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Abstract—Leakage detection tests have become an indispens-
able tool for testing implementations featuring side channel coun-
termeasures such as masking. Whilst moment-based techniques
such as the Welch’s t-test are universally powerful if there is
leakage in a central moment, they naturally fail if this is not the
case. Distribution-based techniques such as the y>-test then come
to the rescue, but they have shown not to be robust with regards
to noise. In this paper, we propose a novel leakage detection
technique based on Neyman’s smoothness test. We find that our
new test is robust with respect to noise (similar to the merit of
Welch’s t-test), and can pick up on leakage that is not located
in central moments (similar to the merit of the x2-test). We also
find that there is a sweet-spot where Neyman’s test outperforms
both the t-test and the y>-test. Realistic measurements confirm
that such a sweet-spot is relevant in practice for detecting
implementation flaws.

I. INTRODUCTION

INCE Kocher’s seminal work [1] in the late 1990s,

the crypto community realised that the threat of using
auxiliary information (execution time [2], power consump-
tion [1], electromagnetic emission [3], etc.) for key-recovery
is severe. The past two decades have seen a flourishing of
new developments in attack techniques (for instance, Template
attacks (TA) [4], Correlation Power Analysis (CPA) [5], Mu-
tual Information Analysis (MIA) [6], etc.), as well as delicate
applications of those in various protected/unprotected cryp-
tographic implementations. With countless existing attacks,
cryptographic engineers and evaluation labs face a challenge:
how can they effectively test a given implementation w.r.t.
arbitrary attacks?

One tool that is particularly useful in spotting arbitrary data
dependencies in implementations is to perform a non-specific
leakage test, as initially formalised in [7]. A non-specific test
ascertains if there is a significant statistical difference between
a group of power traces with the same fixed plaintext and
a group of power traces with randomised plaintexts (“fixed-
versus-random”). The original proposal uses Welch’s r-test;
however, one can always choose other statistical tests to
replace the ¢-test or even test among groups with different fixed
plaintexts (“fixed-versus-fixed” [8]). The “magic” is, unlike
specific tests that set a known target state (e.g. the Sbox
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outputs) in advance, such test can potentially detect any kind
of leakage emitting from the encryption.

Unfortunately, the Welch’s z-test is incredibly limited: the
overall detection is bounded to just the first statistical moment.
In other cases (e.g. a d-share masking scheme), it is required
that the measured traces get pre-processed, whether by taking
the power d of each sample (univariate leakage) or combining
d samples using their “mean-free product” (multivariate leak-
age). Besides the efficiency loss [9], [10], the test relies on the
d-order moment only: any other difference will be ignored.

To overcome the shortcomings of Welch’s t-test, and the
high computational cost of full distribution based techniques
such as CMI [11], Moradi et al. introduced the y2-test as
a complementary tool [9]. Unlike Welch’s t-test, the x2-test
compares the entire distribution, thus does not require the
pre-processing step. Without the error accumulation in the
pre-processing step, the y2-test can outperform Welch’s t-test
in certain higher-order masking schemes. More specifically,
the authors claimed it complements Welch’s ¢-tests in two
circumstances, namely: when the implementation provides
very limited noise, and when the leakage is spread among
various statistical moments [9]. However, being “orthogonal”
suggests there could be a terra nullius sitting in-between where
both tests become ineffective: whether because the noise level
being too high (for y?) or too many shares to combine in the
pro-processing step (for Welch’s #-test).

Our contribution. In this paper, we propose a novel leakage
detection test based on Neyman’s smoothness test [12], [13].
The highlight of this construction is that it achieves a more
balanced trade-off between the t-test and the y2-test. More
specifically, in a low-order masking with high noise setup,
it only falls slightly behind #-test (with the correct statistical
order), while outperforming the y2-test. On the other hand, in
a higher-order masking with low noise setup, Neyman’s test
stays close to the y2-test (even better in certain circumstances),
while significantly surpassing Welch’s #-test. Furthermore, we
find a particular sweet-spot where both Welch’s #-test and the
X2 become less effective, where Neyman’s test outperforms
both previous constructions. Our realistic experiments confirm
that such sweet-spot is relevant for practice: considering Ney-
man’s test combines information from various moments (like
the X2-test), it can serves as a more noise-resilient alternative
to the y2-test for implementation flaw detection.

Organisation. The following section presents some basic
preliminaries: Boolean masking schemes, leakage detections
in general, moment-based detections (e.g. Welch’s z-test) and



distribution-based detections (e.g. x2-test). Neyman’s smooth-
ness test, along with how it can be applied in a leakage
detection setting is introduced in Section III. Section IV further
provides a comprehensive set of simulations to determine
the detection power of the proposed technique in comparison
with Welch’s t-test and the y-test. Realistic experiments in
Section V confirm the observations from simulations, as well
as the test’s potential for combining information from various
statistical moments in practice. We provide a discussion in
Section VI, explaining some salient technical details about
the “orders” of Neyman’s test as well as elaborating on the
strengths and weaknesses of the three mentioned tests. Finally,
we conclude this paper in Section VII.

II. PRELIMINARIES

A. Boolean masking

In this paper, we use Boolean masking for all experiments:
for a d-share masking scheme, a secret x is presented as a d-
tuple (z1, ..., £q), whereby = 1®- - -®x4. Depending on the
specific implementation, the data shares are either processed in
parallel or in sequence. The former type of implementation is
typically found in hardware, whereas the latter is often found
in software platforms.

When shares are processed in sequence, one can expect that
the power trace captures the leakage of each share L;(x;) at
one individual time sample. On the other hand, when shares
are processed in parallel, it is often assumed that the measured
leakage (at the point in time when the respective shares are
processed) can be understood as a linear sum of all leakages

L(x1,...,2q) = L1(x1) + ... + La(xq)

A fundamental pre-condition of the above expression is
that shares should leak independently of each other. With
this assumption, and a suitably designed masking scheme,
it is possible to formally prove and verify the security of
such a scheme up to some order. In other words, no attack
is theoretically possible unless an adversary creates joint
leakage by combining the leakage from the independent shares
somehow.

However, it is possible that an implementation does not
completely adhere to the security assumptions of the proof
and thereby introduces a “flaw”. Whilst formal verification
can identify problems in masking schemes that are captured
by the security model, it is not able to identify flaws that are
due to physical interactions that are (a priori) unknown to the
designer. Hence these can only be detected using statistical
techniques applied to real device measurements.

