client in the two-party computation protocol that generates
the public-key, secret-key pair for the homomorphic encryp-
tion scheme. When this simulator access the ideal func-
tionality, SimC provides (pk,sk) as the output. On receiv-
ing the ciphertext Enc(pk,a1),Enc(pk,b1) and the corre-
sponding zero-knowledge proofs from the client, SimC first
checks if the proofs are valid. If yes, SimC then runs the
knowledge extractor Ext on the ciphertext and the proof
to extract a1,b1 and the randomness used for generating
these ciphertexts. SimC samples random a2,b2, queries the
ideal functionality FTriple on input a1,b1,a2,b2, and obtains
[[a1 + a2]]1 = (a1 + a2 − u1,δ(a1 + a2)− u2), [[b1 + b2]]1 =
(b1+b2−v1,δ(b1+b2)−v2), [[(a1+a2) ·(b1+b2)]]1 = (a1+
a2) · (b1 +b2)− t1,δ · (a1 +a2) · (b1 +b2)− t2). It then runs
SimFP on the six outputs and the randomness used to generate
the initial ciphertexts and obtains the six simulated ciphertexts.
It sends the six simulated ciphertexts to the client.

We now show the view of the malicious client in the real
protocol is computationally indistinguishable to the view gen-
erated by SimC via a hybrid argument.

• Hyb1 : This corresponds to the view of the malicious client
in the real execution of the protocol.

• Hyb2 : In this hybrid, we use the simulator for the malicious
client in the two-party computation protocol for KeyGen.
When this simulator queries its ideal functionality, we sam-
ple a (pk,sk)← HE.KeyGen(1λ) and give (pk,sk) to it.
This hybrid is computationally indistinguishable to Hyb1
from the security of this protocol.

• Hyb3 : In this hybrid, the server checks if the zero-
knowledge proofs are valid and in that case, it uses the
extractor Ext to extract a1,b1 and the randomness used for
generating these ciphertexts. Since the verifier in a non-
interactive zk proof is deterministic, it follows from the
proof of knowledge property that the extractor Ext succeeds
in extracting a witness except with negligible probability.

• Hyb4 : In this hybrid, we use the simulator for the func-
tion privacy of the homomorphic encryption in gener-
ating Enc(pk,a1 + a2 − u1), Enc(pk,b1 + b2 − v1) and
Enc(pk,(a1+a2) ·(b1+b2)−t1) along with Enc(pk,δ(a1+
a2)− u2), Enc(pk,δ(b1 + b2)− v2) and Enc(pk,δ · (a1 +
a2) ·(b1+b2)− t2). This hybrid is computationally indistin-
guishable to the previous hybrid from the function privacy
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of the HE scheme. Note that view of the client in Hyb4 is
identical to the view generated by SimC.

Note that FRand can be implemented using FTriple and
that security of ΠOnline follows directly from the security of
Beaver’s protocol.

B.3 CDS
Lemma B.3. Assuming a secure two-party computation pro-
tocol for the function fCDS (see Fig. 6) against malicious
clients and semi-honest servers, the protocol described in
Fig. 6 secure computes FCDS against malicious clients and
semi-honest servers.

Proof. The correctness of the protocol follows from observa-
tion and we now show semi-honest server security and then
show security against malicious clients.

Semi-honest server security. To show this, we run the sim-
ulator for the protocol computing fCDS to generate the client
side messages for this protocol. When this simulator queries
the ideal functionality, we give ρ = σ = 0 and an uniform
share {〈gk〉2}k∈[|inpi|] as the output. It follows from the se-
curity of the protocol that implements fCDS that the above
generated view is computationally indistinguishable to the
real view.

Malicious Client Security. The simulator SimC against
malicious client first runs the corresponding simulator for
fCDS. When this simulator access the ideal functionality
fCDS using the client’s input ({bi

k}k∈[|inpi|],〈αi(Mi(ri) −
si)〉1,〈βi+1 · ri+1〉1), the SimC queries FCDS on input
({bi

k}k∈[|inpi|],〈αi(Mi(ri)− si)〉1,〈βi+1 · ri+1〉1) and obtains
{labi,k,bi

k
}k∈|inpi| or the special symbol abort. SimC answers

the simulator for fCDS with uniformly chosen shares and
random tags as the output of the client. If the answer from
FCDS was abort, then SimC aborts at the end of step (ii). Else,
in Step (ii), SimC sends {labi,k,bi

k
−〈gk〉1}k∈|inpi| as the final

round message.
We now show that the view generated by SimC is computa-

tionally indistinguishable to the malicious client’s view in the
real protocol using a hybrid argument.

• Hyb0 : This corresponds to the view of the malicious client
in the real protocol execution.

• Hyb1 : In this hybrid, we use the simulator for fCDS and
generate the view of the client in Step (i). When this simula-
tor queries the ideal fCDS functionality, we give uniformly
chosen random shares {〈gk〉1}k∈|inpi|. We compute the out-
put of the server using its actual inputs and the rest of the
steps proceed exactly as in the protocol. This hybrid is com-
putationally indistinguishable to Hyb0 from the security of

the protocol implementing the fCDS functionality against
malicious clients.

• Hyb3 : In this hybrid, we query the FCDS functionality on
client input ({bi

k}k∈[|inpi|],〈αi(Mi(ri)− si)〉1,〈βi+1 · ri+1〉1)
and obtain the output {labi,k,bi

k
}k∈|inpi| or the special symbol

abort. If the output was not abort, then it means that σ =
ρ = 0 and thus, we set 〈gk〉2 = labi,k,bi

k
−〈gk〉1 and send

this as the final round message from the server. Otherwise,
we abort at the end of Step (ii).

Notice that the only difference between Hyb3 and Hyb2 is
when the output of the FCDS functionality is abort. We
now argue that with that protocol in Hyb2 also aborts
at the end of Step (ii) with overwhelming probability.
If the output of FCDS is abort, then it means that either
αi(Mi(ri)− si) 6= 〈αi(Mi(ri)− si)〉1 + 〈αi(Mi(ri)− si)〉2
or βi+1 · ri+1 6= 〈βi+1 ·ri+1〉1+〈βi+1 ·ri+1〉2. Let us assume
without loss of generality that βi+1 · ri+1 6= 〈βi+1 · ri+1〉1 +
〈βi+1 · ri+1〉2. It now follows from Schwartz-Zippel lemma

that with overwhelming probability σ = βi+1

〈
c2,ri+1

〉
−〈

c2,〈βi+1 · ri+1〉1 + 〈βi+1 · ri+1〉2
〉

will not be equal to 0
and thus, the honest server will also abort in Hyb2. We fi-
nally observe that the view of malicious client in Hyb3 is
identical to SimC.

B.4 MUSE Protocol
We first show security against a malicious client and then
prove security against a semi-honest server.

Malicious Client. The simulator SimC does the following:

• Offline Phase. In the offline phase,

1. Authenticated Correlations Generator. SimC runs the
corresponding simulator for the protocol implementing
FACG. When this simulator queries the ideal functional-
ity on input {ri}i∈[`], SimC stores {ri}i∈[`] and answers
the query with randomly chosen values {si, ti,vi}i∈[`].

2. For every i ∈ [`], SimC samples random input labels
{labC

i,k}k∈[|inpi|].

3. Conditional Disclosure of Secrets. SimC runs the cor-
responding simulator for the protocol implementing
FCDS. For every i ∈ [`], when this simulator queries the
ideal functionality on some input, SimC checks if this
input is equal to si, ti,ri+1,vi+1. If not, SimC gives ⊥
as the answer from ideal functionality. Else, it outputs
{labC

i,k}k∈[inpi]
.

4. Offline Garbling. For every i ∈ [`], SimC sends a uni-
formly chosen random bit string Di of size |C̃i|.
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• Online Phase. In the online phase, the simulator does the
following:

– Preamble: On receiving, x− r1, SimC extracts x from
this and queries the neural network functionality on input
x and learns the output y.

– Layer Evaluation. For every i ∈ [`], SimC does the fol-
lowing:

* Non-Linear Layer.
1. SimC samples random input labels {labS

i,k}k∈[inpi]
.

2. The simulator computes C̃i ←
SimGC({lab

C
i,k, lab

S
i,k}k∈[|inpi|],(zi, lab)) where

(zi, lab) is an uniformly chosen random string
from the output space of Ci. It chooses a uniform
key ki ← {0,1}

λ and programs the RO to output
Di⊕C̃i on input ki.