B. Leakage detection

A straightforward strategy to verify the security of a cryp-
tographic implementation is to try all possible attacks and
see if any one of them could succeed. Alternatively, one
may also assess the dependency between the leakage and the
intermediates using statistical tools such as NICV [14] and p

test [8]'. These approaches can be classified as specific leakage
detections as they all require the verifier to select a set of target
intermediates to be tested.

While specific detections benefit from the fact that any
detected leakage can be easily converted to successful attacks,
this strategy suffers from its limited coverage: only the selected
intermediates can be verified and there is no guarantee over
those omitted. Attempts trying to cover all exhibited inter-
mediates within the implementations usually turns out to be
impractical, not only for the enormous computation workload
required but also due to the fact that unexpected intermediates
could be induced in various ways. For instance, for software
implementations, the compilation could introduce additional
intermediates along with unexpected interactions that severely
undermines the security: for Boolean masking, if each share
is individually stored, the security order in practice could be
halved [16]. Due to the complex logic interaction within the
ALU, security reduction in other implementations could even
go beyond the factor 2 [17]. Similarly, hardware platforms
could also be affected by the synthesis/P&R process [18].
Physical effects, such as coupling [19], [20], could also cause
unexpected security loss.

To overcome the above restrictions, more attention has
been directed to the research field of so called non-specific
leakage detections which often abbreviated simply as leakage
detection. The central idea behind is that it is possible to
identify data dependencies without performing a concrete
attack. This can be achieved by comparing the statistical
distributions resulting from two sets of traces, which are
derived as follows. The first set consists of traces where the
input data to the cryptographic algorithm get fixed to some
(arbitrary) value. The second set consists of traces where the
input data to the cryptographic algorithm are chosen randomly.
If both distributions are “the same” then there cannot be any
information about the fixed data in the first set (as the fixed
set shows the same characteristics as the random set). But if
the two sets are statistically different, then there must be some
information in the set with fixed inputs. Such test can also be
performed in a fixed-v.s.-fixed manner [8], which can be even
more trace-efficient (i.e. requires less measurements).

A leakage detection test is a classical statistical hypothesis
test, therefore prone to two types of errors. A test can wrongly
identify a leak (false positive), and a test can fail to identify a
leak (false negative). For a test to be useful, both types of error
need to be kept small. Both types of errors are a function of the
“magnitude” of the kind of leaks that we wish to find (effect
size) and the number of observations that we can acquire.
Clearly this implies a trade-off: smaller effects must require
more observations to keep the number of false positives and
false negatives low. For a set of given parameters (i.e. the
effect size and the number of traces), the power of a test is
defined as the proportion of leaks that can be detected when
the null hypothesis (i.e. a leak exists) is true. Higher powered
tests are better because they detect more existing leaks.

There might be confusion on whether the “generic” property [15] helps
make these tool “non-specific”. Without further restriction, the answer is no:
we provide a brief discussion on this in the Appendix.



For most tests, an analytical expression (which relates its
error rates, effect size and the number of observations) is not
available; therefore the power of test has to be determined via
simulations. This process is called a priori power analysis.

In the context of masking schemes, the goal of masking is to
ensure the measured leakage is independent of secret interme-
diate values. This is usually achieved by generating multiple
data shares with random values. Since each share alone is
effectively a random value, their independent leakage (i.e. not
combined with other shares) is also a random value. Hence the
linear sum of the leakages should also appear random which
can be confirmed by a leakage detection test. On the other
hand, however, for a flawed scheme or implementation, the
leakage distribution of the fixed data set may exhibit some
form of (subtle) dependency to the fixed data which could be
revealed by a suitable leakage detection test.

Leakage detection can also be used to confirm the mask-
ing order of a scheme. If the scheme uses d shares, then
after some pre-processing (in a parallel scheme comput-
ing gzzz‘f Ll(azl)) and in a sequential scheme computing
[T;=7 Li(z;)) will produce joint leakage of all d shares. A
leakage detection test can therefore be carried to confirm no
lower order combination can result in detectable leakage.

Despite the existing security proofs, as pointed out previ-
ously, both software and hardware implementations in practice
bring unexpected leakage that is not captured by the model
assumption. Although various leakage simulators (with HW
or profiling models like [21]) have been proposed recently,
capturing all physical/micro-architectural effects remains a
challenge [22]. To date, leakage detection tests remain an
indispensable tool to check the actual security of masked
implementations. This perhaps explains the interest in con-
structing effective test regimes over the past years. In principle
(m)any statistical test could be utilised as it is a priori unclear
how the distribution of the fixed and the random data set
will differ, but two competing approaches have emerged in
the side channel literature. Firstly there are the moment-based
tests (e.g. Welch’s t-test [7]). These tests excel at identifying
leaks in a central moment of a distribution. Secondly there are
distribution-based tests. Here two options have been investi-
gated: based on computing an information theoretic metric
(MD) [11] and based on a discretised representation of the
data (x?) [9]. The former type (MI based) has the (significant)
drawback of being computationally expensive; therefore it is
less used in practice (other than its original proposal in [11]).

C. Moment-based v.s. Distribution-based approach

Welch’s t and x? represent two different approaches for
testing the distributions: Welch’s z-test focuses on a specific
statistical moment (“moment-based”). The y>-test, on the
other hand, potentially detects any existing difference within
the entire distribution. The comparison in [9] shows:

o In Hamming weight simulations, with medium noise, X2
falls behind Welch’s t-test for d = 1, 2, but outperforms
Welch’s t-test for d = 3, 4.

o In Hamming weight (HW) simulations, d = 3, x? is
better in general, but the advantage fades with larger noise

o In a realistic threshold implementation, y? is slightly
better than the 3rd order Welch’s ¢-test (almost negligi-
ble). As the implementation is likely noisy, the advantage
is most likely from combining the weak (but existing)
second order leakage and the strong 3rd order leakage.

o In a realistic threshold implementation, non-profiled at-
tacks with the Hamming distance (HD) model, the y2-test
is significantly better than 1-3 order CPAZ,

In the following sections, we extend the above observations
with more non-HW leakage models and propose a new test that
achieves a more balanced trade-off between the y2-test and
the Welch’s ¢-test, accompanied with theoretical justifications,
simulations and realistic verifications.

III. NEYMAN’S SMOOTHNESS TEST

The motivation for using the y?-test is to compensate the
incapability of Welch’s ¢-test that it cannot detect leakages that
did not present in the central moments. As [9] demonstrates
via a range of experiments, there should be a “sour”-spot
where both Welch’s ¢-test and the y2-test become inefficient.
In particular, with medium noise level and d = 3 or 4, both
tests show poor performance because the ¢-test is hampered by
the limited magnitude of dth-order statistic moment, and the
x2-test is hampered by the noise level. As leakage detection
is particularly useful in the initial exploration of the leakage
of a device, it is important for any tool to work reliably well
across a range of scenarios (i.e. leakage functions and noise
levels).