3. SimC sends {ki, lab
S
i,k}k∈[inpi]

to the client.

4. The client evaluates the garbled circuit C̃ using the
labels {labC

i,k, lab
S
i,k}k∈[inpi]

and sends (z′i,h).

5. SimC checks if zi = z′i and if it is not the case, it
aborts. Otherwise, it proceeds to the next layer.

– Output Phase. The simulator sends z`−y to the client.

Proof of Indistinguishability. To prove that the view of a
malicious client is indistinguishable to the above generated
simulated view, we use a hybrid argument.

• Hyb1 : This corresponds to the real execution of the proto-
col.

• Hyb2 : In this hybrid, we use the simulator for the proto-
col implementing FACG. When this simulator queries the
ideal functionality, we give Mi(ri)− si, 〈αi(Miri− si)〉1
and 〈βi · ri〉1 as the output. This hybrid is computationally
indistinguishable from Hyb1 from the security of the sub-
protocol implementing FACG.

• Hyb3 : In this hybrid, we run the simulator for the protocol
implementing FCDS. When this simulator queries its ideal
functionality, we implement this functionality honestly and
output the corresponding labels (or the special symbol ⊥).
This hybrid is computationally indistinguishable to Hyb2
from the security of this sub-protocol.

• Hyb4 : In this hybrid, when implementing the ideal func-
tionality for the conditional disclosure of secrets, we check
if the inputs provided by the simulator on behalf of the cor-
rupted client are equal to Mi(ri)− si, 〈αi(Miri− si)〉1, ri+1
and 〈βi+1 · ri+1〉1 instead of performing the MAC checks.
This hybrid is statistically close to the previous one due to
the MAC security (see Lemma A.1).

• Hyb5 : In this hybrid, instead of sending C̃i⊕H(ki) in the
preprocessing phase, we send a random string Di and in
the online phase, we choose an uniform key ki← {0,1}

λ

and program the random oracle to output Di ⊕ C̃i. This
hybrid is statistically close to the previous one because
the probability that the adversary queries the oracle on an
uniformly chosen ki is negligible.

• Hyb6 : In this hybrid, we make a syntactic change with
respect to the previous hybrid. When the client sends x−r1
to the server in the preamble of the online phase, we use
the extracted value r1 and obtain x. As a result, we find
the output of the neural network in every layer, namely,
x1 = x, . . . ,x`+1 = y.

• Hyb6+i : (for every i ∈ [`]) In this hybrid, we make the
following changes when compared to Hyb6+i−1 in the spec-
ified order:

– Hyb′1 : We generate C̃i using the corresponding simu-
lator for the garbled circuits. Specifically, we compute
C̃i← SimGC({lab

C
i,k, lab

S
i,k}k∈[inpi]

,(zi, lab)) where zi, lab
is the output of Ci on the server’s input being equal to
Mi(xi− ri)+ si,s

′
i+1 and the client’s input being equal

to ri+1, Mi(ri)− si. This hybrid is computationally in-
distinguishable to Hyb6+i−1 from the security of garbled
circuits (see Appendix A.1).

– Hyb′2 : In this hybrid, we sample zi, lab uniformly at ran-
dom instead of fixing them to be the output of Ci. When
i = `, we send z`− y as the final round message from
the server to the client. This hybrid is identical to the
previous hybrid from the one-time pad security (with the
pad s′i+1).

– Hyb′3 : In this hybrid, on receiving z′i,h from the client,
the server checks if z′i = zi and otherwise, it aborts. This
hybrid is statistically close to the previous hybrid be-
cause for any position where z′i and zi differs, the label
corresponding to the bit of z′i in that position is uniformly
distributed. Thus, the probability that the malicious client
outputs the correct hash value on an uniformly chosen
input is negligible.

• Hyb7+` : In this hybrid, we give randomly chosen vectors
{si, ti,vi}i∈[`] as output from FACG. This hybrid is identical
to the previous hybrid from the one-time pad security.

• Hyb8+` : In this hybrid, instead of computing the output y
using the server’s input matrices, we query the ideal func-
tionality and obtain y. This change is only syntactic and
this hybrid is identical to the previous hybrid. Notice that
Hyb8+` is identical to the simulator.

Semi-honest server security. The simulator SimS does the
following:
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• It initializes the server on an uniform random tape.

• Offline Phase. In the offline phase,

1. Authenticated Correlations Generator. For each i ∈
[`], SimS uses the simulator for the semi-honest server
in the protocol implementing FACG by giving randomly
chosen shares as the output of the server.

2. Conditional Disclosure of Secrets. SimS runs the simu-
lator for the semi-honest server in the two-party compu-
tation protocol computing the FCDS.

• Online Phase. In the online phase, the SimS does the fol-
lowing:

– Preamble: Send an uniformly chosen random vector r1
to the server.

– Layer Evaluation. For every i ∈ [`], SimS does the fol-
lowing:

* Non-Linear Layer.
1. SimS recovers the output labels of C̃i since it had

set the random tape for the semi-honest server.
2. SimS chooses a uniform z′i and computes the hash

of the output labels h′i corresponding to z′i. It sends
(z′i,h

′
i) to the corrupted server.

Proof of Indistinguishability.

• Hyb1 : This corresponds to the real execution of the proto-
col.

• Hyb2 : In this hybrid, we use the simulator for the protocol
implementing the FACG functionality by giving randomly
chosen shares as the output of the server. This hybrid is
computationally indistinguishable to the previous one from
the security of this sub-protocol.

• Hyb3 : In this hybrid, we use the knowledge of the input of
the client, the server and the random tape to compute the
correct output of every garbled circuit instead of evaluat-
ing them. This change is syntactic and is identical to the
previous hybrid.

• Hyb4 : In this hybrid, we run the simulator for the protocol
implementing FCDS. This hybrid is computationally indis-
tinguishable to Hyb3 from the security of this protocol.

• Hyb5 : In this hybrid, instead of using the knowledge of
the client’s input to compute the output of each garbled
circuit, we choose a uniform z′i and computes the hash of
the output labels h′i corresponding to z′i. It sends (z′i,h

′
i) to

the corrupted server. This hybrid is identically distributed
to the previous one from the one-time pad security (with
the pad ri+1). Note that Hyb5 is identical to SimS.
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Functionality FACG

1. On client input {ri}i∈[`], server input {si,Mi,αi,βi}i∈[`],
compute {Mi(ri)− si,αi(Mi(ri)− si),βi · ri}i∈[`].

2. Secret share αi(Mi(ri) − si) to 〈αi(Mi(ri) −
si)〉1,〈αi(Mi(ri)− si)〉2 and βi · ri to 〈βi · ri〉1,〈βi · ri〉2.

3. Output (Mi(ri)− si,〈αi(Mi(ri)− si)〉1,〈βi · ri〉1) to the
client, and (〈αi(Mi(ri)− si)〉2,〈βi · ri〉2) to the server.

Figure 11: The ideal functionality for Authenticated Correlations
Generator

Functionality FCDS

1. The client and server input (Mi(ri) − si,〈αi(Mi(ri) −
si)〉1,ri+1,〈βi+1 · ri+1〉1) and (αi,βi+1,〈αi(Mi(ri) −
si)〉2,〈βi+1 · ri+1〉2,{lab

C
i,k,0, lab

C
i,k,1}k∈[|inpi|]) respectively

for some i ∈ [`].
2. If αi(Mi(ri)−si) = 〈αi(Mi(ri)−si)〉1+〈αi(Mi(ri)−si)〉2

and βi+1 · ri+1 = 〈βi+1 · ri+1〉1 + 〈βi+1 · ri+1〉2, output the
labels {labC

i,k,0, lab
C
i,k,1}k∈[|inpi|] corresponding to Mi(ri)−

si and ri+1 to the client. Otherwise, abort.

Figure 12: The ideal functionality for Conditional Disclosure of
Secrets

FInputAuth

• The client’s input is mc and the server’s input is ms and a
MAC key δ. The client receives [[mc]]1, [[ms]]1 and the server
receives [[mc]]2, [[ms]]2.

Figure 13: Description of FInputAuth.