Finding robust and versatile tests to distinguish arbitrary
distributions is a well appreciated issue in statistics. The
any-order tests (e.g. x2, Kolmogorov-Smirnov, Cramer-von-
Mises, Anderson-Darling etc.)—also called “omnibus” tests—
are known to have limited power against certain alterna-
tives [23], [24]. The obstacle here is that there is little
constraint on the alternative hypothesis. Take the classical
fixed-versus-random leakage detection setting for instance, the
null hypothesis is simply that the two distributions are the
same. The alternative hypothesis, on the other hand, has no
constraint other than the distributions being somehow “dif-
ferent”. This imposes strong generality requirement over the
test which inevitably reduces the statistical power, particularly
in noisy contexts. Neyman’s test [12], on the other hand,
provides a more flexible trade-off between generality and the
statistical power: by “limiting” the alternative hypothesis as
a combination of independent basis functions (aka sacrificing
some generality), one can achieve a better trade-off between
generality and statistical power.

A. Neyman’s Smoothness Test

If a Cumulative Distribution Function (CDF) F' is con-
tinuous and strictly increasing over its support, the inverse
QQ = F~! exists (aka the quantile function) and is also
continuous and strictly increasing. By definition, for any

2Note that this is not exactly a fair comparison though: the x? distinguisher
uses only the 9 categories (HD=0-8), not the numerical values, whereas the
CPA distinguisher uses the 9 HD values.



0 < a <1, we have F(Q(a)) = a. Thus, if we consider
the distribution of F'(X),

Pr(F(X) <a) = Pr(X < Q(a)) = F(Q(a)) = a

F(X) is uniformly distributed on the unit interval. Note that
the only pre-conditions here are X ~ F' and F' is continu-
ous and strictly increasing: the specific distribution of F' is
irrelevant. Therefore when testing whether X has distribution
Fjy, one can instead test the uniformity of Fy(X) [25]. This
reduces the general goodness-of-fit problem to testing whether
a distribution is uniform or not. Note that depending on
the specific measurement setup, realistic side-channel mea-
surements can also be discrete: for clarity, we proceed our
discussion here using the continuous case. Discussion about
the discrete case can be found in Appendix C.

To test the uniformity of Fj(X), Neyman proposed to use
a series of orthogonal polynomials v; for ¢ = 0,1,2,...
(called the “function basis”). Each polynomial should be
normalised ( fol ¥2(x) dz = 1) and orthogonal to all others
(fol Yi(z)y(x) de = 0, i # j). The original proposal [12]
used the normalized Legendre polynomials where

o(z) =1

P1(z) = V322 — 1)

Pa(2) = V(622 — 62+ 1)

Ys(z) = V7(202° — 302% 4 122 — 1)

Yu(x) = 3(702* — 1402° 4 902% — 202 + 1)

Neyman’s original proposal limits the basis to degree k = 4.
However, one can compute the normalised Legendre polyno-
mial of any order k as [13]:

WV (@2k+1) & &

Vrln) = T g ()
Alternatively, one can also use the trigonometric series given

by

() = V2cos(rkx)

Under the null hypothesis, X ~ Fy ensures Fy(X) follows
a uniform distribution. In other words, ;(Fy(X)) becomes
random sampling on the support of ;. Denote the sample
size of X as n. When n is large, by the law of large numbers,
the sample mean ¢, (Fy(X)) goes to 0. Meanwhile, the Central
Limit Theorem (CLT) ensures that v/n-; (Fo(X)) ~ N(0,1),
where N(0,1) is the standard Gaussian distribution. Since
each polynomial is orthogonal to one another, Neyman’s
smoothness test verifies whether the following statistic follows
the %2 distribution with degree of freedom k [25]:

k

S 0 (Fo(X) ~ (k)

i=1

B. Two samples’ adaptive Neyman’s Test

Historically, Neyman proposed this test as a goodness-of-fit
test where the expected distribution is known. This is evidently
not a good match to our application use case where we are
interested in testing the equality of two sampled distributions
to decide if there is a leak or not.

A few papers have extended Neyman’s smoothness test
to a two-sample equality test [26] [13]. The former favours
situations where the two sets have very unequal sizes, which
does not align with our use case. Utilising the idea from
Fan [27], the latter constructed a two-sample test by using the
maximum norm. For n samples of X ~ F' and m samples of
Y ~ G, denote F,, the empirical CDF of F. Let V = F,(Y)
and 1; = ¢;(V), we have:

nm

n +m(w17 ---71/)k')T ~ N(O,Ik)

and therefore the tested statistic follows:

nm
Wy =/ o max (1, ..., Yr) ~ |N(0,I)|

For any significance level «, the null Hypothesis is rejected
if and only if

U, > ¢! (Hk V;l_a)>

where @ stands for the cumulative standard Gaussian distri-
bution. The maximal degree k can increase with the available
samples (i.e. n, m): when n and m are comparable, the authors
claim % can be the order of n'/4 for trigonometric series (n'/?
for Legendre polynomials).

C. Neyman’s test for leakage detection

With the fixed-versus-random strategy, any two-sample
equality test can be used for leakage detection. Therefore,
when using [13] the only decision left is regarding the maximal
order k. Throughout this paper, we provide two options for
the maximal order of Neyman’s test: £ = 4 as Neyman
originally recommended (denoted as Neyman4) and k£ = 12
as the largest option that is numerically stable (denoted as
Neyman12). In this paper, we refer the basis function to be
Legendre polynomials unless specified otherwise, as that have
shown better effectiveness in detecting the leakages among our
settings than its trigonometric counterpart.

Algorithm 1 presents the work flow of a leakage detection
based on the univariate Neyman’s smoothness test. If the
measurement data turns out to be discrete, line 6 represents a
pre-processing step to “smooth” the data (see Appendix C)>.

Computation Efficiency. The primary computation load
comes from calculating the relative distribution V: as we
can see in line 4, this step takes two sortings, and costs
O(mlogm) + O(nlogn). Both Line 5 and Line 6 (if exists)
can be completed in linear time. In practice, as v; is a fixed
function and k& is a small constant, the overall cost of line
9 is also O(m). Thus, the overall test can be completed in
quasilinear time.

3Note that this is the counterpart of the binning process in x2-test, when
the data is continuous, therefore should not be taken as a disadvantage of this
test. Although digital readings of raw measurements are often discretised, any
pre-processing (e.g. point combination, signal processing etc.) can make them
continuous, therefore it is unfair to claim side-channel usage should always
be discrete or continuous.



Algorithm 1: Leakage detection with Neyman’s
smoothness test

Input: Fix measurement group (Xi,...,.X,) X ~ F
Input: Random measurement group (Y1,....Y;,) Y ~ G
Output: p-value p for F =G

1 Select a maximal order k;

2 Calculate V = F,(Y);

3 begin

4 Sort X and Y separately;

5 For each Y}, V; = #{X,|X, <Y;}/n;

6 (optional) When necessary, smooth V;

7 end

8 for i < k do

o | B = S vilVy)/mi

10 end

nv= A/ nnJ:ran max (Qﬁl, ceey ’(l}k),

2 p=1-(20(¥) - 1)k

13 return p

IV. SIMULATED EXPERIMENTS
A. Simulation setup

Throughout this section, we use simulation experiments to
demonstrate the performance of Neyman’s test. Our testing
setup is a d-shared Boolean masking, where each share is
always 8-bit. The masking scheme is processed in parallel,
so the attacker can observe only one univariate leakage time-
sample. The random noise is generated by the Matlab default
normal distributed random function. To avoid unnecessary
confusion, we list the noise variance instead of the signal-
to-noise ratio (SNR). Unless stated explicitly, all following
experiments use 0 as the fixed constant.

In order to cover a variety of potentially interesting cir-
cumstances, we consider the following options for the leakage
function L:

o Standard Hamming weight (HW):

where z; ; is the j-th bit of the i-th share of x
o Least significant bit (LSB) emphasised:
j=8
Ld(:L'd) =10- Tq1+ Zxd,j
j=2
All other L;-s follow the standard HW model. This
is motivated by the fact that sometimes the LSB may
dominate the leakage [11].
« Randomised weight HW:
j=8
Lz(l‘,) = Qp + ZO&j * L,
j=1
where «; < U(0, 1). This is motivated by the fact that

realistic devices often have different weights for different
bits [28], [29].

e HW model with adjacent bit-interaction (within one

share):
j=T j=8

Li(z;) = a0+ ) aj-@ig+ ) (@1 @i - Tijr)
j=1 Jj=1

This model has been observed in [21], [30]. Note that
this is not a security flaw because there is no cross-share
interaction (unlike the case in [17]). Therefore, for the
target 3-share scheme, we perform only the 3rd order ¢-
test in Figure 1, 2 and 4; whilst present also the 1st/2nd
order t-test in Figure 5.

« Affine model:

Li(z;) = HW (A(x;))

where A is the affine transformation in AES’s Sbox. If

the underlying masking scheme is a code-based one or

the hardware circuit is computing a linear transformation

in parallel, then such behaviour would occur in practice.
o Sbox model:

Li(z;) = HW(S(z:))

where S is the AES’s Sbox. This model represents com-
plicated leakage from combinatorial logic in hardware,
which is usually highly non-linear.

To ensure the noise levels are comparable, we explicitly
multiply a factor to each power model so that their “signal
variances” equal to the standard HW model.

B. A priori power analysis

Considering in practice various devices produce various
leakage models, we now subject the novel Neyman’s test
alongside Welch'’s ¢-test and the x2-test to a battery of repeated
experiments (100 repetitions) featuring different leakage mod-
els and noise, in the typical use case of a 3-share masking
scheme (in both the parallel and the sequential case). We
assume a fixed alpha of 0.00001 which is in line with previous
work, and ask how many traces are necessary to reach a power
of 0.8%.

1) Results for parallel leakage: We first assume that all
shares are processed in parallel and their total sum is leaked.
The results are displayed in Figure 1. From the upper-left, we
have:

o Standard HW: x? works better when the noise is low,
whereas Welch’s ¢ test becomes better for higher noise.
Neyman’s test (especially Neyman12) can serve as a fair
trade-off option.

+ LSB-emphasised: The unbalanced weight has an impact
on all the tests, although the x2-test seems to be the least
affected.

« Randomised weighted HW: For this particular choice
of weights, X2-test falls behind Welch’s ¢, even when
the noise level is extremely low. Both Neyman4 and
Neymanl2 works as good as Welch’s ¢ in this setup,
although the advantage is quite limited.

“In a typical figure, this means that 8 out of 10 leaks will be detection.
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« HW + adjacent bit-interaction. This model makes
detection harder for 2 and Neyman12 under a low noise
level, but does not have a significant impact when the
noise level is high.

o Affine Model: Note that a cryptographically linear trans-
formation is only linear on GF'(2™), not on R. Therefore,
this affine model actually leads to a quite high-order
leakage function L;. Consequently, the 3rd order Welch’s
t-test failed completely, while only x? and Neymanl2
work with a low level of noise.

o Sbox Model: Welch’s ¢ (3rd order) failed in this setting.
Neyman’s test and XQ, on the other hand, can detect
a small difference with little noise. The fact that 2
shows an advantage against Neymanl2 suggests there
might be some useful information in the “high-order
components” discarded by Neymanl2. Throughout our
simulation, only in this relatively extreme case we found
such an advantage for x? over Neyman12.

To sum up, for most scenarios, x>-test has an advantage in
extremely low noise scenarios. Such advantage shrinks quickly
with increasing noise, supposing the other tests can actually
detect some meaningful difference. Welch’s ¢-test is relatively
robust against noise, yet the detecting power is restricted to
that moment only. Neyman’s test on the other hand, can be
adjusted with Neyman’s “order”: higher order like Neyman12
can capture most (but not all) of the coverage of the x2-test,
while Neyman4 remains more robust against noise, just like
Welch’s t-test. Having said that, the leakage model plays a
critical role here: in certain implementations, it can possibly
push the advantage region of y2-test (Welch’s ¢ test) to some
point with extremely low (high) noise level, which leads to no
practical impact at all.