Protocol ΠInputAuth

1. Both parties invoke FRand to receive |mc| random shares
[[r]]

2. r is privately opened to the client.
3. The client broadcasts ε = mc− r.
4. The server’s share is [[mc]]2 =(ε, [[r]]2) and the client’s share

is [[mc]]1 = (ε, [[r]]1).
5. The server chooses two masking vectors u,v and sends the

client [[ms]]1 = (ms−u,δ ·ms−v). The server sets its share
[[ms]]2 = (u,v)

Figure 14: The protocol for Input Authentication.

FTriple

• The client’s input is a1,b1 and the server’s input is a2,b2
and a MAC key δ. The client receives [[a1 + a2]]1, [[b1 +
b2]]1, [[(a1 + a2) · (b1 + b2)]]1 and the server receives [[a1 +
a2]]2, [[b1 +b2]]2, [[(a1 +a2) · (b1 +b2)]]2.

Figure 15: Description of FTriple.

FRand

• The client’s input is r1 and the server’s input is r2 and a
MAC key δ. The client receives [[r1 + r2]]1 and the server
receives [[r1 + r2]]2.

Figure 16: Description of FRand.

Protocol ΠTriple

i. The client and the server engage in a two-party computa-
tion protocol with security against malicious clients and
semi-honest servers to generate the public key, secret key
pair for HE. At the end of the protocol, the client learns
the public key pk and the secret key sk whereas the server
only learns pk.

ii. The client sends Enc(pk,a1),Enc(pk,b1) to the server
along with a zero-knowledge proof of well-formedness of
the two ciphertexts. The server verifies this proof before
continuing.

iii. The server homomorphically computes Enc(pk,a1 +
a2), Enc(pk,b1 + b2) and Enc(pk,(a1 + a2) · (b1 + b2))
along with Enc(pk,δ(a1 +a2)), Enc(pk,δ(b1 +b2)) and
Enc(pk,δ · (a1 +a2) · (b1 +b2)).

iv. The server chooses six random masking elements
u1,v1, t1, u2,v2, t2 and computes Enc(pk,a1 + a2− u1),
Enc(pk,b1+b2−v1) and Enc(pk,(a1+a2) ·(b1+b2)−
t1) along with Enc(pk,δ(a1 +a2)−u2), Enc(pk,δ(b1 +
b2)− v2) and Enc(pk,δ · (a1 + a2) · (b1 + b2)− t2). It
sends these six ciphertexts to the client.

v. The client decrypts the above ciphertexts and ob-
tains [[a1 +a2]]1 = (a1 +a2−u1,δ(a1 +a2)−u2), [[b1 +
b2]]1 = (b1 +b2− v1,δ(b1 +b2)− v2), [[(a1 +a2) · (b1 +
b2)]]1 = (a1 + a2) · (b1 + b2)− t1,δ · (a1 + a2) · (b1 +
b2)− t2). The server outputs [[a1 +a2]]2 = (u1,u2), [[b1 +
b2]]2 = (v1,v2), [[(a1 +a2) · (b1 +b2)]]2 = (t1, t2).

Figure 17: The protocol for Triple Generation.

24



C Pseudocode for our attacks from Section 2
RecoverNetwork:
1. First, recover the last layer:

(a) Denote by M̃` the recovered matrix for the last
layer.

(b) For each j ∈ [t]:
i. Set the initial input to the network to be zero,

i.e. x1 := 0.
ii. Follow the inference protocol to partially evalu-

ate the network up to the `−1-th layer:
x`−1 := ReLU(M`−1(. . .ReLU(M1x1))) = 0.

iii. Malleate the client’s share of x`−1: 〈x′`−1〉C :=
〈x`−1〉C + e j.

iv. Complete the protocol with the server to obtain
x` := M`x

′
`−1 = M`e j.

v. Set the j-th column of M̃` to be x`.
(c) Output M̃`.

2. Then, recover all previous layers:
(d) For each i ∈ [`−1, . . . ,1]:

i. If the i-th layer is a fully-connected layer, set
Mi := RecoverFCLayer(Mi+1, . . . ,M`).

ii. If the i-th layer is a convolutional layer, set Mi :=
RecoverConvLayer(Mi+1, . . . ,M`).

(e) Output (M1, . . . ,M`−1).