Standard HW

LSB enphasi sed

I'0g,,(Sanpl es)
IS
”

I 0g,,(Sanpl es)
IS
o

4 2-2 20 22 24 2-4 2-2 20 22 24
Noi se variance Noi se vari ance

Randoni sed wei ghted HW HwWtadj acent bit-interaction

1 0g,,(Sanpl es)
1 0g,,(Sanpl es)

24 22 20 22 24

Noi se vari ance Noi se vari ance

Affine Mdel
6 = T
|
5.5 6— 2
—%— Neyman4
5 —6— Neyman12

I'0g,,(Sanpl es)
IS
»

4 272 2 0 2 2 2 4

Noi se vari ance
Fig. 2: 3-share Sequential leakage: required sample size for
80% power: X2 v.s. 3rd order ¢ v.s. Neyman

2) Results for sequential leakage: For this experiment we
assume that all shares are processed in sequence. In principle
this results in multivariate leakage, thus we perform the stan-
dard preprocessing step that consists of subtracting the mean
from all leakage points and then multiplying them [31]. If
the leakage function features some bit-linear components, then
this preprocessing has been shown to retain those features, and
consequently we expect the ¢-test to be particularly powerful.

The results of this experiment are displayed in Figure 2: the
t-test performs very well, this time even in the affine leakage
model setup. In most cases, Neyman’s test lies somewhere be-
tween the y2-test and the t-test. The Sbox model is eliminated
here since all tests fail to achieve 80% power.

C. In depth comparison for additive HW leakages

We replicated the comparison in [9] including the Neyman
tests for ease of comparison with previous work. This com-
parison is only based on observations using the HW power
model. Our experiments confirm the observation — Welch’s
t-test performs well with higher noise and less data shares
(red rectangle), whereas the x? has advantages when there
is limited noise and many data shares (blue rectangle). The
x? test and Welch’s ¢-test are complementary to each other,
specifically at these two corners. The yellow circle, on the
other hand, illustrates the other side of the coin: Welch’s ¢-
test is hampered by the larger d and the x2 is hampered by a
less-favourable noise level (namely their “sour-spot”), whilst
Neyman12 found itself a “sweet-spot”.

Zoom in for d = 3: Although Figure 3 presents a
vivid overview of our constructions as well as the previous
techniques, identifying small differences from various shades
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of grey is arguably challenging. Therefore, we provided a
zoomed view for the centre of Figure 3, where d = 3 and
o? is around 1.

Figure 4 clearly demonstrates that as the noise increases, the
testing results are moving from a “x* favourable” direction
towards a “¢ favourable” direction. As expected, there is a
sweet-spot within the spectrum: in the middle graph, Ney-
manl2 clearly shows an advantage against both Welch’s ¢-
test and the x2-test. We would like to stress that the practical
impact is much more complicated than Figure 3: for instances,
some of the cases where the y2-test outperforms all other
tests have a extremely low noise which could be unrealistic in
practice. Similarly, the “sweet-spots” of Neyman’s test showed
in Figure 3 may vary depending on the characteristics of the
traces to be tested.

D. Detecting “flaws”

Arguably, one of the most essential use cases for leakage
detection is identifying implementation “flaws”. For typical
Boolean masking schemes, this is often caused by some

unexpected register/bus transition occurring within the pro-
cessor [16], as well as unexpected leakage contributed by
combinatorial logic and glitches [17].

In a parallel univariate setting, the de facto standard is
testing all lower than d Welch’s ¢-tests. Moradi et al. suggested
this could be another advantage for the x2-test, as it can
possibly combine various lower order leakages and construct a
more efficient statistic [9]. Therefore, we would now illustrate
what happens in the case of such a “flawed” leakage function.
Specifically, consider a 3-share flawed leakage function L’ is:

L’ (z1,x2,23) = L1(x1) + La(z2) + La(xs)
+a (L 2(x1 - ®2) + Lag(xa - x3) + L1 3(x1 - 3))
+B8L123(x1 - x2 - 3)

where - stands for the bitwise-and and x; stands for the ¢-th
share of z. Any cross-share combination produces unexpected
leakage that is not captured by the independent assumption
(aka a “flaw”). In practice, such interaction terms usually
come from physical sources as observed in [19], [20] or
micro-architectural effects as observed in [17]°. Considering
the leakage from those interactions often has rather limit
magnitude, we set @« = 0.1 and 5 = 0.01 to emulate the
practice.

Figure 5 illustrates the impact of having L’ as the leakage
model. Although L’ has an interaction term that combines all
3 shares, as 8 = 0.01, first order Welch’s ¢-test never succeed.
Second order Welch’s ¢-test, on the other hand, becomes
the best option with larger noise (02 = 16). We observe
the similar trend as Figure 4: with lower noise, Neymanl2
and x? are better, while Neyman4 stays close to the 3rd
order Welch’s ¢-test. However, when the second order ¢-test
becomes a better choice, Neyman4 adaptively “de-couples”
with the 3rd order t-test and achieves similar performance
as the second order ¢-test. Neymanl2 has similar behaviour:
as noise level becomes higher, its performance “smartly de-
couples” from the y2-test and moves towards the best possible
t-test. This phenomenon suggests at least in this particular
setting, Neyman’s test achieves a better balance, which might
be a critical property as leakage detection techniques could
face various leakage functions and noise levels in practice.

V. EXPERIMENTS WITH REAL DEVICE DATA

Previous work has extensively focused on the use case
of hardware masking. Results from [9] confirm the superior
power of the t test whenever there is leakage in a central
moment, and the usefulness of the Xz-test otherwise. These
experiments, because derived from hardware masking, thus
are the practical counterpart to the case of parallel HW/linear
leakage from our simulations.

On the other hand, masking per se is not limited to hardware
implementations, and one could argue that the more immediate
use case is in fact in software implementations. We there-
fore, in order to complement the existing work, concentrate
on the application of leakage detection tests on software

SCombinatorial leakage is a well-recognised component in hardware im-
plementation, see [32] for instance. However, it only becomes a “flaw” if the
implementation fails to avoid them to be “crossing-shares”.
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implementations. We study an implementation of a 3-share
masking scheme (written in C, which implies that some flaws
might occur due to the transition leakage [16]), as well as an
implementation of a 4-share masking scheme using “share-
slicing” [17] to improve its performance.

All traces in this section were captured with a Picoscope
2206B, running at 250MSa/s. The target core is either an NXP
LPC 1114 (ARM Cortex M0), or an NXP LPC 1313 (ARM
Cortex M3), both running at 12 MHz.

A. 4-share software masking with share-slicing

Implementing masking incurs a significant performance
loss. Thus many techniques have been proposed as mitigation,
one of which is to “pack shares” cleverly into processor
words. This trick leads to more efficient implementations as
it enables executing the algorithm with several shares running
in “paralle]”. However, parallel masking implementations in
practice are often found to be not adhering to the necessary
independence requirements on the shares. In the case of hard-
ware masking, the coupling effect can produce joint leakage
between parallel data shares [19]; for software implementation,
not only coupling still persists [20], but also other micro-
architectural effects contribute [17]. Arguably, this is exactly
what leakage detection is aiming for: finding any unintentional
leakage that the designers might not be aware of.

We now analyse the 4-share multiplication of Barthe et
al. [33]: the underlying leakage comes from the specific bit-
allocation strategy (called “share-slicing” in [17]), regardless
of the actual masked multiplication. In a 4-share share-slicing
scheme, all 4 shares will be stored in the same register, and
this produces small yet exploitable low-order leakages [17].

Using this particular implementation as our target gives us
some flexibility. As we can see in Table I, for any secret bit a,
the implementation creates 4 random bit shares (a1, as, as, ay)
and stores them in a register. For a 32-bit processor, except for
a1 ® az & as B ag = a, the rest 28 bits are up to the specific
implementation. These 28 bits allow us to “manipulate” the

TABLE I: Bit-allocation for bit-slicing
Bit no 1 2 3 4 .. | 29 | 30 | 31 32
Stored bit | ai az as a4 h1 hao hs hy

noise level as we did in the simulation section, from all O-
s (little noise) to all random bits (large noise). We would
remind readers that such modification may also impact the
leakage function itself in addition to the noise levels due
to the change of the execution course. Meanwhile, whatever
stored in these 28 bits will not affect the correctness of the
masked encryption: only (a1, as,as,as) are computing the
true masked encryption; other bits are merely some parallel
padding data.

For our experiments, we consider the following range of
scenarios:

e Zero-pad variant. Setting all 28 bits to 0 (by = by = ... =
hs = hqy = 0), so that the overall noise level is expected
to be the lowest.

e Same-bit-pad variant. Using all 28 bits as valid data
shares, but the unshared secret remains exactly the same
(a1®a2@a3@a4 = bl@bQ@bd@lM = .. =
h1 @ he @ hs @ hy). In practice, this could mean all 8
concurrent blocks are encrypting, yet the attacker can do
a chosen-plaintext access, setting all 8 blocks to be the
same. The noise level here is higher than the Zero-pad
variant, yet depending on the specific leakage function,
the same unshared value could also amplify the leakage
“signal” which leads to easier detections.

e Random-pad variant. All 28 bits as completely random
bits (b1 @bg@bg@b4 = Thy ey hl@hg@hg@h4 = T’h), SO
that the overall noise level is expected to be the highest.

We use the same implementation code as [34]: for the zero-
pad variant, we simply erase the other 28 bits before the
target multiplication. Since the SNR in this implementation
is relatively low, we repeat the same measurement 100 (1000)
times and keep the averaged trace to achieve a higher reso-
lution (same as [17], [35]), so that the testing procedure can
finish in a reasonable amount of time. Note that this means
the following results represent a scenario where the attacker
has a much more accurate acquisition setup than ours: there
is no guarantee whether an attacker in practice can actually
achieve this (or not).

Zero-pad variant. Since all other bits are set to zero, we
are testing a relatively low noise scenario®: the “sweet-spot”
that favours Neyman’s test still exists (the left one in Figure
6). Neyman4 confirms the leakage within 20k traces whilst
x2-test requires double the amount (= 40k traces) to reach the
same confidence. Perhaps the even more attractive property of
Neyman’s test is its ability to cope with both the “high noise,
low order” (favours Welch’s t¢-test) scenarios and the “high
order, low noise” (favours the Y 2-test) scenarios. Neyman12 is
almost overlapping with Neyman4 here: the actual p-value is a
bit higher, suggesting the 4-12 order components in Neyman’s
test (aka (15, ..., ¥12)) seems to be redundant in this particular

SUnlike the simulation experiments, we cannot completely control the en-
vironmental noise here. Thus, the “low” noise only guarantees the algorithmic
noise is low: the overall noise is medium if we compared it to Figure 4.
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case. Nevertheless, the overlapping plot can also be viewed as
an evidence proving that the negative impact of having useless
high order components is almost negligible.

Same-bit-pad variant. Unlike the zero-pad variant, if all
other 7 blocks are active, the overall noise level is higher.
However, the SNR does not necessarily decrease, as the signal
level also becomes higher. The middle graph in Figure 6 shows
that the leakage detection result is quite different: the second-
order t-test performs quite well in this case, successfully finds
the leakage within 20k traces. Both Neyman4 and Neyman12
have similar performance, slightly better than the second order
Welch’s t-test. The y2-test is still effective, although it takes
much more traces.

Random-pad variant. Further increasing the noise shows
an intriguing phenomenon that did not appear in our sim-
ulation: when all other 7 blocks are randomly picked, both
Neyman4 and Neymanl2 clearly outperform all other tests. In
the lower half of Figure 6, both Neyman’s tests successfully
find the leakage with 450k traces, whereas no other test
succeed within 500k traces. One plausible explanation would
be, as this implementation is “flawed” (having exploitable
differences at the lower-than 4 order statistical moments),
Neyman’s test starts to combine information from various
orders and hence being able to develop an effective statistic
in a faster manner. The y2-test should eventually detect the
leakage as well, although the “capturing everything” property
also suggests the test can be less resilient to random noise.

B. 3-share software masking in C

We use an open source higher-order masking implemen-
tation [36] with 3 shares. The underlying masking scheme
is from Rivain and Prouff [37], using the “common shares”
technique [38] and the “random reduction” method” by [41] to

"Theoretically speaking, this is a problematic scheme as pointed out by
Barthe, Dupressoir and Gregoire: the claimed security proof is not achieved
by this approach [39]. We have patched this implementation beforehand
according to [40].
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improve the performance. Our experimental platform is exactly
the same as before: the only difference is here we use an ARM
Cortex M3 core (NXP LPC1313), which has a larger RAM to
support higher order masking computations.

Because the entire implementation is written in C, we expect
that a 3-share scheme can be attacked with second order
attacks, due to the fact that transition leakage can lower the
security order [16]. Similar to Section IV, we search for a
pair of samples whose mean-free product demonstrates some
leakage. We did find one of such combinations within the
Sbox region: since all three shares are proceeding with a table
lookup in sequence, there is a leakage sample corresponds to
x1 @ x2. Combined with the leakage sample of =3, a second
order test can be built.

In the left half of Figure 7, we can see that if the “mean-
free” product combining function is selected, Welch’s t-test
is clearly the best approach, with Neyman’s test follows.
This does not come as a surprise as the mean-free product
combining function (when the individual points are dominated
by HW leakage) results in a function that is strongly correlated
to the HW of the sum of the respective intermediate values.