RecoverConvLayer(Mi+1, . . . ,M`) :
1. Let the dimensions of the convolutional kernel Ki be ki×ki.
2. Sample a random matrix R having the same dimension as

xi−1.
3. Apply the im2col transformation to R to obtain R′.
4. Let S be the indices of the pivot columns of R′ when it is

in row-reduced echelon form. If |S| < ki× ki, resample R
and retry. Then S specifies the indices of the independent
columns of R′.a

5. Follow the inference protocol to evaluate the network up
to the i−1-th layer to obtain (a share of) the intermediate
state xi−1 := ReLU(Mi−1(. . .ReLU(M1x1))) = 0.

6. Malleate the client’s share of xi−1: 〈x′i−1〉C := 〈xi−1〉C +R.
7. Interact with the server to evaluate the i-th linear layer to

obtain a share of yi := Mix
′
i−1.

8. Obtain the input for the next linear layer: 〈xi〉C :=
MaskAndLinearizeReLU(〈yi〉C,S).
The vector xi is now all-zero, except at locations in S, where
it equals the corresponding elements of yi.

9. Interact with the server to complete the evaluation of the
rest of the network, invoking LinearizeReLU to force inter-
vening ReLUs to behave linearly.

10. Set K := [X1, . . .Xki×ki
], where each X j is a formal variable.

11. Set X to be the all-zero matrix of dimension equal to R′,
except at locations in S, where it equals R′.

12. Compute X` := M` ·M`−1 · · ·Mi+1 · (KX).
13. Solve the linear system X` = x` to learn the values of the

formal variables X j, and hence the kernel Ki.

aThe pivot columns are linearly independent by definition, and row
operations do not change linear dependence of columns.

MaskAndLinearizeReLU(〈y〉C,S):
1. Malleate the client’s local share of y to obtain a share of the

malleated y′ as follows:
(a) For all l ∈ S, set 〈y′〉C[l] := 〈y〉C[l]+ c.
(b) For all l 6∈ S, set 〈y′〉C[l] := 〈y〉C[l]− c.

2. Obtain 〈x〉C := LinearizeReLU(y′)..
3. Invert Step 1a by malleating 〈x〉C: set 〈x′〉C[S] := 〈x〉C[S]− c
4. Output 〈x′〉C.

LinearizeReLU(〈y〉C):
1. Malleate the client’s local share of y to obtain a share of the

malleated y′: set 〈y′〉C := 〈y〉C + c.
2. Interact with the server to obtain 〈x〉C, which is the client’s

share of x := ReLU(y′).
3. Invert Step 1 by malleating 〈x〉C: set 〈x′〉C := 〈x〉C− c
4. Output 〈x′〉C.

RecoverFCLayer(Mi+1, . . . ,M`) :
1. Let the dimension of the i-th linear layer be si× ti.
2. Set M′i to be a si× ti matrix consisting of formal variables.
3. Let s′i := bsi/mc.
4. For each j ∈ [ti], and for each k ∈ [s′i]:

(a) Set the initial input to the network to be zero, i.e. x1 := 0.
(b) Follow the inference protocol to evaluate the network up to

the i−1-th layer to obtain (a share of) the intermediate state
xi−1 := ReLU(Mi−1(. . .ReLU(M1x1))) = 0.

(c) Construct a query q j := e j.
(d) Malleate the client’s share of xi−1: 〈x′i−1〉C := 〈xi−1〉C +q j.
(e) Interact with the server to evaluate the i-th linear layer to

obtain a share of yi := Mix
′
i−1.

(f) Set k′ := k ·m, and S := {k′, . . . ,k′+m−1}.
(g) Obtain the input for the next linear layer:
〈xi〉C :=MaskAndLinearizeReLU(yi,S).
The vector xi is now all-zero, except at locations in S, where
it equals the corresponding elements of yi.

(h) Interact with the server to complete the evaluation of the rest
of the network, invoking LinearizeReLU to force intervening
ReLUs to behave linearly.

(i) Compute Xi as follows. First, compute M′i ·q j , and then zero
out all locations that are not in S.

(j) Construct the k-th linear system x` = M` ·M`−1 · · ·Mi+1 ·Xi.
5. Solve all the linear systems to recover the matrix Mi.
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