The right half of Figure 7 gives the performance of each
test with “mean-free” product combining all three shares:
Welch’s t-test clearly outperforms the other two, with Ney-
man’s test being second, while x2 falls further behind. This
is indeed consistent with the previous leakage testing [9] and
information theoretic analysis results [42]. As a consequence,
if the implementation operate data shares in sequence and
we know in advance the leakage is subject to the standard
HW model, we recommend to use Welch’s ¢-test. Otherwise,
it is recommended to try all possible detection techniques:
however, if users insist to use one representative, based on
what we learned in Section V-A, Neyman’s test seems to be
a more balanced choice.

VI. DISCUSSION AND PERSPECTIVES

Leakage detection can be used as a tool in different contexts.
For instance, as a part of ISO 17825, it is used as a confor-
mance testing regime and thus serves the purpose of certifying
security. The Federal Information Processing Standard (FIPS
140-3) also includes leakage detection for the same purpose,
through adopting various ISO/IEC standards [43]. As a recent
analysis has demonstrated, this is an extremely challenging
use case—not only the power of tests might be concerning,
but also the detection outputs require careful multiplicity



corrections [44]. A more realistic use case of leakage detection
is that to either demonstrate (or even certify) vulnerability or
to identify concrete weaknesses. We now reflect on what can
be achieved with the new method, and those we compare it to,
with regards to the latter use cases, and then reflect on open
research.

A. Verifying Security “Orders”

Moment-based tests may have one advantage: their results
have a simple link to the security proof of the underlying
masking scheme. Thus for a d-order secure scheme, if any
lower than d-th order t-test fails, this fact certifies that the
implementation has a “flaw” (either caused by implementation
pitfalls or invalid security assumption). Note that the opposite
is not necessarily true: if all lower than d-th order ¢-test find
no leakage, it does not guarantee the security assumption is
respected because any test is based on a set number of traces.
Therefore a test can never prove the absence of a leak, it can
only fail to gather enough evidence for the presence of a leak.

Distribution-based tests do not offer a link to the secu-
rity order of a masking scheme. In fact, as those tests can
potentially capture any type of distributional difference, they
can possibly detect leakage based on > d-th order moments.
Although Neyman’s test has its own definition of “order”, it
is not different than other distribution based tests: it offers no
link to a security order. Thus it is best suited to demonstrate
potential vulnerability at a certain trace level. For any more
investigative endeavour, a developer best deploys specific tests
instead (like is the case for the x2-test).

A legitimate question is whether knowing which security or-
der an implementation fails helps to fix the problem. Consider
for instance a highly parallel masking scheme: knowing that
there is a security flaw at an order below the security proof’s
guarantee does not help to narrow down what circuit com-
ponents actually causes the problem. This is perhaps slightly
different in a sequential software implementation, where (as-
suming we know which trace points produce the joint leakage)
the presence of a lower order leakage potentially reveals the
offending instructions/intermediate values. However, one can
argue in this case, leakage reasoning is driven by the fact
that trace points can be associated with specific intermediate
values, not by the order of the flaw itself. Thus knowing/testing
a specific security order alone does not ensure security in
practice (see also [10]); nor does it help in explaining the
leakage or working out a security patch. Summarising the role
of a generic leakage test really is to demonstrate potential
vulnerability at a certain trace level (i.e. the statement that
results from such a test is that “implementation A shows a
potential vulnerability with X traces). Any stronger statement
is not possible in a black box scenario: to certify vulnerability
additional measure with regards to false positives via sensible
multiplicity corrections are also required [44].

B. How to deploy leakage detection in a black box setting

The most intuitive use case for non-specific leakage detec-
tion is for an initial exploratory analysis of a new implemen-
tation/device. Recall Figure 3 suggests that Welch’s ¢ test and

the y2-test are “complementary” in two orthogonal directions
(at least when considering parallel HW leakages). As a trade-
off option, Neyman’s test “pushes” the white region in Figure
3 by balancing the two directions.

However, when analysing a new implementation that is still
“black box”, we do not know if it will exhibit strong enough
HW leakage: that is to say, we cannot conclude the leakage
behaviour will follow the situation in Figure 3 or [9]. When
dealing with a new implementation/device it is also completely
unclear what the effect size will be, a developer have to
“guess” how many traces might/should reveal a flaw. This is
a problem that is independent of whichever test we are using.

The most sensible strategy is then to run at least two
independent tests simultaneously in an incremental manner
until a leakage is identified in traces (controlling the rate of
false positives suitably following e.g. [44]). We recommend
to always run ¢-tests on all orders up to the masking order. If
the device leakage has some bit-linear leakage in some central
moments, then the ¢-test will reliably identify it with the least
number of traces. Otherwise, Neyman’s test will be able to
identify possible vulnerability, especially if realistic noise level
becomes too high for the y2-test.

C. Open research

Although there is a plethora of research on leakage detec-
tions in the side channel literature, there are still some open
questions of fundamental interest left.

e Discrete vs. Continuous. This is a rather general challenge
in statistics: discrete techniques like x? lose information
through the binning process; whereas continuous tech-
niques may have an inaccurate statistical inference for
discrete inputs. This is not specific to Neyman’s or the
x2-test: e.g. the Kolmogorov-Smirnov test has exactly the
same issue [45]. Optimal binning strategies, or ways to
bound the error that is due to binning, remain an open
question of practical relevance for our community.

e Multivariate testing. Instead of combining multiple sam-
ples through pre-processing techniques (sum or product)
in the case of sequential leakage, Neyman’s test does have
a multivariate extension [13], which is computationally
expensive. Finding powerful multivariate extensions (with
reasonable computation cost) for leakage detection tests is
still a largely uninvestigated question (with the exception
of [46]).

VII. CONCLUSION

We proposed to use the Neyman’s smoothness test as a sup-
plementary tool for the leakage detection toolkit. The highlight
of this approach is that it achieves a valid trade-off between
the y2-test and Welch’s ¢-test. More specifically, Neyman’s
test can possibly detect many higher order leakages (compared
with Welch’s ¢-test), while demonstrating reasonable power for
lower order leakages with considerable noise (compared with
the x2). Both cases are clearly illustrated in our simulation
experiments, while the latter is also confirmed in realistic
measurements. We believe Neyman’s smoothness test is a good
candidate (alongside the classical Welch’s ¢-test) for leakage



detection in black box scenarios because of its good all-round
performance.

APPENDIX A
WELCH’S {-TEST AND PEARSON’S }2-TEST

A. Welch’s t-test

Welch’s #-test is a widely adopted method by the community
where an early standardisation was proposed by [7]. Let Qy
and Q, be the fixed and random trace sets. Denote n¢ and n,.
their sample sizes, pty and pi, the sample means and s?c and
s2 the sample variances. The -test statistic and the degrees of
freedom v are computed as

2 2 2
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The p-value can be derived from the quantile function
of Student’s ¢-distribution: smaller p-values give evidence to
reject the null hypothesis (Hy: the fixed and random group
have the same mean) which leads to conclude that a potential
leakage is detected. The original proposal of [7] simplified the
computation of the quantile function by using the threshold
t = £4.5 [7], which is close to p = 1075 for a large number
of traces.

Note that Welch’s ¢-test relies on the assumption that the
underlining Q¢ and Q, are normal. Also it is a test of means
which indicates it is expected to be insensitive to leakages
above the first order. A common practical measure that extends
Welch’s ¢-test to a d-th order leakage detection is to apply the
same test on traces taken to their d-th order moments.

B. Pearson’s x>-test

To relax the order specific constraint of Welch’s ¢ test ,
[9] proposed the use of y? for leakage detection. However,
a drawback of this method is that the leakage distributions
are now required to be presented in a contingency table
which inevitably introduces a “data binning” process. In the
contingency table, each column corresponds to a bin of data
and each row a distribution to be compared. For fixed-vs-
random, only the fixed and random distributions of traces
are considered. Denote the number of columns as ¢, the
frequencies of the fixed and random traces in the j-th bin
as Iy ; and F, ; and the total number of samples as N. The
x? statistic can be computed as:
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where F;; ([, ;) represents the expected frequency of
value j in the fixed (random) distribution
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the p-value can be derived from the quantile function of >
distribution with degree of freedom ¢ — 1. As of Welch’s ¢-
test, smaller p-values suggest there is a significant difference
between the fixed and the random group and thus a leakage
is detected.

APPENDIX B
SPECIFIC V.S. NON-SPECIFIC

Historically, as the concept of leakage detection becomes
prevalent after the proposal of TVLA [7], we are often sug-
gesting that a statistical test that can possible capture “arbitrary
leakage”. Admittedly, this is an overly ideal statement that is
perhaps, never fully achieved. The “fixed-v.s.-random” strategy
used in [7] (or the “fixed-v.s.-fixed” strategy in [8]) detects any
kind of data-dependency on the power trace. Although this in
theory, does cover all possible arbitrary leakage, it will also
report many unexploitable “leakage” such as the leakage from
the plaintexts or ciphertexts. Nonetheless, this is an inevitable
trade-off for all the so-called non-specific tests today, including
Welch’s t-test, the y2-test and the CMI test [11]. A common
misunderstanding is confusing ‘“non-specific” with the concept
of “generic distinguisher/attack” [15]. Formally speaking, we
often denote the leakage as L(x), where

1) x: A known enumerate intermediate state (e.g. first

round Sbox output)

2) L: The function form of L (e.g. in standard HW model,

L is the Hamming weight function)
A distinguisher/attack is called “generic” if for a given z, it
applies to any kind of function L. Both the NICV [14] and the
p test [8] achieves this property: however, they cannot capture
any leakage that replies on not x, but some other intermediate
state y. “Non-specific” tests are aimed at losing the restriction
on zx rather than on L.

Alternatively, one can also be combined a specific test with
the “fixed-v.s.-random” strategy: however, the superiority of
these tools is simply lost during such convention (details can
be found in [47]).

APPENDIX C
DISCRETE VS. CONTINUOUS

Generally speaking, continuous/discrete distributions usu-
ally have their distinct features that benefit some testing
methodologies while hinder others. For instance, the X2-test
is designed for discrete data: if the tested data are continuous,
a binning procedure is usually required beforehand. Such pro-
cess inevitably introduces some information loss®, depending
on the specific binning scheme [9].

On the other hand, using any continuous test on discrete
data is not trivial either. Take one sample good-of-fitness
Kolmogorov-Smirnov test for instance: if the observed data
is highly discrete, adjustment would be necessary to extract
meaningful results [45]. Neyman’s smoothness here is not
an exception: distribution of F'(X) will only be uniform, if
F' is continuous and strictly increasing. Theoretically, in a
leakage detection setting, this is not an issue: although the

8Note that this is not equivalent to less efficient detections.



leakage itself is very likely discrete, the additional random
noise is usually assumed to be Gaussian. As a consequence,
the observed leakage will be continuous and strictly increasing
on its support.

However, as most of our measurements are from digital
oscilloscopes, the traces we get have already gone through an
Analog-Digital-Converter(ADC). That is to say, some mea-
surements are already binned to a certain number of bins.
This makes them perfect for the y2-test, while problematic
for Neyman’s test: after all, the test compares the distribution
of V' to an ideal uniform distribution, not a binned one.

One option is to use the categorised version of Neyman’s
test [48]: in fact, the y>-test itself can be regarded as a special
case of categorised Neyman’s test. Unfortunately, we have
found limited literatures on this topic: none of them covers
the two-sample test, only the goodness-of-fit test.

The other option, would be as Algorithm 1 suggested,
“smooth” V' so that Neyman’s test won’t detect any “binning
errors”. Of course, these work-arounds seem ad-hoc and might
also affect the statistical inference a little bit. Nonetheless, in
our realistic experiments, they did not become a significant
issue.

« Adding noise. A trivial way to solve this issue, would be
adding a small random noise (preferably smaller than the
bin size so that it won’t convolute the useful signal): the
additional noise would again makes the binned data “con-
tinuous” again and avoid the “jumps” on the histogram.

o Interpolation. Or, one can try uniformly interpolate on
within one bin, making all elements in this bin uniformly
distributed on the width of that bin.

Both have been tested in our experiments: both solves the
discrete issue, while not introducing significant bias on the
testing results. If the interpolation is selected and there are
a lot of elements in that bin, one can also use the Riemann
sum as a speed-up approximation. More specifically, if the bin
between [V,, V3] has h, (V,) elements, the sum of interpolation
can be approximated by

t=hy(a)—1

S i(Vat Ay xt) =

t=0

‘Z” ¥ (x) dx
A, ’

Vb_Va
A, =28
T hy(Va)

Although this formula brings integration calculation, in a
discrete setting, there are only limited possible values for V.
Thus, the integration part can be pre-computed as a look-up
table. In the meantime, there is no need to repetitively compute
1; any more.
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